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Abstract

In the past few decades, Hadamard-based image
restoration problems (e.g., low-light image en-
hancement) attract wide concerns in multiple ar-
eas related to artificial intelligence. However, ex-
isting works mostly focus on heuristically defin-
ing architecture and loss by the engineering experi-
ences that came from extensive practices. This way
brings about expensive verification costs for seek-
ing out the optimal solution. To this end, we de-
velop a novel hierarchical bilevel learning scheme
to discover the architecture and loss simultane-
ously for different Hadamard-based image restora-
tion tasks. More concretely, we first establish a
new Hadamard-inspired neural unit to aggregate
domain knowledge into the network design. Then
we model a triple-level optimization that consists of
the architecture, loss and parameters optimizations
to deliver a macro perspective for network learning.
Then we introduce a new hierarchical bilevel learn-
ing scheme for solving the built triple-level model
to progressively generate the desired architecture
and loss. We also define an architecture search
space consisting of a series of simple operations
and an image quality-oriented loss search space.
Extensive experiments on three Hadamard-based
image restoration tasks (including low-light image
enhancement, single image haze removal and un-
derwater image enhancement) fully verify our su-
periority against state-of-the-art methods.

1 Introduction

Image restoration with deep learning methods has developed
rapidly in recent years, and Convolutional Neural Networks
(CNNs) have been used widely in many image restoration
tasks such as low-light image enhancement (LLIE), single
image haze removal (SIHR) and underwater image enhance-
ment (UIE) [Maetal., 2022; Ma et al., 2021; Qin et al., 2020;
Fu and Cao, 2020]. The performance of CNNs largely de-
pends on the network architecture and training loss. In or-
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der to obtain networks with high performance, the automatic
search of these two components has been explored recently.

1.1 Related Work

Network Architecture Search. Great progress has been
made in designing Neural Architecture Search (NAS) [Liu
et al., 2021a; Liu et al., 2021el. Early attempts [Zoph
and Le, 2016] used evolutionary algorithms to optimize the
architectures and parameters of the networks. Another ap-
proach [Tan er al., 2020] used reinforcement learning to
train a meta-controller to find architectures. However, using
evolutionary algorithms and reinforcement learning required
a large amount of computations and made the search pro-
cess more inefficient. Recently, differentiable search meth-
ods [Liu et al., 2018] were proposed. They converted the
super-network into a differentiable form by introducing archi-
tectural parameters which could be optimized by gradient de-
scent and the search cost could be reduced largely. The above
algorithms have achieved competitive performance in various
tasks. However, these existing methods tend to obtain unsat-
isfactory visual results in complicated scenarios. The main
reason is that although these methods make use of NAS tech-
nique, they lacked physical constraints in principle. As a re-
sult, the architectures searched by the aforementioned meth-
ods often failed when meeting with complex degraded im-
ages because they couldn’t capture the inherent image struc-
ture without the help of principle prior knowledge.

Training Loss Search. Training loss is a critical component
affecting performance. And most existing methods employed
hand-craft losses with human experience. /5 loss is a popular
training loss in image restoration problem. However, it often
brings about blurry in the images. Perceptual loss [Johnson
et al., 2016] calculates ¢, distance between the activations of
the hidden layers of a pre-trained network. However, using
this loss could result in a large misalignment between train-
ing loss and evaluation metrics. So, many works combine
multiple losses with carefully designed trade-off weights for
complementation [Lv ef al., 2018]. To find a better loss com-
bination or form, training loss search has also aroused great
interest very recently [Liu ef al., 2021b; Li et al., 2019b;
Li et al., 2022]. A cross-entropy based loss space was pro-
posed in face recognition [Li er al., 2019b]. It conducted
the search process including a set of cross-entropy losses for
face recognition. But the types of candidate losses were too
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Figure 1: Hadamard-based image restoration. We present a Hadamard-based model which searches network architecture and training loss
for restoring a given image captured on different Hadamard-based tasks such as (a) Low-light Image Enhancement (LLIE), (b) Single Image

