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Abstract
Generative methods have been successfully ap-
plied in zero-shot learning (ZSL) by learning an
implicit mapping to alleviate the visual-semantic
domain gaps and synthesizing unseen samples to
handle the data imbalance between seen and un-
seen classes. However, existing generative meth-
ods simply use visual features extracted by the
pre-trained CNN backbone. These visual features
lack attribute-level semantic information. Conse-
quently, seen classes are indistinguishable, and the
knowledge transfer from seen to unseen classes is
limited. To tackle this issue, we propose a novel
Semantic Compression Embedding Guided Gener-
ation (SC-EGG) model, which cascades a seman-
tic compression embedding network (SCEN) and
an embedding guided generative network (EGGN).
The SCEN extracts a group of attribute-level local
features for each sample and further compresses
them into the new low-dimension visual feature.
Thus, a dense-semantic visual space is obtained.
The EGGN learns a mapping from the class-level
semantic space to the dense-semantic visual space,
thus improving the discriminability of the synthe-
sized dense-semantic unseen visual features. Ex-
tensive experiments on three benchmark datasets,
i.e., CUB, SUN and AWA2, demonstrate the sig-
nificant performance gains of SC-EGG over current
state-of-the-art methods and its baselines.

1 Introduction
The exciting performance of recent supervised deep learn-
ing relies on the massive amount of manually labeled vi-
sual samples [Scholkopf and Smola, 2002; He et al., 2016;
Cheng et al., 2017]. However, these methods fail to recognize
the objects whose classes are not in the training set. Zero-
shot learning (ZSL) has been proposed to solve this prob-
lem [Palatucci et al., 2009]. Based on the side information
shared by seen and unseen classes, ZSL models try to trans-
fer knowledge from seen to unseen classes. Thus, ZSL can
∗Equal contribution.
†Corresponding authors.
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Figure 1: Motivation illustration. (a) Existing generative ZSLs learn
a mapping from the class-level semantic space to the CNN back-
bone visual space which lacks attribute-level semantic information.
Consequently, the two seen classes are confusing, and the knowl-
edge transfer from seen to unseen classes is also limited. (b) SC-
EGG learns a mapping from the class-level semantic space to the
more discriminative dense-semantic visual space learned by seman-
tic compression embedding, thus synthesizing the high-quality un-
seen visual features.

recognize the novel unseen classes. According to the classifi-
cation range, the ZSL task can be grouped into conventional
ZSL (CZSL), which merely aims to predict unseen classes,
and generalized ZSL (GZSL), which aims at predicting both
seen classes and unseen classes.

Recently, generative methods in ZSL (i.e., generative
ZSLs) has achieved significant progress [Xian et al., 2018;
Xian et al., 2019; Narayan et al., 2020; Chen et al., 2021a;
Chen et al., 2021c]. Generative models usually learn an im-
plicit mapping from the class-level semantic space to the vi-
sual space using seen data and synthesize unseen visual fea-
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tures from the semantic vectors of unseen classes. Thus, ZSL
is converted into a standard supervised classification task,
which is helpful for tackling the problems of data imbalance
between seen and unseen classes, as well as visual-semantic
domain gaps.

However, existing generative ZSL methods simply learn
a mapping function from the class-level semantic space to
the CNN backbone visual space (represented by the visual
features directly extracted by a pre-trained CNN backbone,
e.g., ResNet101 [He et al., 2016]), which lacks attribute-
level semantic information (e.g., “bill color yellow” and
“head pattern plain”) that is critical for distinguishing seen
classes as well as transferring knowledge from seen to un-
seen classes in ZSL [Xie et al., 2019; Sylvain et al., 2020;
Chen et al., 2021c]. For example, as shown in Figure 1(a),
the pre-trained CNN backbone may only extract visual fea-
tures containing semantic information about “Bird” for three
samples of different fine-grained bird categories, which are
not discriminative enough. As such, the seen classes are con-
fusing, and the knowledge transferred from seen to unseen
classes is also limited.

