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Abstract
The task of webly-supervised fine-grained recogni-
tion is to boost recognition accuracy of classifying
subordinate categories (e.g., different bird species)
by utilizing freely available but noisy web data.
As the label noises significantly hurt the network
training, it is desirable to distinguish and eliminate
noisy images. In this paper, we propose two strate-
gies, i.e., open-set noise removal and closed-set
noise correction, to both remove such two kinds of
web noises w.r.t. fine-grained recognition. Specif-
ically, for open-set noise removal, we utilize a
pre-trained deep model to perform deep descriptor
transformation to estimate the positive correlation
between these web images, and detect the open-set
noises based on the correlation values. Regarding
closed-set noise correction, we develop a top-k re-
call optimization loss for firstly assigning a label
set towards each web image to reduce the impact of
hard label assignment for closed-set noises. Then,
we further propose to correct the sample with its
label set as the true single label from a partial la-
bel learning perspective. Experiments on several
webly-supervised fine-grained benchmark datasets
show that our method obviously outperforms other
existing state-of-the-art methods.

1 Introduction
Deep Neural Networks have recently lead to significant
progress in fine-grained tasks [Horn et al., 2018]. However,
constructing a fine-grained dataset can be an extremely diffi-
cult work since distinguishing subtle differences among fine-
grained categories usually requires the domain-specific expert
knowledge [Wei et al., 2021b]. To further reduce the reliance
on manual annotations as well as to learn more practical fine-
grained models, training directly from web images is becom-
ing increasingly popular [Yao et al., 2021].

Approaches for learning models driven by web images, aka
Webly-Supervised Learning (WSL), crawl freely available
web images from public websites by using category names

∗Corresponding author. The first two authors contributed equally
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as queries [Yi and Wu, 2019]. But, whereas web images are
cheaper and easier to be collected via image search, when
applying the classifier learnt based only on web images to
the test images, the performance will drop sharply due to
the error-prone automatic tagging system or non-expert an-
notations [Niu et al., 2018]. In addition, general dataset an-
notators can easily annotate coarse-grained images, but an-
notations of fine-grained images require the advanced exper-
tise. Given all this, the task of webly-supervised fine-grained
recognition is challenging and deserves in-depth studies.

There generally exists two kinds of label noise with regard
to WSL tasks, i.e., the closed-set label noise and the open-
set label noise [Sun et al., 2021a]. In fine-grained tasks,
the open-set label noise usually caused by “cross-domain”,
which means those images are not of any categories in the
same fine-grained domain. The closed-set label noise then
refer to the portion of images that have the wrong labels
within a fine-grained category, e.g., a least auklet im-
age but labeled with parakeet auklet. A simple and
effective approach to deal with normal label noise is to per-
form samples selection that separates clean instances from
noisy samples. These works [Han et al., 2018] can not exploit
the in-distribution noisy instances for representation learning
and take the risk of discarding some clean images, of which
is more serious in fine-grained problems. In fine-grained
tasks, some researchers then propose a learning paradigm
to train robust deep fine-grained models [Sun et al., 2021b;
Sun et al., 2021a] from noisy web images. However, these
works do not solve the problem of closed-set label noise.

To make full use of the noisy webly datasets, we first de-
sign the open-set label noise removal strategy to eliminate
images that mistakenly treat some unknown classes as target
classes, which helps preserve noisy-free images and closed-
set images. A label with high relative confidence is not nec-
essarily the ground-truth, especially in a noisy label environ-
ment. Therefore, compared with the information of the rel-
ative confidence, we prefer to utilize more easily reachable
information in the noisy label learning for closed-set noise
label correction. Partial label learning (PLL) [Cour et al.,
2011] deals with the problem where each training example is
associated with a set of candidate labels including the ground-
truth. Thus, as long as one of the label set is ground-truth,
such samples can be used in PLL process. In this paper, we
propose a strategy of progressively narrowing the range of
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correct categories within closed-set noisy images and lever-
age PLL to extract the correct categories from the sets of can-
didate categories. Concretely, we find the common patterns
from webly fine-grained data and calculate the correlation be-
tween samples and common patterns. Then, we utilize corre-
lation values to detect open-set label noise and remove it. For
the correction of closed-set label noise, correction of closed-
set noisy samples with hard labels is difficult because high-
confidence category may not be ground-truth. Therefore, we
utilize affordable information, i.e., a label set containing the
ground-truth. After that, we correct closed-set noisy label
via the PLL. The correct labels are obtained using an encod-
ing and decoding mechanism with error correction capability.
This method prevents the prediction category from being mis-
leading by fine-grained false positive labels that co-occurring
with ground-truth in a label set.

