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Abstract

The detection of anomalous samples in large, high-
dimensional datasets is a challenging task with nu-
merous practical applications. Recently, state-of-
the-art performance is achieved with deep learning
methods: for example, using the reconstruction er-
ror from an autoencoder as anomaly scores. How-
ever, the scores are uncalibrated: that is, they fol-
low an unknown distribution and lack a clear inter-
pretation. Furthermore, the reconstruction error is
highly influenced by the ‘hardness’ of a given sam-
ple, which leads to false negative and false positive
errors. In this paper, we empirically show the sig-
nificance of this hardness bias present in a range of
recent deep anomaly detection methods. To miti-
gate this, we propose an efficient and plug-and-play
error calibration method which mitigates this hard-
ness bias in the anomaly scoring without the need
to retrain the model. We verify the effectiveness of
our method on a range of image, time-series, and
tabular datasets and against several baseline meth-
ods.

1 Introduction
The rapid growth in large-scale sensor data has led to the need
to monitor and detect unusual samples, or anomalies, auto-
matically. This is of vital importance in a wide variety of
applications, ranging from medical, spatio-temporal, indus-
trial, and many others. Recently, there has been a surge of
interest in the use of deep learning methods to achieve more
accurate anomaly detection in high-dimensional data such as
images, time series, and sensor data. For each sample, the
anomaly detection algorithm will output an anomaly score,
where a higher score indicates a higher likelihood of the sam-
ple being anomalous. In most practical cases, the proportion
of anomalous samples is extremely low relative to the normal
samples and it can be very difficult to acquire accurately la-
belled anomalies. Therefore, unsupervised techniques which
focus on learning the distribution of only the normal data are
most practical. Autoencoders are a particularly popular al-
gorithm within this approach [Aggarwal, 2015; Chen et al.,
2018]; the network is trained with a training set of all nor-
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Figure 1: Left Top: Before calibration, the anomaly score (recon-
struction error) is correlated with sample hardness, leading to false
negatives (blue) and false positives (red). Left Bottom: The distri-
bution of reconstruction error differs across hardness levels. Right
Top: Calibration adjusts the distribution of anomaly scores to make
them comparable across different hardness levels. This leads to re-
ductions in false positives and false negatives. Right Bottom: After
calibration, the scores are similarly distributed, and hence compara-
ble, across hardness levels.

mal samples and the reconstruction error is used to determine
anomalies from the unseen data.

A major problem with many of these algorithms is that
their anomaly scores are uncalibrated; that is, the scores
follow an unknown distribution, and therefore lack a clear,
consistent interpretation. In practice, flagging a sample as
anomalous often results in manual inspection, which can be
costly. Therefore, it is beneficial to have calibrated scores,
which allow for a clear, consistent interpretation and measure
how far a sample is away from the normal data distribution.

Calibration also helps to mitigate another significant prob-
lem for unsupervised anomaly detection methods, which we
call the ‘hardness bias’. We define ’hardness’ formally in
Section 3.2, but in short, hardness is an intrinsic and simple
characteristic of a data sample to estimate how difficult it is to
model a sample. Surprisingly, we find that existing anomaly
detection approaches fail to take the effect of hardness into
account, which leads to hardness bias and significant degra-
dation in accuracy.
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In this paper, we first show that a significant hardness bias
exists in a range of deep anomaly detection methods through
empirical observations with real data. We then propose our
CADET framework for calibrated anomaly detection. In-
spired by ideas from post-hoc calibration of machine learning
models and the statistical framework of conformal prediction,
this approach calibrates an anomaly detection algorithm to
address the hardness bias problem while also providing (ap-
proximate) theoretical guarantees on false positive probabil-
ity.

Overall, the benefits of our approach1 are as follows:

1. Generality: Our calibration framework can be flexibly
applied on top of a wide variety of anomaly detection
modules.

2. Accuracy: By mitigating the problem of hardness bias,
our approach consistently improves the accuracy of ex-
isting anomaly detection approaches.