To address the above problems, we propose a novel Seman-
tic Compression Embedding Guided Generation (SC-EGG)
model, which cascades a semantic compression embedding
network (SCEN) and an embedding guided generative net-
work (EGGN). The SCEN consists of a local embedding net-
work (LEN) and a global embedding network (GEN). The
LEN extracts a group of local visual features whose seman-
tics correspond to attributes. Considering the curse of dimen-
sion for feature synthesizing, we introduce a new semantic
consistent regression loss to enable the GEN to learn the low-
dimension global visual feature whose semantic is consistent
with the local visual features for each sample. Thus, we com-
press attribute-level semantic representations into the global
visual features and obtain a dense-semantic visual space, as
shown in Figure 1(b). The EGGN employs a generative
model to learn a mapping from the class-level semantic vec-
tors to the dense-semantic visual space for better knowledge
transfer. To alleviate model overfitting to seen classes, we fur-
ther introduce an embedding guided synthesis loss that takes
the trained classifier in GEN to constrain the visual feature
synthesizing for both seen and unseen classes in EGGN. Fi-
nally, we take the trained EGGN to synthesize an amount of
unseen visual features to train a classifier, which is used for
ZSL classification.

Our main contributions are summarized as follows:

• We propose a novel ZSL method, termed semantic
compression embedding guided generation (SC-EGG)
model, to address the problem of attribute-level seman-
tic missing of the CNN backbone visual features, thus
further boosting the performance of generative ZSL.

• We propose a new semantic consistent regression loss
for semantic compression and an embedding guided syn-
thesis loss for alleviating generative models overfitting
to seen classes.

• Extensive experiments on three challenging benchmark
datasets, i.e., CUB [Welinder et al., 2010], SUN [Pat-
terson and Hays, 2012] and AWA2 [Xian et al., 2017],

demonstrate the significant performance gain of SC-
EGG over current state-of-the-art methods and its base-
line.

2 Related Work
Embedding-based ZSL. Embedding-based ZSL methods
usually learn a mapping from visual to semantic domains
[Lampert et al., 2014; Akata et al., 2016], performing the
ZSL classification using nearest-likely strategy according
to the distance between itself and class-level semantic de-
scriptors. However, most existing methods are based on
global visual features that are not attribute-level semantic-
related, resulting in poor discriminative and transferable fea-
ture representations. Recently, attention-based local embed-
ding methods [Xie et al., 2019; Huynh and Elhamifar, 2020b;
Xu et al., 2020; Han et al., 2021; Chen et al., 2022a;
Chen et al., 2022b] were used to enhance the visual feature
representations for seen and unseen classes. Unfortunately,
these methods learn the ZSL model only on seen classes, in-
evitably overfitting to seen classes.

Generative ZSL. In order to overcome the limitations of
embedding-based ZSL methods, generative ZSL methods
employ a generative model to synthesize the unseen vi-
sual features for feature augmentation [Xian et al., 2018;
Xian et al., 2019; Narayan et al., 2020; Chen et al., 2021b].
Felix et al. [2018] proposed a conditional Wasserstein GAN
(WGAN) that synthesizes visual features by optimizing the
Wasserstein distance regularized by a classification loss. In
[Xian et al., 2019], the authors introduced an f-VAEGAN
framework that combined a WGAN and a VAE to take
advantage of the strength of both. Later, lots of genera-
tive ZSL methods follow up the f-VAEGAN framework be-
cause of its excellent performance [Narayan et al., 2020;
Chen et al., 2021a; Yan et al., 2021]. However, these gen-
erative methods learn the mapping from semantic vectors to
global visual features which are directly extracted by the pre-
trained CNN backbone. Since the global visual features are
not semantic-related to the pre-defined attributes in a specific
dataset, the learned generative model is poor. As such, the
synthesized unseen visual features are not discriminative and
transferable.

3 Proposed Method
Problem Definition. Let x ∈ X denotes an input image,
y ∈ Y denotes the corresponding label. Y = Ys ∪ Yu,
where Ys = {ys1, · · · ,ysM} denotes the set of M seen
classes, Yu = {yu1 , · · · ,yuN} denotes the set of N unseen
classes, and Ys ∩ Yu = ∅. Both seen and unseen classes
have the class-level semantic description vector a(yj) =

[a1, . . . , aA]
T ∈ A, ∀yj ∈ Ys ∪ Yu, which encodes the

relationships between all classes, and are available during
training. The semantic description vector a(yj) of class yj
has A elements, each of which corresponds to an attribute.
The tasks in CZSL and GZSL are to learn the classifiers
fczsl : X → Yu and fgzsl : X → Ys ∪ Yu, respectively.
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Figure 2: A schematic overview of SC-EGG. (a) Preliminary operations. (b) The semantic compression embedding network (SCEN) contains
a local embedding network (b1) that learns local visual features with semantic attribute vectors, and a global embedding network (b2) that
learns the dense-semantic global visual feature. (c) The embedding guided generative network (EGGN) contains a generative model that
learns a semantic-to-visual mapping, and a classifier (shared with the global classifier in SCEN) that guides feature synthesis.

