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Abstract

Knowledge graph embedding aims to predict the
missing relations between entities in knowledge
graphs. Tensor-decomposition-based models, such
as ComplEx, provide a good trade-off between ef-
ficiency and expressiveness, that is crucial because
of the large size of real world knowledge graphs.
The recent multi-partition embedding interaction
(MEI) model subsumes these models by using the
block term tensor format and provides a system-
atic solution for the trade-off. However, MEI has
several drawbacks, some of which carried from
its subsumed tensor-decomposition-based models.
In this paper, we address these drawbacks and
introduce the Multi-partition Embedding Interac-
tion iMproved beyond block term format (MEIM)
model, with independent core tensor for ensem-
ble effects and soft orthogonality for max-rank
mapping, in addition to multi-partition embedding.
MEIM improves expressiveness while still being
highly efficient, helping it to outperform strong
baselines and achieve state-of-the-art results on dif-
ficult link prediction benchmarks using fairly small
embedding sizes. The source code is released at
https://github.com/tranhungnghiep/MEIM.

1 Introduction

Knowledge graphs are used to represent relational informa-
tion between entities. There are large real world knowledge
graphs such as YAGO [Mahdisoltani ef al., 2015] containing
millions of entities. These knowledge graphs and their rep-
resentations can be used in artificial intelligent applications
such as semantic queries and question answering [Tran and
Takasu, 2019b] [Tran, 2020].

Knowledge graph embedding aims to predict the missing
relations between entities in knowledge graphs. They usu-
ally represents a triple (h, t, ) as embeddings and use a score
function to compute its matching score S(h,t,). The score
function defines the interaction mechanism such as bilin-
ear map between the embeddings and the interaction pattern
specifying how embedding entries interact with each other.

On large real world knowledge graphs, a good tradeoff
between efficiency and expressiveness is crucial. Tensor-

decomposition-based models usually provide good trade-off
by designing special interaction mechanisms with sparse and
expressive interaction patterns. They have been subsumed by
the recent multi-partition embedding interaction (MEI) model
[Tran and Takasu, 2020], that divides the embedding vector
into multiple partitions for sparsity, automatically learns the
local interaction patterns on each partition for expressiveness,
then combines the local scores to get the full interaction score.
The trade-off between efficiency and expressiveness can be
systematically controlled by changing the partition size and
learning the interaction patterns through the core tensor of
the block term tensor format.

However, by looking from two perspectives beyond the
scope of block term format, that is, ensemble boosting ef-
fects and max-rank relational mapping, we identify two draw-
backs of MEI and related tensor-decomposition-based mod-
els. First, using one core tensor for all partitions leads to
similar local interactions, that may harm the ensemble effects
of the full interaction in MEI. Second, the relational mapping
matrices in MEI are generated from relatively small relation
embeddings, that may make the model prone to degenerate.

In this paper, we propose the novel Multi-partition Em-
bedding Interaction iMproved beyond block term format
(MEIM) model with two techniques, namely independent
core tensor to improve ensemble effects and max-rank map-
ping by soft orthogonality to improve model expressiveness.
This introduces new aspects to tensor-decomposition-based
models exploiting ensemble boosting effects and max-rank
relational mapping, in addition to multi-partition embedding
by MEIL. MEIM improves expressiveness while still being
highly efficient, helping it to outperform strong baselines and
achieve new state-of-the-art results on difficult link prediction
benchmarks using fairly small embedding sizes.

In general, our contributions include the following.

* We propose MEIM, a novel tensor-decomposition-based
model with independent core tensor and max-rank map-
ping by soft orthogonality to improve expressiveness.

e We extensively experiment to show that the proposed
model is highly efficient and expressive, and achieves
state-of-the-art results.

e We analyze the proposed model to clarify its character-
istics and demonstrate the critical advantages of its soft
orthogonality compared to previous models.
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Figure 1: MEIM architecture: multi-partition embedding interaction improved with independent core tensors and max-rank mapping matrices.

The new aspects are noted by the grey boxes.