3. Efficiency: Our approach results in virtually no increase
in overall computation time over the original anomaly
detection approach (shown in the supplementary mate-
rial) and requires no retraining of any pre-trained model.

4. Probabilistic Guarantee: Unlike many existing ap-
proaches which return scores from an unknown distri-
bution, our approach returns scores with a more clear
and consistent interpretation, and provides a probabilis-
tic guarantee decision rule that the false positive rate
can be approximately tuned to a user-defined threshold
ε > 0.

2 Related Work
2.1 Anomaly Detection
Unsupervised anomaly detection based on deep learning has
led to a wide variety of approaches; see [Pang et al., 2021]
for a survey. Typically, they learn a model of normal data,
enabling them to identify anomalies which deviate from the
learned distribution.

Reconstruction-based methods are one of the most pop-
ular anomaly detection approaches, especially for high-
dimensional data like image data. A wide variety of au-
toencoder variants exist, including convolutional [Chen et al.,
2018], variational [An, 2015; Yao et al., 2019], robust [Zhou
and Paffenroth, 2017; Goodge et al., 2020] and denoising
[Zhao et al., 2017] autoencoders. These achieve good perfor-
mance, but few works have explored the latent bias existing
in these models. Our work shows the presence of ‘hardness
bias’ in these popular models, and proposes to mitigate it us-
ing a flexible post-hoc framework.

Other approaches include likelihood-based models, which
produce a likelihood or confidence score for an instance be-
ing anomalous, such as using flow-based density estima-
tion [Dinh et al., 2016]; adopting a specialised loss function
[Menon and Williamson, 2018]; as well as graph neural net-
works [Deng and Hooi, 2021; Goodge and Hooi, 2022]. In
contrast, our method is proposed as a post-hoc method to mit-
igate hardness bias given a previously trained model.

1https://github.com/d-ailin/CADET

2.2 Post-hoc Calibration
Calibration of neural networks aims to more accurately cap-
ture the certainty or uncertainty of their predictions [Yu et al.,
2011]. Instead of predicting class values directly, calibration
aims to align the predicted probability score with the accu-
racy, which is especially important in safety-critical domains
such as medical testing or drug discovery.

In recent years, neural network calibration has increasingly
attracted research attention, mostly using post-hoc calibra-
tion methods. For example, Temperature Scaling [Guo et
al., 2017] trains a single scalar parameter T based on Platt
scaling to calibrate and provide the confidence scores, while
Bayesian Binning [Naeini et al., 2015] is a non-parametric
Bayesian method which calibrates using a binning approach.
However, existing post-hoc calibration methods focus on su-
pervised classification; moreover, our approach uses calibra-
tion to adjust for observed biases, which explores an orthogo-
nal direction to existing works. Inspired by post-hoc calibra-
tion, we propose a calibration mechanism for anomaly scores
to mitigate bias and provide scores with a probabilistic inter-
pretation for use in anomaly detection problems.

2.3 Conformal Prediction
Conformal prediction is a statistical framework for construct-
ing distribution-free prediction intervals. The key appeal of
conformal prediction is to provide finite-sample, distribution-
free coverage with the use of exchangeability [Vovk et al.,
2005]. Conformal prediction has been extended to split con-
formal prediction, which allows for coverage guarantees with
greater efficiency compared to the classical framework [Lei
et al., 2018]. The theoretical properties and computational
efficiency of conformal prediction have attracted attention
and led to follow-up studies in regression, classification and
other applications, especially in safety-critical applications
that require probabilistic guarantees [Romano et al., 2019;
Romano et al., 2020; Eklund et al., 2015; Cortés-Ciriano and
Bender, 2019].

Conformal prediction has also been used for calibrating ex-
isting predictive systems, to ensure that the predictive output
of a model is probabilistically calibrated [Vovk et al., 2020].
Our approach adopts similar techniques from conformal pre-
diction to obtain our theoretical guarantees, but differs in our
goal of providing decision rules for user-given false positive
coverage in an anomaly detection setting.

