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Abstract

We study the adversarial bandit problem with com-
posite anonymous delayed feedback. In this set-
ting, losses of an action are split into d components,
spreading over consecutive rounds after the action
is chosen. And in each round, the algorithm ob-
serves the aggregation of losses that come from the
latest d rounds. Previous works focus on oblivious
adversarial setting, while we investigate the harder
non-oblivious setting. We show non-oblivious set-
ting incurs 2(7") pseudo regret even when the loss
sequence is bounded memory. However, we pro-
pose a wrapper algorithm which enjoys o(T') poli-
cy regret on many adversarial bandit problems with
the assumption that the loss sequence is bound-
ed memory. Especially, for K-armed bandit and
bandit convex optimization, we have O(T%/3) pol-
icy regret bound. We also prove a matching lower
bound for K -armed bandit. Our lower bound work-
s even when the loss sequence is oblivious but the
delay is non-oblivious. It answers the open prob-
lem proposed in [Wang et al., 2021], showing that
non-oblivious delay is enough to incur Q(7'%/3) re-
gret.

1 Introduction

Multi-armed bandit is a widely studied problem. It can be
formulated by a multi-rounds game between two players, an
adversary and a learner. In ¢-th round, the adversary assigns
each action a € [K] a loss I;(a), and simultaneously, the
learner chooses an action a; € [K]. It then incurs loss I;(az).
The learner can observe the loss this round of the action it
just chose (i.e., {;(a;)), but can not observe the loss of other
actions. This is so-called bandit feedback. Learner’s goal is
to minimize its total loss, We usually choose a posteriori best
fixed action as the comparison, so that the goal is to minimize
the expected regret, defined as

E[Rr) =E | li(ar) — min 3 L(y)
t=1 t=1
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Bandits problem has a wide range of applications in the
industry, including medical trials, recommendation system-
s, computational ads., tree search algorithms..([Kocsis and
Szepesvari, 2006; Chapelle et al., 2014; Villar et al., 2015;
Silver et al., 2016; Lei et al., 2017]). In the standard formu-
lation of the bandit problem, each round the learner observes
the precise feedback immediately, and adjusts its strategy af-
terward according to the immediate feedback. However, in
many real-world situations, this assumption can not be sat-
isfied. The total impact of an action may not be observed
immediately. In contrast, the impact may spread over an in-
terval after the action has been played. For instance, consider
the advertising problem. People do not always click on the
website or buy the product after seeing the ads immediate-
ly, and the feedback(i.e., click number) the recommender ob-
served may be the aggregation of the impact of several ads
recommended before.

To address the above scenarios, [Pike-Burke et al., 2018]
proposed a stochastic bandit model with anonymous feed-
back. In their setting, round ¢ is related with a delay time d(¢),
which is drawn from some i.i.d distribution, and the feedback
learner can observe at the end of round ¢ is the aggregation
2 s+d(s)=t bs(as). They showed that there is a learner achiev-

ing O (\/ KT+ K E(d)) expected regret. [Cesa-Bianchi er

al., 2018] generalized the model to adversarial bandits, where
the loss in their model is a composition of constant part-
s, li(a) = ZZ;& lgs)(a) where ZES)(a) means the part of
loss which will delay s rounds. The feedback learner ob-
serves at the end of ¢-th round is I (a:) = Zj;é lt(s_)s(at_s).
In their model, the loss sequence and delay are both obliv-
ious, which means they can not be adjusted according to
the learner’s action history. They proposed a mini-batch
wrapper algorithm, converting a standard bandit algorithm to
the one that can handle composite anonymous delayed feed-
back. They applied this wrapper on EXP3 algorithm[Auer
et al., 20021, achieving O(v/dKT) expected regret of multi-
armed bandit problem with composite anonymous feedback.
Their wrapper can also be applied on bandit convex opti-
mization problem [Flaxman et al., 2005], in which the action
set is a convex body, and loss functions are bounded con-
vex functions on this convex body.They applied their wrap-
per on the algorithm proposed in [Saha and Tewari, 2011],
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achieving O(d'/3(KT)?/3) regret. Subsequently, [Wang et
al., 2021] studied the situation that delay is determined by a
non-oblivious adversary. That is, though the loss sequence is
oblivious, an adversary can split the loss into parts according
to the learner’s action history. In this setting, they modified s-
tandard EXP3 algorithm so that it achieves O((d++v/K)T?/3)
regret for K-armed bandit. Different from other previous
algorithms, it does not require any prior knowledge of de-
lay d. Though they believed that their algorithm is asymp-
totic optimal for the adversary with oblivious loss and non-
oblivious delay, we only have a Q(\/T) regret lower bound
from the classical multi-armed bandit problem. How to de-
rive a matching regret lower bound is one of the future re-
search problems in their work.