Overview. As shown in Figure 2, the proposed seman-
tic compression embedding guided generation (SC-EGG)
model cascades a semantic compression embedding net-
work (SCEN) and an embedding guided generative network
(EGGN). Specifically, the SCEN employs a local embed-
ding network (LEN) and global embedding network (GEN)
to learn a local-global consistent embedding for semantic
compression. The EGGN contains a generative model (TF-
VAEGAN [Narayan et al., 2020]) to learn semantic-to-visual
mapping guided by a global classifier, which shares param-
eters with the global classifier in GEN. Preliminarily, we
represent the semantic attribute vector of A attributes as
{vn}An=1 using a language model (e.g., GloVe [Pennington
et al., 2014]), ∀vn ∈ Rda . In addition, we use the pre-trained
CNN backbone to extract a set of region features {ri}Ri=1

with R regions for each input image x, ∀ri ∈ Rdv .

3.1 Semantic Compression Embedding Network
Semantic compression embedding network (SCEN) learns a
dense-semantic visual space by local-global semantic consis-
tent feature learning, in which the local embedding network
(LEN) and the global embedding network (GEN) learn local
and global visual features, respectively. The SCEN is con-
strained by a local embedding cross-entropy loss, a global
embedding cross-entropy loss, and a semantic consistent re-
gression loss.

Local Embedding Network
Local embedding network (LEN) firstly locates attribute-
level semantic-related image regions to represent a group of
local visual features whose semantic is aligned to attributes,
using attribute-based attention mechanisms [Huynh and El-
hamifar, 2020b]. Thus, the attribute-level semantic-related

local features {hn}An=1 are formulated as:

hn =

R∑
i=1

exp(vT
nWαri)∑R

j=1 exp(v
T
nWαrj)

ri, (1)

where hn ∈ Rdv denotes the local visual feature whose se-
mantic is aligned with the n-th attribute, Wα ∈ Rda×dv is a
learnable matrix.

Then, LEN embeds {hn}An=1 into the semantic space:

eTl = diag([h1,h2, · · · ,hA]T)Wβ [v1,v2, · · · ,vA]
=
[
hT
1 Wβv1,h

T
2 Wβv2, · · · ,hT

AWβvA
]
,

(2)

where el ∈ RA denotes the feature embeded in semantic
space, Wβ ∈ Rdv×da is a learnable embedding matrix, and
diag(·) represents the diagonalization operation. After learn-
ing the visual-to-semantic embedding, the class prediction
result pl of LEN can be computed based on the similarity
between the embeded vector el and the class-level semantic
vectors a(yi):

pl = [a(ys1), · · · ,a(ysM ),a(yu1 ), · · · ,a(yuN )]
T
el

=
[
eTl a(y

s
1), · · · , eTl a(yuN )

]T
,

(3)

where a(yi) ∈ RA, ∀yi ∈ Ys∪Yu, and pl ∈ RM+N denotes
the class prediction score vector.

Global Embedding Network
Global embedding network (GEN) consists of a semantic
compression module SC and a global visual feature classi-
fier CLSg . The SC compresses the attribute-level semantic-
related local visual features {hn}An=1 to the dense-semantic
low-dimension global visual feature:

g = SC({hn}An=1), (4)
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where g ∈ Rdv denotes the global visual feature. The SC,
which can be a multilayer perceptron (MLP) with A input
units and one output unit, compresses the local features along
the dimension of attributes to remove redundant semantic.
Then the CLSg directly embeds the global visual feature g
to the class-label space:

pg = CLSg(g), (5)

where the pg ∈ RM+N denotes the class prediction score.