3 Proposed Method
3.1 Problem Definition
We focus on the following formulation of the anomaly detec-
tion task: given a set of training samples Xtrain all of the nor-
mal class and a test set Xtest, each of which may be normal or
anomalous, our aim is to devise a scoring function s(x) ∈ R
which assigns low scores to normal samples and high scores
to anomalies in Xtest. While the scores of most anomaly de-
tection approaches are uncalibrated and do not have a clear
and consistent interpretation, we want our scores s(x) to be
calibrated for a more clean and consistent interpretation for
measuring how far a sample is away from the normal data
distribution.
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In addition to the scores, we output a binary decision
Dε(x), where Dε(x) = 1 indicates that x is labelled as an
anomaly, and Dε(x) = 0 indicates otherwise. We would like
this to be accompanied by a false positive guarantee: that is,
given a user-specified threshold ε > 0, at test time, the prob-
ability that a normal sample is falsely labelled as an anomaly
should be bounded by ε.

In our work, we mainly focus on reconstruction-based
anomaly detection methods, which rely on the reconstruction
error Err(x):

Err(x) = ∥x−M(x)∥ (1)

for input sample x and M(x) the output of a deep anomaly
detection model.

Of particular interest in this work is the relation of a sam-
ple’s hardness to its reconstruction error. Therefore, the fun-
damental question we aim to solve is:

For a given sample x, how can we use its reconstruction
M(x) and hardness H(x) to determine its label between nor-
mal and anomaly?

3.2 Sample Hardness Measures
We next propose a formal definition for the hardness of a sam-
ple, which we will use in our subsequent empirical observa-
tions and our calibration framework. Intuitively, hardness is
a measure of how difficult it is to model a given sample. For
generality, we give a framework definition of the hardness
function as H : X → R, where X is the input space:

H(x) = ∥x− Null(x)∥, (2)

where Null is a family of ‘null models’. Intuitively, the null
models are simple models which can be interpreted as ‘naive’
reconstructions of the data x. Samples with higher hardness
are samples that deviate away from Null, regardless of its
normal or anomalous status. As we will later observe, even
within the set of normal data, some samples are harder to
model than others; as a result, these harder samples would
typically be given higher anomaly scores by the anomaly de-
tection model, leading to a higher chance for false positive
errors.

Various null models are possible, depending on the data
type, and we now propose specific null models to quantify
the hardness for different data types.

Image Data
For an image x ∈ RW×H×D, define the null model as:

Null(x)i,j,d =
1

4
(xi+1,j,d + xi−1,j,d + xi,j+1,d + xi,j−1,d),

(3)

i.e. Null(x) ∈ RW×H×D is calculated by average-pooling
the pixel values from the adjacent pixels in the height and
width dimensions2. Intuitively, images with large differences
in values between nearby pixels are given higher hardness
scores than images which are smoother.

2For pixel values outside the borders of the image, we fill them
in by padding using the bordering pixels. The same approach is used
for time series data.

False Negatives False Positives 

Average Hardness: 0.093 Average Hardness: 0.342

Figure 2: Examples of false negatives and false positives based on
reconstruction error, with T-shirts designated as normal data.

Time-Series Data
For a time series x ∈ RT×D, we use an autoregressive null
model as follows:

Null(x)t,d = cd +

p∑
i=1

φi,dxt−i,d, (4)

where φi,d is the parameters of the model and cd is a con-
stant. That is, Null(x) ∈ RT×D is computed by a linear com-
bination of values from earlier time steps for each time series.
Similarly to image data, a time-series that changes more dras-
tically with respect to recent time steps has a higher hardness
score and is harder to reconstruct for models.

Tabular Data
For a sample x ∈ Rd in a tabular dataset, we simply use the
mean of each dimension as the null value:

Null(x)d =

∑n
j=1 x

(j)
d

n
, (5)

where n is the number of samples. Essentially, due to the
absence of additional structure in such data, we consider the
mean of the data as a simple default prediction, which is our
null model.

3.3 Empirical Observations: Hardness Bias
In this section, we conduct empirical experiments to show the
existence and the effect of the ‘hardness bias’, i.e. a tendency
to assign higher anomaly scores to samples of higher hard-
ness, regardless of whether they are normal or anomalous.

