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Abstract

We introduce Neural Contextual Anomaly Detec-
tion (NCAD), a framework for anomaly detection
on time series that scales seamlessly from the un-
supervised to supervised setting, and is applicable
to both univariate and multivariate time series. This
is achieved by combining recent developments in
representation learning for multivariate time series,
with techniques for deep anomaly detection orig-
inally developed for computer vision that we tai-
lor to the time series setting. Our window-based
approach facilitates learning the boundary between
normal and anomalous classes by injecting generic
synthetic anomalies into the available data. NCAD
can effectively take advantage of domain knowl-
edge and of any available training labels. We
demonstrate empirically on standard benchmark
datasets that our approach obtains a state-of-the-
art performance in the supervised, semi-supervised,
and unsupervised settings.

1 Introduction

Anomaly Detection (AD) for real-valued time series data has
many practical applications, such as monitoring machinery
for faults, finding irregular behavior in IoT sensor data, im-
proving the availability of computer applications and (cloud)
infrastructure, and monitoring patients vital signs, among
many others. Since Shewhart [1931] pioneering work on sta-
tistical process control, statistical techniques for monitoring
and detecting abnormal behavior have been refined, and de-
ployed in countless highly impactful applications.

Recently, deep learning techniques have been successfully
applied to various anomaly detection problems [Ruff et al.,
2021]. For time series, these methods have demonstrated
great performance for large-scale monitoring problems [Ren
et al., 2019; Gao et al., 2020; Ayed et al., 2020]..

Classically, anomaly detection on time series is cast as
an unsupervised learning problem, where the training data
contains both normal and anomalous instances, but with-
out knowing which is which. However, in many practical

*These authors contributed equally.

applications, a fully unsupervised approach can leave valu-
able information unutilized, as it is often possible to obtain
(small amounts of) labeled anomalous instances, or to char-
acterize the relevant anomalies in some general way. Ide-
ally, an effective method for anomaly detection employs a
semi-supervised approach, allowing to utilize information
about known anomalous patterns or out-of-distribution obser-
vations, if any of these are available.

In this work !, we introduce Neural Contextual Anomaly
Detection (NCAD), a framework for anomaly detection on
time series that can scale seamlessly from the unsupervised
to supervised setting, allowing to incorporate additional in-
formation, both through labeled examples and through known
anomalous patterns. Our approach is based on breaking each
time series into overlapping, fixed-size windows. Each win-
dow is further divided into two parts: a context window and
a suspect window (see fig. 1), which are mapped into neural
representations (embedding) using Temporal Convolutional
Networks (TCNs). Our aim is to detect anomalies in the sus-
pect window. Anomalies are identified in the space of learned
latent representations, building on the intuition that anomalies
create a substantial perturbation on the representation of the
time series, resulting in the embeddings becoming distant.

Time series anomalies are inherently contextual. We ac-
count for this in our methodology by extending the Hyper-
sphere Classifier (HSC) [Ruff er al., 2020a] loss, originally
developed for computer vision, to a contextual hypersphere
loss, which dynamically adapts the hypersphere’s center to
the context’s representation. Further, we use data augmenta-
tion techniques to facilitate learning of the boundary between
the normal and anomalous classes. We employ a variant of
Outlier Exposure (OE) [Hendrycks er al., 2019] to create con-
textual anomalies, combined with simple injected anomalies.

In summary, we make the following contributions:

1. Propose a simple yet effective framework for time se-
ries anomaly detection that achieves state-of-the-art per-
formance across well-known benchmark datasets, cov-
ering univariate and multivariate time series, and across
the unsupervised, semi-supervised, and fully-supervised
settings (open-source code of NCAD is available 2);

! Extended version: https://doi.org/10.48550/arXiv.2107.07702
Zhttps://github.com/awslabs/gluon-ts/tree/master/src/gluonts/
nursery/ncad
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2. Build on related work on deep anomaly detection using
the hypersphere classifier [Ruff et al., 2020a] and ex-
pand it to introduce contextual hypersphere detection.

3. Adapt the Outlier Exposure [Hendrycks et al., 2019] and
Mixup [Zhang ef al., 2018] methods to the particular
case of anomaly detection for time series.