Local Embedding Cross-Entropy Loss
Aiming at ZSL classification, we take the local embedding
cross-entropy loss LLCE to train the LEN. The LLCE is for-
mulated as:

LLCE = − 1

N

N∑
n=1

log
exp (pl(y))∑

y′∈Ys∪Yu exp(pl(y′))
, (6)

where N denotes the batch size, pl(y′) is the score predicted
by LEN that the x belongs to class y′.

Global Embedding Cross-Entropy Loss
Simultaneously, we take the global embedding cross-entropy
loss LGCE to train the GEN. The LGCE can be formulated
as:

LGCE = − 1

N

N∑
n=1

log
exp (pg(y))∑

y′∈Ys∪Yu exp(pg(y′))
, (7)

where N denotes the batch size and pg(y
′) denotes the score

predicted by GEN that the x belongs to class y′.

Semantic Consistent Regression Loss
In order to guarantee the low-dimension global visual feature
g containing attribute-level semantic the same as local visual
features {hn}An=1 (i.e., compressing semantic of local fea-
tures to the global feature), we take the semantic consistent
regression loss LSCR as a constrain for both LEN and GEN:

LSCR = ‖pl − pg‖22, (8)

where pl and pg represent the prediction score vector of LEN
and GEN, respectively.

3.2 Embedding Guided Generative Network
We introduce the embedding guided generative network
(EGGN), which learns a mapping from the class-level seman-
tic vector as to the dense-semantic visual feature gs (learned
by SCEN) under the constraint of the embedding guided syn-
thesis loss. Based on the semantic compression, the dense-
semantic visual feature gs is low-dimension and attribute-
level semantic-related. Thus, EGGN can synthesize discrim-
inative unseen features ĝu.

The EGGN is based on the TF-VAEGAN [Narayan et al.,
2020], including a variational auto-encoder (VAE) and a gen-
erative adversarial network (GAN). The VAE consists of an
encoder E and a decoder G. The GAN consists of a genera-
tor G, which shares the decoder in VAE, and a discriminator
D. In addition, a semantic embedding decoder Dec and a

Algorithm 1 The algorithm of SC-EGG.
Input: the training set {X s,Ys}; the testing set {X u,Yu};
class-level semantic vectors A; the pre-trained CNN back-
bone ResNet101; the pre-trained language model GloVe; loss
weights (i.e., λg , λw, λr, λs, λu); training epoches for each
stage: ES1, ES2, ES3 and EC .
Output: the predicted label c∗ for the test samples.

1: Take ResNet101 to extract the region features {ri}Ri=1
for each sample x in X .

2: Take GloVe to extract the semantic attribute vectors
{vn}An=1 for A attributes.

3: while iter1 < ES1 do
4: Update parameters of SCEN with Equation (16).
5: end while
6: while iter2 < ES2 do
7: Update parameters of GEN with Equation (17).
8: end while
9: while iter3 < ES3 do

10: Update parameters of EGGN with Equation (18).
11: end while
12: Using the SCEN to extract gs for seen samples.
13: Using the EGGN to synthesize ĝu for unseen classes.
14: while iterc < EC do
15: Update parameters of fczsl (or fgzsl) with gs and ĝu

as inputs.
16: end while
17: Predict the label c∗ of the test samples using the trained

classifier fczsl (or fgzsl).
18: return the predicted label c∗ for the test samples.

feedback module F are introduced to enhance feature syn-
thesizing collectively. The basic loss LV G of TF-VAEGAN
can be formulated as:

LV G = LV AE + λwLWGAN + λrLRec, (9)

in which λw and λr are loss weights and:

LV AE =KL(E(g,a)‖p(z|a))−
EE(g,a)[logG(z,a)],

(10)

LWGAN =E[D(g,a)]− E[D(ĝ,a)]−

λE
[
(‖∇D(g′,a)‖2 − 1)

2
]
,

(11)

LRec = E[‖Dec(g)− a‖1] + E[‖Dec(ĝ)− a‖1], (12)

where KL is the Kullback-Leibler divergence, p(z|a) is a
prior distribution (assumed to be N (0, 1)), − logG(z,a) is
the visual feature reconstruction loss, g′ = τg+(1−τ)ĝ with
τ ∼ U(0, 1) and λ is the penalty coefficient. More details of
the TF-VAEGAN can be refer to [Narayan et al., 2020].

