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Abstract

Compared with image few-shot learning, most of
the existing few-shot video classification methods
perform worse on feature matching, because they
fail to sufficiently exploit the temporal information
and relation. Specifically, frames are usually evenly
sampled, which may miss important frames. On
the other hand, the heuristic model simply encodes
the equally treated frames in sequence, which re-
sults in the lack of both long-term and short-term
temporal modeling and interaction. To alleviate
these limitations, we take advantage of the com-
pressed domain knowledge and propose a long-
short term Cross-Transformer (LSTC) for few-shot
video classification. For short terms, the motion
vector (MV) contains temporal cues and reflects
the importance of each frame. For long terms, a
video can be natively divided into a sequence of
GOPs (Group Of Picture). Using this compressed
domain knowledge helps to obtain a more accu-
rate spatial-temporal feature space. Consequently,
we design the long-short term selection module,
short-term module, and long-term module to com-
prise the LSTC. Long-short term selection is per-
formed to select informative compressed domain
data. Long/short-term modules are utilized to suffi-
ciently exploit the temporal information so that the
query and support can be well-matched by cross-
attention. Experimental results show the superior-
ity of our method on various datasets.

1 Introduction

Few-shot learning (FSL), a fundamental problem in machine
learning, aims to learn information about categories from a
few training samples. This topic become increasingly pop-
ular because in practice collecting a large amount of la-
beled data is often difficult. Recently, FSL has reached
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Figure 1: Video examples with long-term temporal informa-
tion (a)-ShavingHead and short-term temporal information (b)-
PuttingSomethingOntoSomething. The frames with yellow border
are selected by traditional selection strategy, while the frames with
red border are selected by our long-short term selection strategy.

a milestone on image classification [Doersch er al., 2020;

Sung er al., 2018]. For video few-shot classification, there
are still challenges due to the complicated temporal structure.

Few-shot video classification [Dwivedi et al., 2019; Cao et
al., 2020; Zhang et al., 2020; Perrett et al., 2021] has been
tried recently, but most existing methods fail to sufficiently
capture the temporal cues. On the one hand, frames are usu-
ally evenly sampled, and each frame is treated as equally im-
portant. In actuality, the information intensity of video is typ-
ically not uniformly distributed. As a result, some critical
information may be missed. On the other hand, the heuristic
model simply encodes the equally treated frames in sequence,
which results in the lack of both long-term and short-term
temporal modeling and interaction. For example, in Figure 1,
the evenly sampling strategy often extracts some useless in-
formation (e.g., the single head in (a) or the background in
(b)). Besides, some class information reflects in the long term
while others reflect in the short term. Thus, the long-short-
term temporal modeling is extremely necessary.

To alleviate these problems above, we explore coarse and
fine-grained temporal information and more accurate tempo-
ral relation, to better match the query and support. On the
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one hand, more effective temporal data is used. We find that
the compressed domain natively contains useful information.
For example, the motion vectors (MVs) show the short-term
temporal and motion information of each frame. The MV in-
tensity can also indicate the importance of the current frame.
For long term, the video is split into different groups of pic-
tures (GOPs) according to the content, and the frames with
the same scene and content are usually included in one GOP.
Besides the temporal cues, the intra-frame (I-frame) of each
GOP also provides the appearance information. More impor-
tantly, the compressed domain data can be acquired at a low
cost. We only need to entropy-decode the video bitstream to
access the compressed domain data, rather than fully decode
the RGB frames.

On the other hand, a more accurate spatial-temporal feature
space and temporal relation are constructed. Taking advan-
tage of compressed domain knowledge, we propose a Long-
short Term Cross-Transformer (LSTC) for few-shot video
classification. Firstly, the informative data is adaptively se-
lected from the multi-modal compressed domain data with
long-short term selection. Then for the short-term tempo-
ral module, a multi-modal integration network is designed, in
which the I-frames and MVs sequences from the same GOP
interact with each other. Finally, the long-term temporal mod-
ule performs self-attention for long-term modeling and then
computes the cross-attention between tuples of query embed-
dings and those of support for more sufficient matching. The
prototype for each support class is generated. The label is
predicted by the distance between the query and each proto-
type.