2 Background

2.1 Notations and Definitions

A knowledge graph is a collection of triples D, with each
triple denoted as a tuple (h, ¢, 7), where h and ¢ are head and
tail entities in the entity set £ and r belongs to the relation
set R. A knowledge graph can also be represented by a third-
order binary data tensor G € {0, 1}1€IXI€IxIRI where each
entry gpyr = 1 < (h,t,r) exists in D.

The contextual link prediction task, also called link pre-
diction, aims to predict the connection between two entities
given a relation as the context.

2.2 Tensor-Decomposition-based Knowledge
Graph Embedding Models

There are several knowledge graph embedding models that
adapt tensor formats to represent the knowledge graph data
tensor and adapt tensor decomposition methods to solve the
link prediction task. This approach has led to some of the best
models in terms of efficiency and expressiveness.

RESCAL [Nickel er al., 2011] is an early model that adapts
Tucker2 decomposition to compute the embedding interac-
tion score by a bilinear map

S(h,t,r) =h'"M,t, M
where h,t € R, and M, € RP*P are the embeddings of
h, t, and r, respectively, with D being the embedding size.
RESCAL is expressive, but the mapping matrix M, grows
quadratically with embedding size, making the model expen-
sive and prone to overfitting.

The most simple model is DistMult [Yang et al., 2015], that
uses a sparse diagonal mapping matrix M, = diag(r), where
r € RP is the relation embedding vector. It is an adaptation
of CP decomposition [Kolda and Bader, 2009], with the score
function written as a trilinear product

S(h,t,r) = h'diag(r)t = 3, hitiri = (h,t,7). (2

Recent models aim to be more expressive than DistMult
but still efficient by designing new special interaction mecha-
nisms between the embeddings. It has been shown that these

models are equivalent to bilinear model with sparse block-
diagonal mapping matrix M.,

M,, 0 0
M,=| ¢ . o |- (3)
0 0 M.

where the matrix block M, have a special interaction pat-
tern resulted from the specific interaction mechanism [Tran
and Takasu, 2020]. For example, ComplEx [Trouillon et al.,
2016] uses complex-valued trilinear product, resulting in the
2-dimensional rotation—scaling pattern on complex plane,

real(r)
imaginary(r)

—imaginary(r)

M, = real(r)y

“)

Sparsity and the interaction pattern are crucial concepts in
previous tensor-decomposition-based models. They are gen-
eralized by the recent multi-partition embedding interaction
(MEI) model [Tran and Takasu, 20201, that divides the em-
bedding vector into multiple partitions, learns the local inter-
action patterns on each partition, then sums the local scores
to get the full interaction score. The trade-off between ef-
ficiency and expressiveness can be systematically controlled
by changing the partition size and learning the interaction pat-
terns through the core tensor of the block term tensor format.

3 Multi-partition Embedding Interaction
iMproved Beyond Block Term Format

In this section, we propose the MEIM model that introduces
new aspects to tensor-decomposition-based models exploit-
ing ensemble boosting effects and max-rank relational map-
ping, in addition to multi-partition embedding by MEFI, as il-
lustrated in Figure 1.

3.1 The Score Function

Inspired by the generality of MEI, we adopt the multi-
partition embedding representation, with Tucker format
[Tucker, 1966] for local interaction and block term format
[De Lathauwer, 2008] for full interaction. Following conven-
tion of MEI, triple (h,t,r) provides the embedding vectors
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h,t € RP<, and r € RP" that are treated as multi-partition
embedding matrices H,T € R¥*% and R € RE*XCr re-
spectively. The score function of MEIM is written as

S(h,t,r;0) = S0, Si(h,t,r;0) (5)
= Zkl-il W, X1 hg. X oty X357, 6)
= 25:1 hy (Wi X 37y )t 7
= Y1 bl Mw it 8)

where hy., ti., and 7. are the embedding partitions k; W, €
RCexCexCr is the core tensor at partition k; x,, denotes the
n-mode tensor product with a vector; and M ;. 5, € RCexCe
is the bilinear mapping matrix.