The existing works on composite anonymous feedback set-
ting all assume that the loss sequence is oblivious, which does
not always hold in the real world. For example, consider the
case that one is involved in a repeated game with other player-
s, it is natural that others will adjust their strategies according
to his action history. This will make the loss of each pure s-
trategy non-oblivious. In K -armed bandit and bandit convex
optimization problem without delay, even if we consider non-
oblivious loss, we still have ©(+/T') pseudo regret. Howev-
er, things become very different when we consider composite
anonymous delayed feedback.

Contribution. We studied the bandits with composite
anonymous feedback under non-oblivious setting. In our
model, we allow both non-oblivious delay and loss se-
quences. Since when the loss sequence is non-oblivious, the
common regret can be generalized to different performance
metrics. We first discuss which performance metric to use
in our setting. We show that any learner can not achieve
sublinear external pseudo regret under our non-oblivious set-
ting. Inspired by [Arora et al., 2012], we turn to a more
reasonable metric called policy regret. In non-oblivious set-
ting, policy regret is (T') even without delayed feedback.
So [Arora et al., 2012] considered a weaker adversary which
has bounded memory. They proved o(T') policy regret bounds
for many bandit problems with bounded memory assumption.
Especially, they proved O(T' 2/ 3) policy regret bounds for K-
armed bandit. Different from the pseudo regret metric, we
find that the policy regret does not get worse with the intro-
duction of delay. We prove that the simple mini-batch wrap-
per can generate o(T") policy regret algorithms for many ban-
dit problems with non-oblivious delays and bounded memory
loss sequence in composite anonymous feedback setting. E-
specially, it can generate (’)(TQ/ 3) policy regret algorithms
for K-armed bandits and bandit convex optimization in our
setting. Moreover, this mini-batch wrapper does not require
any prior knowledge of d. Meanwhile, pseudo regret is still
Q(T') even when we restrict the loss sequence to be bounded
memory. Since policy regret is the same as common regret in
the oblivious setting, our upper bound can be seen as a gen-
eralization of the result in [Wang er al., 2021]. Furthermore,
we prove a matching lower bound for our model. In fact, we
prove a stronger lower bound. Even if the loss sequence is
generated by an oblivious adversary, any learner can only ob-
tain Q(T 2/3) regret. Our lower bound answered the problem
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proposed in [Wang er al., 2021], showing that non-oblivious
delay on its own is enough to cause é(T 2/ 3) regret.

To summarize the above results, our study provides a
complete answer to the non-oblivious composite anonymous
feedback setting.

More Related Work. Delay setting was first considered in
[Gergely Neu et al., 20101, in which they assumed each feed-
back is delayed by a constant d, and they posed a O(VdKT)
regret algorithm. [Joulani e al., 2013] generalized this result
to the partial monitoring setting. [Quanrud and Khashabi,
2015] first considered the non-uniform delay setting, where
the delay size of each round can be different. Let D be the
sum of all delay sizes, they proved a O(1/(D + T') log K)
regret bound in full feedback online learning setting. In re-
cent years, a series of works have generalized this work to the
bandit feedback setting and keep developing more instance-
dependent upper bound([Li et al., 2019; Thune et al., 2019;
Bistritz et al., 2019; Zimmert and Seldin, 2020; Gyorgy
and Joulani, 2021; Cella and Cesa-Bianchi, 2020]). Al-
1 above works assumed non-anonymous and separated feed-
back. That is, the learner observes every single feedback
rather than their aggregation. Besides, [Li et al., 2019] s-
tudied an unknown delay setting where the learner does not
know which round the feedback comes from. Their feedback
is also separated, and the learner knows which action is relat-
ed to the feedback.

