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Abstract
Deep neural networks have been demonstrated to
be vulnerable to adversarial examples, which fool
networks by adding human-imperceptible perturba-
tions to benign examples. At present, the practical
transfer-based black-box attacks are attracting sig-
nificant attention. However, most existing transfer-
based attacks achieve only relatively limited suc-
cess rates. We propose to improve the transferabil-
ity of adversarial examples through the use of a vir-
tual step and auxiliary gradients. Here, the “virtual
step” refers to using an unusual step size and clip-
ping adversarial perturbations only in the last iter-
ation, while the “auxiliary gradients” refer to us-
ing not only gradients corresponding to the ground-
truth label (for untargeted attacks), but also gra-
dients corresponding to some other labels to gen-
erate adversarial perturbations. Our proposed vir-
tual step and auxiliary gradients can be easily in-
tegrated into existing gradient-based attacks. Ex-
tensive experiments on ImageNet show that the ad-
versarial examples crafted by our method can ef-
fectively transfer to different networks. For single-
model attacks, our method outperforms the state-
of-the-art baselines, improving the success rates by
a large margin of 12% ∼ 28%. Our code is pub-
licly available at https://github.com/mingcheung/
Virtual-Step-and-Auxiliary-Gradients.

1 Introduction
The security of machine learning has attracted much attention
for many years. For example, [Dalvi et al., 2004] first pro-
posed the concept of adversarial classification, while [Biggio
et al., 2013] presented evasion attacks against machine learn-
ing models. Subsequently, [Szegedy et al., 2014] were the
first to formally propose the concept of adversarial examples
faced by deep neural networks in computer vision, which trig-
gered a widespread research interest in adversarial attacks.

Various forms of adversarial attack have been proposed in
an attempt to craft adversarial examples in the field of com-
puter vision [Akhtar and Mian, 2018; Akhtar et al., 2021].
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Theses attacks can be broadly divided into two categories:
white-box attacks and black-box attacks. White-box attacks
assume complete knowledge of the target model, including
its architecture, parameters, etc. White-box attacks are pre-
dominately gradient-based; examples include FGSM [Good-
fellow et al., 2015], I-FGSM [Kurakin et al., 2017] and MI-
FGSM [Dong et al., 2018]. Since attackers can fully exploit
model information such as gradients under white-box set-
tings, white-box attacks can achieve high success rates and
low human perceptibility. Currently, great strides have been
made in research into white-box attacks. Black-box attacks,
which are more practical, have attracted increasing research
attention in recent years.

Except for inputs and outputs, black-box attacks assume
no knowledge of the target model, making them more chal-
lenging and more practical. Currently, black-box attacks are
being developed along two main directions: query-based at-
tacks and transfer-based attacks. Query-based attacks query
the target model and use its outputs to craft adversarial exam-
ples. Since too many queries being sent to the target model
can arouse suspicion, the core research topic related to query-
based attacks is to improve query efficiency. Transfer-based
attacks craft adversarial examples on local substitute models
and fool the target model by using the cross-model transfer-
ability of adversarial examples. The core research topic of
transfer-based attacks centers around improving the transfer-
ability of adversarial examples.

In this work, we propose to improve the transferability of
adversarial examples through the use of a virtual step and
auxiliary gradients, which can be easily integrated into ex-
isting gradient-based attack methods to yield more powerful
attacks. On the one hand, we use an usual step size (“vir-
tual step”) and clip adversarial perturbations only in the last
iteration; on the other hand, unlike the traditional methods
which use only gradients corresponding to the ground-truth
label (for untargeted attacks), we use not only gradients cor-
responding to the ground-truth label (“main gradients”), but
also gradients corresponding to some other labels (“auxiliary
gradients”) to generate adversarial examples. To our best
knowledge, we are the first to verify the synergistic effect of
using main gradients and auxiliary gradients simultaneously.