To the best of our knowledge, this is the first work to lever-
age partial label learning to deal with webly-supervised fine-
grained recognition. Our major contributions are three-fold:

• We propose an open-set label noise removal strategy and
a closed-set label noise correction strategy to deal with
the practical but challenging webly-supervised fine-
grained recognition task.

• We particularly correct the closed-set label noise with
label sets via partial label learning.

• We conduct comprehensive experiments on four webly-
supervised fine-grained benchmark datasets, and our
proposed method achieves superior recognition accuracy
over competing solutions on these datasets.

2 Related Work
2.1 Fine-Grained Recognition
Fine-grained recognition is a fundamental research aspect of
fine-grained image analysis [Wei et al., 2021b], which fo-
cuses on distinguishing numerous visually similar subordi-
nate categories that belong to the same basic category, e.g.,
the fine distinction of animal species [Horn et al., 2018], ve-
hicle species [Maji et al., 2013], etc. Existing fine-grained
recognition methods can be roughly separated into three main
paradigms, i.e., 1) recognition by localization-classification
sub-networks, 2) recognition by end-to-end feature encod-
ings and 3) recognition with external information. Specif-
ically, localization-classification sub-networks, e.g., [Zhu et
al., 2020] was designed to obtain the discriminative seman-
tic parts of fine-grained objects, and constructed a mid-level
representation corresponding to semantic parts for final clas-
sification to bring accuracy improvement. Methods of end-
to-end feature encodings attempted to learn a unified but dis-
criminative feature representation to model subtle differences
between fine-grained categories, e.g., performing high-order
feature interactions [Wei et al., 2021a] and designing a loss
function [Sun et al., 2020a], etc. Recognition with external
information tried to improve fine-grained recognition accu-
racy by leveraging the power of extra supervisions [Song et
al., 2020]. Recently, many trials would like to employ web
data (webly-supervised images) to further improve the recog-
nition accuracy from diverse perspectives, e.g., developing

robust loss functions [Hendrycks et al., 2018] and estimat-
ing the noise transition matrix [Patrini et al., 2017]. While,
in this paper, we are the first to deal with webly-supervised
fine-grained recognition with a partial label learning [Cour et
al., 2011] based method.

2.2 Webly-Supervised Learning
Training image recognition models with web images (i.e.,
Webly-Supervised Learning, WSL) usually results in poor
performance due to the presence of label noises and data
bias [Sun et al., 2020b; Zhang et al., 2020]. The research
efforts of WSL can be categorized into two groups, including
loss correction [Yi and Wu, 2019] and sample selection [Han
et al., 2018; Yu et al., 2019; Wei et al., 2020]. In concretely,
in the literature of loss correction, [Patrini et al., 2017] intro-
duced a loss function to estimate the noise transition matrix,
and [Hendrycks et al., 2018] designed the gold loss function
to utilize trusted data. In the previous work of sample se-
lection, [Yu et al., 2019] proposed the strategy of “Update
by Disagreement” while training two networks at the same
time. JoCoR [Wei et al., 2020] presented a joint loss and
selected small-loss samples to update the parameters of two
networks. Recently, some researchers employed web data in
fine-grained recognition to improve the recognition accuracy,
e.g., using meta-dataset [Zhang et al., 2020] and training two
networks simultaneously [Sun et al., 2021b].

