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Abstract

Despite their outstanding performance in a broad
spectrum of real-world tasks, deep artificial neu-
ral networks are sensitive to input noises, partic-
ularly adversarial perturbations. On the contrary,
human and animal brains are much less vulnerable.
In contrast to the one-shot inference performed by
most deep neural networks, the brain often solves
decision-making with an evidence accumulation
mechanism that may trade time for accuracy when
facing noisy inputs. The mechanism is well de-
scribed by the Drift-Diffusion Model (DDM). In
the DDM, decision-making is modeled as a process
in which noisy evidence is accumulated toward a
threshold. Drawing inspiration from the DDM, we
propose the Dropout-based Drift-Diffusion Model
(DDDM) that combines test-phase dropout and the
DDM for improving the robustness for arbitrary
neural networks. The dropouts create temporally
uncorrelated noises in the network that counter per-
turbations, while the evidence accumulation mech-
anism guarantees a reasonable decision accuracy.
Neural networks enhanced with the DDDM tested
in image, speech, and text classification tasks all
significantly outperform their native counterparts,
demonstrating the DDDM as a task-agnostic de-
fense against adversarial attacks.

1 Introduction

Deep learning has shown outstanding performance in many
areas, including image, audio , and text classification. Never-
theless, deep learning lacks robustness; that is, deep artificial
neural networks are susceptible to manipulations of inputs.
Small perturbations on inputs that are imperceptible to hu-
mans may result in significant differences in outputs of deep
neural networks [Goodfellow et al., 2015]. Such suscepti-
bility is not only of theoretical interest but also represents
a severe practical problem, which causes security issues in
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real-world applications, including face recognition and au-
tonomous driving.

Recently, a huge amount of effort has been dedicated to ad-
dressing this issue. Adversarial training [Madry et al., 2019]
is considered to be the most promising. It adds adversarial
samples to the training set and automatically lets the network
model adapt to them through learning. Despite these efforts,
current defenses against adversarial attacks are still far from
satisfactory. Most defenses only target one or a few types of
attacks and are often restricted to particular tasks, such as im-
age classification. Consequently, it is unclear whether they
can be applied to other kinds of attacks or tasks.

In contrast, humans and animals are much less vulnera-
ble. Even though time-limited human subjects can be mis-
led by deliberately crafted images, they successfully restore
accuracy by spending more time facing these uncertain and
noisy inputs [Elsayed er al., 2018]. The more uncertain
the input is, the longer the brain takes to make a deci-
sion. This ability of trading decision speed for accuracy
has been well studied in humans and animals by researchers
in neuroscience and psychology [Ratcliff and Rouder, 1998;
Roitman and Shadlen, 2002]. In particular, the celebrated
Drift-Diffusion Model (DDM) and its variants stand as one
of the most successful models that account for the decision-
making process in humans and animals. The DDM describes
a sequential sampling process in which signals with both
noises from the external sources and the internal neuronal
noises are accumulated as evidence for decisions. The de-
cision is made once the accumulated evidence reaches a pre-
determined threshold. A high threshold leads to accurate but
slow decisions, while a low threshold results in fast but in-
accurate decisions. Neuronal activities in decision-making-
related brain areas exhibit response patterns described by the
DDM [Roitman and Shadlen, 2002].

The ability to trade speed for accuracy characterizes one
of the most striking differences between biological and arti-
ficial neural networks. Enhancing artificial neural networks
with a dynamic inference process similar to those in human
and animal brains would potentially improve their robust-
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Figure 1: Schematic diagram of the Dropout-based Drift-Diffusion Model (right) and its brain science counterpart (left). In DDDM, outputs
p; from the stochastic copies of an arbitrary neural network simulate the noisy temporal neural signal o, in the brain. In both, the series of
outputs/signals are passed to a similar evidence accumulation mechanism (as described by the DDM) for a robust output.

ness. Guided by this intuition, we propose the Dropout-based
Drift-Diffusion Model (DDDM) as a general framework for
enhancing the robustness of arbitrary neural networks. De-
picted in Figure 1, in contrast to adversarial training, which
adds noises to inputs during the training phase, DDDM adds
noises to neural networks via random dropouts during the test
phase, resulting in multiple stochastic copies of the original
one. Then, DDDM employs a DDM-like evidence accumula-
tion mechanism to make the decision based on these outputs.