We evaluate the performance of the proposed method on
both normally trained models and defense models under
single-model attacks and ensemble-based attacks. The re-
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sults on ImageNet show that our method significantly out-
performs the state-of-the-art baselines. For example, under
single-model attacks, our method improves the attack suc-
cess rates by a large margin of 12% ∼ 28%. We hope that
our proposed attack strategy will shed light on new types of
adversarial attacks and serve as a benchmark for evaluating
the robustness of neural networks. This paper makes the fol-
lowing contributions:

• We propose the concepts of “virtual step” and “auxil-
iary gradients”, which can be integrated into existing
gradient-based methods to craft more transferable adver-
sarial examples.

• We demonstrate that in addition to the main gradients,
the auxiliary gradients can also make an contribution to
generate adversarial examples.

• We systematically evaluate the performance of our pro-
posed method, and show that the proposed method sig-
nificantly outperforms the state-of-the-art baselines.

2 Related Work
Adversarial attacks. [Szegedy et al., 2014] were the first
to demonstrate that deep neural networks have counter-
intuitive properties, and accordingly proposed a box-
constrained L-BFGS method for finding adversarial exam-
ples. [Goodfellow et al., 2015] proposed the fast gradient
sign method (FGSM) to efficiently craft adversarial exam-
ples. [Kurakin et al., 2017] extended FGSM to an iterative
version, whilte [Madry et al., 2018] proposed the projected
gradient descent method, in which the `∞-norm of the pertur-
bations is bounded by the clipping operation—the projection.
The above are known as white-box attacks. In terms of black-
box attacks, Boundary attack [Brendel et al., 2018], qFool at-
tack [Liu et al., 2019] and HopSkipJump attack [Chen et al.,
2020] explore the decision boundary to launch query-based
attacks. [Xie et al., 2019b] proposed to improve the trans-
ferability of adversarial examples by creating diverse input
patterns. [Dong et al., 2019] developed a translation-invariant
attack capable of generating more transferable adversarial ex-
amples against the defense models. [Li et al., 2020] proposed
the ghost networks, which can be used to efficiently construct
substitute models in transfer-based attacks.

Adversarial defenses. While demonstrating the existence
of adversarial examples in deep neural networks, [Szegedy
et al., 2014] also identified a potential direction for defend-
ing against adversarial examples—adversarial training. Ad-
versarial training [Madry et al., 2018; Tramer et al., 2018]
defends against adversarial perturbations by injecting adver-
sarial examples into the training data. At present, adversarial
training is hampered by low efficiency and can obtain only
limited robustness. [Guo et al., 2018] and [Xie et al., 2018]
proposed to use input transformations to mitigate adversarial
effects. [Liao et al., 2018] introduced a high-level represen-
tation guided denoiser (HGD) defense method. [Xie et al.,
2019a] proposed to improve adversarial robustness by per-
forming feature denoising, which is recommended to be used
in combination with adversarial training.

3 Methodology
Let x denote a benign example, while ytrue denotes the cor-
responding ground-truth label. Given a classifier f , we ap-
ply an imperceptible perturbation to x to craft an adversarial
example xadv that is capable of fooling the classifier, i.e.,
f(xadv) 6= ytrue (for untargeted attacks). In most cases, the
Lp-norm is used to bound adversarial perturbations in order
to achieve imperceptibility, i.e., ‖xadv − x‖p ≤ ε. If the
loss function of the classifier is denoted as J , the process for
crafting adversarial examples is usually derived by maximiz-
ing the loss function J(xadv, ytrue), which can be formally
expressed as follows:

argmax
xadv

J(xadv, ytrue); s.t.‖xadv − x‖p ≤ ε (1)

For white-box attacks, the above optimization problem can
be solved by calculating the gradients of the loss function
with respect to the input. For transfer-based black-box at-
tacks, we can employ a substitute white-box model to craft
adversarial examples, which are then expected to be misclas-
sified by the target black-box model due to the transferability
of adversarial examples.