Haze Removal (SIHR), and (c) Underwater Image Enhancement (UIE).

simple and of the same type. And it brought about a large
misalignment between training loss and target metrics. The
work in [Li et al., 2022] designed an elementary search space
which was composed of primitive mathematical operators to
accommodate the heterogeneous tasks and evaluation met-
rics. However, it abandoned the current existing loss eval-
uation system completely. More importantly, the searched
combination result of these operators changed with random-
ness and the search space was too sparse, which may lead
to unpleasing results. By contrast, our loss space is image
quality-oriented and more relevant to the evaluation metrics.
As aresult, it is suitable for a lot of image restoration tasks.

1.2  Our Contributions

To address the above issues, we propose a novel hierarchical
bilevel learning scheme with architecture and loss search for
Hadamard-based image restoration. A Hadamard-inspired
neural unit is firstly built to convert the domain knowledge
into the network layer. Then we construct a novel triple-level
modeling for architecture and loss search by characterizing
the latent connection among loss, architecture and param-
eters. Considering the difficulty of solving the triple-level
model, we define a new hierarchical bilevel learning scheme
with an approximate solving process. A series of experiments
verify our effectiveness on different tasks and the result is
shown in Figure 1. In summary, our contributions can be
concluded as

* We develop a new Hadamard-inspired neural unit to
integrate task-related domain knowledge into the net-
work design to provide performance support for differ-
ent Hadamard-based image restoration tasks.

* We supply a general triple-level modeling perspective
for joint architecture and loss search. It can accurately
depict the latent correspondence between loss, architec-
ture, and parameters.

* To solve the triple-level model, we propose a hierarchi-
cal bilevel learning scheme that can alternatively esti-
mate the architecture and loss to progressively generate
the desired solutions.

2 The Proposed Method

In this section, we first construct our Hadamard-inspired neu-
ral unit. And then, we establish a new triple-level modeling
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for learning architecture and training loss. After that, we pro-
pose a stage-wise learning strategy for solving the built triple-
level model. Finally, we introduce the architecture search
space and image quality-oriented loss search space.

2.1 Hadamard-inspired Neural Unit

A set of image degradations can be represented as clear im-
ages with a degradation factor in Hadamard product form.
And it can be formulated as y = u ® v, where y denotes
the degraded image, u denotes the original image and v de-
notes the degradation factor. ® represents the element-wise
multiplication. And u = y @ v can be derived by perform-
ing inverse process, where © represents the element-wise di-
vision. By applying this rule to feature layer, we establish
a Hadamard-inspired Neural Unit (HNU) to perform task-
related domain knowledge. The designed HNU is consists
of two feature enhancement blocks and is used for estimat-
ing u and v to realize degradation removal progressively. We
cascade multiple HNUs and embed them into feature convert
modules to form the optimization process of the model. The
[-th intermediate HNU can be formulated as
Fit = Ru(FL), Fitt =R (FL),
A R o AL 1, .
for the [-th block HNU;, the feature ]-'fl obtained from the pre-
vious block (the FL(I = 1) is the feature generated by FCM)
is inputted into two feature enhancement blocks R, and R,
which will be searched to get }"é“ and ]-'é“. Then the in-
termediate enhanced feature F5! is generated by executing
the element-wise division @ on ]-"é"’l and ]—"é“. The multiple
cascaded HNUs framework is built by applying this equation.
We design a Feature Convert Module (FCM) for conversion
between image and feature domain. The whole framework is
generated by embedding them into FCMs. The component of
feature convert module also needs to be searched. The search
space of the above modules can be found in Section 2.4. The
overall framework is shown in Figure 2.

