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Abstract
The development of AlphaZero was a breakthrough
in search-based reinforcement learning, by employ-
ing a given world model in a Monte-Carlo tree
search (MCTS) algorithm to incrementally learn
both an action policy and a value estimation. When
extending this paradigm to the setting of simulta-
neous move games we find that the selection strat-
egy of AlphaZero has theoretical shortcomings, in-
cluding that convergence to a Nash equilibrium is
not guaranteed. By analyzing these shortcomings,
we find that the selection strategy corresponds to an
approximated version of bandit linear optimization
using Tsallis entropy regularization with α param-
eter set to zero, which is equivalent to log-barrier
regularization. This observation allows us to re-
fine the search method used by AlphaZero to obtain
an algorithm that has theoretically optimal regret as
well as superior empirical performance on our eval-
uation benchmark.

1 Introduction
Monte-Carlo tree search commonly uses UCT (Upper Con-
fidence Bounds for Trees) [Kocsis and Szepesvári, 2006] or
some variant thereof as the method for action selection in the
search tree. One of these variants, PUCT (Polynomial Up-
per Confidence Bounds for Trees) [Rosin, 2011], is used in
several search-based reinforcement learning (RL) algorithms,
e.g. AlphaZero [Silver et al., 2017], MuZero [Schrittwieser
et al., 2019] and recently Player of Games [Schmid et al.,
2021]. A possible explanation for the choice for this variant
in AlphaZero and subsequent algorithms is due to the fact that
the PUCT action selection formula is parametrized by a prior
policy, which allows for a learned prior action distribution to
be utilized to guide the search procedure.

In [Grill et al., 2020] they develop an MCTS implemen-
tation inspired by ideas from MPO, a model-free policy-
optimization algorithm [Abdolmaleki et al., 2018]. A key
insight was that the empirical visit distribution of actions
in PUCT approximates the solution of a regularized policy-
optimization objective. Consequently, a method was de-
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rived to compute the exact solution to this regularized policy-
optimization objective, allowing their implementation to
work significantly better than the standard PUCT implemen-
tation when the amount of search iterations is low, since this
setting suffers the most from the approximative nature of
PUCT. Another disadvantage of PUCT arises in the domain
of simultaneous move games. The straightforward extension
of PUCT to this domain suffers from the same theoretical
issues as Decoupled UCT (DUCT) [Tak et al., 2014], i.e.
asymptotic convergence to a Nash equilibrium is not guar-
anteed, despite Decoupled (P)UCT performing favorably in
practice compared to some algorithms that do converge to a
Nash equilibrium [Tak et al., 2014]. In this work we seek
to expand on the work in [Grill et al., 2020] by deriving a
search-based reinforcement learning algorithm that converges
to a Nash equilibrium in simultaneous move games, while
having strong empirical performance at the same time.

Contributions. We analyze the implicit regularized policy-
optimization objective from PUCT and find that this is equiv-
alent to log-barrier regularization, which is a special case of
Tsallis entropy [Tsallis, 1988] regularization, i.e. with the α
parameter set to zero. This raises the question whether there
are other values of α that would result in improved perfor-
mance. Previous literature on bandit algorithms indicates that
the answer to this question is affirmative. Concretely, setting
α to 0.5, combined with an appropriate learning rate, achieves
the theoretically optimal regret bound of O(

√
KT ), with K

being the size of the action space and T the amount of search
iterations. Other values of α fail to obtain this regret bound.
We find that in a certain sense, regularization with α = 0.5
combined with an appropriate learning rate corresponds to a
hybrid of UCT and PUCT and we experimentally verify that
this results in an increased rate of improvement for our rein-
forcement learning agents, both in the setting with few search
iterations and beyond.