Embedding Guided Synthesis Loss
In order to encourage EGGN to synthesize the discriminative
features and avoid the synthetic unseen features overfitting
to seen classes, we introduce an embedding guided synthesis
loss based on a classifier, which shares parameters with the
global classifier CLSg in GEN. Specifically, the embedding
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Type Methods
CUB SUN AWA2

CZSL GZSL CZSL GZSL CZSL GZSL
Acc U S H Acc U S H Acc U S H

Embedding

TCN [Jiang et al., 2019] 59.5 52.6 52.0 52.3 61.5 31.2 37.3 34.0 71.2 61.2 65.8 63.4
AREN [Xie et al., 2019] 71.8 38.9 78.7 52.1 60.6 19.0 38.8 25.5 67.9 15.6 92.9 26.7

DAZLE [Huynh and Elhamifar, 2020b] 66.0 56.7 59.6 58.1 59.4 52.3 24.3 33.2 67.9 60.3 75.7 67.1
RGEN [Xie et al., 2020] 76.1 60.0 73.5 66.1 63.8 44.0 31.7 36.8 73.6 67.1 76.5 71.5
APN [Xu et al., 2020] 72.0 65.3 69.3 67.2 61.6 41.9 34.0 37.6 68.4 57.1 72.4 63.9

CE-GZSL [Han et al., 2021] 77.5 63.9 66.8 65.3 63.3 48.8 38.6 43.1 70.4 63.1 78.6 70.0

Generative

f-CLSWGAN [Xian et al., 2018] 57.3 43.7 57.7 49.7 60.8 42.6 36.6 39.4 68.2 57.9 61.4 59.6
f-VAEGAN-D2 [Xian et al., 2019] 61.0 48.4 60.1 53.6 64.7 45.1 38.0 41.3 71.1 57.6 70.6 63.5

LisGAN [Li et al., 2019] 58.8 46.5 57.9 51.6 61.7 42.9 37.8 40.2 – – – –
TF-VAEGAN [Narayan et al., 2020] 64.9 52.8 64.7 58.1 66.0 45.6 40.7 43.0 72.2 59.8 75.1 66.6
OCD-CVAE [Keshari et al., 2020] – 44.8 59.9 51.3 – 44.8 42.9 43.8 – 59.5 73.4 65.7

Composer [Huynh and Elhamifar, 2020a] 69.4 56.4 63.8 59.9 62.6 55.1 22.0 31.4 71.5 62.1 77.3 68.8
GCM-CF [Yue et al., 2021] – 61.0 59.7 60.3 – 47.9 37.8 42.2 – 60.4 75.1 60.3
FREE [Chen et al., 2021a] – 55.7 59.9 57.7 – 47.4 37.2 41.7 – 60.4 75.4 67.1
HSVA [Chen et al., 2021b] – 52.7 58.3 55.3 – 48.6 39.0 43.3 – 56.7 79.8 66.3

SDGZSL [Chen et al., 2021c] 75.5 59.9 66.4 63.0 – – – – 72.1 64.6 73.6 68.8
SC-EGG (Ours) 75.1 64.1 73.6 68.5 69.2 45.1 43.6 44.3 78.2 60.9 89.3 72.4

Table 1: Results (%) of the state-of-the-art CZSL and GZSL on CUB, SUN and AWA2. The best and second-best results are marked in red
and blue, respectively. Symbol ”–” denotes no results are reported. Methods are categorized into embedding-based ZSLs and generative
ZSLs.

guided synthesis loss LEGS includes a synthetic seen cross-
entropy loss LSCE and a synthetic unseen cross-entropy loss
LUCE , formulated as:

LEGS = λsLSCE + λuLUCE , (13)

where λs and λu are loss weights. LSCE and LUCE are for-
mulated as:

LSCE = − 1

N

N∑
n=1

log
exp (ps(y))∑

y′∈Ys∪Yu exp(ps(y′))
, (14)

LUCE = − 1

N

N∑
n=1

log
exp (pu(y))∑

y′∈Ys∪Yu exp(pu(y′))
, (15)

where N denotes the batch size, ps = CLSg(ĝs) and pu =
CLSg(ĝu), ĝs and ĝu represent the synthetic seen and un-
seen features, respectively. p(y′) denotes the score of the x
belonging to class y′ predicted by the CLSg .