Note that Eq. 5 shows the sum of local interaction scores
Sik(h,t,7;0). Eq. 6 shows the block term format. Eq. 8
shows the bilinear format with block-diagonal mapping ma-
trix, in which each block My, ;; is generated by Wy, X 37y..
Eq. 8 can be seen as a dynamic linear neural network [Tran
and Takasu, 20201, where the hidden layer Myy ,.;, is gener-
ated by another hyper neural network [Ha er al., 2016] with
the core tensor Wy, as its weights and 7. as its input.

The main novelties of MEIM are in better parameterization
of the core tensor and mapping matrix, by looking from two
perspectives beyond the scope of block term format, that is,
ensemble boosting effects and max-rank relational mapping.

3.2 Core Tensor for Ensemble Boosting

Technically, the score function in Eq. 5 can be seen as an
ensemble system of K local interactions by summing their
scores. This works in a similar manner to gradient boost-
ing [Mason er al., 1999] because the full interaction score is
computed at training time and gradients are back-propagated
to optimize all local interactions together, enabling them to
implicitly minimize the residual error of each other.

The MEI model briefly mentioned this perspective but did
not actively exploit the ensemble boosting effects. MEI used
only one core tensor for all partitions by enforcing the follow-
ing shared core tensor constraint:

W =Wy =-..=Wg =W, 9)

where W € RE*C*C s the learned shared core tensor, al-
though block term format may have different core tensors.
MEI learns one interaction pattern for all partitions, similar
to that of other tensor-decomposition-based models such as
ComplEx. However, this may be harmful to the performance
of an ensemble system because of the similar local interac-
tion patterns instead of combining different patterns. To ex-
ploit the ensemble boosting effects, it is crucial to promote
independence and difference between the local interactions.

Independent Core Tensor Parameterization

There are several potential ways to resolving the problem of
independence and difference between the local interactions.
First, we may enforce the predicted scores to be different:

Vkal € {]va}ak # L: Sk(aa) # Sl('a'a')' (10)

However, because this forces the predicted scores to be not
the same, the local interactions cannot be correct at the same
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time. Thus, this is an overstrong constraint that may cause
more harm than good. Another way is to explicitly enforce
different parameters of the local interaction functions, such
as the core tensors:

Vk,le{1,...,K},k7él:Wk7éWl. an

However, such explicit difference constraints do not guaran-
tee different interactions because of symmetric swapping or
scaling reparameterizations of the core tensors and the em-
beddings. For example, scaling the core tensor by x and the
corresponding embedding by 1/x do not change the score.
Therefore, in this paper, we do not use difference con-
straints, but instead independence constraints, denoted as:

W, LWy L L Wy (12)

For simplicity, we let the model implicitly learn independent
core tensors from data automatically by removing the con-
straint in Eq. 9. Using independent core tensors enables the
model to learn independent and possibly different local in-
teractions to improve the ensemble boosting effects. More
advanced methods based on further studying the ensemble
boosting effects are left for future work.

Note that MEI is easy to implement in common deep learn-
ing frameworks by using only matrix product. However, inde-
pendent core tensor makes the multi-partition tensor product
in MEIM more difficult to implement efficiently. To resolve
this problem, we stack together K independent core tensors
as a fourth-order tensor:

W=[W;,W,, ..., Wg], (13)

where W € REXCXCXC i ysed for the Einstein sum nota-
tion technique to create an efficient implementation.

3.3 Max-Rank Relational Mapping

MEI is a contextual link prediction model with two compo-
nents, the multi-partition relation-based contextual mapping
and the simple dot product matching. The MEI model used a
linear mapping where My . ;, can be any C. x C, square ma-
trix. However, when some columns of My ;. ;, are dependent,
it becomes a singular matrix with rank smaller than C,. Such
singular matrix would map the head embedding to a subspace
with lower dimension, thus reduce the embedding space ef-
fective size. It may make the score function degenerate to
always produces score 0 for some entities, thus, drastically
reduces the expressiveness of the model. This may become
a critical issue in MEI because My ;. ;. is generated from a
relatively small relation embedding partition 7. as shown in
Eq. 8. To resolve this problem, the mapping matrices My ,
need to have max rank, that may not always be full rank C.,
but should be as large as possible.