2 Background
2.1 Two-Player Zero-Sum Markov Games
We consider a finite-horizon discounted two-player zero-sum
Markov game, which can be described by a tuple M =
(X ,A,P, r, γ): a state space X , an action space A, a tran-
sition probability function P : X × A × A → ∆(X ), a
reward function r : X × A × A → [0, 1] and a discount
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factor γ ∈ (0, 1]. A policy or strategy π is defined as a point
on the n-dimensional simplex S , where n is equal to the size
of the action space A. We will use the terms “policy” and
“strategy” interchangeably, with the former being more com-
mon in RL literature and the latter being more common in
game-playing literature. The RL problem consists in finding
a policy which maximizes the discounted cumulative reward
Eπθ

[∑
t≥0 γ

trt

]
.To scale the method to large environments,

we assume that the learned policy πθ is parameterized by a
neural network θ.

2.2 Regret and Nash Equilibria
In this work we focus on simultaneous move games, as op-
posed to sequential move games such as chess and Go, or
games where the player plays against a non-adversarial en-
vironment, e.g. the Atari57 suite of games. The reason for
our particular interest in simultaneous move games is due to
the fact that the action selection strategy of AlphaZero, i.e.
PUCT, does not guarantee convergence to a Nash equilib-
rium, i.e. a pair of policies where neither player gains by uni-
laterally changing its own policy. One can show this by con-
structing a counterexample analogously to the one in [Shafiei
et al., 2009] for UCT.

To remedy this we construct an algorithm that is Hannan
consistent, or equivalently: an algorithm with no external re-
gret. We now formally define the notion of external regret
used in this work.
Definition 1 (External Regret). The external regret for play-
ing a sequence of strategies π1, ..., πT and a sequence of cost
vectors g1, ...,gT , is defined as

RT =

T∑
t=1

g⊤
t πt − min

π∈∆n

T∑
t=1

g⊤
t π

where ∆n is the n-dimensional simplex: ∆n = {π ∈
Rn,

∑
i πi = 1, πi ≥ 0}

Note that the cost vectors gt are the negation of the ob-
tained rewards. An algorithm is said to be Hannan consis-
tent if its external regret is sublinear as a function of T , i.e.
RT = o(T ), which implies that on average the algorithm
performs as well as the best fixed strategy in hindsight. If
both players use a Hannan consistent algorithm in self-play
in a zero-sum normal form game, the average strategies cho-
sen converge to a Nash equilibrium of the game [Blum and
Mansour, 2007]. Common Hannan-consistent algorithms for
simultaneous move games are Exp3 [Auer et al., 2003] and
Regret Matching (RM) [Hart and Mas-Colell, 2001].

Though there is one caveat, since normal form games, or
matrix games, entail only a limited subset of simultaneous
move games. More generally, we are interested in results for
zero-sum extensive form games with simultaneous moves, or
stacked matrix games (SMG). In these games we have the ad-
ditional requirement that the selection strategy needs to sat-
isfy the guaranteed exploration condition, which ensures that
the whole game tree can be covered. Moreover, one has to
be careful in the way the value of child nodes are estimated,
since one can construct an estimation method that fails to con-
verge to a Nash equilibrium, despite using a Hannan consis-

tent algorithm. Both of these results are discussed extensively
in [Kovarı́k and Lisý, 2018].

2.3 Bandit Linear Optimization
Bandit linear optimization [Abernethy et al., 2008; Hazan,
2019] can be thought of as online linear optimization in the
bandit setting. The bandit setting implies that only partial
information is available to each agent with regard to the val-
uation of strategies. More concretely, an agent observes only
the scalar value g⊤

t πt in Definition 1, as opposed to the full
cost vector gt. Thus, it is not possible to determine the reward
for counterfactual strategies.

Just like solving a zero-sum matrix game is equivalent to
solving a linear optimization problem, the case where the en-
tries of the matrix, i.e. the Q-values, have to be estimated
through sampling corresponds to a bandit linear optimiza-
tion problem. In this work we utilize a notion of performing
MCTS that is inspired by ideas from bandit linear optimiza-
tion literature. In particular, while MCTS typically results in
an empirical visit distribution, i.e. the distribution of visit
counts for each action by the search, we instead store the
average strategy throughout the search, where the individ-
ual strategies can be mixed, i.e. comprising multiple actions.
The implications on the MCTS implementation are further
detailed in Section 4.