2.2 Triple-Level Modeling

The crucial factors of performance for learning-based meth-
ods lie in how to define the architecture and training loss.
As described above, we have clearly introduced a new block
for Hadamard-based image restoration. Here we provide a
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Figure 2: The overall network architecture.

general perspective for depicting the overall learning process.
The formulation can be written as

gleigﬁsal(ﬁ,a,w), st (a,w) € Sa(B) x Su(B,a), (2)

where

Sa(ﬁ) = arg glel.,rzll 'CSal(av w; ﬁ)v

st.w € Su(a, B), Su(a,B) = argrrgnﬁsr(w;,@,a),
(3

where 3 represents the hyper-parameters (including trade-off
weights of the losses and inner parameters when calculating a
specific loss) that needs to be defined in the loss space B. The
variable o represents the desired architecture determined in
the defined search space A. The variable w denotes the net-
work parameters related to a. The loss function £S,; repre-
sents the classification-driven loss used on validation dataset.
The loss £, and £, denote the image quality-oriented loss'
used on validation and training dataset, respectively.

The above triple-level modeling actually builds an explicit
relationship among training loss, network architecture, and
network parameters. To be concrete, both of the loss and
the architecture play a decisive role in the network param-
eters, i.e., the network parameters w is the variable for the
loss and architecture search. When searching the architec-
ture, the adopted loss function directly dictates the form of
the searched architecture, that is, the architecture @ becomes
the variable for the optimization of training loss.

From above, the selection of the validation loss is the key to
the success of searching training loss and should be designed
carefully. However, the image quality-oriented losses (such
as VGG and LPIPS loss) are employed in our loss space and
can’t be used as validation loss for search. So which loss to
use as the validation loss is the key point. Considering how to
evaluate whether an image is clear or not, we find that classi-
fication network is able to distinguish the image from its de-
graded form, which is related to the image restoration tasks.
As a result, we employ a classification loss as our validation
loss to estimate the performance of the searched training loss
more accurately. What’s more, by setting the degraded image
as the negative sample and setting the clear image as the pos-
itive sample, the network can extract abstract representation
and high level information of natural images. This informa-
tion is helpful for generating visually pleasing results. More

'The specific forms about it can be found in Section 2.4.
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Name Expression Variable
La: Ly Ag * [[u* —ully Aa
Ly: Ly Ap * [lu* — 2 Ap
L : Color Ao * 32 Z((u*),, (v);) Ae
i
L 4: SSIM Ag * L(u*,u)® - c(u*,u)? . s(u*,u)” Ad
2
P CE G
L¢: LPIPS Ae * ; > W, Ae
Z eV G,
L4: VGG Ap ~; Apl
(Vaw?+(vyw?)
Lg:TV Ag * W Ag
put
L}, Laplacian Ap * w An

Table 1: The overall search space in the search phase for training
loss. u is the restored image and u* is the ground truth.

specifically, for each Hadamard-based image restoration task,
we train an image classifier to distinguish whether the image
is the clear one or not. And then we use the classification loss
as the validation loss to search training loss. The specially
trained classifier can capture more task-related information,
which could evaluate the searched losses more accurately.

2.3 Hierarchical Bilevel Learning Scheme

Actually, solving the above built triple-level model is a chal-
lenging issue because of the complex functional relationship.
Here we propose a hierarchical bilevel solution scheme to
convert the triple-level model into two bilevel models. Be-
cause bilevel optimization is more simple and has been re-
searched many years compared to the triple-level problem
[Liu et al., 2022b; Liu et al., 2022a; Liu et al., 2021d;
Liu et al., 2021c]. By fixing the variable o when optimiz-
ing the 3, we can obtain the following solution scheme
Bt = 'reneigﬁc (B,w;at), sit.w € S, (a', B),

val

at+1 — melgﬁa (a7w;ﬁt+1>, s.t.w € Sw(a718t+1)7
o

val

“4)
where ¢ represents the alternative number. The first equa-
tion indicates the optimization process of 3. The classifica-
tion loss £S,; is used for validation. « is fixed as its initial
value, and the solving process of 3 is converted into a bilevel
problem involving the trainable variable 3, w and the fixed
variable . The second equation indicates the optimization
process of a. The LY., is obtained via the solution proce-
dure of 3. So the solving process of « is converted into an-
other bilevel problem involving the trainable variable ov and
w. What’s more, in the solving process of the two bilevel
problems, the gradients of weight parameters and architec-
ture are computed using first-order approximation following
standard differential NAS techniques [Liu ef al., 2018].