Max-Rank Mapping Matrix by Soft Orthogonality

There are several different types of full rank matrices. A par-
ticularly interesting case is the orthogonal matrices, that act as
the rotational transformations when the determinant is 1 and
an additional reflection across the origin when the determi-
nant is —1. These matrices have linearly independent column
vectors with unit Frobenius norms, written as the constraints:

Vke{l,....K}: My, . Mw,; =1, (14)
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where I € R%*C is the identity matrix. In addition, note
that the mapping matrices are generated by the core tensors
and the relation embedding vectors. To reduce the search
space and make optimization easier, we also constrain each
relation partition 7. to have unit norm:

VEe{l,...,K}:rir. = 1. (15)

Because of the way My . ;, are generated, it may be diffi-
cult to enforce the mapping matrices to be strictly orthogonal.
Even if it is possible, it may not always be preferable because
the main objective is link prediction. Geometrically speaking,
the orthogonal matrices form the Stiefel manifold [Sokét and
Park, 20201, we need to make sure that the mapping matrices
stay as close to this manifold as possible without hurting the
link prediction accuracy. Using Lagrangian relaxation, the
hard constraints in Eq. 14 and Eq. 15 can be converted to the
following soft orthogonality loss term:

ﬁonho - Ao[‘tho (Zf:l |‘M\;Vr7r7kMW77'7k - I||§
+ /\unitnorm Zi(:l |’I"]I'I"k; - 1|p)’ 16)

where Aorthos Aunitnorm, and p are hyperparameters. To penalize
large differences from unit norm, p = 3 is used. When Agno
is small, the model tends to learn linear mappings. When it is
large, the model tends to learn strictly orthogonal mappings.

The soft orthogonality loss enables the model to balance
between orthogonality and link prediction. Minimizing this
loss effectively influences the column vectors to be orthogo-
nal and have unit norms, pushes the matrix My, close to
the Stiefel manifold and maximizes its rank in balance with
the link prediction objective.

3.4 Connections to Previous Models

Compared to the MEI model, MEIM inherits its key benefit,
that is, the systematic trade-off between efficiency and ex-
pressiveness by controlling the partition size and learning the
interaction patterns. About computational cost, the number
of parameters in MEIM is similar to that of MEI, except that
the independent core tensors use KC2C,. instead of C2C,
parameters, but this becomes less relevant when the number
of entities and relations are large, and MEIM is as fast as MEI
by using Einstein sum notation technique for implementation
of independent core tensor product.

On the other hand, MEIM introduces new parameterization
techniques to address some major drawbacks of MEIL. With
independent core tensor, MEIM can learn independent local
interaction patterns to improve ensemble effects. With soft
orthogonality, MEIM balances the orthogonality and link pre-
diction objectives to learn max-rank mapping that improves
expressiveness of the model.

Note that, coincidentally, some knowledge graph embed-
ding models also try to use orthogonal mapping, not to max-
imize the mapping matrix rank but to model some relational
patterns, such as symmetry, inversion, and composition [Sun
et al., 2019]. There are many different ways to design and use
orthogonal mapping in knowledge graph embedding. For ex-
ample, RotatE [Sun er al., 2019] uses rotation in the complex
plane, QuatE [Zhang et al., 2019] uses rotation in the quater-
nion space, GC-OTE [Tang et al., 2020] uses rotation by the
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Gram Schmidt process, and RotH [Chami et al., 2020] uses
rotation by the Givens matrix. However, there are some im-
portant differences to our method. First, all of them use rigid
orthogonality where the mapping matrix is strictly orthogo-
nal. This may be suboptimal because orthogonal mapping
may not always be useful for link prediction, and even when
it is useful, strictly orthogonal mapping may reduce the po-
tential result. In contrast, we approach the problem from the
perspective of maximizing the mapping matrix rank, thus, we
use soft orthogonality as a means instead of rigid orthogonal-
ity. Soft orthogonality can avoid the above problems because
we can choose how to balance the orthogonality and the link
prediction objectives for each dataset, as we will show this is
crucial for knowledge graph embedding in experiments. Sec-
ond, MEIM has a totally different model architecture com-
pared to previous orthogonal models, because the mapping
matrix in MEIM is not learned directly but generated. Fi-
nally, MEIM is a semantic matching model, with the match-
ing score computed by inner product, whereas other orthogo-
nal models are translation-based model, in which the score is
computed by distance.