2 Related Work and Background

Anomaly Detection is an important problem with many appli-
cations and has consequently been widely studied. We refer
the reader to one of the recent reviews in the topic for a gen-
eral overview of methods [Ruff et al., 2021].

We are interested in anomaly detection for time series. This
is a problem typically framed in an unsupervised way. A
traditional approach is to use a predictive model, estimating
the distribution (or confidence bands) of future values condi-
tioned on historical observations, and mark observations as
anomalous if they are considered unlikely under the model.
[Shipmon et al., 2017] use deep (recurrent) neural networks
to parametrize a Gaussian distribution and use the tail prob-
ability to detect outliers. [Aubet et al., 2021] propose to
use probabilistic masking to prevent anomalies in the training
data to affect the model. [Siffer et al., 2017] propose SPOT
and DSPOT, which use extreme value theory to model the
tail of the distributions. [Ehrlich ef al., 2021] expanded their
framework using a robust deep forecaster.

Effective ideas for deep anomaly detection that deviate
from the predictive approach have been successfully im-
ported to the time series domain from other fields. For
reconstruction based methods, e.g. with Variational Auto-
Encoders (VAEs) [Xu et al., 2018; Park er al., 2018; Su
et al., 2019], or density based methods, e.g. with Gener-
ative Adversarial Networks (GANs) [Schlegl et al., 2017,
Li et al., 2019].

Compression-based approaches have become very popular
in image anomaly detection. The working principle is sim-
ilar to the one-class classification used in the support vector
data description method [Tax and Duin, 2004]: instances are
mapped to latent representations which are pulled together
during training, forming a sphere in the latent space; instances
that are distant from the center are considered anomalous.

[Ruff et al., 2018; Ruff et al., 2020b] build on this idea to
learn a neural mapping ¢(-) : R”? — R, such that the rep-
resentations of nominal points concentrate around a (fixed)
center ¢, while anomalous points are mapped away from that
center. In the unsupervised case, DeepSVDD [Ruff et al.,
2018] achieves this by minimizing the Euclidean distance
> llé(w;) — ¢||?, subject to a suitable regularization of the
mapping and assuming that anomalies are rare. THOC [Shen
et al., 2020] applies this principle to the context of time series,
by extending the model to consider a multiple spheres.

[Ruff et al., 2020a] propose the Hypersphere Classifier
(HSC), improving on DeepSVDD by training the network us-
ing the standard Binary Cross-Entropy (BCE) loss, this way
extending the approach to the (semi-)supervised setting. With
this method, they can rely on labeled examples to regular-
ize the training and do not have to resort to limiting the net-
work. In particular, the HSC loss is given by setting the

pseudo-probability of an anomalous instance (y = 1) as
p=1—4L(p(w,)),ie.

—(1 = y;)log L(p(w;)) — yilog(1 — L(p(wy))) , (1)

where ¢ : RE — [0, 1] maps the representation to a proba-
bilistic prediction. Choosing /(z) = exp(—||z||?), leads to a
spherical decision boundary in representation space.

Current work on semi-supervised anomaly detection indi-
cates that including even only few labeled anomalies can al-
ready yield remarkable performance improvements on com-
plex data. Notably, [Hendrycks er al., 2019] improve de-
tection by incorporating large amounts of out-of-distribution
examples from auxiliary datasets during training. For time
series data, however, artificial anomalies and related data
augmentation techniques have not been studied extensively.
[Smolyakov et al., 2019] used artificial anomalies to select
thresholds in ensembles of anomaly detection models. Most
closely related to our approach, SR-CNN [Ren ef al., 2019]
trains a supervised CNN on top of an unsupervised anomaly
detection model (SR), by using labels from injected single
point outliers.

Fully supervised methods are not as widely studied be-
cause labeling all the anomalies is too expensive and unre-
liable in many applications. An exception is the work by [Liu
et al., 2015] who propose a system to continuously collect
anomaly labels and to iteratively re-train and deploy a super-
vised random forest model. The U-NET-DEWA approach of
[Gao et al., 2020] relies on training a supervised model, re-
lying on data augmentations that preserve the anomaly labels
to increase the training set size.