Specifically, we train an autoencoder (AE) model on the T-
shirt class from Fashion-MNIST [Xiao et al., 2017]. The
anomalies are from the other nine classes. Firstly, we show
the false negative and false positive samples with their aver-
age hardness values in Figure 2. We observe that clothes de-
tected as false negatives belong to various anomalous classes,
yet they are similarly plain in design. This plainness is seen
in their low hardness scores as well as their low anomaly
scores. Meanwhile the false positives are all normal samples
(T-shirts) with complex designs and patterns, and this results
in high hardness scores and high reconstruction errors.

In Figure 3, we plot the reconstruction error against hard-
ness of each normal and anomalous sample. From the figure,
we observe that:
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Figure 3: Top Left: The positive correlation between hardness and
reconstruction error with unequal spread(variance) across the hard-
ness values for normal data. Top Right: The false positives given
the 95% percentile threshold. Bottom: Hardness Bias: the highly
imbalanced false positive ratios across the hardness values.

1. There is a positive correlation between hardness and re-
construction error.

2. There is unequal variance of reconstruction error across
the range of hardness values, known as heteroscedastic-
ity in the statistical literature.

3. The higher reconstruction error of the harder normal
samples encourages false positives, and conversely less
hard anomalies encourages false negatives.

4. This bias results in highly imbalanced false positive rates
across hardness scores.

In the appendix, we show the Pearson’s Correlation Co-
efficents between hardness and reconstruction error on vari-
ous models for all datasets including tabular, time-series and
image datasets. The result shows strong positive correlation
especially for time-series and image datasets.

Given our definitions of hardness, the empirical result
shows that an autoencoder model tends to assign higher re-
construction error to samples with higher hardness, which in-
dicates the ‘hardness bias’ in these anomaly scoring models.
This can lead to high false positives among normal data with
high hardness, thus decreasing detection accuracy.

3.4 CADET: Calibrated Anomaly Detection
Motivation
So far, we have observed the hardness bias, whereby harder
samples tend to receive higher reconstruction errors, leading
to false positives. Our calibration framework aims to mitigate
this problem by calibrating or ‘adjusting’ the scores, to ad-
just for the influence of hardness. Intuitively, we do this by
conditioning on hardness: that is, evaluating a sample x with
respect to the distribution of error conditional on hardness,
P (Err(x) | H(x)).

The idea of our calibration is illustrated in Figure 1. Be-
fore calibration (Figure 1, left), the distribution of reconstruc-

Conditionally Calibrated Score

Hardness

Reconstruction ErrorInput Data

Trained Model

Calibrated Score

Hardness Prior Score

M

Err(x)− q̂1−ε(H(x))

σ̂(H(x))
x

π(H(x))H(x)

s(x)

Err(x)

Figure 4: Method overview: our framework CADET calibrates the
anomaly score from an existing model M . Calibration steps are in
green.

tion errors varies significantly with hardness, and therefore
the harder samples are more likely to be false positives. Our
approach (right) calibrates the scores by mapping them into
a consistent distribution that can be more fairly compared
across different hardness values, leading to more accurate
predictions and more meaningful anomaly scores.

Overview
Figure 4 shows the overall framework for our approach. A
key design choice of our framework is its ‘plug-in’ nature, al-
lowing for flexibility and efficiency by plugging in any trained
anomaly detection model M : X → R into our frame-
work. The reconstruction error Err(x) is computed by the
deep model M . Our calibration framework first computes the
sample hardness H(x), then uses it to calibrate the errors, i.e.,
adjust them for their sample hardness.

Calibration Approach
Let our training samples be x1, · · · ,xn ∈ Xtrain. As input to
our approach, we have our trained plug-in model M : X →
R, using which we compute the plug-in model’s errors:

ei := Err(xi) = ∥xi −M(xi)∥, for i = 1, · · · , n (6)

To start the calibration process, we compute hardness values
based on the null models defined in Eq. (3), (4) and (5) de-
pending on the data type:

hi := H(xi) = ∥xi − Null(xi)∥, for i = 1, · · · , n (7)

In general, our main idea is to learn the conditional distri-
bution of error given hardness, P (Err(x) |H(x)), for normal
data. At the test time, we will compare the empirical errors of
test samples to the learned conditional distribution, to adjust
for the effect of hardness.