Our main contributions are summarized as follows:

* We proposed a novel framework called long-short term
cross-transformer (LSTC) for few-shot video classifica-
tion, which can deeply exploit the long-short term video
information and well match the query-support pair.

* We take advantage of the compressed domain knowl-
edge to obtain effective spatial-temporal information at
a low cost and adaptively select the informative data to
be processed.

* Experimental results show that our method is effec-
tive and outperforms the state-of-the-art (SOTA) on
both large-scale and small-scale datasets, including
SSV2 [Goyal et al., 2017], Kinetics [Carreira and
Zisserman, 2017], UCF [Soomro et al., 2012] and
HMDB [Kuehne et al., 2011].

2 Related Work

Few Shot Video Classification. Few-shot learning (FSL)
addresses the challenging problem of learning from a few la-
beled examples. Videos reside in a higher-dimensional space
than images, which increases the difficulty to learn a strong
classifier with limited samples. Compound Memory Network
(CMN) [Zhu and Yang, 2018] constructs a two-layer com-
pound memory structure to store video features for match-
ing. Temporal Attentive Relation Network (TARN) [Bishay
et al., 2019] performs segment-wise alignment before match-
ing support and query videos with relation network [Sung
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et al., 2018]. EOSVR [Fu et al., 2019] proposes embodied
one-shot video recognition with synthetic data. OTAM [Cao
et al., 2020] aligns videos with differentiable dynamic pro-
gramming. Temporal Cross-Transformers (TRX) [Perrett et
al., 2021] adapt Cross-Transformers [Doersch et al., 2020] to
constructs query-specific prototypes from tuples of frames.
The problem of video embedding is discussed in [Zhu et al.,
2021]. The previous methods attempt to capture the tempo-
ral structure of videos but achieve limited success. A crit-
ical problem is that their input is RGB frames, where tem-
poral clues must be inferred indirectly and often implicitly.
AMeFu-Net[Fu et al., 2020] exploits depth as additional in-
put. In contrast, our method considers compressed domain
data that contains direct temporal information, exploiting
global and local temporal structure with a long-short term
model that better suits the new input modality.

Compressed Video Classification. Compressed domain
data provides simple and fast temporal information, which
can improve the performance of video classification meth-
ods with limited overhead. The acquirement of compressed
domain information is nearly cost-free compared with con-
ventional methods that fully decode the input videos. More-
over, MVs contain the movement at the block level so they
can serve as coarse motion estimation. CoViAR [Wu et al.,
2018] pioneers compressed video classification, replacing op-
tical flow in [Wang et al., 2016] with MVs and residuals.
DMC-Net [Shou er al., 2019] refines MVs with the super-
vision of optical flow. Slow-I-Fast-P [Li et al., 2020] estab-
lishes pseudo optical flow from MVs and residuals for the fast
path of SlowFast Network [Feichtenhofer et al., 2019]. These
methods reveal the potency and efficiency of compressed do-
main features for video classification. Nonetheless, they treat
compressed domain features as insertion into conventional ar-
chitecture instead of developing a new befitting compressed
video classification framework.

3 The Proposed Method

We propose a novel Long-Short Term Cross-Transformer
(LSTC) for few-shot video classification. It takes advan-
tage of the compressed domain knowledge and performs ac-
curate query-support matching with a long-short term struc-
ture. Here, we introduce the proposed method, including the
framework, formulation, and technical details.