3.1 Family of Gradient-based Adversarial Attacks
[Goodfellow et al., 2015] proposed a one-step gradient-based
method, known as the fast gradient sign method (FGSM), for
efficiently crafting adversarial examples. Subsequently, sev-
eral variants of FGSM were proposed. In this section, we
briefly introduce three typical variants.
Iterative Fast Gradient Sign Method (I-FGSM). [Ku-
rakin et al., 2017] extended FGSM to an iterative version,
which can be expressed as follows:
xadvt+1 = Clipx,ε{xadvt + α·sign(∇xJ(x

adv
t , ytrue))} (2)

where xadv0 = x, while xadvi denotes the perturbed example
at the i-th iteration; Clipx,ε{·} indicates that the perturbed
example is clipped within the ε-ball of the original example
x; α is the step size at each iteration (normally, α = ε/T ,
where T is the total number of iterations.).
Diverse Inputs Iterative Fast Gradient Sign Method (DI2-
FGSM). [Xie et al., 2019b] proposed a variant of FGSM
designed to improve the transferability of adversarial exam-
ples by creating diverse input patterns, which can be ex-
pressed as follows:
xadvt+1 = Clipx,ε{xadvt + α·sign(∇xJ(T (x

adv
t ; p), ytrue))} (3)

where T (xadvt ; p) denotes the application of a random trans-
formation to the input xadvt with a probability p. The trans-
formation includes random resizing and padding.
Translation-Invariant Iterative Fast Gradient Sign
Method (TI2-FGSM). [Dong et al., 2019] proposed a
translation-invariant method dedicated to crafting more
transferable adversarial examples to combat the defense
models. The method is finally implemented by convolving
the gradient at the untranslated example with a pre-defined
kernel, which can be expressed as follows:
xadvt+1 = Clipx,ε{xadvt + α·sign(W ∗ ∇xJ(x

adv
t , ytrue))} (4)

where W denotes a pre-defined kernel, which can be uni-
form, linear or Gaussian.
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3.2 Motivation
The traditional iterative attacks, e.g., I-FGSM, greedily per-
turb the examples in the gradient direction of loss function,
thus easily falling into the poor local maximum [Xie et al.,
2019b]. We experimentally determine that the untargeted I-
FGSM attack is almost identical to the most-likely-class tar-
geted I-FGSM attack; in other words, an untargeted adversar-
ial example generated by I-FGSM is usually misclassified to
the neighboring class of the original ground-truth class.

We divide the examples involved in iterative attacks into
three categories: 1) the original benign example x, namely
xadv0 ; 2) the intermediate perturbed examples xinter, namely
xadvi , where i ∈ [1, T − 1], and T is the number of iterations;
3) the final adversarial example xadv , namely xadvT . In order
to generate more transferable adversarial examples, we put
forward the following two hypotheses1.

Hypothesis 1. If the final adversarial example xadv is mis-
classified to a class that is far away from the ground-truth
class on the substitute model, it is more likely to be misclas-
sified by the target model.

The intuition behind this hypothesis is that the farther the
class of the adversarial example is from that of the benign
example, the lower the similarity between the two examples;
therefore, the adversarial example is more likely to be mis-
classified by the target model.

Hypothesis 2. If the intermediate perturbed examples xinter
are misclassified to different classes on the substitute model,
the final adversarial example xadv is more likely to be mis-
classified by the target model.

Let c(x′) denote the classified class of x′ on the substitute
model. We think {c(x), c(xinter), c(xadv)} are all potential
classified classes of xadv on the target model. Therefore, the
probability the final adversarial example being misclassified
on the target model can be increased by increasing the number
of c(xinter), i.e., improving the diversity of misclassification
classes of the intermediate perturbed examples. For the target
model, this seems to change what is essentially a coin-toss
game into a dice-toss game.

Based on the above two hypotheses, the method we envis-
age for generating more transferable adversarial examples is
illustrated in Figure 1. Below we will present how to imple-
ment such attack method.

3.3 Virtual Step and Auxiliary Gradients Method
We propose two techniques to verify the above two hypothe-
ses and to implement a novel attack method that can generate
adversarial examples with more transferability.