Policy regret and bounded memory assumption are pro-
posed in [Arora et al., 2012]. They are used in many online
learning and bandit literature, including [Anava er al., 2015;
Heidari et al., 2016; Arora et al., 2018; Jaghargh et al., 2019].

2 Model Setting

Adversarial bandit problem is a repeated game between a
learner and an adversary. There are T rounds in this game. In
t-th round, the learner chooses an action a; € A, the adver-
sary chooses a function /; € £ mapping A to a normalized
bounded interval [0, 1]. Then the learner incurs loss l;(a;).
The learner’s target is to minimize its expected cumulative
regret.

Here we formulate two classical bandit problems into the
instance of adversarial bandit problem.
Example 1 (K-armed bandit). K-armed bandit is a spe-
cial case of adversarial bandit problem where A = [K]| £
{1,2,--- ,K}. And L is the set of all functions mapping K]
to [0, 1].
Example 2 (bandit convex optimization). Bandit convex opti-
mization is also a particular case of adversarial bandit prob-
lem when A is a convex body of RX. And L contains all
L-Lipschitz convex function where L is a constant.

Adversary setting. Our setting allows the adversary to be
non-oblivious, which means that it can choose functions [;
according to the action history ay, as, - - - ,a;—1 of the learn-
er. To formalize this setting, we can think that [; takes the
whole action histories sequence A; = (a1, a9, - ,a;) as its
input. Under this viewpoint, we can assume that [; is deter-
mined before the game starts. And [;(A;) € £ means if we
fix ay,--- ,a;_1, it belongs to L.
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Delay setting. In this paper, we consider the composite
anonymous delayed feedback setting proposed by [Cesa-
Bianchi et al., 2018]. In this setting, the adversary can split
the loss function into d components arbitrarily, where d is a

constant. Thatis [;(A;) = Zg;é ZES) (Ay). We also allow this
splitting process to be non-oblivious, which means lis) can be
chosen according to the action histories A;. At the end of ¢-th
round, after the algorithm has made its decision this round,
the algorithm can only observe [?(A;) = Zf;é lgi)s(At,s),
but can not figure out how [2(A;) is composed.

Pseudo-regret and policy regret. In non-oblivious setting,
the most common metric of the performance of a learner is
external pseudo-regret. Defined as

T T
RO =3 WA —mid l(Acny) O
t=1 t=1

Though external pseudo-regret is widely used, its mean-
ing is quite strange for the non-oblivious setting because if
the learner actually chooses y every round, the loss he gets
is not Zthl l¢(Ai—1,y) but Zthl li(y,y, - ,y). This fact
inspires people to design more meaningful metrics in non-
oblivious setting. [Arora et al., 2012] proposed a new metric
called policy regret which is defined as

T T
REMY =D (A0 —mind L) @)
t=1 t=1

Policy regret captures the fact that learner’s different action
sequences will cause different loss sequences. We believe
that policy regret is a more reasonable metric compared with
external pseudo regret. Both pseudo-regret and policy regret
are the same as standard regret definition when the loss is
oblivious.

[Arora et al., 2012] shows that policy regret has a Q(7")
lower bound against the non-oblivious adversary in K-armed
bandits without delayed feedback. So they consider a weaker
adversary which has bounded memory.

Definition 1 (m-bounded memory). A non-oblivious loss
sequence l; is called m-bounded memory if for any
action sequence ay,as,--- ,a; and ay,ab,--- a,_,. 4,
lt(ala Qag, - -- ,U,t) = lt(a‘/la a‘/2a T 7af‘,—m—17at—ma T 7a't)
holds. We call a non-oblivious loss sequence is bounded
memory iff m is a constant.

From the definition, 0-bounded memory loss sequence is
an oblivious loss sequence. [Arora ef al., 2012] proved a
O(K/3T2/3) policy regret upper bound for no delay setting
under the assumption that the adversary is bounded memo-
ry. In this paper, we also assume that the loss sequence is
bounded memory. However, we do not restrict the memory
of delay adversary. As an example, the model in [Wang ef al.,
2021] can be seen as the same as our model with 0-bounded
memory loss sequence.