3.1 Framework and Formulation

The overall framework is summarized in Figure 2. We first
extract the compressed domain data by partially decoding the
video bitstream at a low cost. Specifically, the I-frames and
the motion vectors (MVs) from different Groups of Pictures
(GOPs) are obtained. We denote the frames in the ¢t-th GOP as
{Gm}lL:‘O, where Gy g is the I-frame. The MVs are denoted
as M, ;. The I-frames are essentially RGB images, contain-
ing the appearance information. The MVs denote the motion
from the source positions in the previous frame to the desti-
nation positions in the current frame, containing the temporal
information. The I-frames and MVs are extracted from the
video stream by entropy decoding.
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Figure 2: Overall framework of the proposed method, which contains compressed domain information extraction, long-short term selection

and long-short term modules.

Secondly, we design a long-short term selection module
to extract the informative I-frames and MVs from long-term
GOP-level and short-term frame-level. After that, a short-
term module is embedded to exploit the short-term tempo-
ral information and fuse the multiple modals of I-frames and
MVs at GOP level. Fed with the embeddings from the short-
term module, a cross-transformer is constructed to build the
long-term temporal information and to explore the relation-
ship between the support and the query.

In this paper, we consider the C-way K-shot few-shot video
classification problem, in which an episode [Vinyals et al.,
2016] consists of C classes with K support videos for each
class. The target of this problem is to classify the query video
into one of the classes ¢ € {1,2,--- ,C}.

3.2 Long-short Term Selection

The input frame selection is an important problem for video
classification. Usually frames are randomly sampled either
evenly or successively with a fixed stride [Wang er al., 2016;
Cao et al., 2020; Perrett et al., 2021]. This selection strat-
egy may miss some keyframes and introduce some irrelevant
background frames. In our method, we utilize the compressed
domain to conduct long-short term information selection.

There are useful cues to distinguish the informative frames
in the compressed domain. In the long term, the GOPs with
different lengths have already divided the contents into sev-
eral parts. In the short term, the MVs reflect the importance
of the current action. Hence, we define a metric to evaluate
the importance of the [-th frame in the ¢-th GOP:
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(x,y) is spatial location, and « > 0. Based on this metric,
we obtain the importance score of the ¢-th entire GOP:

Ly
1
1(GOPy) = > I(Myy), )
=1

Residual Block

Interaction (m=2)

I frame

MV1 MV2

& [ 1x1 conv @ Sum

Figure 3: Short-term module (STM) performs short-term modeling
in a GOP. Left illustrates a modified residual block, which replaces
the first block at each stage. Right is the lateral connections in the
modified residual block, implemented by grouped convl X 1.

According to this importance score, in the long term, we
extract the informative GOPs with probabilities of { Pf!
I(GOP;)}L,. Likewise, in the short term, we extract the
informative MVs with probabilities of { PF! oc T(M; )}/,
We sample them with a probability rather than select the fixed
top-n frames because the fuzzification in the proposed selec-
tion scheme can tolerate some noise in these frames. This
alleviates the influence of some outliers and noise on the per-
formance. g GOPs are sampled for each video, and the I-
frame and m additional frames (P-frames) are selected for
each sampled GOP. We then accumulate the MVs and con-
duct an alignment between the accumulated MVs and the I-
frames. The detailed process is described in the Supplemen-
tary Materials. The selected I-frames and aligned accumu-
lated MVs are used as input to the Long-short Term Cross-
Transformer.

3.3 Long-short Term Cross-Transformer

Short-Term Module

We conduct short-term temporal interaction in each GOP us-
ing the designed short-term module (STM). The embeddings
generated by STM are enhanced with local temporal relation,
providing better appearance and motion modeling than fea-
tures from RGB frames only. Compressed domain natively
decouples the original video into appearance part and motion
part (i.e., I-frames and MVs). Hence, we construct a two-
branch network, one for appearance modeling (I-branch, i.e.,
f1(+)), and the other for motion modeling (MV-branch, i.e.,
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famv(+). Each branch employs a staged convolutional neu-
ral network (CNN) as the backbone and extracts features for
each frame. Between these two branches, they interact with
each other at each stage r (i.e., 7 = 1,2, ..., R). The interac-
tion is performed between the I-frame feature maps and the
MYV feature maps from the same GOP.