3 Neural Contextual Anomaly Detection

We combine a window-based anomaly detection approach
with a flexible training paradigm and effective heuristics for
data augmentation to produce a state-of-the-art system for
anomaly detection.

We consider the following general time series anomaly de-
tection problem: We are given a collection of NV discrete-

(&)

time time series X' = {QZIZT} where for time series
i f i

yeeey

¢ and time step ¢t = 1,...,7; we have an observation vector

wﬁi) € RP. We further assume that we are given a corre-
sponding, set of partial anomaly labels )} = {yizz_p }

Hidi=1,.,N
with yti) € {0,1, 7}, indicating whether the observation :cgl)
is normal (0), anomalous (1), or unlabeled (7).

The goal is to predict anomaly labels §y.7, with y; € {0,1}
given a time series 1.7. Instead of predicting the binary la-
bels directly, we predict a positive anomaly score for each
time step, which can subsequently be thresholded to obtain

anomaly labels satisfying a desired precision/recall trade-off.

3.1 Windows-Based Representations

Similar to other work on time series AD (e.g. [Ren et al.,
2019]), we convert the time series problem to a vector prob-
lem by splitting each time series into a sequence of fixed-size
windows of length L. A window is simply a segment of se-
quential values from a single time series. Let Wy, (X') denote
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context window

suspect window

TCN

Figure 1: NCAD encodes two windows that differ by a suspect window using the same TCN network ¢(-) and computes a distance score
between the embeddings. We can see that the embedding of the context window z(¢) = QS(w(C)) sets the reference point in the embedding
space, depending on how much the time points in the suspect window w® change the embedding of the full window z = ¢(w), the segment
is classified as anomalous or not. In the visualization, the red suspect window would change the z beyond the threshold, making it anomalous.
The model is trained to give a high score for instances with an anomaly in the suspect window.

the set of all possible windows of length L, allowing overlap-
ping, that can be generated from the data X

On a given window w € Wr (X)), we identify a partition
of two subsequent segments, w = ('w(c)7 'w(s)), with lengths
C and S (typically C > S), which we call the context win-
dow and the suspect window, respectively (see fig. 1 for an
illustration).

Our goal is to detect anomalies in the suspect window rela-
tive to the local context provided by the context window. We
keep a single label y for the windows w, such that y = 1 if
any timestep in its suspect segment contains an anomaly, and
y = 0 otherwise. In this way, the datasets for training and
evaluation are formed by pairs of windows and their labels:
D= {(wla yi)}'wEWL(X)

For our model, we use a neural network encoder ¢ :
RT*P — RF to map D-dimensional time series of length
T (possibly variable) into fixed-size vector representations.
We use a CNN with exponentially dilated causal convolu-
tions [van den Oord et al., 20161, and in particular, the TCN
architecture [Franceschi et al., 2019] with adaptive max-
pooling along the time dimension.

Let us denote as z = ¢(w) and 2(¢) = ¢(w()) the vector
representations of a window w € Wy (X) and its context
segment w(®). Intuitively, we want to train ¢(+) in such a
way that representations z and z() are pulled together if no
anomaly is present in the suspect window, and pushed apart
otherwise.

3.2 Contextual Hypersphere Loss

We propose a contrastive loss function, which can be inter-
preted as a contextual version of the Hypersphere Classifier
loss (eq. (1)).

Consider a distance-like function dist(,) : RE x RF —
R* measuring similarity between two vector representations;
and consider a scoring function ¢ : R — [0, 1] mapping dis-
tances to pseudo-probabilistic scores in the unit interval.
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Our contextual hyperphere loss is defined as:
~(1 = i) log (¢ (dist(é(wy), o(w!”) )

—yitog (1 — ¢ (dist(o(w), 6(w())) . @)

Note that this is the HSC loss, with the difference that the
center of the hypersphere is chosen dynamically for each in-
stance as the representation of the context.