2.3 Partial Label Learning
The aim of Partial Label Learning is to learn from each train-
ing example associated with a set of candidate labels, only
one of which is valid for the training sample [Xu et al., 2021].
There are two main streams in PLL methods including iden-
tifying the ground-truth label and estimating the candidate la-
bels [Wang et al., 2019]. Specifically, The main approach
of identifying the ground-truth label is trying to disambiguate
with the candidate labels via identification-based disambigua-
tion [Lv et al., 2020; Zhang and Yu, 2015] or averaging-
based disambiguation [Cour et al., 2011]. Furthermore, the
identification-based PLL approaches regard the ground-truth
label as latent variable and try to identify it and the average-
based PLL methods treat all the candidate labels equally and
average the modeling outputs as the prediction. While, com-
pared with identifying the ground-truth, since the methods
of estimating the candidate labels (aka confidence-based par-
tial label learning) adopt the soft labeling information. These
methods are lightly affected by false positive classes, and
they can generally obtain superior recognition accuracy. In
recent years, many works about partial label learning focused
on coarse-grained datasets, and we discover the leveraging of
PLL on webly-supervised fine-grained recognition.

3 Methodology
In this section, we introduce the overall framework, as well as
elaborating the key strategies and its corresponding modules.

3.1 Overview
In general, our method is composed of two crucial strate-
gies, i.e., the open-set label noise removal strategy and the
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Figure 1: Pipeline of our proposed method, which consists of two strategies. The first strategy erases open-set noisy images and obtain an
image space X . The second strategy is composed of two components, i.e., 1) performing the top-k recall optimization loss on remaining
images to gain the label sets containing the ground-truth; 2) utilizing the distance between closed-set noisy images and each row of the
encoding matrix M to obtain the prediction category for each closed-set noisy image. Finally, the samples in image space X will be put into
the network for training.

closed-set label noise correction strategy. For the open-set
label noise removal strategy, we utilize the common patterns
obtained from noisy-free samples to detect noisy samples. If
the sample is not related to the common pattern to some ex-
tent, it would be detected as an open-set label noise and re-
moved. For the closed-set label noise correction strategy, the
top-k recall optimization loss optimizes the model by pushing
samples from ground-truth labels forward. With such a loss,
the top-k label set will contain the ground-truth label when-
ever possible, and we can deal with the closed-set label noise
from partial label learning perspective. When correcting la-
bels, we convert the multi-class label correction problem into
multiple binary classification problems. After that, the out-
puts of multiple binary classifiers are combined into a code-
word and predicted. Therefore, closed-set noise samples get
corrected labels by encoding and decoding mechanisms with
error correction capabilities. The pipeline of our proposed
method is shown in Figure 1.

3.2 Strategy of Open-set Label Noise Removal
Considering that samples from the same category should
have similar patterns but samples mislabeled into the cate-
gory do not [Bouveyron and Girard, 2009], we infer sam-
ples from open-set noisy labels have entirely dissimilar pat-
terns to all categories. Additionally, fine-grained data con-
tains small inter-category variations [Wei et al., 2021b] which
means there exist common patterns among fine-grained cat-
egories. Therefore, inspired by Deep Descriptor Transfor-
mation (DDT) [Wei et al., 2017], our strategy of open-set
label noise removal is to find common patterns from webly
fine-grained data. When a sample is irrelevant with the com-
mon patterns to some extent, we detect it as an open-set label
noise.

In concretely, assuming the label space to be Y and the im-
age space to be I, for each set I ′ = {I1, I2, I3, . . . , In} ∈ I

which contains n images, we feed them to a pre-trained
CNN model Φpre and obtain the corresponding feature map:
ti = Φpre (Ii) ∈ RH×W×d, where H , W , d present the
height, width and depth of ti. After that, we put all the fea-
ture maps together to derive a feature set T ∈ Rn×H×W×d.
We get the common pattern in T by applying Principal Com-
ponent Analysis (PCA) [Wold et al., 1987] along the depth
dimension. Therefore, we get the eigenvector p ∈ Rd corre-
sponding to the largest eigenvalue as common pattern detec-
tor after the PCA process. Then, each spatial location of the
given feature maps are channel-wise weighted and summa-
rized to get the indicator matrixes H. To put it more precisely,
the indicator matrix Hi in H corresponding with the i-th fea-
ture map ti is formulated as: Hi = ti · p. Furthermore, we
require indicator matrixes with the same size as input samples
to reflect the correlation between each pixel and the common
pattern. Thus, we obtain the Ci ∈ RH′×W ′

by upsampling
the indicator matrix Hi ∈ RH×W according to the input size.
Ci contains positive and negative values which can reflect the
positive and negative correlations of these deep descriptors.
Because p is obtained in I ′, the positive correlation could in-
dicate the common pattern through n images. Thus, we set a
threshold δ about the correlation value to detect each image
with: ∑H′

j=1

∑W ′

t=1 I (Ci(j, t) ≥ 0)

|Ci|
≥ δ , (1)

where I(·) represents the indicator function. If a sample does
not satisfy Equation (1), it will be regarded as an open-set
label noise and removed from the noisy image space. Finally,
we can get a sample space X with our proposed open-set label
noise removal strategy.