Virtual Step. This technique is designed to verify the first
hypothesis. To avoid exceeding the limit of the perturbation
threshold ε, the traditional iterative attacks (such as I-FGSM)
usually set the step size α to a small value (normally ε/T ),
and clip the intermediate perturbed examples (i.e., using the
Clipx,ε{·} operation) during each iteration, which will cause
the attack to fall into the poor local maximum [Xie et al.,

1These hypotheses are for untargeted attacks. We leave research
on targeted attacks for our future work.

x
adv

x
inter

x

Original benign example

Intermediate perturbed example

Final adversarial example

Figure 1: Illustrations of our envisaged attack (indicated by the
white dashed arrow) and the traditional iterative gradient-based at-
tack (indicated by the black dashed arrow). The irregular polygons
represent the boundaries of each class.

2019b]. In our method, we propose to set the step size α to a
larger value and only clip the perturbed example generated in
the last iteration, i.e., Clipx,ε{xadvT }; this can help the attack
to avoid converging on the local optimum and increase the
likelihood that the final adversarial example will be misclas-
sified to a class far away from the ground-truth class. Since
the step size used in the attack is not the real perturbation
amplitude of the examples, we refer to it as “virtual step”.
Auxiliary Gradients. This technique is designed to verify
the second hypothesis. By using the gradients of the loss
function with respect to the ground-truth label ytrue, tra-
ditional iterative attacks (such as I-FGSM) perturb the ex-
amples in approximately one fixed direction, which is not
conducive to making the intermediate perturbed examples be
misclassified to different classes. We propose to use not only
the gradients corresponding to the ground-truth label (main
gradients), but also the gradients corresponding to some other
labels (auxiliary gradients) to generate adversarial perturba-
tions. For an I-FGSM using auxiliary gradients , it will per-
turb the examples both in the ascending direction of the main
gradients and the descending direction of the auxiliary gradi-
ents. Through the use of auxiliary gradients, the intermediate
perturbed examples may potentially be misclassified to the
auxiliary classes.

Based on the above analysis, the iterative fast gradient sign
method with virtual step and auxiliary gradients (abbreviated
to VA-I-FGSM) can be formulated as follows:

xadvt+1 = xadvt ± α·sign(∇xJ(x
adv
t , ytrue+ , yaux− ));

xadv = Clipx,ε{xadvT }
(5)

where α denotes the virtual step, ytrue+ denotes that xadvt is
updated by adding the sign of the loss gradients with respect
to ytrue, and yaux− denotes that xadvt is updated by subtracting
the sign of the loss gradients with respect to yaux. Note that
there may be more than one yaux and that yaux 6= ytrue.

A detailed description of VA-I-FGSM is presented in Al-
gorithm 1. In each iteration, in addition to updating the exam-
ple with the main gradients corresponding to ytrue, we ran-
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Algorithm 1 VA-I-FGSM for crafting adversarial examples.
Input: A classifier f with loss function J ; a benign example
x and its true label ytrue; the label set C; the number of iter-
ations T ; the perturbation threshold ε; the virtual step size α;
the number of auxiliary labels naux.
Output: The adversarial example xadv .

1: Let xadv0 ← x; t← 0.
2: while t < T do
3: xadvtmp ← xadvt + α·sign(∇xJ(x

adv
t , ytrue))

4: Caux ← RandomSelect(C\ytrue, naux)
5: for yaux in Caux do
6: xadvtmp ← xadvtmp − α·sign(∇xJ(x

adv
t , yaux))

7: end for
8: xadvt+1 ← xadvtmp
9: t← t+ 1

10: end while
11: return xadv ← Clipx,ε{xadvT }

domly select naux labels from C\ytrue to construct auxiliary
gradients for generating additional adversarial perturbations.
C\ytrue represents the set formed by removing the element
ytrue from set C. No clipping operation is performed for the
intermediate perturbed examples, and only the final adversar-
ial example is clipped to satisfy the perturbation threshold.

Our proposed virtual step and auxiliary gradients can be
similarly integrated into DI2-FGSM and TI2-FGSM to create
VA-DI2-FGSM and VA-TI2-FGSM, respectively.