4 Loss Function and Learning

The model is learned via the link prediction task that can be
modeled as a multi-class classification problem. There are
two directions, classifying correct tail entity ¢ among all en-
tities given a (h,r) pair, and classifying correct head entity
h among all entities given a (t,r) pair. Following recent
practice, we use the /-vs-all and k-vs-all sampling methods
with the softmax cross-entropy loss function [Dettmers ef al.,
2018] [Ruffinelli ef al., 2020].

First, using /-vs-all and k-vs-all sampling, we define the
groundtruth categorical distributions over all entities £ given
(h,7) and given (t,r), denoted py,;,. and p;,,., respectively.
Second, we compute the corresponding predicted distribu-
tions p;,;,. and p;,,.. using the softmax function on the match-
ing scores. The link prediction loss is the cross-entropy
summed over training data D:

- Z(h,t,r)ED ( Zies Dhir 108 Pyiy
+ Ehes ﬁhtr logphtr) . (17)

Elink,prediction =

The final loss function is the sum of link prediction loss
and soft orthogonality loss:

L= Elink,prediction + Eorthoa (18)

with Aorno tuned to balance the two loss terms. For regulariza-
tion, we only used dropout [Srivastava et al., 2014] and batch
normalization [loffe and Szegedy, 2015]. All parameters in
the model are learned in an end-to-end fashion by minimiz-
ing the loss using mini-batch stochastic gradient descent with
Adam optimizer [Kingma and Ba, 2014].

We did not use some recent complemental techniques for
training, regularization, and additional losses that can be
used with existing methods including MEIM. Adding them
to MEIM to further improve the result is left for future work.
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Dataset €]  |R| Train Valid Test Avg. degree

WNISRR 40,943 11 86,835 3,034 3,134 2.12
FB15K-237 14,541 237 272,115 17,535 20,466  18.71
YAGO3-10 123,182 37 1,079,040 5,000 5,000 8.76

Table 1: Datasets statistics.

5 Experiments

5.1 Experimental Settings

Datasets. We use three standard benchmark datasets, as
shown in Table 1. WN18RR [Dettmers et al., 2018] is a sub-
set of WordNet containing lexical information. FB15K-237
[Toutanova and Chen, 2015] is a subset of Freebase contain-
ing general facts. In addition, YAGO3-10 [Mahdisoltani et
al., 2015] is a large and very competitive dataset containing
general facts from Wikipedia.

Evaluations. We evaluate on the link prediction task. For
each true triple (h,t,r) in the test set, we replace h and ¢
by every other entity to generate corrupted triples (h',¢,r)
and (h,t',r), respectively. The model tries to rank the true
triple (h, ¢, 7) before the corrupted triples based on the score
S. We compute M RR (mean reciprocal rank) and HQF for
k € {1,3,10} (how many triples correctly ranked in the top
k) [Trouillon et al., 2016]. The higher M RR and HQF are,
the better the model performs. Filtered metrics are used to
avoid penalization when ranking other true triples before the
current target triple [Bordes er al., 2013].

Note that MEIM can solve other tasks by converting them
to contextual link prediction task. For example, by defining
the alignment relation r,, we have the alignment triples of
the form (eq, ea,r,), that can be used directly in MEIM for
solving entity alignment. These tasks are left for future work.