In our non-oblivious composite anonymous feedback set-
ting, external pseudo-regret has a Q(7") lower bound even
when the loss sequence is generated by an 1-bounded memo-
ry adversary, which means this setting is not learnable under
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Algorithm 1 Mini-batch wrapper

Input: Black-box bandit algorithm B, batch size 7, time
horizon T’
I: g1
: while not end do
3 if there are less than 7 rounds then
4 choose arbitrary action in remaining rounds.
5: else
6
7

QN

query B for the next action z; € A
: choose z; for consecutive 7 rounds, collect feed-
back ¢ fort € [(j — 1)7 + 1, j7]

feed Bwith [; = min {1377 12,1} as

*®

the feedback of action z;
9: je—j3+1

the external pseudo-regret metric. Formally, we prove the fol-
lowing theorem.

Theorem 1. In composite anonymous feedback setting, there
is a 2-armed bandit with non-oblivious adversary, such that
any learner incurs Q(T) expected pseudo-regret. Moreover,
the loss sequence is 1-bounded memory.

As we can see from the next section, though our setting is
not learnable under the pseudo-regret metric, it is learnable
under the policy regret metric with the assumption that loss
sequence is bounded memory.

3 Upper Bound

In this section, we prove that by applying a mini-batch wrap-
per, one can convert any standard non-oblivious bandit algo-
rithm to an algorithm that can handle non-oblivious adversary
with composite anonymous delayed feedback.

Intuitively, when the learner chooses an action different
from the last round, the feedback it observes in the interval of
d rounds after that can not reflect the true losses of the actions
it chooses. In other words, the learner suffers from observing
inaccurate feedback during a d rounds interval immediately
when it switches its chosen action. To obtain accurate feed-
back for decisions, a learner can not switch its chosen action
frequently. A natural approach is to apply a mini-batch wrap-
per on a standard bandit algorithm. That is, we divide all T’
rounds into [T'/7| batches where 7 is the batch size. Each
batch contains 7 consecutive rounds except the last round,
which may contain fewer than 7 rounds. At the beginning of
the j-th batch, we receive an action z; € A from the black-
box algorithm and keep choosing z; during this batch. At the
end of the j-th batch, we feed the average loss observed in
this batch to the black-box algorithm. Since the black-box
algorithm can only receive a [0, 1] loss, we feed the minimal
between average loss and 1. See Algorithm 1 for the pseudo-
code.

By applying the mini-batch wrapper, times of the learner’s
action switching can be controlled by O(7'/7). In each batch,
the learner suffers the inaccurate feedback for constant rounds
so that it only curses a constant feedback error, which will add
to the regret finally. If we set the batch size to be a relatively
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large quantity such that T/7 = o(T), it is possible that we
control the regret to o(T').

Theorem 2. Suppose we have a bandit algorithm B for no
delay setting which achieves R(J) expected pseudo regret
when the time horizon is J and the loss sequence is generated
by a non-oblivious adversary. Assume T > max{d, m} and
the loss sequence is m-bounded, then the mini-batch wrap-
per (Algorithm 1) can achieve policy regret as follows for the
composite anonymous feedback setting.

E[RE"Y] < TR(|T/7]) + O(max{m,d}T/r) + O(7)

Proof Sketch. Without loss of generality, we can assume 7'/
is an integer, otherwise it only produces an extra O(7) term in
the expected policy regret bound. Since z; is the action of j-
th batch, we have AGj—1)74+1 = Q(j—1)742 = = Ajr = Zj.
Let Z; be the sequence (z1, 22, - ,%;). Due to the pseudo
regret bound of the black box algorithm, we have

T/7
E |max > (5(2) = (Z-1,0)) | < R(T/7)
yeEA =
In each batch, the black-box algorithm receives at most d total
loss from the previous batch, so 1 1Z(j_1yr41 [ can not
exceed 1 by O(d/7). And this gives

T/

E | max Z (a0 -

Jj=lt=(—-1)7+1

l;,)(A(j—l)Ta yti(j71)7)>

<TR(T/T)+ O(d)