2.4 Search Space of Architecture and Loss

Training Loss Search Space. We design an image quality-
oriented losses set as the training loss search space. The can-
didate losses include ¢1, £5, color [Wang et al., 2019], SSIM,
VGG [Johnson et al., 2016], LPIPS [Zhang et al., 2018],
TV [Osher et al., 2005] and Laplacian [Rosenfeld, 1976] loss.
For each loss, we define the weighting coefficient as the pa-
rameter to be optimized. What’s more, the VGG loss has
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Figure 3: Visual comparison among state-of-the-art LLIE methods on LOL dataset.

Methods | MBLLEN | RetinexNet | DeepUPE KinD EnGAN DRBN FIDE RUAS Ours
PSNR 17.4947 12.5591 20.8741 15.7552 15.1014 16.3702 16.2580 17.0056 23.2378
MIT SSIM 0.6218 0.5673 0.6958 0.6318 0.6001 0.5967 0.6095 0.6182 0.8184
LPIPS 0.1787 0.2234 0.0937 0.1387 0.1218 0.1734 0.1769 0.1164 0.0519
PSNR 18.6313 16.3076 11.8956 20.2552 17.6844 18.2622 | 21.5797 14.9663 24.1640
LOL SSIM 0.7705 0.4362 0.4418 0.8382 0.6081 0.6688 0.7935 0.4986 0.8663
LPIPS 0.2161 0.4997 0.2793 0.1079 0.2975 0.1508 0.1307 0.2432 0.0751
Table 2: Qualitative results of state-of-the-art methods and ours on the MIT-Adobe 5K and LOL datasets.
another kind of variable which is the selection of the hidden Methods PSNR SSIM LPIPS
layers of the VGG network. We divide the layers of the VGG DAD 20.2702 0.8050 0.1438
network into four groups in terms of feature scale, and the EPDN 20.6930 0.8232 0.0732
goal is to select one layer from each group. By employing a FEA 226119 0.8830 00726
new variable for each group, we added the selection of VGG - - - -
layers into loss search space. The detailed definition of each GridDehazeNet 23.8632 0.8965 0.0677
loss is shown in Table 1. MSBDN 23.8819 | 0.8965 | 0.0677
Architecture Search Space. According to different charac- PSD 25.1914 0.9107 0.0675
teristics, we define search spaces for HNU and FCM respec- PhysicsGAN 24.4496 0.8806 0.0623
tively. The candidate operations include 1x1, 3x3 and 5x5 Ours 27.0509 0.9370 0.0484

Convolution (1-C, 3-C and 5-C), 1x 1 and 3 x3 Residual Con-
volution (1-RC and 3-RC),3x3 Dilation Convolution with di-
lation rate of 2 (3-2-DC), 3 x 3 Residual Dilation Convolution
with dilation rate of 2 (3-2-RDC), 1x1 and 3 x3 Dense Con-
volution (1-DC and 3-DC), and Skip Connection (SC). The
division info for HNU and FCM is shown in Figure 2.

3 Experimental Results

3.1 Implementation Details

For LLIE task, we used MIT-Adobe 5K [Bychkovsky et al.,
2011] and LOL Dataset [Wei et al., 2018]. We sampled 600
low-light images randomly from the MIT-Adobe 5K dataset
for searching and training, and 100 images for testing. As for
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Table 3: Quantitative STHR result of state-of-the-art methods.

the LOL Dataset, we randomly sampled 690 image pairs for
searching and training, and the remaining 99 pairs for testing.
For SIHR task, we used the dataset proposed by [Pan et al.,
2020]. And for UIE task, we sampled 712 image pairs from
UIEB dataset [Li et al., 2019a] for searching and training and
the remaining 178 image pairs for testing. All the experi-
ments were performed on a PC with a single TITAN X GPU.
We used ResNet-50 to train our classifier. In searching phase,
the maximum epoch was 30, the batch size was 1 and the ini-
tial learning rate was 0.0005. The momentum was 0.9 and the
weight decay was 0.0003. The initiate weight of each loss in
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Figure 4: Visual comparison among state-of-the-art SIHR methods on the real hazy image.