3.3 Model Optimization
We train the SC-EGG in three stages:
i) Stage 1: We first train the SCEN by the local and global em-
bedding cross-entropy loss to learn attribute-level semantic-
related local features. The loss of stage 1 is formulated as:

LS1 = LLCE + λgLGCE . (16)

ii) Stage 2: At this stage, we train the SCEN by freezing the
parameters of LEN and updating the GEN with the semantic
consistent regression loss:

LS2 = LSCR. (17)

iii) Stage 3: We use the trained SCEN to extract the dense-
semantic visual features. Then we train the EGGN to learn
a mapping from the class-level semantic space to the dense-
semantic visual space. The total loss of stage 3 is:

LS3 =LV G + LEGS . (18)

3.4 Classification
After training, we use the SCEN to extract dense-semantic
visual features gs of seen samples and the generator G of
EGGN to synthesize unseen features ĝu. Then, we use the
gs and ĝu to train a CZSL classifier fczsl : X → Yu and a
GZSL classifier fgzsl : X → Ys∪Yu. During inference, test
features xt are processed by SCEN to obtain dense-semantic
visual features gt, which are further used as input of classifier
fczsl or fgzsl for ZSL prediction. The full procedure of SC-
EGG is presented in Algorithm 1.

4 Experiments
Dataset. We evaluate the proposed SC-EGG on three stan-
dard ZSL benchmark datasets: Caltech-UCSD-Birds (CUB)
[Welinder et al., 2010], SUN Attribute (SUN) [Patterson and
Hays, 2012] and Animals with Attributes2 (AWA2) [Xian et
al., 2017]. CUB is a fine-grained dataset which consists of
11,788 images of 200 bird classes. SUN is a fine-grained
dataset including 14,340 images from 717 scene classes.
AWA2 is a coarse-grained dataset which contains 37,322 im-
ages from 50 animal classes.

Evaluation Protocols. During testing, we measure the top-
1 accuracy both in the CZSL and GZSL tasks following
[Xian et al., 2017]. In CZSL, we only predict the unseen
classes Yu to compute the accuracy of test samples (de-
noted as Acc). In GZSL, we compute the accuracy of the
test samples from both seen classes Ys (denoted as S), un-
seen classes Yu (denoted as U ) and their harmonic mean
H = (2× S × U)/(S + U).

Implementation Details. We use the training splits pro-
posed in [Xian et al., 2018]. ResNet101 [He et al., 2016]
(pre-trained on ImageNet) is used for image feature extrac-
tion without fine-tuning. We use the Adam as optimizer with
lr = 10−4 and batchsize = 64. We use a single layer FC as
the final CZSL or GZSL classifier. Hyperparameters λg , λw,
λr, λs and λu are respectively set to 1.0, 10.0, 0.01, 0.1 and
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Figure 3: Visualization of attention maps of the SCEN. More results are shown in the online page1. (Best viewed in color)

Real Seen Features in 
CNN Backbone Visual Space 

Real Unseen Features in 
CNN Backbone Visual Space 

Synthetic Unseen Features in 
CNN Backbone Visual Space 

Real Seen Features in 
Dense-Semantic Visual Space

Real Unseen Features in  
Dense-Semantic Visual Space

Synthetic Unseen Features in 
Dense-Semantic Visual Space

Figure 4: t-SNE visualization on CUB. The results of SUN and AWA2 are presented in the online page1. (Best viewed in color)

Methods
CUB SUN

CZSL GZSL CZSL GZSL
Acc U S H Acc U S H

Baseline 68.3 55.2 66.4 60.3 67.2 45.5 41.1 43.2
SC-EGG w/o LLCE 71.0 59.4 69.9 64.2 67.8 46.0 39.2 42.4
SC-EGG w/o LGCE 74.0 59.8 74.7 66.5 68.1 39.6 48.1 43.5
SC-EGG w/o LSCR 72.9 60.1 72.2 65.6 67.3 47.2 40.1 43.4
SC-EGG w/o LEGS 72.9 60.4 72.5 65.9 68.1 47.6 40.4 43.7

SC-EGG (full) 75.1 64.1 73.6 68.5 69.2 45.1 43.6 44.3

Table 2: Results (%) of ablation study on CUB and SUN. The best
result of Acc and H are marked in boldface.