Implementations. The MEIM model is implemented as a
neural network using PyTorch. Following MEI, we use em-
bedding size K = 3,C' = 100 on WN18RR and FB15K-237,
and K = 5,C = 100 on YAGO3-10. They are equivalent in
terms of model size to ComplEx with embedding size 190 on
WNI18RR, 250 on FB15K-237, and 270 on YAGO3-10, that
are relatively small compared to most related work. By pre-
liminary experiments, we use k-vs-all sampling on WN18RR
and 7-vs-all sampling on other datasets. We use batch size
1024 and learning rate 3e-3, with exponential decay 0.995 on
YAGO3-10 and 0.99775 on other datasets. Dropout and batch
normalization are used on the input and hidden layers, that is,
on h and h" M,., respectively. Other hyperparameters are
tuned by grid search, with grids [0, 0.75] and step size 0.01
for drop rates, {1, le-1, le-2, le-3, le-4, le-5, 0} for Aosnos
{1, le-1, le-2, le-3, 5e-4, le-4, 0} for A\yimnorm- The follow-
ing values were found. On WN18RR, input drop rate is 0.71,
hidden drop rate is 0.67, Aortho = 1€-1, Aunitnorm = Se-4. On
FB15K-237, input drop rate is 0.66, hidden drop rate is 0.67,
Aortho = 05 Aunitnorm = 0. On YAGO3-10, input drop rate is
0.1, hidden drop rate is 0.15, Aortho = 1€-3, Aunitnorm = 0. Hy-
perparameters were tuned to maximize the validation MRR.

Baselines. The main baselines are MEI and tensor-
decomposition-based models such as ComplEx, RotatE,
QuatE that we aim to improve. MEI results are reproduced
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WN18RR FB15K-237 YAGO3-10
#params MRR #params MRR #params MRR

TuckER 9.4M 0470 11.0M 0.358 - -
RotatE 41.0M 0476 14.8M 0338 61.6 M 0.495
ComplEx-N3 20.5M 0480 7.4M 0.357 61.6M 0.569
RotH 205M 0496  7.4M 0344 61.6M 0.570
MEI 15.7M 0.481 74M 0365 66.5M 0.578
MEIM 153M 0499 74M 0369 66.6 M 0.585

Table 2: Parameter efficiency compared to popular baselines.

ComplEx-N3 MEI MEIM
#params MRR H@10 MRR H@10 MRR H@I0
1.2M 0.404 0.439 0.448 0.500 0.460 0.525
3.8M 0453 0.507 0.476 0.544 0.488 0.557
6.5M 0464 0.528 0.481 0.547 0.494 0.569
I153M 0473 0550  0.481 0.544 0.499 0.574

Table 3: Model scalability on WN18RR validation set.

in this paper using comparable model sizes and recent train-
ing techniques that lead to better performance than previously
reported. We also compare to translation-based models such
as TransE, neural-network-based models such as ConvE, and
recent models such as RotH. We tried to evaluate against pop-
ular and strong baselines with comparable settings and eval-
uation protocol for fair and informative comparisons. These
exclude incomparable results that use extra data, excessively
large model size, complemental techniques, or inappropriate
evaluation protocol [Sun et al., 2020]. Note that even at nor-
mal model size, MEIM can get state-of-the-art results.

5.2 Parameter Efficiency

We first compare the results and model sizes of MEIM to
that of popular baselines as shown in Table 2. We can see
that MEIM strongly outperforms these baselines while using
roughly similar number of parameters.

In addition, Table 3 shows the scalability of MEIM and
other baselines at different model sizes. MEIM outperforms
the baselines at every model size and achieves the best re-
sult overall. This demonstrates that MEIM achieves a better
balance between efficiency and expressiveness.

5.3 Main Results

The main results for link prediction are shown in Table 4. In
general, MEIM achieves good result on all three datasets, in-
cluding the very large and difficult YAGO3-10 dataset. Con-
sidering the most important and robust metric MRR, MEIM
outperforms all baselines by a large margin on all datasets.
The strongest baselines on FB15K-237 and YAGO3-10 in-
clude the MEI model. This demonstrates that MEI was a
strong model, but MEIM successfully addresses the draw-
backs of MEI and its subsumed tensor-decomposition-based
models to significantly improve the result on all datasets.
Another strong baseline is the RotH model on WN18RR,
but the results on FB15K-237 are quite weak. We notice that
most baselines usually have good results on one dataset and
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WNI18RR FB15K-237 YAGO3-10