3 Methodology
3.1 PUCT and the Logarithmic Barrier
The PUCT action selection strategy, used in AlphaZero and
originally defined in [Rosin, 2011], selects the best action a∗

as follows:

a∗ ≜ argmax
a

[
Q(x, a) + c · πθ(a|x) ·

√∑
b n(x, b)

1 + n(x, a)

]
,

(1)
where c is a numerical constant, n(x, a) is the number of
times that action a has been selected from state x during the
search, and Q(x, a) is an estimate of the Q-value for state-
action pair (x, a) computed from search statistics.

In Proposition 1 in [Grill et al., 2020] it is shown that this
can be rewritten as

a∗ = argmax
a

[
∂

∂na

(
qTπ̂ − λNDKL (πθ∥π̂)

)]
, (2)

where DKL denotes the reversed KL-divergence since πθ is
the target distribution, and where the learning rate λN is de-
fined as

λN ≜ c ·
√∑

b nb

|A|+
∑

b nb
, (3)

and where the empirical visit distribution π̂ is defined as

π̂(a|x) ≜ 1 + n(x, a)

|A|+
∑

b n(x, b)
. (4)

In other words: a∗ is the action maximizing the partial deriva-
tive with respect to its visit count and the resulting strategy at
time step t is the one-hot vector 1t(a

∗). The empirical visit
distribution π̂ is consequently updated by incrementing na∗ .
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Additionally they note that, if we maximize the function over
the simplex S , then instead of obtaining a discrete approxi-
mate solution, we obtain the optimal mixed strategy

π̄ ≜ argmax
y∈S

[
qTy − λNDKL (πθ∥y)

]
. (5)

We can rewrite this as

π̄ = argmax
y∈S

[
qTy − λN (πθ logπθ − πθ logy)

]
,

and because πθ is a constant vector we can simplify the ex-
pression as

π̄ = argmax
y∈S

[
qTy + λNπθ logy

]
. (6)

Thus, we obtain an optimization problem that is regularized
by a log-barrier, which is a regularization method that was
first proposed in the bandit setting in [Foster et al., 2016].
Note that it is the approximative nature of PUCT that prevents
Hannan consistency, which causes its failure to converge to a
Nash equilibrium. Sampling from π̄ on the other hand, does
lead to a Hannan consistent action selection algorithm, but
we will see in Section 3.2 that we can utilize the Tsallis en-
tropy to generalize to a whole family of Hannan consistent
algorithms.

3.2 Generalization With Tsallis Entropy
We now give the definition of the (negative) Tsallis entropy
Hα(x), originally described by Tsallis [1988]:

Hα(x) ≜
1

1− α

(
1−

∑
i

xα
i

)
, (7)

where x is a point on a simplex. Regularization using a log-
barrier happens to be a special case of regularization based
on the Tsallis entropy, i.e. the case where α is zero. It is
straightforward to see that if α = 0, then Hα(x) as defined
above becomes meaningless, since the same value is obtained
regardless of the values xi. Therefore the Tsallis entropy for
α = 0 is defined as

H0(x) ≜ −
∑
i

log (xi) . (8)

In the Appendix we show how this definition originates from
the Hα(x) entropy formula.

A natural question to ask at this point is whether setting
α to zero, like AlphaZero1 approximately does through the
use of PUCT, is indeed the optimal choice. It turns out that,
combined with an appropriate learning rate, the case where α
is set to 0.5 actually has the best theoretical guarantees on the
regret, i.e. it obtains the optimal adversarial asymptotic regret
bound of O(

√
KT ) [Audibert and Bubeck, 2009; Abernethy

et al., 2015]. Comparatively, setting α to 0 yields a bound of
O(

√
KT log T ) [Wei and Luo, 2018] and setting α to 1 yields

a bound of O(
√
KT logK) [Seldin and Lugosi, 2017].

1To the best knowledge of the authors the naming of AlphaZero
is not related to setting this α parameter to zero and this matching is
thus a mere coincidence.