We conduct experiments on three types of datasets, includ-
ing MNIST [Lecun et al., 1998] and CIFAR10 [Krizhevsky,
2009] for image classification, the SpeechCommands [War-
den, 2018] for audio classification, and the IMDB
dataset [Maas et al., 2011] for text classification. We com-
pare the networks’ performance with and without the DDDM
against a variety of adversarial attacks, including both the
white-box and the black-box ones. The experimental results
show that the DDDM improves the robustness of the network,
providing defense against all adversarial attacks tested on all
three datasets.

2 Related Work

Adversarial training (AT) [Goodfellow et al., 2015; Madry
et al., 2019] is one of the most popular adversarial defense
methods. It augments the clean data with adversarial ones
during the trianing process. There are works that try to
improve robustness by introducing additional noise in their
models. For example, [Guo er al., 2018] applied transfor-
mation on images before feeding the network, including im-
age quilting, total variance minimization, JPEG compression,
and bit-depth reduction. Similar to our work, [Dhillon et al.,
2018] randomly dropped neurons with a weighted distribu-
tion. Note that all the defense methods mentioned above fo-
cus on either filtering out adversarial perturbations or creating
obfuscated gradients [Athalye et al., 20181, leaving room for
more sophisticated attacks. On the contrary, our framework
injects randomness into the network model during the testing
phase, and the resulting stochastic predictions are agnostic
to the type of adversarial attacks. Furthermore, a temporal
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evidence accumulation mechanism is employed to offset the
accuracy reduction due to the added randomness and retain a
good performance with robustness.

In neuroscience, recent advances in the study of perceptual
decision-making have started to reveal the underlying neural
mechanism [Gold and Shadlen, 2007]. The random-dot mo-
tion (RDM) direction discrimination task is one of the most
popular tasks for studying decision-making with noisy evi-
dence [Roitman and Shadlen, 2002]. In this task, subjects
are asked to judge whether a patch of noisy dots moves to-
ward left or right. The subjects’ decision accuracies and re-
sponse times can be well described by the DDM [Ratcliff
and McKoon, 2008]. Furthermore, it was demonstrated that
neurons in the posterior parietal cortex increased their firing
when evidence toward their favored choice was being accu-
mulated [Roitman and Shadlen, 2002]. The response increase
correlated with the quality of evidence, which may be quan-
tified as the log-likelihood ratio [Gold and Shadlen, 2007;
Yang and Shadlen, 2007], and reflected the evidence accu-
mulation process. Additional studies extended DDM into
probabilistic inferences based on images and identified a
prefrontal-parietal circuitry that carries out evidence accumu-
lation process in probabilistic inferences [Yang and Shadlen,
2007]. Response patterns that reflect evidence accumulation
were also found in many other brain regions, including multi-
ple regions in the prefrontal cortex and the basal ganglia, sug-
gesting evidence accumulation is a universal decision-making
mechanism employed by the brain [Gold and Shadlen, 2007].
DDM and the related sequential sampling models in neuro-
science describe the brain’s solutions for optimizing decision-
making with noisy inputs. However, the DDM has not been
used together with deep neural networks in the machine learn-
ing field and has not been considered as a defense mechanism
against adversarial attacks.

3 Model Description

3.1 Test-Phase Dropout

Dropout was initially proposed by [Hinton et al., 2012] to ad-
dress the problem of overfitting. In this paper, we use it to
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Figure 2: A diagram of the drift-diffusion model (DDM). At each
moment, the noisy momentary evidence is accumulated until it hits
one of the two decision thresholds (A and — A). The decision thresh-
old and the mean and the variance of the momentary evidence to-
gether determine the speed and accuracy of the decision.

introduce randomness in the system. It simulates the inter-
nal neuronal noise in synaptic transmissions [Rusakov et al.,
2020]. With dropouts applied temporally, the original net-
work model effectively extends to an ensemble of stochastic
copies, whose outputs serves as the evidence. Let h,; be
an arbitrary deep neural network with one or several dropout
layers. The dropout layers share the same dropout rate. Sub-
script a denotes the dropout rate used for model training and
validation, and b denotes the dropout rate at the test phase.
We refer to h, ; as the dropout classifier in the following con-
text to emphasize the involvement of the test-phase dropout
mechanism.