MRR H@l H@3 H@10 MRR H@l H@3 H@10 MRR H@l H@3 H@I10
TransE [Bordes et al., 2013] % 0.222 0.031 - 0.524 0310 0.217 - 0.497 0.501 0.406 - 0.674
TorusE [Ebisu and Ichise, 2019] # 0.452 0.422 0464 0512 0305 0.217 0335 0484 0342 0274 - 0.474
ConvE [Dettmers et al., 2018] ¥ 043 040 044 052 0.325 0.237 0.356 0.501 0488 0399 - 0.658
InteractE [Vashishth er al., 2020al 0463 0430 - 0.528 0354 0.263 - 0.535 0.541 0462 - 0.687
CompGCN [Vashishth er al., 2020b] ~ 0.479 0.443 0.494 0.546  0.355 0.264 0.390 0.535 - - - -
RAGAT [Liu et al., 2021] 0.489 0.452 0.503 0.562  0.365 0.273 0.401 0.547 - - - -
RESCAL [Nickel et al., 20111 f 0467 - - 0.517 0357 - - 0.541 - - - -
DistMult [Yang et al., 2015] 0465 0432 - 0.532 0313 0.224 - 0490 0501 0413 - 0.661
ComplEx-N3 [Trouillon ez al., 201611 0.480 0.435 0495 0.572 0357 0.264 0.392 0.547 0.569 0.498 0.609 0.701
RotatE [Sun ez al., 2019] 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533 0.495 0.402 0.550 0.670
QuatE [Zhang et al., 2019] 0.488 0.438 0.508 0.582  0.348 0.248 0.382 0.550 - - - -
GC-OTE [Tang et al., 2020] 0.491 0.442 0.511 0.583 0.361 0.267 0.396 0.550 - - - -
RotH [Chami er al., 2020] 0.496 0.449 0.514 0.586  0.344 0.246 0.380 0.535 0.570 0.495 0.612 0.706
TuckER [BalaZevi¢ et al., 2019] 0.470 0.443 0.482 0.526  0.358 0.266 0.394 0.544 - - - -
MEI [Tran and Takasu, 2020] * 0.481 0.444 0.496 0.551 0.365 0.271 0402 0.552  0.578 0.505 0.622 0.709
MEIM 0.499 0.458 0.518 0.577 0.369 0.274 0.406 0.557 0.585 0.514 0.625 0.716

Table 4: Link prediction results on WN18RR, FB15K-237, and YAGO3-10. t are reported in [Ruffinelli et al., 2020], ! in [Chami et al.,
20201, ¥ in [Rossi et al., 20211, * YAGO3-10 in [Rossi ef al., 20211, * are reproduced here, other results are reported in their papers.

Ablation MRR H@10 WNI8RR FB15K-237 YAGO3-10
Full model 0.499 0.574 Aothe  MRR H@10 MRR H@I10 MRR H@I10
WNISRR without Multi-partition Embedding 0.492 0.572 0 0.483 0.550 0.375 0.562 0.574 0.708
without Independent Core Tensor 0.498 0.573 le-5 0.482 0.548 0.374 0.561 0.581 0.711
without Soft Orthogonality 0.483 0.550 le-4 0.483 0.553 0.371 0.556 0.581 0.709
le-3 0.484 0.554 0.372  0.559 0.582 0.710
Full model 0375 0.562 le2 0497 0577 0362 0546  0.582 0.710
FB15K-237 without Multi-partition Embedding 0.372 0.554 le-1 0.499 0.574 0360 0.541 0.581 0.706
without Independent Core Tensor 0.370 0.554 1e0  0.497 0.568 0.355 0.532 0.576  0.695
Full model 0.582 0.710 . Lo
Table 6: The effects of soft orthogonality on the validation sets.
YAGO3-10 without Multi-partition Embedding 0.580 0.706
"Y' without Independent Core Tensor 0.581 0.708
without Soft Orthogonality 0.574 0.708 soft orthogonality is crucial to achieve the best results. How-

Table 5: Model ablation result on the validation sets.

poor results on other datasets. This sets MEIM apart as it can
achieve good results on all three datasets.

5.4 Analyses and Discussions

Now we look into the characteristics of the model to under-
stand why it gives good result.

Ablation Study

Table 5 shows the main ablation results of MEIM, in which
each feature is removed from the full model to see how much
it contributes to the final results. For comparison, we also
ablate the multi-partition embedding inherited from MEI.