To capture this conditional distribution, we first fit the con-
ditional quantile q̂1−ε(h) of error ei, which fits the (1 − ε)
quantiles of the error conditioning on hardness h for training
set data (thus, the fitted q̂1−ε is a function with input h):

q̂1−ε(h) := CONDQUANTILE1−ε({(ei, hi), for i = 1, · · · , n})
(8)

To obtain q̂1−ε(h), any conditional quantile estima-
tor(CONDQUANTILE) could be used; for a simple, efficient
and non-parametric approach, we use B-splines[Bartels et al.,
1995].
q̂1−ε(h) is an estimate of the ‘baseline’ level of error given

hardness level h for normal data. However, recall that in our
empirical observations in Section 3.3 and Figure 3(top left),
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we observed that as hardness increases, the mean of error val-
ues increased with unequal variance or spread. This suggests
that in addition to fitting the conditional quantile q̂1−ε(h), we
should also fit an estimate of the conditional spread σ̂(h),
which can be any estimator of the spread of the error distri-
bution at hardness level h. In our case, we use the conditional
inter-quartile range (IQR): the IQR is a standard measure de-
fined as the difference between the 75% and 25% quantiles of
the distribution, and provides a robust measure of the distri-
bution spread. Hence, we fit two additional conditional quan-
tiles at the 0.75 and 0.25 levels and take their difference:

σ̂(h) := q̂0.75(h)− q̂0.25(h) (9)

Next, we define our calibrated anomaly score. Consider
a (training or test) sample x, with hardness H(x). Starting
with its (uncalibrated) error Err(x), we calibrate this by sub-
tracting the conditional quantile q̂1−ε(H(x)) and dividing the
result by the conditional spread σ̂(H(x)), giving the first term
in Eq. (10).

Considering the intrinsic imbalanced distribution of hard-
ness values, we introduce the second term π(H(x)) in Eq.
(10), a hardness prior score, which captures the normal dis-
tribution of hardness values H(x) in the training set: for sim-
plicity, we fit a Gaussian to the hardness values in the training
set. Then, given the sample x, we add the absolute value of its
z-score (i.e., no. of standard deviations away from the mean)
of this Gaussian (denoted π(H(x))) as part of the anomaly
score, along with a weight hyperparameter λ > 0 to adjust its
scale relative to the first term.
Definition 3.1 (Calibrated Anomaly Score). Given a (training
or test) sample x ∈ X , its calibrated anomalousness score is:

s(x) :=
Err(x)− q̂1−ε(H(x))

σ̂(H(x))
+ λ · π(H(x)) (10)

Calibrated Decision Rule
To provide a basis for decision making in real-world applica-
tions, our decision rule Dε outputs a binary decision of 1 if
the point is an anomaly, and 0 otherwise. Since false posi-
tives are often costly, Dε allows for a user-given probabilistic
threshold of ε, designating that its false positive rate should
be bounded by ε.

Our approach for obtaining this guarantee is based on con-
formal prediction [Vovk et al., 2005], a simple and model-
agnostic statistical approach for obtaining confidence guar-
antees in finite-sample and distribution-free settings. This
framework relies on conformity scores quantifying the error
made for a given input - in our case, we consider the pairs
(H(x),Err(x)), and the conformity score is the calibrated
anomaly score s(x) in Definition 3.1.

To apply this framework, we define a calibration set Xcal,
which can be either a validation set separate from the train-
ing data, or (if this is unavailable) the training set. Using a
validation set allows for theoretical guarantees (Theorem 1).
However, we want our framework to be usable even when
M is pre-trained; in this case, the full training set is often
used for training without a separate validation set available.
For this case, we show in our experiments that even using the
training set as Xcal can still provide well-calibrated decision
rules in practice.