3.3 Combining PUCT and UCT
We have established that the reversed KL-divergence is equiv-
alent to the f -divergence with f(x) = − log(x), i.e. the log-
barrier. The f -divergence that results from a Tsallis entropy
regularizer with α = 0.5 can be easily computed from Equa-
tion (7) and is also equivalent to the squared Hellinger dis-
tance

f(x) = 2− 2
√
x. (9)

When we replace the KL-divergence in Equation (5) with this
f -divergence, we obtain the following formula after simplify-
ing:

π̄0.5 = argmax
y∈S

[
qTy + λ∗

N

∑
b

√
πθb · yb

]
, (10)

where the subscript on π̄ denotes the value of α and λ∗
N de-

notes the learning rate for the f -divergence from Equation
(9), such that the optimal regret bound is obtained. In Lemma
1 we determine λ∗

N and subsequently, through proving Propo-
sition 1, we show how π̄0.5 resembles a combination of PUCT
and UCT.

Lemma 1. λ∗
N = λN

Proof. This follows directly from Theorem 3 in [Zimmert
and Seldin, 2018] and setting α to 0.5.

Proposition 1. π̄0.5 is the strategy that results from combin-
ing the f -divergence from UCT with the learning rate λ from
PUCT.

Proof. First we define the action selection formula for UCT:

a∗UCT ≜ argmax
a

[
Q(x, a) + c ·

√
πθ ·

log
∑

b n(x, b)

1 + n(x, a)

]
.

(11)
Note that πθ can be assumed to be the uniform distribution
when there is no better estimate for the prior. Now we rewrite
a∗UCT such that we can determine its underlying f -divergence
and learning rate:

a∗UCT = argmax
aQ(x, a) + c ·
√

log
∑
b

n(x, b) ·
√

πθ

1 + n(x, a)


= argmax

aQ(x, a) + c ·

√
log
∑

b n(x, b)

|A|+
∑

b n(x, b)
·
√

πθ

1+n(x,a)
|A|+

∑
b n(x,b)

 ,

(12)

which then becomes

a∗UCT = argmax
a

[
Q(x, a)− λUCT

N · f ′
(

π̂

πθ

)]
, (13)

with λUCT
N ≜ c ·

√
log

∑
b n(x,b)

|A|+
∑

b n(x,b) and f ′(x) = − 1√
x

.
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Then we rewrite a∗UCT using Lemma 2 in [Grill et al.,
2020]:

a∗UCT = argmax
a

[
∂

∂na

(
qTπ̂ − λUCT

N ·Df (π̂||πθ)
)]

,

(14)
with Df being the f -divergence from Equation (9). In com-
bination with Lemma 1 this concludes the proof.

4 Implementation
4.1 Separation of π̂ and π̄
In each MCTS iteration we compute π̄ for both players as

π̄ ≜ argmax
y∈S

[
qTy − λNDf (πθ∥y)

]
. (15)

However, π̄ depends on the Q-values q. In sequential MCTS,
q is readily available from the child nodes, but in simultane-
ous MCTS this typically gets computed as q = Qπopp, with
Q being the matrix of running mean Q-values for action pairs
and πopp being the current best estimate of the opponent’s
strategy. In a standard Decoupled (P)UCT implementation
we set πopp to be equal to π̂opp, the empirical visit distribu-
tion of the opponent. However, due to the previously men-
tioned inaccuracy of π̂, we instead leverage the π̄ solutions
from previous MCTS iterations. A naive approach would be
to set πopp to the computed π̄opp from the last iteration, but
this is problematic because π̄ itself does not converge to a
Nash equilibrium, whereas its average does, as mentioned in
Section 2.2. Therefore, it is beneficial to use a (weighted)
average of the π̄ solutions from all the previous iterations.

Note that storing a weighted average of π̄ solutions im-
plies that an extra variable has to be kept inside of the nodes
next to the already present variable storing the empirical visit
distribution π̂. With the approach described above, the latter
variable is only needed for computing the running mean of
the Q-values obtained from the search.