In general, we can see that removing the features decreases
the results, which confirms their effectiveness. In particular,
the independent core tensor works well on all three datasets.
It strongly contributes to the full model results on FB15K-
237, and slightly but consistently contributes to the final re-
sults on WN18RR and YAGO3-10. The effects of soft orthog-
onality is more complicated. On WN18RR and YAGO3-10,
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ever, it is harmful on FB15K-237 and was not included in
the full model. This mixed effect guarantees further detailed
investigation as follows.

The Effects of Soft Orthogonality

Table 6 shows the results when A, is changing from no
orthogonality to strong orthogonality. We see that strong or-
thogonality works well on WN18RR, average orthogonality
works well on YAGO3-10, but none orthogonality works on
FB15K-237. These results empirically demonstrate the weak-
ness of previous models compared to MEIM.

For example, models with rigid orthogonality such as
QuatE and RotH get strong results on WN18RR but weak on
FB15K-237, whereas models without orthogonality such as
RESCAL, TuckER, and MEI get strong results on FB15K-
237 but weak on WNI18RR. In contrast, MEIM with soft
orthogonality can get strong results on both WN18RR and
FB15K-237. More importantly, the large and difficult
YAGO3-10 dataset requires average orthogonality. Thus,
only MEIM can get the best results on this dataset. This
shows a crucial advantage of MEIM, because its soft orthog-
onality can be tuned to work optimally on each dataset.
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6 Related Work

Knowledge graph embedding methods can be categorized
based on how they compute the matching score.

Tensor-decomposition-based models adapt tensor repre-
sentation formats such as CP format, Tucker format, and
block term format to represent the knowledge graph data
tensor [Kolda and Bader, 2009]. They make up most of
recent state-of-the-art models such as ComplEx [Trouillon
et al., 2016], SimplE [Kazemi and Poole, 2018], TuckER
[Balazevi¢ et al., 20191, and MEI [Tran and Takasu, 2020].
They often achieve good trade-off between efficiency and ex-
pressiveness. Especially, the recent MEI model provides a
systematic solution for this trade-off. However, they have
some limitations affecting the ensemble effects and making
them prone to degenerate, that we address in this paper.

Neural-network-based models use a neural network to
compute the matching score, such as ConvE [Dettmers et
al., 2018] using convolutional neural networks, CompGCN
[Vashishth et al., 2020b] using graph convolutional networks.
These models are generally more expensive but not always
get better results than tensor-decomposition-based models.

Translation-based models use geometrical distance to
compute the score, with relation embeddings act as the trans-
lation vectors, such as TransE [Bordes ef al., 2013]. These
models are efficient and intuitive, but they have limitations in
expressive power [Kazemi and Poole, 2018].

There are several ways to use orthogonality in knowledge
graph embedding, such as RotatE [Sun er al., 2019] using
complex product, Quaternion [Tran and Takasu, 2019a] and
QuatE [Zhang er al., 2019] using quaternion product, GC-
OTE [Tang er al., 2020] using the Gram Schmidt process, and
RotH [Chami ef al., 2020] using the Givens matrix. These
models usually compute the score using distance, differently
from MEIM. Moreover, they use rigid orthogonality that is
harmful on some datasets and potentially suboptimal on other
datasets compared to soft orthogonality.

7 Conclusion

In this paper, we introduce new aspects to tensor-
decomposition-based models exploiting ensemble boosting
effects and max-rank relational mapping, in addition to multi-
partition embedding by MEI. We propose the MEIM model
with two new techniques, namely independent core tensor to
improve ensemble effects and max-rank mapping by soft or-
thogonality to improve expressiveness. MEIM achieves state-
of-the-art link prediction results, including the large and dif-
ficult YAGO3-10 dataset, using fairly small embedding sizes.
Moreover, we analyze and demonstrate the limitations of pre-
vious rigid orthogonality models and show that MEIM with
soft orthogonality works well on multiple datasets.

For future work, it is promising to continue research on
combining deep learning techniques and tensor decomposi-
tion. It is also interesting to use MEIM to solve tasks such as
entity alignment and recommendation by converting them to
contextual link prediction.
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