Let m be the number of samples in Xcal. We sort the values
{s(x) : x ∈ Xcal}, and define Q̂1−ε as the ⌈(m+1)(1−ε)⌉th
smallest value in this set. Then, the decision rule Dε(x) can
be defined by treating Q̂1−ε as a threshold:

Dε(x) =

{
1 if s(x) > Q̂1−ε

0 otherwise
(11)

Algorithm 1 summarizes our approach.

Algorithm 1: CADET: Calibrated Anomaly Detec-
tion

Input : Training set Xtrain, Calibration set Xcal, Test set Xtest, Threshold ε,
Trained plug-in model M , Prior weight λ > 0

Output: Anomalousness score s(x) and decision Dε(x) ∈ {0, 1}
1 Compute errors: ei = Err(xi) for xi ∈ Xtrain Using Eq. (6)
2 Compute hardness: hi = H(xi) for xi ∈ Xtrain Using Eq. (7)
3 Fit conditional quantile q̂1−ε(h) and spread σ̂(h) Using Eq. (8), (9)

4 Calibrated scores: s(x) :=
Err(x)−q̂1−ε(H(x))

σ̂(H(x))
+ λ · π(H(x)) for

x ∈ Xcal Def. 3.1
5 Threshold: Q̂1−ε := ⌈(m + 1)(1 − ε)⌉th smallest value in

{s(x) : x ∈ Xcal}
6 Apply ε-level decision rule on x in Xtest :

7 Dε(x) =

{
1 if s(x) > Q̂1−ε

0 otherwise
Using Eq. (11)

False Positive Guarantee
This conformal prediction framework allows us to obtain
guarantees on the false positive rate of this decision proce-
dure.
Theorem 1 (Bound of False Positive Probability). Given the
decision rule Dε and a (non-anomalous) test sample x, the
false positive probability is bounded as:

ε− 1

m+ 1
< P (Dε(x) = 1) < ε (12)

where the probability is taken over the randomness in x and
the calibration data x̃1, · · · , x̃m ∈ Xcal, where we use a val-
idation set as calibration data.

Proof. Our proof follows the standard techniques used in the
conformal literature [Vovk et al., 2005; Romano et al., 2020],
particularly, the use of exchangeability. The full proof can be
found in our Supplementary Material.

4 Experiments
We conduct experiments to answer the following research
questions:

• RQ1 (Generality & Efficiency): Can our calibration
method improve the accuracy of different pre-trained
deep anomaly detection techniques? How efficient is the
calibration method?

• RQ2 (Accuracy & Ablation Study): Does our method
outperform baseline methods in accuracy of anomaly de-
tection in different datasets?

• RQ3 (Probabilistic Guarantees): Can our method give
an approximate false positive guarantee in anomaly de-
tection?
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AE VAE DAE RealNVP

Datasets Base CADET Base CADET Base CADET Base CADET

OPTDIGITS 0.957 0.971 0.872 0.863 0.959 0.969 0.916 0.921
PENDIGTIS 0.972 0.978 0.923 0.956 0.991 0.994 0.995 0.996
SATELLITE 0.845 0.887 0.816 0.859 0.838 0.882 0.832 0.881
SATIMAGE-2 0.996 0.998 1.000 1.000 0.997 1.000 0.999 1.000
VERTEBRAL 0.595 0.630 0.482 0.624 0.645 0.632 0.649 0.673
MSL 0.594 0.641 0.537 0.633 0.593 0.637 0.589 0.632
SMAP 0.597 0.654 0.581 0.653 0.592 0.645 0.578 0.630
MNIST 0.958 0.984 0.930 0.964 0.927 0.985 0.531 0.732
F-MNIST 0.919 0.944 0.899 0.913 0.887 0.924 0.639 0.726

Table 1: Performance (AUC) for the base models and CADET

4.1 Experimental Setup
The experiments are conducted for AE, VAE and other vari-
ant models on publicly available image, time series and tab-
ular datasets. We use Area Under Curve (AUC) metric for
evaluation to avoid threshold setting. The train-test split set-
tings are the same for the baselines and our methods.