Where y is the t-repetition (y,---
Next,

s€e

,y) sequence of y.
we aim to replace [f with ;. It’s easy to

L (A) = XL (A)] < 0).
other term, our goal is to bound the distance between
L3 2 Z]T] Dr41tt (A(J Y —G= 1)7) and L; =

i;(jf1)¢+1 I (A(]—1)T, ~G=D7). For j-th batch, if ¢ is
in the first d — 1 rounds in this batch, I (A¢;_1),y!~U~17)
may contain some loss coming from the previous batch,
which is not in L;. This quantity is at most 1. On the
other hand, if ¢ is in the last d — 1 rounds this batch,
li(AG—1)r, y*~U=17) contains some loss delayed to the next

batch. That means |L; — L¢| < O(d). We have

For an-

T/
B max > Z (1:(A0) = 1(Ag_yr, =007
Y Jj=lt=(—-1)7+1

<TR(T/T)+ O(d)+ O (dT)

-
Note that it’s enough to replace lt(A(j_l)T,yt*(jfl)T)
with [;(y') to fit the form of policy regret. S-
ince l; is m-bounded memory, if t — (j — 1)7 >
m then L(y)) = L(AG-1-y""0"Y7).  In each
batch, there are at most m rounds do not satis-
fy this inequality. They will cause a difference at
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most m between Z{;(j71)7+1lt(A(j—l)T7yt_(j_1)T) and

E{l(j_l)TH l;(y"). This gives

T/7

& max > S

J=lt=(j—-1)7+1
<TR(T/7)+ O(d) + O (max{m, d}T/7)

Add the extra O(7) regret due to the assumption that 7'/7 is
an integer, we get the final bound. O

(le(Ar) = L(y"))

By applying the mini-batch wrapper on some bandit al-
gorithms, we obtain algorithms that can handle composite
anonymous delayed feedback setting. Firstly, we apply The-
orem 2 on K-armed bandit problem. [Auer et al, 2002]
proposed a well known algorithm EX P3 which guarantees
O(VKT) expected pseudo regret. Employing this algorithm,
we have the following corollary.

Corollary 1. For K-armed bandit problem, if we apply Al-
gorithm 1 on EX P3 algorithm, and set batch size T =
K=Y/3TV3 we have the expected policy regret satisfies

E[RE1Y] < O(max{m, d}K/3T%3)

For bandit convex optimization, [Bubeck e al., 2017] pro-
posed an algorithm using kernel method, and it can guarantee
O(K95/T) expected pseudo regret, where K is the dimen-
sion of the action space 4. By employing this algorithm as
our black-box algorithm 5, we have the following corollary.

Corollary 2. For bandit convex optimization, if we apply Al-
gorithm 1 on the algorithm in [Bubeck et al., 2017], and set
batch size T = K~19/3TV/3 we have the expected policy
regret satisfies

E[RE Y] < O(max{m, d}K'/3T%3)

Other algorithms for composite anonymous feedback set-
ting are also some kinds of mini-batch wrapper, such as CLW
in [Cesa-Bianchi ef al., 2018] and ARS-EXP3 in [Wang et
al., 2021]. ARS-EXP3 uses increasing batch sizes on EX-
P3 algorithm. CLW is a wrapper algorithm that can be ap-
plied on many normal bandit algorithms, and it uses a con-
stant batch size. As we discussed above, every action switch-
ing may incur extra constant regret. At first, it seems that
CLW will incur (7T") regret since CLW performs Q(7") ac-
tion switches. However, thanks to the oblivious adversary
they assumes, CLW can randomize the batch size to fool the
oblivious adversary, such that they can still reach O(v/T) re-
gret. Nonetheless, this randomizing technique does not work
when delay is non-oblivious since the adversary here can read
learner’s random bits realized before the current round.

4 Lower Bound

In this section, we prove a matching lower bound for K-
armed bandit. The main result of [Dekel ez al., 2014] actual-
ly implies a Q(T2/ 3) policy regret lower bound for K -armed
bandit without delayed feedback. However, their lower bound
depends on constructing a non-oblivious loss sequence. Our
lower bound here is stronger since the loss sequence in our
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construction is oblivious. The lower bound shows that the
non-oblivious delay adversary on its own is enough to incur

O(T?/3) regret without the help of non-oblivious loss.