In our experiments, we use the Euclidean distance
dist(z,2) = ||z — z||, and a radial basis function ¢(z) :=
exp(—22), to create a spherical decision boundary, resulting
in the loss function

2

(1= 40) || o(aws) = dlw )|

2
~yilog (1 —exp (— |o(wi) - ¢(w§c’)H2>) ;e

3.3 Data Augmentation

We introduce a collection of data augmentation methods that
inject synthetic anomalies. These data augmentation methods
explicitly do not attempt to characterise the full data distri-
bution of anomalies, which would be infeasible. Rather, we
combine effective generic heuristics that work well for de-
tecting common types of out-of-distribution examples.

Contextual QOutlier Exposure (COE) Motivated by the
success of Outlier Exposure for out-of-distribution detec-
tion [Hendrycks et al., 2019], we propose a simple task-
agnostic method to create contextual out-of-distribution ex-
amples. Given a time series window w = (w(®),w®)), we
induce anomalies into the suspect segment, w(®), by replac-
ing a chunk of its values with values taken from another time
series. The replaced values in w®) will most likely break the
temporal relation with their neighboring context, therefore
creating an out of distribution example. In our implemen-
tation, we apply COE at training time by selecting random
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examples in a minibatch and permuting a random length of
their suspect windows. In multivariate time series, as anoma-
lies do not have to happen in all dimensions, we randomly
select a subset of the dimensions in which the windows are
swapped.

Anomaly Injection We propose to inject Point Outliers
(po) in the time series using a simple method: at a set of
randomly selected time points we add (or subtract) a spike to
the time series. The spike is proportional to the inter-quartile
range of the points surrounding the spike location. Like for
COE, in multivariate time series we simply select a random
subset of dimensions on which we add the spike. These sim-
ple point outliers serve the same purpose as COE: create clear
labeled abnormal points to help the learning of the hyper-
sphere. In addition to these, in some practical applications,
it is possible to identify general characteristics of anomalies
that should be detected. Some widely-known anomalous pat-
terns include: sudden changes in the location or scale of the
series (change-points); interruption of seasonality, etc. We
have used this approach in our practical application and the
domain knowledge allowed to improve the detection perfor-
mance. As they require and domain knowledge it would
be unfair to compare our method when incorporating these;
therefore, in the results table we only use the point outliers
described above.

Window Mixup If we do not have access to training labels
and know little about the relevant anomalies, we mainly rely
on COE and po, which may result in significantly missmatch
between injected and true anomalies. To improve generaliza-
tion of our model in this case, we propose to create linear
combinations of training examples and their labels inspired
by the MIXUP procedure [Zhang er al., 2018]. The MIxXUP
data augmentation technique was proposed in the context of
computer vision and creates more variety in training exam-
ples, but more importantly, the soft labels result in smoother
decision functions that generalize better. MIXUP is suited
for time series applications: convex combinations of time se-
ries most often result in realistic and plausible new time se-
ries. We show that MIXUP can improve generalization of our
model even in cases with a large mismatch between injected
and true anomalies.

We include illustrations of these techniques in the extended
version of this article !.

3.4 NCAD Training

We combine the elements described above and train the en-
coder by minimizing the contextual hypersphere loss using
Stochastic Gradient Descent (SGD).

We start with a raw dataset of time series and their labels
(X)) = {(:cgl)T, y;%“)} Lo A first augmentation *

=1,...,

is applied to the series before spliting into windows, yielding
(X’,)’") = anomalize((X,))). We then define the training
dataset by splitting the original and augmented data into win-
dows D9 = {(w, ¥s) bw,ew,, (xuxr) (see section 3.1).
Mini-batches B = {(w;, ¥i) }i=1,... batch size are formed by
taking random subsets of windows from the training dataset:

3We inject po during the first augmentation.
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B C D9, We apply a second stage of data augmentation *
here by introducing synthetic anomalies on the batches, yield-
ing B’ = anomalize(B).

The score function minimized during training sums the
contextual loss function £ from eq. (2) over examples in the
original and augmented batches:

Jo =

(ws,y:)€BUB’

L(0; w;,y;) 4

where 6 parametrizes the neural encoder ¢g(-).

Rolling predictions Once the model is trained, we can ap-
ply it to the raw time series in a rolling fashion, possibly
defining a stride parameter. Each time step may be part of
multiple windows at test time (if the stride is smaller than the
suspect window length), obtaining multiple anomaly scores,
which can be aggregated by averaging. Such rolling scheme
have the advantage of generating anomaly scores with lower
latency.