4.2 Efficient Computation of π̄
In each MCTS iteration a convex optimization problem as in
Equation (15) needs to be solved to compute the policy π̄. It
turns out that computing π̄ can be done in a computationally
efficient way. Analogously to Proposition 4 in [Grill et al.,
2020], where the α = 0 case is studied, one can derive for the
Tsallis entropy α = 0.5 case:

∃α ∈ R : q + λN ·
√

πθ

π̄
= α1,

with 1 being the the vector such that ∀a : 1a = 1. Therefore

π̄ =

(
λN · √πθ

α− q

)2

,

with α set such that
∑

b π̄b = 1 and ∀b : π̄b ≥ 0. Note that
the α parameter here is different from the Tsallis-α.

We find the following bounds on α, using a similar deriva-
tion as [Grill et al., 2020]:

αmin ≜max
b∈A

(q[b] + λN ·
√
πθ[b])

αmax ≜max
b∈A

q[b] + λN

As
∑

b π̄α[b] is strictly decreasing on α ∈ (αmin, αmax),
we can then compute π̄ easily using dichotomic search over
(αmin, αmax). Alternatively, it is also possible to utilize
Newton’s method to determine π̄ as done in [Zimmert and
Seldin, 2018].

4.3 Weighing of π̄ Solutions
We said in Section 2.2 that the average of the strategies, i.e.
the average of π̄ solutions, converges to a Nash equilibrium.
However, we found empirically that logarithmically increas-
ing the weight of the π̄ solutions in the average leads to faster
convergence due to quicker decay of the impact of old solu-
tions. We show that we are still guaranteed convergence to a
Nash equilibrium by proving Proposition 2, which states that,
asymptotically, there is no difference between an unweighted
average and a log-weighted average.
Proposition 2.

lim
n→∞

∑n
i=1 log(i)π̄i∑n
i=1 log(i)

= lim
n→∞

∑n
i=1 π̄i

n
(16)

Proof. First we rewrite the left-hand side as

lim
n→∞

∑n
i=1 log(i)π̄i

log n!
.

Using Stirling’s approximation one has

lim
n→∞

∑n
i=1 log(i)π̄i

log n!
= lim

n→∞

∑n
i=1 log(i)π̄i

n log n

= lim
n→∞

∑n
i=1

log i
logn π̄i

n
.

We can now rewrite (16) as

lim
n→∞

n∑
i=1

log i

log n
π̄i = lim

n→∞

n∑
i=1

π̄i

and using dot product notation one has

lim
n→∞

(
log 1

log n
, ...,

log n

log n

)
· π̄ = (1, ..., 1) · π̄

which is implied by

lim
n→∞

(
log 1

log n
, ...,

log n

log n

)
= (1, ..., 1) . (17)

To show that (17) holds, we first note that the dot product
of both sides is equal to n by using Stirling’s approximation.
This, combined with the norm of the right-hand side being
equal to

√
n, implies that the norm of the left-hand side must

be ≥
√
n, and equal to

√
n only if both vectors are identical.

Since the absolute values of the elements of the vector on the
left-hand side are all ≤ 1, the norm must be ≤

√
n, implying

that both vectors are equal.

4.4 Imputation of Q-values
To get a better Q-value estimation of the unvisited nodes, we
set the Q-value of the unvisited nodes to be the mean Q-value
of the visited nodes each time a tree node is selected, similar
to the implementation of ELF OpenGo [Tian et al., 2019].
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Parameter Value

Pod radius 400
Checkpoint radius 600
Pod mass 1
Friction coefficient 0.15
Shield timer 4
Shield mass multiplier 10
Thrust [0, 200]
Angle [-18, 18]

Table 1: Parameter values for Pod Pursuit

5 Experiments
5.1 Test Domain
As test domain we use an adaptation of the bot program-
ming game Mad Pod Racing (MPR) - formerly known as
Coders Strike Back (CSB) - on the CodinGame competitive
programming platform. This is the platform’s most popular
game, with supposedly over 100,000 participants. The top
entries are based on a variety of reinforcement learning algo-
rithms, such as AlphaZero, DQN 2 [Mnih et al., 2013] and
A2C [Mnih et al., 2016].