3.2 Drift-Diffusion Model

In a typical two-choice scenario, the canonical Drift-
Diffusion Model (DDM) (see Figure 2) describes decision-
making as a process in which evidence that is noisy and
fluctuates over time (momentary evidence) is accumulated
toward a preset threshold A. Mathematically, DDM corre-
sponds to the following stochastic differential equation

X = p+£(t), (1)

where X is known as the decision variable representing the
cumulated evidence, and p is the drift or the mean of the
noisy momentary evidence. The Gaussian process &(t), with
mean 0 and variance o2, captures the uncertainty in the ev-
idence. Coefficient 7 is the characteristic time scale. The
decision variable X evolves until reaching one of the two
thresholds £ A at which the corresponding decision is made.
These thresholds correspond to the choice options, and the
time needed for the accumulated evidence to reach a particu-
lar threshold reflects the response time (RT).

The canonical DDM can be extended to decisions with
more than two alternatives. Equation (1) can be derived from
a set of stochastic differential equations [Roxin, 2019]. Fol-
lowing this route, it is straightforward to increase the number
of choices by extending the number of differential equations.
Another route to extend the DDM to the multi-choice domain
models the decision-making as a Bayesian multiple sequen-
tial probability ratio test (MSPRT). It has been demonstrated
the two routes are equivalent [Roxin, 2019].
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For our purpose to integrate the DDM with the test-phase
dropout classifier, we use the Bayesian MSPRT route. Sup-
pose there are n alternatives, and z;(¢) denotes the instanta-
neous evidence for choice i. z;(t) is drawn from a Gaussian
distribution with mean M; and variance o2. Let O(T) :=
{zi(t) : 1 <i<n,1 <t <T} be the collection of observa-
tions up to a time 7', and H; denote the hypothesis that choice
7 has the largest mean. Within the Bayesian MSPRT frame-
work, one seeks to make a decision based on the posterior
Pr(H;|O(T)). With defining

k
Xp(t) = wi(t) — kyea(t), 1<k<n-—1,

where y;(t) = fot dt’ z;(t') and X}, is the decision variable
for the kth class, measuring how likely the original input be-
longs to class k given the accumulated evidence. It can be
shown that X, satisfies a stochastic differential equation of
the same type as Equation (1). We refer the interested readers
to [Roxin, 2019] for a complete deduction.

3.3 Dropout-based Drift-Diffusion Model

There are two components in the design of the Dropout-based
Drift-Diffusion model (DDDM). The first component turns
the static one-shot inference process into a dynamic, noisy
inference process. The noisy predictions from the stochas-
tic copies of neural networks simulate the series of tempo-
ral signals in the biological brain. Presently, we implement
the dynamic inference by introducing the test-phase dropout,
which will randomly disturb the loss landscape and poten-
tially make adversarial attacks harder to succeed. This results
in a dropout classifier whose outputs are subject to further
processing.

For the second component, we take the noisy outputs from
the test-phase dropout classifier as evidence and apply DDM
with the Bayesian MSPRT implementation. More precisely,
for a dropout classifier i, p, let C' be the number of categories
and x be an input. We arrange L predictions to form a trial

P11 - Pic
=] : . .
P - PLC

where p;; is the i-th predicted confidence of = belonging to
label j. Let T; denote the i-th row vector in matrix 7', we
compute the posterior at time step ¢

P(j,t) == Pr(H;|{T1,.... T,}), 1<j < C,1<t<L.

Let RT < L be the smallest time step at which there ex-
ists a label winner satisfying P(winner, RT) > A. We
say that x belongs to the label winner with a response time
RT'. If the threshold is never surpassed during the whole trial,
we will force a decision by assigning the label winner to be
the one with the largest decision variable at time step L, i.e.,
P(winner, L) = max(P(1,L),P(2,L),...,P(C,L)). In
practice, we apply multiple trials and an appropriate deci-
sion threshold A is chosen to offset the noise introduced by
dropouts and ensure overall accuracy. To compute the pos-
terior P(i,j), we apply Bayes theorem and assume equal
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clean FGSM PGD Ly C&W L, DF Salt&Pepper Uniform Spatial Square
ho,o (%) 98.10 12.10 0.00 1.70 42.70 0.20 94.50 0.40 19.50
by, (%) 99.20 50.70 43.30 96.70 67.90 96,90 97.10 34.80 78.00
(a,b)*  (0.2,0.0) (0.0,0.6) (0.0,0.6) (0.4,0.4) (0.2,0.6) (0.2,0.4)  (0.2,0.2) (0.6,0.8) (0.0,0.2)
H; (%) 99.16 73.12 74.85 98.89 95.04 98.89 98.24 65.22 88.93
(a,b)*  (0.4,0.2) (0.0,0.6) (0.0,0.8) (0.2,0.4) (0.6,0.8) (0.4,0.4) (0.2,0.4) (0.4,0.8) (0.0,0.6)
haxp+ (%)  85.90 49.70 36.40 85.40 67.90 86.70 79.10 30.20 64.10
Hg- 5« (%) 98.20 71.09 51.68 97.94 92.30 98.08 97.36 36.73 87.15