Full details about datasets, baseline settings, model archi-
tectures, hyperparameters, ablation study, etc. can be found
in our Supplementary Material.

4.2 RQ1. Generality & Efficiency
To evaluate the generality of CADET, we compare the per-
formance before and after CADET calibration on four types
of models and different datasets in Table 1. CADET improves
the accuracy in almost all cases, often substantially.

Besides, all these improvements come at very low com-
putational cost: as presented in our Supplementary Material,
the longest running time across all datasets and methods was
1.31s for both the hardness and calibration steps.

4.3 RQ2. Accuracy & Ablation Study
In Table 2, we show the anomaly detection accuracy in terms
of AUC score, of our CADET method on Autoencoder (AE)
and the baselines, on the benchmark datasets. The results
show that CADET outperforms all tested baselines in almost
all cases.

In the appendix, we perform an ablation study to show the
effect of each component of CADET separately: CADET
with only hardness prior scores, CADET without the prior,
and CADET. We find that only using prior scores performs
worse than the base model for all datasets, which verifies
the effectiveness of calibration. Additionally, it shows that
CADET without prior scores can achieve fairly similar per-
formance with the complete CADET for time-series, image
data and most tabular data. These findings show that calibra-
tion is the essential component of our method, while the prior
is auxiliary.

4.4 RQ3. Probabilistic Guarantees
To study the effectiveness of our decision rule and our method
at mitigating hardness bias, we show the calibrated scores and
compare the false positive rates between uncalibrated recon-
struction error and calibrated scores under our decision rule
in Eq. (11) with ϵ = 5% on F-MNIST.

Figure 5 (left) shows that the previously observed positive
correlation between hardness and anomaly score has been re-
moved by calibration. This results in a more balanced distri-

Datasets PCA IForest OCSVM DAGMM RAPP CADETAE

OPTDIGITS 0.592 0.813 0.588 0.969 0.895 0.971
PENDIGITS 0.951 0.975 0.954 0.963 0.966 0.978
SATELLITE 0.657 0.774 0.664 0.787 0.851 0.887
SATIMAGE-2 0.998 0.999 1.000 0.979 0.999 0.998
VERTEBRAL 0.542 0.494 0.552 0.460 0.506 0.630

MSL 0.612 0.572 0.628 0.598 0.635 0.641
SMAP 0.622 0.580 0.642 0.548 0.643 0.654

MNIST 0.885 0.855 0.887 0.798 0.979 0.984
F-MNIST 0.906 0.919 0.894 0.854 0.933 0.944

Table 2: Performance (AUC) for baseline methods and CADET ap-
plied on Autoencoder (AE).
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Figure 5: Left: The calibrated scores versus hardness values. Right:
False Positive Rate (%) comparison between reconstruction error
and calibrated score. The 1st hardness range (0 − 25%) has sam-
ples in the lowest quarter of hardness values, etc. Both methods use
probabilistic threshold of ϵ = 5% as decision rule in Eq. (11).

bution of scores across hardness values, as compared to re-
construction error. Figure 5 (right) shows that our calibrated
decision rule has a balanced 5% false positive rate across dif-
ferent hardness ranges, as compared to the extremely unbal-
anced false positive rate of reconstruction error.

5 Conclusion
In our work, we firstly show the hardness bias in exist-
ing anomaly detection models, where the models can as-
sign higher anomaly scores to samples which are intrinsically
harder to model. This bias leads to imbalanced false positives
and accuracy degradation in practice. Therefore, we intro-
duce the CADET framework to calibrate the original anomaly
scores to adjust the effect of hardness bias in a post-hoc way.
Thanks to the post-hoc property, the framework can be flexi-
bly applied on top of the anomaly detection module with very
low computational cost. The experiments show that CADET
can effectively improve performance on multiple data modal-
ities, and with four types of deep learning models. By mit-
igating hardness bias through calibration, CADET also pro-
vides more balanced false positive rates across hardness val-
ues compared to the original anomaly scores.
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