Why obtained the common patterns are effective in
open-set label noise removal? Actually, in the setting of
WSL or learning from noisy labels [Sun et al., 2021b], re-
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gardless of whether the proportion of unknown classes is high
or low, the classes in them are quite cluttered. Meanwhile,
according to the definition of noise in WSL (i.e., the items or
observations which raise suspicious by differing significantly
from the majority of the data), a single class of the unknown
classes cannot be the dominant class. That is to say that, the
number of a certain class’s (e.g., “chart”) images will not be
more than the number of images of the target class; otherwise
this “chart” class will become the target class. Therefore,
the common patterns obtained must come from clean samples
and using the common patterns to detect the relevance of the
samples in noisy datasets will show good performance. Thus,
the common patterns in our method can effectively work.

3.3 Strategy of Closed-set Label Noise Correction
Ideal for dealing with the closed-set label noise problem is to
give each sample in X a more confident label. Therefore, we
provide the following two components in this strategy.

Top-k Recall Optimization Loss
Mislabeled images in fine-grained categories have more sim-
ilar deep descriptors, which makes it more difficult to give
them correct labels. Thus, we leverage the partial label learn-
ing to solve the closed-set label noise problem associated with
fine-grained image classification. For closed-set noisy sam-
ples which are difficult to predict the label, we tend to utilize
more easily reachable information in noisy label learning, i.e.,
ranking the ground-truth in a label set with k candidate labels.
Thus, as long as one of the top-k is ground-truth, such sam-
ples can be used in the partial label learning. Therefore, we
propose a loss which drives the model to reach a high recall
rate. The loss is designed to push samples whose class is the
same as the query’s class forward as much as possible, which
is implemented by penalizing those misplaced samples.

Formally, in the label space Y = {y1, y2, . . . , yN}, define
the sample space X as X = {Xy1

,Xy2
, . . . ,XyN

}, where
Xyi

represents a collection of instances belong to the i-th cat-
egory yi. During the training data selecting stage, we ran-
domly select C categories to generate a mini-batch A. For
each selected category yi, we get n∗ samples in Xyi . We
can obtain embedding features F = {f1,f2, . . . ,fa} based
on A = {A1, A2, . . . , Aa} ∈ X where a = n∗ × C.
More specifically, we gain the embedding feature fi of its
input image Ai in A via a backbone CNN model ΦCNN by
fi = ΦCNN (Ai) ∈ Rc, where c is the length of the em-
bedding feature fi. The similarity matrix s ∈ Ra×a is gen-
erated by cosine similarity based on embedding features to
measure the distance among A. In details, the similarity of
the i-th query image and the j-th support image is calculated
as si,j =

f⊤
i fj

∥fi∥∥fj∥ .
We can define the set K as the group of top-k im-

ages sorted by the similarity of each query image and
other sq,:, where sq,: ∈ s and sq,q /∈ sq,:, i.e., K ={
Aj ∈ A : sq,j ≥ sq,[k], q ̸= j

}
, [k] denotes the k-th largest

element. One possible situation is that images in the same
label as the query image might not exist in set K. A straight-
forward approach is to use these images to replace those ex-
isting images in K. Images belong to the same label with

0.490.9 0.87 0.7 0.65 0.53 0.4Query Image

Top-k images sorted by  the similarity scores

Figure 2: A bird example of loss calculation. Here k = 5, and the
number of support images is 3. We reorder the support images of s.
The green samples are positive and the blue samples are negative.
The P consists of all positive images out of top-k,

∑
Aj∈P sq,j =

0.49, and |P| = 1, due to the number of support samples with same
label is less than k, the last two negative images are not considered
as misplaced. So the

∑
Ai∈N sq,i = 0.7, and Ltopk = 0.7− 0.49.