Table 1: Performance of the DDDM under eight adversarial attacks on MNIST. The optimal performance of the DDDM H,; ;, for individual
attacks are compared to the ones of the dropout classifier h}, ;. The accuracy of the undefended model hq o is included as the baseline. For
each case, we show the prediction accuracy of the individual optimal models h;; ,/H; , as well as their corresponding optimal dropout rate
pair (a,b)”. We also include the overall performance of the DDDM H,+ ,« and the dropout classifier /4= »=. The global optimal dropout

rate pair (a*, b") is chosen as (0.2,0.6).

priors for all hypotheses H;. The problem is then reduced
to computing the likelihoods Pr({T4, ..., T:}|H;), which are
approximately evaluated over the clean training data. The de-
tailed description of our implementation can be found in the
supplementary material.

In the following context, we will denote the dropout clas-
sifier equipped with DDM as H,, ; and refer to it as DDDM
for simplicity.

4 Experiments and Results

The primary goal of the present experiments is to evaluate
the robustness of our DDDM model. Our experiments cover
three different modalities of data, i.e., image, audio, and text.
Under all types of inputs, the DDDM is demonstrated to be
effective in defending adversarial attacks.

For all the tasks, we run experiments over different com-
binations of dropout rates (a, b), both taking values from the
set {0,0.2,0.4,0.6,0.8}. Therefore, twenty-five classifiers
are tested in each case. In implementing DDM, we draw 100
predictions from each classifier on each generated adversarial
example. Then, 10 trials of the length L = 25 are randomly
sampled from those predictions. These trials are fed into the
evidence accumulation mechanism with a decision threshold
A = 0.99 for the final prediction.

4.1 Images Classification

MNIST Dataset

In the experiments, we adopt the same network architecture
as in [Madry et al., 2019] with an additional dropout layer
that follows each layer except the input/output ones.

To comprehensively evaluate the effectiveness of DDDM
in defending adversarial attacks, we considered four white-
box attacks and four black-box attacks as listed below:
the Fast Gradient Sign Method (FGSM) attack [Goodfel-
low et al., 2015], the Projected Gradient Descent (PGD) at-
tack [Madry et al., 20191, the L, Carlini and Wagner (Lo
C&W) attack [Carlini and Wagner, 2017], the Ly DeepFool
attack [Moosavi-Dezfooli et al., 2016], the Salt and Pepper
attack, the L., uniform noise attack [Rauber and Bethge,
20201, the Spatial attack [Engstrom et al., 2019] and the
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Figure 3: Variation of accuracy (solid lines) and response time (the
dashed line) against increasing perturbation size (¢). We compared
three models: the baseline model hyg o, the dropout classifier without
DDM hg.0,0.8, and the dropout classifier with DDM Hg.0,0.8 under
the PGD attack on MNIST.

Square attack [Andriushchenko et al., 2020]. The details of
attack settings can be found in the supplementary material.

In Table 1, we compare the optimal DDDMs (H; ;) with
the optimal dropout classifiers (h; ;) on individual attacks
and the clean data. The undefended model (hg) is in-
cluded as the baseline. To demonstrate the effectiveness of
DDDM under the combination of all attacks, we also in-
clude the results for Hy« 3~ and hg- 3+, i.e., the DDDM and
the dropout classifier with a single optimal dropout rate pair
(a*,b*) across all the attacks. (a*,b*) is determined with the
criterion that the corresponding H,- 3+ should try its best to
avoid sacrificing the clean accuracy and, at the same time,
provide as much defense as possible across different attacks.
The results indicate that the test-phase dropouts effectively
neutralize the adversarial perturbations against all attacks in
our experiments, and the DDM retains the accuracy through
evidence accumulation. Furthermore, H,- p+ outperforms
ha= b+ as well as hg o on all the cases.