4 Experiments
4.1 Experimental Setup
Dataset. We use a subset dataset2 of ImageNet to conduct
the experiments. This subset dataset consists of 1000 images
and was used in the NIPS 2017 adversarial competition. All
the images are resized to 299× 299× 3 pixels.

Models. We consider four normally trained models,
i.e., Inception-v3 (Inc-v3) [Szegedy et al., 2016], Xcep-
tion (Xcep) [Chollet, 2017], Inception-Resnet-v2 (IncRes-
v2) [Szegedy et al., 2017] and ResNet-152-v2 (Res152-
v2) [He et al., 2016], and three defense models, i.e., input
transformation through JPEG compression (JPEG) [Guo et
al., 2018], input transformation through random resizing and
padding (R&P, rank-2 submission in the NIPS 2017 defense
competition) [Xie et al., 2018], ResNeXt101 DenoiseAll
(ResX101-dn, rank-1 submission in CAAD 2018) [Xie et al.,
2019a]. All models are publicly available3.

Implementation details. For all attacks, the maximum per-
turbation of each pixel is set to ε = 16. The total number
of iterations is set to T = min(ε + 4, 1.25ε) [Kurakin et al.,
2017]. For I-FGSM, DI2-FGSM and TI2-FGSM, the step size
is set to α = ε/T . For DI2-FGSM, the transformation opera-
tions T (x; p) first randomly resize the input to a rnd×rnd×3
image, with rnd ∈ [299, 330), then pad to size 330×330×3

2https://www.kaggle.com/c/nips-2017-non-targeted-adversarial-
attack/data

3https://keras.io/api/applications/

in a random manner. The transformation probability p is set
to be 0.5. For TI2-FGSM, W is set to be a 15 × 15 Gaus-
sian kernel. In experiments, the pixel values of all images are
scaled to [0, 1]. Correspondingly, the ε is scaled to 16/255.

4.2 Setting the Hyperparameters
We use a grid search to find the optimal values for hyperpa-
rameters α and naux. We first attack Inc-v3 by VA-I-FGSM,
VA-DI2-FGSM and VA-TI2-FGSM under white-box settings,
and then transfer the adversarial examples to Xcep, IncRes-v2
and Res152-v2. Figure 2 presents the attack success rates of
the adversarial examples crafted on Inc-v3 by VA-I-FGSM. It
can be seen that, for the three different black-box models, hy-
perparameters associated with high attack success rates have
almost the same distribution. For Xcep, the attack success
rate is the highest when α = 0.007 and naux = 3; for IncRes-
v2, the attack success rate is the highest when α = 0.007 and
naux = 3; for Res152-v2, the attack success rate is the high-
est when α = 0.008 and naux = 2. Thus, for VA-I-FGSM,
we set α = 0.007 and naux = 3 according to the majority
rule.

Similarly, we have searched the optimal hyperparameters
for VA-DI2-FGSM and VA-TI2-FGSM. For VA-DI2-FGSM,
the hyperparameters are set to α = 0.009 and naux = 1;
for VA-TI2-FGSM, the hyperparameters are set to α = 0.009
and naux = 4. The following experiments are all based on
the above hyperparameters.

4.3 Attacking a Single Model
We first conduct attacks on a single model. We craft adver-
sarial examples only on normally trained models under white-
box settings, and test them on all seven models. The attack
success rates are shown in Table 1.

From Table 1, we can observe that, for black-box attacks,
our proposed methods with virtual step and auxiliary gradi-
ents outperforms the baseline methods on all models, includ-
ing normally trained and defense models. It is worth noting
that, with the exception of ResX101-dn, our methods improve
the attack success rates by a large margin of 12% ∼ 28% on
all other models. For example, if the adversarial examples
are crafted on Inv-v3, VA-I-FGSM achieves an attack suc-
cess rate of 41.6% on Xcep, while the baseline I-FGSM ob-
tains an attack success rate of only 13.8%. On ResX101-dn,
our methods are slightly superior to the baselines. Since the
classification accuracy of ResX101-dn on benign examples
is as low as 82.1%, we treat ResX101-dn as a special case
that may be countered by adaptive attacks. For white-box at-
tacks, only VA-TI2-FGSM is slightly inferior to TI2-FGSM in
some cases, while VA-I-FGSM and VA-DI2-FGSM surpass I-
FGSM and DI2-FGSM, respectively.