the query image but not in set K are called positive im-
ages, while negative images are samples in K but have dif-
ferent label with the query image. To achieve this opera-
tion, these positive images excluded from K constitute P ,
while these negative images in K constitute N . We de-
note P as P = {Aj ∈ A \ K : yj = yq}, where A \ K
means the relative complement set of K in A and yq is a
label of the query image. Denote |P| as the number of
positive images ranked out K. We set n∗ for each class
within a mini-batch less than k, then we can get the nega-
tive set N =

{
Aj ∈ K : yj ̸= yq and sq,j ≥ snq,|P|

}
, where

sn is a matrix containing only the similarity scores of neg-
ative images. Thus, the loss function is defined as Ltopk =∑a

q=1

(∑
Ai∈N sq,i −

∑
Aj∈P sq,j

)
.

A bird example is illustrated in Figure 2. Optimization of
the model using the loss function can include the correct la-
bels in the top-k classes with high confidence. Then, the top-k
predicted labeles with high confidence are used as label sets
S for corresponding samples.

Error-Correcting Output Codes
After obtaining as many label sets containing correct labels
as possible, we need to determine a unique label for each
sample. Error-Correcting Output Codes (ECOC) is a bi-
nary decomposition of multi-classification problem based on
an encoding-decoding procedure. We utilize the improved
ECOC to find correct labels, this method avoids being mis-
led by the fine-grained false positive labels co-occurring with
ground-truth label when correcting samples.

In the encoding stage, an encoding matrix M ∈
{+1,−1}N×Lis produced to support the learning process,
where N represents the number of categories, and L rep-
resents the number of binary classifiers. More specifically,
let v = [v1, v2, . . . , vN ]

⊤ ∈ {+1,−1}N denote the N -
bits column coding which divide the label space into posi-
tive half Y+

v = {yj |vj = +1, 1 ⩽ j ⩽ N} and negative half
Y−
v = {yj |vj = −1, 1 ⩽ j ⩽ N}.
Given a training sample (Xm,Sm), Xm ∈ X , we

regard Sm as an entirety to help build a binary classi-
fier. Furthermore, the image Xm is used as a positive
or negative sample only when the whole label set Sm fall
into Y+

v or Y−
v . We set some conditions on each col-

umn coding to ensure that each binary classifier includes
enough positive and negative samples. Thus, binary train-
ing sets B can be generated for binary classifier training,
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where B =
{
BM(:,1),BM(:,2), . . . ,BM(:,L)

}
, BM(:,l) =

{(Xm,+1/− 1) | 1 ⩽ m ⩽ |X |}.
In the decoding stage, the crucial process is using binary

classifiers to make predictions on closed-set label noise. Gen-
erally, given a test sample, the original method is to generate
L-bits codeword by concatenating the outputs of the L binary
classifiers. The Hamming distance is calculated between the
codeword and each row of M , the class label corresponding
to the closest distance is returned as the prediction. For the
performance of each classifier is unstable and in order to get
more accurate results, we choose the loss-weighted decod-
ing. At the same time, due to the similarity of fine-grained
categories within a label set, the performance of the binary
classifiers will also be affected by similar fine-grained cate-
gories, in which condition we add a fine-grained connected
set restriction to affect the decoding phase.

In particular, for each category, we construct the connected
set Ey . Then, the j-th connected set Eyj

can be written as
Eyj =

{
Eyj ∪ Sm : yj ∈ Sm, 1 ⩽ m ⩽ |X |

}
. With the assist

of Ey , we set a performance matrix GN×L to represent the
capability of classifiers. The performance of the t-th classifier
gt on the j-th category is calculated as follows:

G(j, t) = min
z∈Eyj

(
1

|Qz|
∑

(Xm,Sm)∈Qz

I (gt(Xm) = M(z, t))) ,

(2)
where Qz = {(Xm,Sm)|yz ∈ Sm, 1 ⩽ m ⩽ |X |}, and I(·)
represents the indicator function. In order to get the relative
performance of g over each category, we normalized the per-
formance matrix G by row G∗(j, t) = G(j,t)∑L

r=1 G(j,r)
, where

j ∈ NN
+ and t ∈ NL

+. Given a closed-set noisy image Xcs,
the label prediction can be obtained via

argmin
yj(1⩽j⩽N)

L∑
t=1

G∗(j, t) exp(−gt(Xcs)M(j, t)) . (3)

Finally, we obtain the correct labels ŷ of the closed-set noisy
images by Equation (3) and send the rest of samples to the
backbone network for re-training.