Trade-off between Response Time and Accuracy. Ani-
mals and humans spend more effort in making difficult deci-
sions, and the DDDM exhibits the same behavior. While the
randomness in the test-phase dropout classifier neutralizes the
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clean PGD Lo, DF  Spatial
ho,o (%) 89.71 5.24 67.96 8.93
hy, p (%) 89.89 68.46 71.53 40.98
(a,b)*  (0.2,0.0) (0.8,0.8) (0.0,0.2) (0.4,0.8)
ar, (%) 89.67 68.46 79.01 64.26
(a,b)*  (0.6,0.4) (0.8,0.8) (0.0,0.8) (0.0,0.8)
ho= v+ (%)  86.88 35.87 67.57 36.92
Hy- - (%)  89.30 36.76 70.00 37.59

Table 2: Performance of the DDDM under three attacks on the CI-
FAR10 dataset. The same as in Table 1, we include the performance
under individual attacks as well as the overall performance with the
global optimal dropout rate pair (a*,b*) = (0.6, 0.8).

adversarial perturbations, the DDM helps retain a decent ac-
curacy by spending more time in inference. To demonstrate
this trade-off, we plot in Figure 3 the accuracies and response
times with respect to different adversarial perturbation sizes,
comparing DDDM to the dropout classifier as well as the un-
defended baseline model. The response time is measured by
the number of forward passes. The accuracy of the baseline
model drops rapidly as the perturbation size increase. On the
other hand, both the DDDM and the test-phase dropout classi-
fier retain relatively high accuracy even when the perturbation
is large. For small perturbations, the test-phase dropout clas-
sifier’s accuracy curve lies well below the baseline model’s
curve. In contrast, the performance of DDDM dominates on
almost the whole perturbation range except for near 0. Fi-
nally, the response time increases monotonically with pertur-
bation level, demonstrating a trade for accuracy with time.

CIFAR10 Dataset

We further carry out experiments on the CI-
FARI10 [Krizhevsky, 2009] dataset to challenge our approach
under a more realistic scenario. To implement the test-phase
dropout classifier, we use the VGG16 architecture [Simonyan
and Zisserman, 2015] without batch normalization. A
dropout layer is added to each of the last six convolutional
layers. We will discuss more the method of adding dropout
layers in the supplementary material.

The results are summarized in Table 2, which includes
three effective attacks in our test: PGD, L2DF, and Spa-
tial. Note that these attacks cover both white-box and black-
box attack categories. Again, DDDM effectively defends
all the attacks with only a minor sacrifice on the clean ac-
curacy. Compared to the MNIST case, while H,« - keeps
outperforming A~ p+, their performance gaps become much
smaller. This may be attributed to the fact that under a large
model such as VGG16, six dropout layers do not introduce
sufficient randomness in the dropout classifier. Hence, DDM
does not work at its full power.

4.2 Audio Classification

To evaluate the cross-domain performance of DDDM,
we consider the audio classification task on SpeechCom-
mands [Warden, 2018] dataset, which contains 35 keywords
and 105829 audio clips of those keywords. In the audio do-
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clean imperceptible
ho,o (%)  86.73 5.18
ha= b= (%) 8291 68.36
Hg p» (%) 85.02 70.62

Table 3: Performance of the DDDM. Similar to Table 1 but for the
imperceptible attack on the SpeechCommands dataset. Since there
is only one attack, we only includes the overall performance with
the global optimal dropout rate pair (a*,b") = (0.4,0.4).

clean TextBugger
hoo (%) 88.44 1.7
ha= b+ (%) 89.16 22.10
Hyx p+ (%) 89.41 86.75

Table 4: Performance of the DDDM. Similar to Table 3 but for the
TextBugger attack on the IMDB dataset. The global optimal dropout
rate pair is (a*,b*) = (0.4,0.4).

main, present works focus on the classification and recogni-
tion of audio clips, which serve as the base of various ap-
plications such as voice input and voice assistants. The ex-
isting audio adversarial attacks [Carlini and Wagner, 2018;
Qin et al., 2019] severely endangers the safety of such auto-
matic speech recognition (ASR) systems.

In our test, we adopt a simplified version of the Deep-
Speech2 model [Amodei et al., 2015] against the attack pro-
posed by [Qin et al., 2019], which adds human-imperceptible
perturbations to the audio waveform to mislead the model
predictions. Our DeepSpeech2 model includes a Mel-
spectrogram conversion layer, followed by one 1D convo-
lutional layer, two LSTMs, and two fully-connected layers.
Dropout is only applied once after the convolutional layer.
After training, we attacked the model with the adversarial per-
turbation bound of 0.05.