Methods UDCP OCM TSA Fusion AIO WaterNet | UWCNN FGAN GLN Ours
PSNR 11.6973 | 22.0781 14.2882 | 21.8875 13.3344 19.5888 17.5703 17.6067 | 21.0797 | 23.0009
SSIM 0.5060 0.5838 0.4851 0.8200 0.4850 0.8238 0.6347 0.5880 0.7548 0.8630
LPIPS 0.2635 0.2040 0.3187 0.1390 0.2851 0.1135 0.1911 0.2287 0.1179 0.0822

Table 4: Qualitative comparison of UIE task on UIEB dataset between our methods and state-of-the-art methods.

UDCP FGAN Fusion Waternet Ours

Input CM

Figure 5: Visual comparison among state-of-the-art UIE methods on UIEB dataset.

loss search space was 1.0. As for the training phase (with the
searched architecture and searched training loss), we set the
learning rate as 0.0001 and the batch size was 1.

3.2 Comparison with State-of-the-arts

To evaluate our method roundly, we adopted PSNR, SSIM
and LPIPS as our evaluation metrics for three tasks. To fully
demonstrate the superiority of our method, we compared our
method with recently proposed state-of-the-art approaches on
LLIE, SIHR and UIE tasks respectively.

Evaluations on LLIE. The compared methods include
MBLLEN [Lv et al., 20181, RetinexNet [Wei et al., 2018],
DeepUPE [Wang et al., 2019], KinD [Zhang et al., 2019],
EnGAN [Jiang et al., 2021], DRBN [Yang et al, 2020],
FIDE [Xu et al., 2020] and RUAS [Liu et al., 2021el. As
shown in Figure 3, the compared methods such as DeepUPE
and RUAS either couldn’t remove noise or caused color shift.
By contrast, our method obtained the highest performance in
removing noise and enhancing the image and was superior to
others in both the evaluation metrics and visual results.
Evaluations on SIHR. The compared methods contain
DAD [Shao et al., 20201, EPDN [Qu et al., 2019], FFA [Qin
et al., 2020], GridDehazeNet [Liu et al., 2019], MS-
BDN [Dong et al., 2020], PSD [Chen et al., 2021] and
PhysicsGAN [Pan et al., 2020]. The quantitative result was in
Table 3 and the qualitative result was in Figure 4. As shown,
most methods failed on the real hazy image. The reason is
that these methods can’t learn the inherent characteristics of
the real hazy image. By comparison, our method was supe-
rior to others in both haze removal and detail recovery.
Evaluations on UIE. The compared methods include
UDCEP [Drews et al., 2016], OCM [Li et al., 2016], TSA [Fu
et al., 2017], Fusion [Ancuti er al., 2012], AIO [Uplavikar
et al., 2019], WaterNet [Li et al., 2019a], UWCNN [Li et
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al., 20201, FGAN [Islam et al., 2020] and GLN [Fu and Cao,
2020]. As showed in Table 4 and Figure 5, our method gained
the highest scores and could enhance the challenging under-
water image well while others failed to recover clear details.

4 Algorithmic Analyses
4.1 The Effect of Training Loss Search

To demonstrate the effect of training loss search. We con-
ducted three groups of contrast experiments on LLIE task.
(1): Employ MBLLEN as the basic model and its proposed
loss as loss space. Use the experienced loss setting proposed
by the author (MBLLEN) and compare it with the searched
version (MBLLENT™). (2): Employ UNET as the basic model
and our proposed loss space as loss space. Set the weights
as 1.0 for each candidate (UNET) and compare it with the
searched version (UNETY). (3): Using our searched archi-
tectures, set the weights as 1.0 for each candidate (Ours) and
compare it with the searched version (Ours™). The result is
shown in Figure 6. As showed, the searched version obtained
a higher performance on both PSNR and SSIM than another.
And our proposed method obtained the highest performance.