4 Experiments
In this section, we evaluate our proposed method on four
real-world noisy datasets and compare our method with other
state-of-the-art models. Meanwhile, we also conduct a series
of ablation studies to estimate the importance of each compo-
nent.

4.1 Datasets and Implementation Details
Datasets. Web-Aircraft [Sun et al., 2020b] is a fine-grained
aircraft dataset. It contains 13,503 training images and 3,333
test images, belonging to 100 different aircraft models. Web-
Bird [Sun et al., 2020b] is a fine-grained bird dataset. There
are 18,388 noisy training instances and 5,794 clean test in-
stances, belonging to 200 bird species. Web-Car [Sun et al.,
2020b] is a car dataset containing 196 different classes. The
training set is composed of 21,448 samples and the test set

consists of 8,041 samples. The WebFG-496 is obtained di-
rectly by merging above three datasets. WebiNat-5089 [Sun
et al., 2021b] contains 5,089 fine-grained categories and con-
sists of 1,184,520 training images, which is the largest webly
supervised fine-grained dataset. For WebiNat-5089, the val-
idation set of iNat2017 [Horn et al., 2018] is utilized as the
test set.

Implementation Details. We set the threshold δ = 0.2. For
the sampling strategy of top-k recall optimization loss, we set
k = 5 and n∗ = 4. For the number of binary classifiers in
ECOC, we set L = 128. The rule for dividing label space is
used only when the number of positive and negative samples
is greater than 25. Furthermore, the total number of available
samples is greater than 10% of that corresponding with input
samples. We adopt the ResNet-50 [He et al., 2016] as our
backbone. We use the stochastic gradient descent optimizer
with the momentum set as 0.9. The batch size is 32 for per
GPU and the epoch number is set as 110. The initial learning
rate is 5 × 10−3 while the weight decay is 2 × 10−5. The
warmup stage lasts for 10 epochs. We conduct all experi-
ments on three GeForce RTX 3060 GPUs.

4.2 Comparison Results
In experiments, we adopt three real-world web-image-based
noisy datasets to validate the effectiveness and superiority of
our method and compare our proposed method with the fol-
lowing state-of-the-art models.

Table 1 presents the classification accuracy on three afore-
mentioned benchmark fine-grained datasets. As shown in
the table, our proposed method significantly and consistently
outperforms the other baseline methods on these datasets.
In particular, compared with the state-of-the-art method Co-
LDL, our method achieves 2.89%, 1.70% and 2.36% im-
provements on Web-Aircraft, Web-Bird and Web-Car. More-
over, our proposed method also obtains superior result with
2.32% improvement on overall average accuracy. These ob-
servations validate the effectiveness of the proposed method,
as well as its promising practicality in real applications of
webly-supervised fine-grained recognition. For the compari-
son on WebiNat-5089 contains more than 1.1 million train-
ing images, we utilize three benchmarks and a competi-
tive method, i.e., VGG-16 [Simonyan and Zisserman, 2014],
GoogLeNet [Szegedy et al., 2015], ResNet-50 [He et al.,
2016] and Peer-learning [Sun et al., 2021b]. As evaluated
in Table 2, our approach gains the highest accuracy among
these methods.

4.3 Ablation Studies
In this section, we demonstrate the effectiveness of cru-
cial components, i.e., open-set label noise removal (cf. Sec-
tion 3.2) and closed-set label noise correction (cf. Sec-
tion 3.3). Since the top-k recall optimization loss (cf. Sec-
tion 3.3) is the basis for constructing the label set to ECOC
(cf. Section 3.3), so we regard these as an entirety for abla-
tion studies. In ablation studies, we apply these components
incrementally on a vanilla backbone (i.e., ResNet-50) as the
baseline. As evaluated in Table 3, by stacking these two com-
ponents one by one, the recognition results are steadily im-
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Methods Type Publications Backbone WebFG-496
Web-Aircraft Web-Bird Web-Car Average