Results in Table 3 show that DDDM providea defense
against the imperceptible attack with only a minor decrease
in clean accuracy. Comparing the dropout classifier hg« p«
with the DDDM H - 3+, the latter show better performance
under clean and adversarial case situations. We notice that
the gap between hy- p« and Hg« p+ is small. This is similar to
the case for CIFAR10 and could be attributed to the insuffi-
cient number of dropout layers.

4.3 Text Classification

At last, we evaluate our approach on the text classification
task. Natural languages consist of discrete characters and
words. The process of mapping tokens to embeddings pre-
vents directly applying attack methods from the image do-
main on textual classifiers. A text-specific attack methods
have been developed [Li ef al., 2019].

The DDDM is evaluated on the IMDB dataset [Maas et al.,
2011] against the TextBugger attack [Li et al., 2019]. We
use an LSTM classifier resembling the one in the TextBug-
ger work, with adding an additional dropout layer to the pre-
activation outputs of each gate in the network. Words from
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the IMDB dataset are first converted into pre-trained GloVe
embedding vectors of dimension 300, then fed to the LSTM
classifier.

We summarize the experimental results in Table 4. DDDM
H -~ successfully protected the classifier with a consider-
able improvement in performance compared to the dropout
classifier hq- p~. The robust accuracy of H,- 3~ under the
TextBugger attack approaches its clean accuracy. Moreover,
we note that the clean accuracy of H« - is higher than the
one of the undefended model hg o. This could be explained
by the fact that we use the clean training data to evaluate the
likelihood. We emphasize that this does not harm the effec-
tiveness of our approach since it does not require information
about the possible attacks beforehand.

5 Discussion

The current work is merely proof of the principle that combin-
ing an evidence accumulation mechanism with deep neural
networks enhances robustness and provides defense against
adversarial attacks. The key to the framework’s success lies
in the interplay between two components of the framework.
The first is the mechanism to introduce noise into the system.
Partly because the random noise itself degrades the perfor-
mance; therefore, achieving a balance between performance
and robustness poses a challenge. The second component, the
evidence accumulation in the DDM, provides a mechanism to
solve this problem and allows more flexibility in terms of the
level of additional noise added into the system. In addition to
artificially introduced noise, noise exists in many real-world
situations, such as the automatic driving systems. In these
cases, noise naturally presented in the input may be combined
with artificially introduced noise for defense against attacks.

The attractiveness of the framework also lies in its sim-
plicity. DDDM does not require the networks to be trained
differently for any particular attacks. Instead, it is agnostic to
the type of attack and its particular scheme of noise. Thus,
it provides protection not only for the attacks tested here but
also for other attacks. The framework also does not depend
on particular types of networks. It can also be used in combi-
nation with more sophisticated networks and larger datasets.

Other than what has been mentioned above, several other
directions to extend the current framework can be explored in
the future. In addition to the dropouts, other ways of introduc-
ing noise into the system may help to battle perturbations. A
mechanism of online adjustment of decision thresholds may
help improve the speed-accuracy tradeoff in a dynamic envi-
ronment. Finally, the evidence accumulation mechanism is
not implemented with a neural network in the current study.
However, previous studies have shown that simple recur-
rent networks may achieve the functionality [Wang, 2002;
Wong and Wang, 2006], providing an end-to-end neural net-
work solution for the DDDM.

6 Conclustion

Inspired by the neural mechanism of decision making, we
develop a novel framework (see Figure 1) and demonstrate
its effectiveness in improving the robustness of deep learn-
ing networks against adversarial attacks in different domains
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with a brain-like mechanism (see Tables 1 to 4). In con-
trast to adversarial training, the DDDM shows an advantage
of sustaining the same level of clean accuracy after being at-
tacked. By extending the one-shot classification into a tempo-
ral decision-making process based on evidence accumulation,
our framework trades inference time for accuracy to achieve
robustness.

To the best of our knowledge, this is the first framework to
combine deep neural networks and a brain-inspired decision-
making mechanism for defense against adversarial attacks
and the first framework to provide cross-domain protection
without adversarial training. We hope that our work brings
the advances of neuroscience research to the attention of the
artificial intelligence community and encourages researchers
to take a closer look at the most powerful yet robust classifier
our brain.
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