0.1. In addition, the setting of other hyperparameters in TF-
VAEGAN follows [Narayan et al., 2020]. We train SC-EGG
for 20 epochs in stage 1, 20 epochs in stage 2, and at most
200 epochs in stage 3. The code of SC-EGG is available at
the online page1.

4.1 Comparison with State of the Arts
SC-EGG is an inductive method, so we only compare it with
other inductive methods for fair comparisons. Table 1 shows
the comparison with state-of-the-art methods on CUB, SUN,
and AWA2 both in the CZSL and GZSL settings. In the CZSL
setting, our SC-EGG achieves the best accuracies of 69.2%
and 78.2% on SUN and AWA2, respectively, and obtains sig-
nificant gains of over 3.2% and 4.6% when compared with all
of other methods. On CUB, SC-EGG still obtains competi-
tive performance with a top-1 accuracy of 75.1%. These are
benefitted from the transferable representation of the seman-
tic compression embedding learned by our SC-EGG. In the
GZSL setting, the SC-EGG achieves the best performances
with harmonic mean (H) of 68.5%, 44.3% and 72.4% on
CUB, SUN and AWA2, respectively. Compared with other
methods that achieve good performance on either seen classes
or unseen classes, our SC-EGG achieves a good balance be-

1https://github.com/HHHZM/SC-EGG

tween seen and unseen classes. This is because SC-EGG
is capable of learning the discriminative dense-semantic vi-
sual representations that are attribute-level semantic-related.
Thus, the quality of visual features in both seen and unseen
classes is enhanced.

4.2 Ablation Study
In this section, we provide further insights into SC-EGG by
conducting ablation studies to evaluate the effects of LLCE ,
LGCE , LSCR and LEGS . We also show the baseline of the
generative model in SC-EGG (i.e., TF-VAEGAN [Narayan
et al., 2020]). Results of the ablation study are shown in
Table 2. The results of the baseline, which is without se-
mantic compression embedding, are significantly worse than
the full SC-EGG, with the Acc/H drops by 6.8%/8.2% and
2.0%/1.1% on CUB and SUN, respectively. If we incor-
porate the SCEN without local classification constrain (i.e.,
SC-EGG w/o LLCE), the model achieves poor ZSL perfor-
mance against the full SC-EGG with the Acc/H drops by
4.1%/4.3% and 1.4%/1.9% on CUB and SUN respectively.
When we remove the global classification constrain of SCEN
(i.e., SC-EGG w/o LGCE), the performance of SC-EGG will
drop slightly. Moreover, removing the semantic consistent
regression loss LSCR results in 2.2%/2.9% and 1.9%/0.9%
drops of Acc/H on CUB and SUN. If LEGS is not used, SC-
EGG inevitably overfits to seen or unseen classes, leading to
inferior results. Our full SC-EGG effectively learns the com-
pressed semantic embeddings for discriminative and transfer-
able feature representations, achieving the best results.

4.3 Qualitative Results
Visualization of Attention Maps. In Figure 3, we show the
visualization of attention maps of the SCEN of two random
selected samples. The first column shows the input images,
the second column shows the global attention maps of GEN,
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and the other columns are local attention maps of LEN with
top-8 attention scores. As shown in Figure 3, local visual
features precisely focus on the regions corresponding to the
attributes. The global visual feature focuses on the complete
instance in the image, avoiding the influence of useless scene
information.
t-SNE Visualizations. As shown in Figure 4, we present
the t-SNE visualizations [Van der Maaten and Hinton, 2008]
of real seen/unseen and synthetic unseen visual features in
CNN backbone visual space and dense-semantic visual space.
Results show that the visual features in the dense-semantic
visual space are more discriminative in real seen, real unseen,
and synthetic unseen classes than the CNN backbone ones.

5 Conclusion
In this paper, we propose a novel semantic compression em-
bedding guided generation model (termed as SC-EGG) for
ZSL. SC-EGG cascades a semantic compression embedding
network (SCEN) and an embedding guided generative net-
work (EGGN). The SCEN learns a discriminative dense-
semantic visual space by semantic compression embedding,
and the EGGN learns an implicit mapping from the class-
level semantic space to the dense-semantic visual space to
synthesize high-quality unseen features, under the guidance
of SCEN. Extensive experiments on three popular benchmark
datasets demonstrate the superiority of SC-EGG for ZSL.
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