Figure 3 visualizes two randomly selected benign images
and their corresponding adversarial images crafted by dif-
ferent methods. Overall, all adversarial images are visually
indistinguishable from benign images. The adversarial per-
turbations generated by our methods are slightly more per-
ceptible for humans than those generated by baseline meth-
ods. However, it should be noted that the adversarial images
crafted by our methods still do not exceed the perturbation
threshold of ε = 16.
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1 2 3 4 5 6 7 8 9 10
naux

1

2

3

4

5

6

7

8

9

10

α
(×
0
.0
0
1
)

0.070

0.091

0.161

0.198

0.253

0.305

0.346

0.365

0.381

0.382

0.079

0.135

0.255

0.317

0.353

0.404

0.409

0.399

0.412

0.383

0.094

0.169

0.277

0.349

0.383

0.402

0.416

0.398

0.373

0.366

0.090

0.221

0.327

0.361

0.395

0.395

0.368

0.371

0.347

0.332

0.107

0.236

0.335

0.366

0.382

0.375

0.382

0.353

0.334

0.318

0.121

0.270

0.334

0.374

0.374

0.375

0.357

0.330

0.313

0.307

0.134

0.264

0.341

0.391

0.382

0.367

0.338

0.320

0.293

0.278

0.149

0.278

0.353

0.373

0.358

0.331

0.336

0.303

0.290

0.275

0.153

0.309

0.366

0.373

0.356

0.337

0.319

0.277

0.290

0.261

0.157

0.317

0.365

0.360

0.350

0.325

0.303

0.279

0.261

0.245

Inc-v3 → Xcep

1 2 3 4 5 6 7 8 9 10
naux

1

2

3

4

5

6

7

8

9

10

α
(×
0
.0
0
1
)

0.016

0.037

0.093

0.140

0.197

0.246

0.272

0.284

0.312

0.312

0.030

0.091

0.163

0.242

0.290

0.313

0.329

0.333

0.316

0.310

0.036

0.107

0.219

0.279

0.324

0.320

0.335

0.313

0.299

0.290

0.048

0.136

0.246

0.304

0.317

0.313

0.301

0.290

0.269

0.242

0.051

0.158

0.282

0.316

0.318

0.306

0.289

0.274

0.247

0.248

0.066

0.203

0.275

0.296

0.305

0.290

0.261

0.262

0.234

0.232

0.081

0.219

0.281

0.314

0.301

0.282

0.262

0.239

0.224

0.203

0.081

0.217

0.294

0.297

0.281

0.267

0.241

0.227

0.204

0.196

0.090

0.234

0.289

0.303

0.274

0.255

0.228

0.218

0.201

0.182

0.099

0.238

0.293

0.292

0.279

0.253

0.216

0.197

0.197

0.189

Inc-v3 → IncRes-v2

1 2 3 4 5 6 7 8 9 10
naux

1

2

3

4

5

6

7

8

9

10

α
(×
0
.0
0
1
)

0.089

0.109

0.157

0.194

0.235

0.241

0.297

0.294

0.310

0.309

0.107

0.149

0.206

0.262

0.287

0.326

0.327

0.331

0.328

0.313

0.113

0.167

0.259

0.289

0.309

0.320

0.313

0.306

0.302

0.286

0.116

0.208

0.255

0.300

0.315

0.315

0.286

0.293

0.284

0.271

0.124

0.203

0.277

0.300

0.308

0.296

0.293

0.296

0.272

0.266

0.123

0.225

0.280

0.305

0.290

0.282

0.287

0.277

0.263

0.248

0.138

0.227

0.290

0.321

0.291

0.288

0.276

0.271

0.253

0.253

0.151

0.253

0.289

0.296

0.291

0.281

0.257

0.247

0.253

0.226

0.151

0.265

0.300

0.307

0.297

0.274

0.252

0.250

0.244

0.245

0.150

0.269

0.289

0.308

0.276

0.264

0.245

0.252

0.233

0.221

Inc-v3 → Res152-v2

Figure 2: Attack success rates on Xcep, IncRes-v2 and Res152-v2. The adversarial examples are crafted on Inc-v3 using VA-I-FGSM.