In our experiments, we use ResNet [He er al., 2016] as the
backbone. The appearance-motion interaction is performed at
the first residual blocks of stages Conv2-Conv5. As depicted
in Figure 3, the feature maps of each branch are encoded with
convl x 1 and added to the residual path of the other branch.
Only a proportion p € [0, 1] of I feature channels interact
with MV features so that STM can preserve the original ap-
pearance in the other (1 — p) I-branch channels. All MV fea-
tures participate in the interaction. The interacting I feature
channels are evenly divided into m groups, each of which ex-
changes information with the MV features of a P-frame by
lateral connections. STM is applied independently for each
GOP. Finally, for each video, the output features of all the
I-frames at I-branch are stacked as Z; € R9%% _and the out-
put features of all the P-frames at MV-branch are stacked as
Zvy € RIm*duv wwhere d; and djy are the output dimen-
sions of I-branch and MV-branch, respectively.

Long-Term Module

After obtaining the embeddings, we match the query and
support videos with long-term module (LTM). LTM con-
sists of two Cross-Transformers, one for the appearance em-
beddings from the I-branch and one for the motion embed-
dings from the MV-branch. For each Cross-Transformer, a
self-attention layer is first adopted to the embeddings Z €
{Z;,Zyv} of each video. Given query/key/value matrices
WY WE WY e R4, where d € {d;,dasv} is the col-
umn dimension of Z, the self-attention is calculated as:

ZWe (zWk)"
Vd

Position encoding [Vaswani et al., 2017] is applied on both
Z and H. After self-attention, we construct embeddings for
tuples of length n from each video’s embeddings H, allow-
ing for fine-grained matching. For the query video, the tuple
embedding qy, is constructed as following:

HZ+mﬁmm< )ng A3)

ab = [h;, ®h;,®, ..., ®h; | € R™,
s.t. b: {jl;-";jn}

in which @ denotes vector concatenation, {h;,,--- ,h; } are
n different row vectors from H. Similarly, the tuple embed-
dings of the support videos are obtained in the same way.
Then for each class ¢, we stack all possible tuple embeddings
from every shot as row vectors to obtain the class represen-
tation S¢. Given query matrix W@ € R"¥*dr key matrix
WE ¢ R74Xdr gpd value matrix WY € R™@Xdv  where
dy, d, are hidden dimensions, the support prototype of class
c is obtained by cross-attention:

“

apWQ (STWH)"
Vi

up,. = softmazx ( > SCWV, (®)]
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Subsequently, the distance between the query and the c-th
class support is computed:

Sbe = |labW" —up, |3, (6)

We extract all the possible tuples of the query video to
match the support videos. The average distance is calculated:

- 1
&:MZ%Q (7)
b

The predicted result is the class with the smallest distance
between the support and the query.

3.4 Optimization

To train and optimize the proposed Long-short Term Cross-
Transformer, we minimize the distance between the query
video and the matched support video. In the loss function,
negative distances are regraded as logits to compute the cross-
entropy loss:

. LMo - ( exp (—dc,i) ) ®)
08§ = —— E E c.ilog 2 .
N > exp (—6er )

i=1 c=1

where h. ; denotes the label of the i-th training sample.

4 Experiments
4.1 Settings

Datasets. Our evaluations are conducted on four datasets,
including Kinetics [Carreira and Zisserman, 2017],
Something-Something V2 (SSV2) [Goyal et al., 2017],
UCF [Soomro et al., 2012] and HMDB [Kuehne et al.,
2011]. The first few shot video classification dataset is
constructed from Kinetics by CMN [Zhu and Yang, 2018].
In their setup 100 classes are sampled from the total 400
classes. Selected classes are then split into train/val/test sets
of 64/12/24 classes without overlapping, and 100 videos are
sampled for each class. On SSV2 we evaluate our method
with the split proposed by [Cao er al., 2020] which contains
64/12/24 classes for train/val/test with approximately 1000
videos for each class. Following [Zhang er al., 2020], we use
70/10/21 classes as train/val/test set for UCF and 31/10/10
for HMDB, respectively. All reported results are measured
over 10,000 randomly sampled episodes from testing sets.