4 Experiments

In this section, we compare the performance of our approach
with alternative methods on public benchmark datasets, and
exploring the model behavior under different data settings,
demonstrating its effectiveness from the unsupervised to the
supervised setting. Further details on the experiments are in-
cluded in the extended version of the article !.

4.1 Benchmark Datasets

We benchmark our method to others on five datasets, span-
ning the univariate, multi-variate, supervised and unsuper-
vised settings.

For the multivariate setting, we use: Soil Moisture Ac-
tive Passive satellite (SMAP) and Mars Science Labora-
tory rover (MSL), two datasets published by NASA [Hund-
man ef al., 2018], with 55 and 27 series respectively (lengths
of the time series vary from 300 to 8500 observations); and
Server Machine Dataset (SMD), a 5 weeks long dataset with
28 38-dimensional time series each collected from a different
machine in large internet companies [Su et al., 2019]. These
three datasets each have a pre-defined train/test split, where
anomalies in the test set are labeled, while the training set
contains unlabeled anomalies.

For the univariate setting, we use: YAHOO, a dataset by
[Yahoo! Labs, 2015] consisting of 367 real and synthetic time
series. And KPI, univariate dataset released in the AIOPS
data competition by [Tsinghua Netman Lab, 2018]. It con-
sists of KPI curves from different internet companies in 1
minute interval. > For both, following [Ren et al., 2019],
we use the last 50% of the time points of each of the time
series as test set and split the rest in 30% training and 20%
validation set.

“We use COE and MIXUP during the batch augmentation.

SWhile we share many of the concerns expressed by [Wu and
Keogh, 2020] about the lack of quality benchmark datasets for time
series anomaly detection, we use these commonly-used benchmark
datasets here for lack of better alternatives and to enable direct com-
parison of our approach to competing methods.
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Model \ YAHOO (un.) KPI (un.) KPI (sup.) SMAP MSL SMD
OC-SVM [Schélkopf et al., 1999] 4.75 5.06 — 67.78 18.98 8.01
Isolation Forest [Liu et al., 2008] 19.08 6.61 — 67.78 19.21 8.77
LOF [Breunig e al., 2000] 19.08 10.56 — 70.80 39.08 36.44
Baseline 1 [Kim et al., 2022] 20.11 £2.42  68.67 £0.94 — 96.1 93.1 80.4
SPOT [Siffer et al., 2017] 33.8 21.7 — — — —
DSPOT [Siffer et al., 20171 31.6 52.1 — — — —
DONUT [Xu et al., 2018] 2.6 34.7 — — — —
SR [Ren et al., 2019] 56.3 62.2 — — — —
SR-CNN [Ren et al., 2019] 65.2 77.1 — — — —
SR+DNN [Ren et al., 2019] — — 81.1 — — —
AnoGAN [Schlegl et al., 2017] — — — 74.59 86.39 —
DeepSVDD [Ruff et al., 2018] — — — 71.71 88.12 —
DAGMM [Zong ef al., 2018] — — — 82.04 86.08 72.3
LSTM-VAE [Park et al., 2018] — — — 75.73 73.79 80.8
MSCRED [Zhang et al., 2019] — — — 77.45 85.97 38.9
MTAD-GAT [Zhao et al., 2020] — — — 90.13 90.84 —
OmniAnomaly [Su et al., 2019] — — — 84.34 89.89 94.4
THOC [Shen et al., 2020] — — — 95.18 93.67 54.1
USAD [Audibert et al., 2020] — — — 81.86 91.09 93.82
NCAD w/ COE, po , mixup \ 81.16 £1.43 76.64 +0.89 83.30 +-0.87 94.45 +0.68 95.60 +0.59 80.16 +0.69

Table 1: The F1 score of our method on the different benchmark datasets. A higher F1 is better, we bold the highest number for each dataset.
— indicates that this method has not been designed or evaluated in this setup: supervised methods on unsupervised datasets, or univariate
methods on multivariate datasets. We take the numbers from the respective papers. We report the mean and standard deviations over 10 runs.