4.2 The Effect of Architecture Search

We analyzed the performance among our model and different
heuristically-designed architectures on LLIE task and they
were trained using the searched loss. The result was shown
in Table 5. As can be seen, the performance of the supernet
and heuristically designed architectures was either unideal or
couldn’t reach the searched architectures. Briefly, these ar-
chitectures may not effective enough. It is because these ar-
chitectures did not integrate the task cues/principles. By com-
parison, our searched architecture realized the highest perfor-
mance in all metrics. In a word, this experiment indicated the
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Figure 6: Quantitative results between naively determined and

searched training loss on LOL dataset.

Model PSNR SSIM LPIPS
Supernet 17.4412 0.7410 0.2447
1-C 21.3163 0.7708 0.1431
3-C 21.9472 0.8573 0.0947
1-RC 20.3591 0.6253 0.1938
3-RC 22.4196 0.8612 0.0816
Ours, 22.9998 0.8186 0.0858
Ours 24.1640 0.8663 0.0751

Table 5: Quantitative results between naively determined architec-
tures and our searched architecture on LOL dataset.

necessity of searching the architecture and the superiority of
our searched architecture.

4.3 Analyzing the Search Strategy

Actually, the search strategy is a decisive factor for the
searched architecture. Here, we made an evaluation on the
search strategy. Ours,: search training loss and architecture
synchronously using the same classification loss £S,; as the
upper loss. In this way, architecture () and training loss
(B) are searched by the same optimal goal at the same time.
Ours: divide the triple-level problem into two bilevel prob-
lems. Specifically, firstly fix the architecture (cv) as the super-
net and use the classification loss (ﬁval ) to search training
loss, then use this searched loss (L%, ) to search the archi-
tecture. As shown in Table 5, the second strategy achieved
higher performance and gained a large advantage.

4.4 The Searched Results of Different Tasks

To better analyze our triple-level model for different tasks
and explore the differences between tasks. We plotted the
searched architectures and training loss of LLIE, SIHR and
UIE tasks in Figure 7. For simplicity, we just selected one
searched layer of the architectures from the HNU to show. It
should be noted that the searched weights of TV and Lapla-
cian loss are small to zero and don’t show great differences
among tasks. To focus on more useful information, we didn’t
draw them in the heatmap. And for easier observation, we
softmax the searched loss weights of each task. As can be
seen, the searched architectures were different in tasks. With
the help of Hadamard principle, 1-C or 1-D was enough in
this layer for LLIE and UIE task, while SC was searched in
SIHR tasks. And the dominant loss also differed greatly in
tasks, which were ¢;, VGG and SSIM loss for LLIE, STHR
and UIE respectively. As shown in Figure 8, we showed the
feature processed by the searched layer in second group of the
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Figure 7: The searched losses and architectures of different tasks.

SIHR (7*" layer) ~ UIE (8" layer)

LLIE (6" layer)

Figure 8: Comparing features of different tasks processed by their
searched VGG layers. The first to third rows are the inputs, the
restored results of our method and the corresponding features.

VGG network. And present the 34-th, 42-th,51-th and 60-th
channel feature to a colormap. As can be seen, the perceptual
features required of STHR and UIE were similar, while that of
LLIE focused more on architectural characteristics.

5 Concluding Remarks

We proposed a new framework to combine domain knowl-
edge with a new search strategy to perform architecture and
loss search for Hadamard-based image restoration. We first
developed a Hadamard-inspired neural unit to explore task-
related knowledge. And by cascading multiple units into fea-
ture convert modules, we can obtain the whole holistic struc-
ture of our enhancement network. And we designed an archi-
tecture search space and an image quality-oriented loss search
space. Then we designed a hierarchical bilevel learning strat-
egy to solve the triple-level problems including the architec-
ture, loss and network parameters. Our experiments were per-
formed on three image restoration tasks and we obtained new
state-of-the-art results. In the future, we will apply our built
triple-level model technique to different vision tasks.
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