MPR/CSB is a zero-sum two-player simultaneous move
game with a continuous action and state space in which each
agent controls two Star Wars-themed pods, which participate
in a race against the pods of the opponent. However, for test-
ing our algorithm we will instead use a simplified version of
the game which we call Pod Pursuit. Here each player con-
trols one pod, with one player focusing strictly on prevent-
ing the other player from completing the race. This leads
to an asymmetric game that has some high-level similarity
to pursuit-evasion games. These types of games are com-
monly studied in simultaneous move settings [Bosansky et
al., 2016]. Additionally, pursuit-evasion games tend to suit
UCT well due to a high frequency of the states requiring pure
strategies [Bosansky et al., 2016]. Thus making it more chal-
lenging to compete against UCT with an algorithm seeking a
(possibly mixed) Nash equilibrium strategy.

Another reason why we deem this game as a good test do-
main for our algorithm is because it is a game that is highly
suited for reinforcement learning, or stated alternatively: it
is very difficult to obtain comparable results with alternative
methods. On top of that, the game is simple enough to en-
able successful training on high-end consumer hardware, yet
playing optimally is (highly) non-trivial. Lastly, we note that
the CodinGame platform has been used before to conduct re-
inforcement learning research, e.g. [Kowalski and Miernik,
2020].

5.2 Game Description
Pod Pursuit 3 is a fully observable asymmetric zero-sum two-
player simultaneous move game featuring two pods. Pod 1’s
task is to hit one or more checkpoints in a given order, with

2A write-up of a DQN implementation can be found here:
https://github.com/pb4git/Nash-DQN-CSB-Article

3Implementation at: https://github.com/mpeelm/Pod-Pursuit

B

1 2

A

(a) An initial configuration of the pods, both facing checkpoint A.

B

A

1

2

(b) Pod 2 managed to get in front of Pod 1 and may prevent Pod 1
from reaching checkpoint A.

Figure 1: Depictions of two game states. The heading of the pods is
indicated with a triangle and the velocity vector with an arrow.

a limited amount of turns for each checkpoint. Pod 2’s task
is to prevent Pod 1 from completing its task by blocking its
path. The pods move continuously in a minimalist 2D physics
engine, though the actions and friction are applied in discrete
turns. Each turn the players determine the next action to apply
to their pod, where each action consists out of both a thrust
and an angle. As in the original game, both pods also have to
ability to shield instead of thrust, which causes their mass to
increase tenfold for one turn, at the cost of not being able to
apply thrust for some turns. While the ability to shield may
seem like a gimmick at first, it has profound consequences
on the game. For example, we conjecture that the ability to
shield results in any game state being a theoretical win for
Pod 1, assuming the absence of a turn limit. Otherwise, some
positions would be trivial wins for Pod 2. An illustration of
the game is provided in Figure 1. In Figure 1a we can see
how both pods start out in an idle state, both facing the first
checkpoint from an equal distance, separated by a distance of
1000. In Figure 1b we can see how the pods have left their
starting position and how Pod 2 is now in a position where it
can prevent Pod 1 from easily capturing the next checkpoint.
In Table 1 we show an overview of the relevant parameters
for the physics engine. We choose to leave the parameters
unit-less in general, but the interaction between the different
quantities should happen as if they were SI units with the ex-
ception of the angle, which is in degrees instead of radians.
The game features two types of collisions: pod-pod collisions
and pod-checkpoint collisions. Pod-pod collisions are elastic
and have a minimum impulse of 120. Pod-checkpoint colli-
sions happen when the center of the pod is within the radius
of the checkpoint and do not result in a physical effect.
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(a) 50 search iterations per turn

(b) 200 search iterations per turn

Figure 2: Training BLO-Alpha0.5, BLO-Alpha0 and AlphaZero for
250 iterations, where in each iteration the network parameters are
updated based on the result of 4000 games, resulting in a total of one
million games played for each algorithm. Every model is trained
three times independently and the shown data points are the mean
performance. The Elo rating is computed in a tournament setting
that includes all 45 models.