4.2 Evaluation Setup

Measuring the performance of time series anomaly detec-
tion methods in a universal way is challenging, as different
applications often require different trade-offs between sen-
sitivity, specificity, and temporal localization. To account
for this, various measures that improve upon simple point-
wise classification metrics have been proposed, e.g. the flexi-
ble segment-based score proposed by [Tatbul et al., 2018] or
the score used in the Numenta anomaly benchmark [Lavin
and Ahmad, 2015]. To make our results directly com-
parable, we follow the procedure proposed by [Xu et al.,
2018] (and subsequently used in other work [Su et al., 2019;
Ren et al., 2019; Shen et al., 2020]), which offers a practical
compromise: point-wise scores are used, but the predicted la-
bels are expanded to mark an entire true anomalous segment
as detected correctly if at least one time point was detected
by the model.® Shortcomings of this evaluation protocol have
been uncovered by [Kim et al., 2022]: if the dataset has many
long segments labeled as anomalous (as e.g. in the SWaT and
SMAP datasets), then the correction allows high F1 scores to
be achieved even based on weak (or even random) anomaly
scores. However, as they also point out, this is less of a prob-
lem when anomalies are very short as in KPI and YAHOO. To
emphasize this point we include the F1 scores for the baseline
that they proposed, which performs significantly worse on the
data sets with short anomaly segments. While in practice a
detection threshold would have to be chosen on a validation
set or through user input, we align our experimental protocol
with this body of prior work and report optimistic F'1 scores
computed by choosing the best threshold on the test set. For

SWe use the implementation by [Su ef al., 2019].
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each dataset, a single best threshold is chosen and used on all
the time series of the test set.”

Hyperparameters were chosen using the validation set for
YAHOO and KPI, and a standard setting is inferred for the
other datasets (see extended article for details'). We use
short suspect windows because we are interested in the harder
problem of streaming anomaly detection where it is important
to detect anomalous points early. Further, we run the model
10 times on each of the benchmark datasets and report mean
and standard deviation. We provide scripts to reproduce the
results on the benchmark datasets shown below.

Comparison partners Beyond several deep state of the
art methods, we compare to a set of classical shallow
anomaly detection methods on fixed time series windows:
OC-SVM [Scholkopf er al., 1999], Isolation Forest [Liu et
al., 2008], and LOF [Breunig et al., 2000]. In addition, we
compare to a non-deep probabilistic method using Gaussian
processes [Bock et al., 2022]. We also include the baseline
1 of [Kim et al., 2022], for which the anomaly score of each
point is sampled from a uniform distribution.

4.3 Benchmark Results

Table 1 shows the performance of our NCAD approach com-
pared to the state-of-the-art methods proposed for the differ-
ent datasets and settings, as well as a set of non-time series
baselines.

The univariate datasets contain labels for anomalies both
on the training and the test set, we evaluate our method on

"Note that this is done for all methods, keeping the relative
performance of different methods comparable, even if the absolute
scores are higher than what can be expected in a practical setting.
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YAHOO Model SMAP MSL
MODEL F1 PREC REC NCAD w/ COE, po, mixup 94.45 + 0.7 95.60 £+ 0.7
U-NET-RAW 403 473 35.1 “po o428£04 - 9473 £0.3
-COE 8859+ 1.8  94.66 £0.2
U-NET-DE 62.1 65.1 59.4 :
- mixup 9269 £ 1.1 9559 +0.01
U-NET-DEW 66.2 79.3 56.9 .
U-NET-DEWA 69 3 859 581 - mixup - po 944+ 04 9412+ 0.8
’ ’ ’ - mixup - COE 86.86 + 0.7 91.7+£26
NCAD SUPERVISED 62.11 80.44 50.59 - COE - po 60.48 +9.7 42.02+6.3
+ MIXUP 63.08 76.70 53.57 - mixup - COE - po 66.9 +2.0 79.47 £9.4
+ PO 79.92 7496 85.57 - contextual 9247 +£05 9443 +0.1
+ COE 53.66 78.84 40.67 - contextual - COE 91.86 £ 1.0 83.29+04
+ COE + MIXUP 59.85 78.89 48.21 - contextual - po 93.39 + 0.6 90.68 + 0.7
+ PO + COE 58.36  54.89 62.30 - contextual - mixup 9437+ 0.2 95.07 £ 0.1
+ PO + COE + MIXUP 67.32 88.38 54.36 - contextual - mixup - po 93.24 +0.3 90.89 £ 0.5
- CONTEXTUAL 5.50 342  14.08 - contextual - mixup - COE 89.88 £2.5 87.26 £4.2
- CONTEXTUAL + PO 67.90 64.15 72.13 - contextual - COE - po 54.95 +£2.62 320£0.2
- CONTEXTUAL + COE 39.53 4256 36.90 - context. - COE - mixup-po  55.09 £ 1.0 36.03 £ 3.0
- CONTEXTUAL + PO+ COE  55.25 43.87 74.60