Implementation. MPEG-4 encoded videos are used as in-
put. We sample g = 4 GOPs from each video and extract
the corresponding I-frames and the MVs of m = 2 P-frames.
When the video has no enough GOPs or P-frames, the GOPs
and P-frames may be sampled several times. The horizontal
and vertical components of MVs are rescaled respectively by
the width and height of the video. For the short-term mod-
ule, we use ResNet-50 [He et al., 2016] as the backbone for
I-branch and ResNet-18 for MV-branch, both initialized with
ImageNet [Deng ef al., 2009] pre-trained weights. We set
a = 0.4 in long-short term selection. For the LSTC, we set
p = 0.5, the latent dimensions are set to d, = d,, = 1024 and
dy = d, = 512 for I and MV, respectively. The two Cross-
Transformers in the long-term module are implemented with
n = 2 and n = 3, respectively. Their predictions are merged
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Method SSV2 HMDB UCF Kinetics
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchNett [Vinyals ef al., 2016] - - 56.2 66.9 78.0 87.9 67.8 77.1
MAML [Finn et al., 2017] - - - - - - 54.2 75.3
CMNT [Zhu and Yang, 2018] - - 45.6 62.6 71.8 88.7 60.5 78.9
TARN [Bishay et al., 2019] - - - - - - 64.8 78.5
ARN [Zhang et al., 2020] - - 45.5 60.6 66.3 83.1 63.7 82.4
OTAMT [Cao et al., 2020] 42.8 52.3 55.0 65.7 80.1 89.8 73.0 85.8
TRX [Perrett et al., 2021] - 64.6 - 75.6 - 96.1 - 85.9
Ours 46.7 66.7 60.9 76.8 85.7 96.5 73.4 86.5

Table 1: Comparison with state-of-the-art models. Table entries are top-1 accuracy (%) on each dataset, with 1-shot and 5-shot setting.
The performance margin is larger on SSV2, but lesser on Kinetics and UCF which rely more on appearance and scene inference. Methods
with t are evaluated with our implementations when reported results are not available in the literature.

by averaging. During training, the I-frames and M Vs are ran-
domly cropped to 224 x224. During testing, they are resized
to height 256 before center cropping. Following [Wu et al.,
20181, we augment I-frames with random color jittering.
The whole network is trained using SGD optimizer [Bot-
tou, 2010] with the learning rate of 0.025. Cross-entropy loss
is calculated on a batch of 32 episodes. The training continues
for 60,000 episodes on SSV2, and 10,000 episodes on other
datasets. We use 4 NVIDIA RTX2060 GPUs for training.

4.2 Performance Comparison

To verify the effectiveness of the proposed method, 7 SO-
TAs are taken into account for comparison, including Match-
Net [Vinyals et al., 20161, MAML [Finn et al., 2017],
CMN [Zhu and Yang, 2018], TARN [Bishay et al., 2019],
OTAM [Cao et al., 2020], ARN [Zhang er al., 2020] and
TRX [Perrett et al., 2021]. The comparative results are sum-
marized in Table 1. The proposed method achieves SOTA
performance on all four benchmark datasets. For the 5-shot
setting, the proposed method surpasses the previous SOTA
by 2.1%, 1.2% respectively on SSV2 and HMDB. Note that
the gains come with little overhead. Although MVs are in-
troduced as an additional stream to I-frames, our elaborate
design of short-term modeling module reduces the convolu-
tional feature dimension by a factor of m, which greatly de-
creases the number of parameters of the Cross-Transformer.
Furthermore, the acquirement of I-frames and MVs is more
efficient than traditional fully decoding, because, in the ex-
traction of compressed domain data, most of the computation-
intensive decoding steps can be skipped. Compared with
prior SOTA methods which typically take 8 RGB frames as
input, the proposed method is fed with only 4 I-frames in
a video, which contain much less appearance information
than 8 RGB frames. Therefore, the major contribution to
the SOTA performance of LSTC is the effective utilization of
temporal information contained in MVs and the appearance
information in I-frames.