5.3 Algorithm Comparison
In our experiments we are interested in the comparison of
three algorithms. Firstly, we test a baseline straightforward
extension of AlphaZero for simultaneous move games, em-
ploying Decoupled PUCT as search method. As in the Al-
phaZero paper, we make use of Dirichlet noise in the root
node. The parameters for the noise are ϵ = 0.25 and α = 1.
Secondly, we test BLO-Alpha0, which replaces AlphaZero’s
PUCT with the search detailed in Section 4, but with the
Tsallis-α set to zero. And lastly, we test BLO-Alpha0.5,
which is identical to BLO-Alpha0, except for using regular-
ization based on the Tsallis entropy with α = 0.5.

Each algorithm uses the outcomes and computed policies
from self-play games to update an MLP with three hidden
layers with dimension 88 and ReLU as activation function.
The optimizer used is SGD with momentum (0.9) and a con-
stant learning rate of 0.1. The inputs of the network are the
(scaled) relative positions between the pods and the next two
checkpoints (12 inputs), as well as the (scaled) velocity vec-
tors of the pods (4 inputs) and the one-hot encoded shield

timers (8 inputs). This yields a total of 24 inputs. The net-
work has both a value-head and a policy-head and the latter
has 7 actions that discretize the action space into actions with
thrust in {0, 200} and angles in {−18, 0, 18}, plus a shield
action with angle 0. Lastly, we use a discount factor γ of 0.99
and the constant c in the definition of λN is set to 1.

In Figure 2a we can see the (relative) Elo rating of the three
algorithms when each algorithm gets 50 search iterations per
turn. We can observe that BLO-Alpha0.5 does significantly
better than the other two algorithms, while BLO-Alpha0 still
yields a modest improvement over AlphaZero, which is ex-
pected due to the results obtained for low simulation bud-
gets in [Grill et al., 2020]. However, when we look at Fig-
ure 2b, in which 200 iterations are used per turn, we can see
that the BLO algorithms still perform better than AlphaZero’s
PUCT, which shows that even for higher simulation budgets
it is worthwhile to use a more precise search algorithm.

For the BLO algorithms we opted not to use Dirichlet
noise. While Dirichlet noise can be beneficial during the
early training, later on it actually tends to slow down improve-
ment. We attempted to run AlphaZero without Dirichlet noise
as well, but found that this hurts AlphaZero’s ability to im-
prove severely at 50 search iterations per turn. Increasing the
amount of search iterations has been observed to overcome
this, and thus allows AlphaZero to learn without Dirichlet
noise, but we found that even in this setting, the presence of
Dirichlet noise is beneficial to learning. Taking this into con-
sideration we don’t deem the asymmetry of the presence of
Dirichlet noise among the algorithms as something that hurts
the validity of our experiments.

6 Conclusion
We have shown that the PUCT algorithm used by AlphaZero
and MuZero corresponds to an MCTS using log-barrier reg-
ularization. This insight has allowed us to use the Tsallis
entropy to generalize to different kinds of divergences. Pre-
vious work on bandit algorithms has shown that Tsallis en-
tropy with α = 0.5 obtains the theoretically optimal regret
bound. After experimentally testing the impact of the value
of α on the rate of improvement for a search-based reinforce-
ment learning algorithm, we found that setting α to 0.5 yields
significant improvements compared to the log-barrier regular-
ization used by PUCT. Additionally, we developed our algo-
rithm with an ideology rooted in bandit linear optimization,
most notably leading to the maintaining of the average strat-
egy in the MCTS nodes instead of the usual empirical visit
counts. We tested our algorithm on a simultaneous move
game since these kinds of games have an especially strong
theoretical need for an alternative to PUCT due to the failure
of PUCT to converge to a Nash equilibrium, but we expect
that our findings will translate well to other domains, such as
sequential move games and non-adversarial games.
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gence of common learning algorithms in games. CoRR,
abs/1606.06244, 2016.

[Grill et al., 2020] Jean-Bastien Grill, Florent Altché, Yun-
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