Benign I-FGSM DI2-FGSM TI2-FGSM VA-I-FGSM VA-DI2-FGSM VA-TI2-FGSM

Figure 3: Visualization of randomly selected benign images and their corresponding adversarial images. The adversarial images are crafted
on Inc-v3 using different methods with a maximum perturbation of ε = 16.

4.4 Attacking an Ensemble of Models
In this section, we test the performance of our methods on
an ensemble of models. We adopt the ensemble strategy pro-
posed in [Dong et al., 2018], which fuses the logits of dif-
ferent models. The experimental results on normally trained
models are presented in Table 2. We can observe that the
methods with virtual step and auxiliary gradients outperform
all baseline methods.

The experimental results on defense models are presented
in Table 3. We can observe that VA-I-FGSM and VA-DI2-
FGSM outperform I-FGSM and DI2-FGSM, respectively. On
JPEG and R&P defense models, VA-TI2-FGSM is inferior to
TI2-FGSM.

4.5 Ablation Study
In this section, we conduct an ablation study to analyze the
influence of virtual step and auxiliary gradients in attacks. We
take VA-TI2-FGSM as an example. For VA-TI2-FGSM, the
optimal hyperparameters are α = 0.009 and naux = 4.

Virtual step size α. We set the number of auxiliary labels to
naux = 0, i.e., no auxiliary gradients are used in attacks. The
virtual step size α varies from 0.001 to 0.01. In this case, VA-
TI2-FGSM degrades to TI2-FGSM with only a virtual step.
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Figure 4: The attack success rates of VA-TI2-FGSM when vary-
ing α (left) or naux (right). The dashed lines denote white-box
models, and the solid lines denote black-box models. The outlier
points indicate the benchmark attack success rates obtained by set-
ting α = 0.009 and naux = 4.

The results are shown on the left of Figure 4. We observe
that the white-box attack success rates remain stable as α in-
creases. The black-box attack success rates increase with in-
creasing α, but gradually flatten out. Given α ∈ [0.001, 0.01],
the black-box attack success rates do not reach the bench-
mark values. Moreover, if α � ε/T , the perturbations will
tend to become increasingly human-perceptible in practice.
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Model Attack Inc-v3 Xcep IncRes-v2 Res152-v2 JPEG R&P ResX101-dn

Inc-v3

I-FGSM 0.973 0.138 0.091 0.150 0.127 0.201 0.180
VA-I-FGSM 0.999 0.416 0.335 0.313 0.306 0.414 0.186
DI2-FGSM 0.976 0.291 0.219 0.255 0.246 0.402 0.182
VA-DI2-FGSM 0.999 0.508 0.457 0.433 0.439 0.602 0.190
TI2-FGSM 0.973 0.129 0.051 0.132 0.155 0.177 0.187
VA-TI2-FGSM 0.948 0.354 0.246 0.309 0.361 0.404 0.198

Xcep

I-FGSM 0.234 0.978 0.122 0.182 0.169 0.233 0.183
VA-I-FGSM 0.457 1.000 0.339 0.364 0.355 0.451 0.188
DI2-FGSM 0.494 0.981 0.345 0.375 0.339 0.514 0.186
VA-DI2-FGSM 0.662 0.999 0.510 0.524 0.535 0.669 0.188
TI2-FGSM 0.237 0.976 0.106 0.185 0.235 0.255 0.187
VA-TI2-FGSM 0.433 0.956 0.261 0.319 0.388 0.418 0.196