4.3 Ablation Study

In this section, we conduct extensive experiments to fur-
ther analyze and discuss the effectiveness of the proposed
method. The results of ablation study on constituent parts
of our method are summarized in Table 2. Baseline model
consists of I-frames and MVs streams with traditional selec-
tion strategy, i.e., GOPs and MVs are uniformly sampled.

MVs Selection STM LTM HMDB UCF
V4 69.2 89.6
v v 69.9 90.4

v v 73.5 94.1

v v v 73.7 94.0

v v v 74.2 94.4
v v v 74.9 95.0
v v v 75.3 95.5
v v v v 76.8 96.5

Table 2: Ablation study. Selection means long-short term selection,
STM means short-term module, LTM means long-term module. Re-
sults are reported on 5-way 5-shot setting.

The baseline model replaces the short-term module with plain
ResNet backbones, without interaction between two streams.
The long-term module is removed and the maximal cosine
similarity between frames is used to measure the distance be-
tween two videos. In addition, we provide analysis on g, m,
and few-shot settings, and compare compressed domain data
with optical flows. See the Supplementary Materials for more
quantitative and qualitative results.

The Effect of Motion Vectors and Frame Selection

We argue that densely sampled RGB frames are highly re-
dundant for video classification. In the traditional setting
[Perrett et al., 2021; Cao et al., 2020] 8 frames are drawn
from the original video to construct a video representation.
In our method, merely 4 I-frames containing RGB informa-
tion are selected, and MVs provide additional motion infor-
mation for accurate classification. As demonstrated in Ta-
ble 2, utilizing I-frames and MVs already yields a few-shot
video classifier with considerable accuracy. The performance
is future improved with the introduction of long-shot term se-
lection, which utilizes the imbalanced distribution of infor-
mative frames and the correlation between MVs and the sig-
nificance of motion. Moreover, after removing the selection,
a 1.5% drop and a 1.0% drop are observed on HMDB and
UCEF, respectively. This proves the effectiveness of the pro-
posed long-short term selection procedure.

Although a few-shot classifier based on MVs and long-
short term selection is a strong baseline, the performance of
such a naive combination is far from satisfactory. The naive
approach fails to operate on I-frames and M Vs jointly and de-
rive enough information. To achieve SOTA performance, we
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g=1 g=2 g=4 g=28
1 654 711 742 75.8
=2 680 729 768 7716
4 684 733 711 78.1
8 682 739 7715 784

BEBE
|

Table 3: The effect of number of sampled GOPs and P-frames
per GOP. g is the number of sampled GOP, m is the number of
additionally sampled frames (P-frames) per sampled GOP. Results
are accuracy(%) on HMDB with 5-way 5-shot setting.

must design an elaborate method to fuse them effectively.

The Effect of STM and LTM

In our method, we propose short-term module (STM) and
long-term module (LTM) to facilitate the fusion of appear-
ance encoded by I-frames and motion encoded by MVs. In
Table 2, results demonstrate the considerable improvement
with the introduction of STM and LTM. With STM, the ac-
curacy improves by 4.3% on HMDB and 4.0% on UCF com-
pared with the baseline model with MV and long-short term
selection only. LTM brings an improvement of 5.0% and
4.6%, respectively. These results prove that our STM and
LTM design can bridge the gap between two modalities of
appearance and motion, generating distinctive features from
these two streams. Moreover, when MVs in the full method
are replaced by all-zero input, i.e., no MVs are provided,
the performance dropped significantly by 2.9% and 2.5% on
HMDB and UCEF, respectively. The ability of STM and LTM
to dig and utilize distinctive video features is considerably
impaired without MVs.