Table 2: Supervised anomaly detection performance on YAHOO.

them both in the supervised setting ((sup.)) and the unsuper-
vised setting ((un.)). Our approach significantly outperforms
competing approaches on YAHOO, performs similarly to the
best unsupervised approach on KPI, and better than the best
supervised approach.

It is important to note that while other methods are ei-
ther designed for the supervised or unsupervised setting, our
method can be used seamlessly in both settings. For NCAD,
in the supervised setting the training labels are used in the
loss, whereas in the unsupervised setting only the labels of
the simple synthetic anomalies are used for training.

For KPI (sup.) we only compare to a single baseline be-
cause the other methods are not developed for the supervised
context. The YAHOO-supervised experiments are included in
table 2, our approach outperforms the state-of-the-art [Gao et
al., 2020] significantly with 79% point-wise F1 score versus
69.3% F1 score for their approach.

On the multivariate datasets, all benchmark methods are
designed for unsupervised anomaly detection, and none of the
dataset contains training labels. Our method outperforms the
state of the art by a reasonable margin on MSL. On SMAP
our average score is slightly lower than the best score. On
SMD, OmniAnomaly and USAD outperform our approach.
We note that these methods train one model for each of the
28 time series, while we train a single global model, which is
more representative of a real world scenario.

4.4 Ablation Studies

To better understand the advantage brought by each of the
components of our method, we perform an ablation study on
the SMAP and MSL datasets, shown in table 3. The first
row corresponds to the entire NCAD framework, using con-
textual hypersphere loss and data augmentation. The rows la-
beled - contextual . ..” do not use the contextual hypersphere
described in section 3.2, but instead a model trained using
the original hypersphere classifier loss on the whole-window
representation ¢(w). First, we see that the contextual hyper-
sphere has a significant impact on performance when no data
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Table 3: Ablation study on SMAP and MSL

augmentation is used, increasing performance by 11.81% F1
on SMAP and 43.44% F1 on MSL. By only removing the
contextual hypersphere but keeping the data augmentation
methods (“- contextual” row), we observe a small perfor-
mance deterioration with respect to the full model, 1.98% F1
on SMAP and 1.17% F1 on MSL.

We also see that each of the data augmentation techniques
improves the performance further.

Further ablation results on the supervised Yahoo dataset
can are shown in table 2. Using only the true labels but
no data augmentation (NCAD SUPERVISED), our approach
significantly outperforms U-NET-RAW, and performs on-par
with U-NET-DE, without relying on time series decomposi-
tion and using an arguably much simpler architecture.

When we use the po data augmentation, our approach out-
performs the full U-NET-DEWA by a large margin, hinting at
the possibility that addressing the class imbalance problem by
creating artificial anomalies is more effective than using their
strategy of loss weighting while keeping the labels intact.

In the supervised setting, injecting the generic COE
anomalies (either individually or in combination with po)
hurts performance, presumably by steering the model away
from the specific kind of anomalies that are labeled as anoma-
lous in this data set. On the other hand, adding MIXUP gen-
erally improves performance. The contrastive loss is cru-
cial for good performance, as shown by the rows labeled
- CONTRASTIVE, where it is replaced with a standard soft-
max classifier.

4.5 Scaling From Unsupervised to Supervised

To investigate how the performance of our approach changes
as we scale from unsupervised, to semi-supervised, to fully
supervised, we measure the performance of our approach as
a function of the amount of ground truth labels on the YAHOO
dataset, shown in fig. 2.