IncRes-v2

I-FGSM 0.315 0.217 0.995 0.202 0.182 0.260 0.182
VA-I-FGSM 0.498 0.411 0.992 0.325 0.343 0.431 0.188
DI2-FGSM 0.557 0.441 0.988 0.387 0.371 0.523 0.183
VA-DI2-FGSM 0.736 0.648 0.999 0.528 0.580 0.691 0.189
TI2-FGSM 0.281 0.217 0.969 0.197 0.251 0.262 0.187
VA-TI2-FGSM 0.442 0.374 0.788 0.326 0.400 0.423 0.195

Res152-v2

I-FGSM 0.254 0.195 0.089 0.970 0.143 0.223 0.185
VA-I-FGSM 0.462 0.462 0.330 1.000 0.334 0.478 0.194
DI2-FGSM 0.508 0.475 0.372 0.971 0.343 0.502 0.186
VA-DI2-FGSM 0.698 0.684 0.560 0.999 0.544 0.705 0.197
TI2-FGSM 0.209 0.180 0.077 0.967 0.193 0.222 0.189
VA-TI2-FGSM 0.402 0.372 0.266 0.968 0.357 0.390 0.198

Table 1: Attack success rates of single-model attacks. The diagonal blocks indicate white-box attacks, while the off-diagonal blocks indicate
black-box attacks.

Attack -Inc-v3 -Xcep -IncRes-v2 -Res152-v2
I-FGSM 0.573 0.447 0.362 0.341
VA-I-FGSM 0.659 0.603 0.525 0.475
DI2-FGSM 0.846 0.766 0.704 0.670
VA-DI2-FGSM 0.914 0.880 0.827 0.749
TI2-FGSM 0.549 0.438 0.321 0.329
VA-TI2-FGSM 0.556 0.476 0.375 0.413

Table 2: Attack success rates of ensemble-based attacks on normally
trained models. “-Inc-v3” indicates that the adversarial examples
are crafted on an ensemble of Xcep, IncRes-v2 and Res152-v2, and
black-box attacks are performed on Inc-v3. The meaning of the
other symbols can be deduced by analogy.

It is therefore unrealistic to rely only on the virtual step to
improve the transferability of adversarial examples.

Number of auxiliary labels naux. We set the virtual step
size to α = ε/T ≈ 0.003, i.e., the step size usually used by
traditional iterative attacks. The number of auxiliary labels
naux varies from 1 to 10. In this case, VA-TI2-FGSM de-
grades to TI2-FGSM with only auxiliary gradients. The re-
sults are shown on the right of Figure 4. It can be seen that if
naux ≤ 4, the black-box success rates increase significantly;
by contrast, if naux > 4, the black-box attack success rates
increase moderately and the white-box attack success rates
tend to drop. Given naux ∈ [1, 10], the black-box attack suc-
cess rates do not reach the benchmark values. Moreover, the

Attack JPEG R&P ResX101-dn
I-FGSM 0.472 0.577 0.188
VA-I-FGSM 0.501 0.618 0.198
DI2-FGSM 0.785 0.868 0.193
VA-DI2-FGSM 0.849 0.911 0.202
TI2-FGSM 0.578 0.574 0.198
VA-TI2-FGSM 0.485 0.526 0.208

Table 3: Attack success rates of ensemble-based attacks on defense
models. The adversarial examples are craft on an ensemble of Inc-
v3, Xcep, IncRes-v2 and Res152-v2.

time cost for generating adversarial examples increases with
increasing naux. It is therefore impractical to rely only on the
auxiliary gradients to improve the transferability.

5 Conclusion
In this paper, we propose to improve the transferability of ad-
versarial examples through the use of a virtual step and aux-
iliary gradients, which can be easily integrated into existing
gradient-based attacks. Extensive experiments on ImageNet
show that our method significantly outperforms the baselines.
The ablation study further verifies that both the virtual step
and auxiliary gradients are necessary to achieving the im-
proved results. In future, we will further explore the potential
use of auxiliary gradients in generating adversarial examples.
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