Varying the Number of Sampled GOPs and P-frames
The numbers of sampled GOPs (g) and P-frames per GOP
(m) are both hyperparameters in our method. We choose
g = 4 and m = 2 in previous experiments. This setting
allows us to make a fair comparison with previous methods
which typically take 8 RGB frames as input. To demonstrate
the scalability of our method, we summarize the performance
on HMDB with different g and m in Table 3. All other set-
tings are the same as section 4.1. Accuracy is generally im-
proved with more GOPs and P-frames per GOP, but the com-
putational cost also increases with more I-frames and M Vs to
process. Since the numbers of GOPs and P-frames in each
GOP have upper bounds for videos in a certain dataset, sam-
pling more GOPs or more P-frames per GOP than those ex-
isting in the video is pointless. A practical choice for g and
m depends on the average length of videos, encoding, and
computation ability.

Performance with Different Few-Shot Settings

Table 4 shows the impact of the few-shot setting, namely the
number of ways (C) and shots (K), on performance. In gen-
eral, our method performs better with more shots, i.e. more
“hints”, and fewer ways, i.e. fewer ’possibilities”. The same
phenomenon is observed in previous works [Zhu and Yang,
2018; Bishay et al., 2019; Perrett et al., 2021] and is likely
ubiquitous in few shot video classification. Nevertheless,
such a problem may not be acute in the real world. In prac-
tice, usually more than a few samples could be retrieved for
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2-way 3-way 4-way S-way
1-shot  78.4 68.5 62.1 60.9
2-shot 834 77.0 69.7 66.8
3-shot  88.0 82.1 75.0 71.2
4-shot  89.2 83.1 78.3 73.7
5-shot  90.9 84.5 82.2 76.8

Table 4: The impact of few shot setting. Rows vary in the number
of ways, columns vary in the number of shots. Results are accu-
racy(%) on HMDB.

Method Data Time Infer. Time Accuracy
Optical Flow 25.0 14.6 74.2
MVs 0.7 14.6 76.8

Table 5: Comparison with optical flow. Data Time is pre-
processing time and Infer. Time is inference time, both measured
in ms/frame. Accuracy(%) is reported on HMDB with 5-way 5-shot
setting.

a well-defined category, albeit still considered “few-shot™ as
opposed to the traditional many-shot scenario which requires
thousands of training samples.

Comparison with Optical Flow

In Table 5 we replace MVs in our method with optical flows
and compare the performance. The optical flows are extracted
and processed following [Wang er al., 2016]. All other parts
of our method remain the same. Data time, inference time,
and accuracy on HMDB are reported. As demonstrated by
the results, extracting compressed domain data is by orders
of magnitude faster than calculating optical flows, saving a
significant amount of time and computing resources. On the
other hand, the performance of the optical flow-based method
is worse than the MV-based method. This may be caused by
the fact that the optical flows lack the required GOP struc-
ture, which indicates that the compressed domain data is not
a simple replacement of optical flows in our method.

5 Conclusion

This paper proposes a novel framework called Long-short
Term Cross-Transformer (LSTC) for few-shot video classi-
fication. It takes advantage of compressed domain data to
match the query and the support videos. In particular, LSTC
consists of long-short term selection, short-term module, and
long-term module. The long-short term selection adaptively
selects and extracts the informative data by analyzing the im-
plicit cues in the compressed domain. The short-term module
integrates the multi-modal compressed domain data (i.e., I-
frames and MVs) and makes them interact with each other,
to obtain fine-grained spatial-temporal features. Given these
short-term embeddings, the long-term module computes the
global temporal representations and cross-attention between
the query and support. Experiments show the effectiveness of
the proposed method on various datasets.
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