Decoupling [Eran and Shai, 2017]∗ WS NeurIPS 2017 ResNet50 75.91 71.61 79.41 75.64
Co-teaching [Han et al., 2018]∗ WS NeurIPS 2018 ResNet50 79.54 76.68 84.95 80.39
Co-teaching+ [Yu et al., 2019]∗ WS ICML 2019 ResNet50 74.80 70.12 76.77 73.90

PENCIL [Yi and Wu, 2019]∗ WS CVPR 2019 ResNet50 78.82 75.09 81.68 78.53
JoCoR [Wei et al., 2020]∗ WS CVPR 2020 ResNet50 80.11 79.19 85.10 81.47
AFM [Peng et al., 2020]∗ WS ECCV 2020 ResNet50 81.04 76.35 83.48 80.29

Self-adaptive [Huang et al., 2020]∗ WS NeurIPS 2020 ResNet50 77.92 78.49 78.19 78.20
Jo-SRC [Yao et al., 2021] WS CVPR 2021 ResNet50 82.28 80.41 86.59 83.10

Peer-learning [Sun et al., 2021b] WSFG ICCV 2021 B-CNN (VGG-16) 74.38 76.48 78.52 76.46
Co-LDL [Sun et al., 2021a]∗ WSFG TMM 2021 ResNet50 83.83 81.02 89.17 84.67

Our method WSFG This paper ResNet50 86.72 82.72 91.53 86.99

• “WS” is the abbreviation of “Webly Supervised”, and “WSFG” is the abbreviation of “Webly Supervised Fine-Grained”.
• The results of methods marked with “∗” are from [Sun et al., 2021a].

Table 1: The comparison with state-of-the-art approaches in test accuracy (%) on real-world noisy datasets.

Method Backbone WebiNat-5089

Benchmarks
VGG-16 – 44.77

GoogLeNet – 39.71
ResNet-50 – 48.23

Webly
Peer-learning ResNet-50 54.56
Our method ResNet-50 57.59

Table 2: The comparison of classification accuracy (%) of four mod-
els and our proposed method on the WebiNat-5089 dataset.

Method Accuracy (%)

Baseline 82.04
+ Open-set Label Noise Removal 85.85

+ Closed-set Label Noise Correction (H) 86.41
+ Closed-set Label Noise Correction (L) 86.65

+ Closed-set Label Noise Correction (CL) 86.72

Table 3: Ablation results of components in our proposed method on
Web-Aircraft. Note that, “H” presents the Hamming distance during
the prediction phase at the decoding stage, “L” is the loss-weighted
decoding and “CL” is the loss-weighted decoding with fine-grained
connected set restriction.

proved, which justifies the effectiveness of our proposed com-
ponents. Furthermore, in order to show the impact of fine-
grained categories and the unstable performance of the bi-
nary classifier, we compared the results of Hamming distance
decoding, loss-weighted decoding and loss-weighted decod-
ing with fine-grained connected set restriction. Experiments
show that the loss-weighted decoding with fine-grained con-
nected set restriction not only alleviates the negative impact
of unstable performance of binary classifiers, but also miti-
gates undesirable influence of fine-grained categories.

The number of binary classifiers is closely related to the
error correction capability. The more binary classifiers, the
better the error correction capability. Figure 3 shows the per-
formance with different number of binary classifiers. It can
be seen that the test accuracy almost saturates when L reaches
128. In terms of accuracy and effectiveness, we choose 128
as the number of binary classifiers.
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Figure 3: Test accuracy (%) with different numbers of binary clas-
sifiers on three real-world noisy datasets.

5 Conclusion
In this paper, we presented two strategies for dealing with
label noise problem in webly-supervised fine-grained recog-
nition tasks, i.e., the open-set noise removal and the closed-
set noise correction strategy. Particularly, the first strategy
helps erase images that are completely out of the label space
to obtain noisy-free images and closed-set noisy images. The
second stage adopt PLL together with the proposed top-k re-
call optimization loss to locate and correct closed-set noisy
images in fine-grained datasets. Experiments on four noisy
datasets demonstrate that our approach achieve the state-of-
the-art performance. Additionally, the rapid growth of multi-
media data in the web brings us more useful information but
also contains more noise that needs to be screened, which mo-
tivates us to study fine-grained cross-modal recognition based
on our proposed method as the future work.
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