Firstly, we observe that the performance increases steadily
with the amount of true anomaly labels, as desired. Secondly,
by using synthetic anomalies (either po or COE), we can sig-
nificantly boost the performance in the regime when no or
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Figure 2: F1 score of NCAD on the YAHOO dataset trained with
only a fraction of training anomalies being labeled.

Model SMAP 1st dimension
NCAD w/ COE, po, mixup 93.38
NCAD w/ COE, po, mixup, 96.48

+ domain informed injections

Table 4: F1 score on the performance of the first dimension of
SMAP with specialized anomaly injections.

only few labels are available. Finally, by using an injec-
tion technique that is well-aligned with the desired type of
anomalies (po in this case, as YAHOO contains a large num-
ber of single-point outliers), one can significantly improve
performance over relying solely on the labeled data, this is
explained by the very high class imbalance in anomaly de-
tection. The flipside is, of course, that injecting anomalies
that may be significantly different from the desired anomalies
(COE in this case) can ultimately hurt when enough labeled
examples are available.

4.6 Using Specialized Anomaly Injection Methods

In many practical applications one may have access to some
domain knowledge about the type of anomalies that are to
be detected, our method allows to incorporate this easily.
While in all our benchmarks we rely on completely generic
anomalies for injection (COE and po), a by-product of our
methodology is that the model can be guided towards detect-
ing the desired class of anomalies by designing anomaly in-
jection methods that mimic the true anomalies. Designing
such methods is often simple compared to finding enough ex-
amples of true anomalies as they are rare.

Table 4 demonstrates the effectiveness of this approach:
The first dimension of the SMAP dataset contains slow slopes
that are labeled as anomalous in the dataset. These are harder
to detect for our model when only using COE and po because
these cannot create similar behavior. We can design a simple
anomaly injection that injects slopes to randomly selected re-
gions and labels them as anomalous. Training NCAD with
these slopes gives a model that achieves a much better score.

This approach can be effective in applications where
anomalies are subtle and closer to the normal data, and where
some prior knowledge is available about the kind of anoma-
lies that are to be detected. However one may not have this
prior knowledge or the resources required to create these in-

1.0 4 ooens
<:§. % mixup
08 - \\ 0.0
.i.\ 30.0
Z 0.6 1 \ — 50.0
\‘E —_—70.0
04 N 0\ — 80 0
0.2 1

anomaly width

Figure 3: F1 score vs. width of true anomalies for models trained
only on point outliers, with different fractions of training examples
mixed-up.

jections. This is a limitation of this technique which prevents
it from being generally applicable. This is the reason why we
did not use in for the comparison to the other methods.

4.7 Generalization From Injected Anomalies

Artificial anomalies will always differ from the true anoma-
lies to some extent, be it the ones created by COE, po, or
more complex methods. This requires the model to general-
ize from imperfect training examples to true anomalies. By
design, the hypersphere formulation can help to bridge this
generalization gap, and we use MIXUP further improve the
generalization capabilities of the model.

Figure 3 shows the results of an experiment exploring one
aspect of this generalization ability for NCAD. The model is
trained with injected single-point outliers, and we measure
the detection performance for anomalies of longer width. For
this experiment we use a synthetic base data set containing
simple sinusoid time series with Gaussian noise. We create
multiple datasets from this base dataset adding true anomalies
of varying width by convolving spike anomalies with Gaus-
sian filters of different widths. For training, regardless of the
shape of the true anomalies, we use po and train models using
different MIXUP rates, i.e. fraction of training examples with
MIXUP applied. We observe that MIXUP helps the model to
generalize in this setting: the higher the MIXUP rate, the bet-
ter the model generalizes to anomalies that differ from the
injected examples, achieving higher F1 scores.

5 Conclusion

We present NCAD, a methodology for anomaly detection
in time series that achieves state-of-the-art performance in
a broad range of settings, including both the univariate and
multivariate cases, as well as across the unsupervised, semi-
supervised, and supervised anomaly detection regimes. We
demonstrate that combining expressive neural representation
for time series with data augmentation techniques can out-
perform traditional approaches such as predictive models or
methods based on reconstruction error.
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