Theorem 3. For K-arms bandit with non-oblivious delays
and oblivious loss sequence, we have

E[Rr] = Q(K/3T%/3)

Note that we use the notation R rather than R’}Olwy, since
in Theorem 3, the loss sequence is oblivious, and the policy
regret is the same as normal regret.

According to Yao’s minimax principle, to prove Theo-
rem 3, it is enough to construct a distribution over some loss
sequences and a deterministic delay adversary, such that any
deterministic learner can only achieve Q(K'/3T2/3) expect-
ed regret. Before we discuss our detailed construction, we
firstly describe our intuition briefly. We construct the loss se-
quence based on a random walk. The best arm always has
the loss € lower than the random walk, while others always
have the loss equal to the random walk. This construction
can force the learner to switch between arms since the learner
only observes a random walk and obtain no information if he
keeps choosing one arm. The delay adversary we construct
makes the observed losses in one round are the same no mat-
ter which arm is chosen in this round. Therefore, the learner
can only get information from the changes of observed loss
between rounds. Our delay construction makes the changes
of the observed loss as consistent as possible with the changes
of the random walk. So it happens only a few times that
the observed loss sequence deviates from the random walk.
We bound the information learner can get in this deviation
through a KL divergence argument. Thus, the total infor-
mation learner get is so low that it can not help the learner
achieve low regret. However, a random walk can drift so
much that it jumps out of [0, 1], making the construction of
the loss sequence invalid. To address this problem, we bor-
row the idea of multi-scale random walk from [Dekel et al.,
2014]. Multi-scale random walk is a trade-off between ran-
dom walk and i.i.d samples. Its drift can be bounded in an
acceptable range while still maintaining the low information
nature of the random walk.

To clarify our constructional proof, we describe the con-
struction of the loss sequence in Section 4.1, and the con-
struction of the delay adversary is in Section 4.2. We sketch
the proof of Theorem 3 in Section 4.3.

4.1 Construction of Loss Sequence

In this section, we describe a stochastic process called multi-
scale random walk proposed in [Dekel et al., 2014]. Tt will
be used to generate the loss sequence.

Let {£;} be i.i.d samples which obey gaussian distribution
N (0,0?), where o2 is the variance to be determined later. Let
p : [T] — {0} U [T] be the parent function. The function p
assigns each round ¢ a parent p(t). We restrict that p(t) < t,
and define

Wi =Wy + &

Wo=0
Then W, is a stochastic process. We next define the width of
this stochastic process.
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Definition 2 (cut and width). The cut of a parent function p
attis
cut,(t) = {s € [T]|p(s) < t < s}

width of p is w(p) = maxe[r) [cut,(t)|

We then introduce a stochastic process called multi-scale
random walk.
Definition 3 (multi-scale random walk). Let parent function
be p*(t) = t — 2% where §(t) = max{i > 0[2° divides t}.
Then the stochastic process Wy equipped with parent function
p* is called multi-scale random walk.

Multi-scale random walk has the special property that it is
not too wide and its drift range is not too large. This property
is formalized in following lemmas.

Lemma 1 (Lemma 2 from [Dekel et al., 20141). The width
of multi-scale random walk is bounded by |log, T'| + 1.

Lemma 2 (Lemma 1 from [Dekel et al., 2014]). Let W be
the multi-scale random walk, then ¥/§ € (0, 1)

T
P <maX|Wt| < 0\/2(10gT+ 1)log ) >1-9
te[T) 1)

To specify the loss sequence of each arm, we define a uni-
form random variable Z valued on {0} U A. Z tells us which
arm is the best. When Z = 0, all arms have the same loss
all the time. We define untruncated loss of arm a € A be
lj(a) = Wy + 3 — €-I[Z = a]. Where ¢ is also a parame-
ter to be determined later and W; is the multi-scale random
walk defined above. From now on, we will always use W, to
represent the multi-scale random walk.

However, this loss may jump out of the bounded interval
[0,1], so we truncate it to make sure that loss is in [0, 1]. For
some technical reasons, we further require that loss is greater
than 1. The true loss sequence is I;(a) = truncys 1) (l4(a))
where

a z<a

b >0
x otherwise

truncpg p)(z) =

4.2 Construction of Delay Adversary

In this section, we describe our construction of delay ad-
versary. The delay adversary is constructed so that it can
mislead the learner. To achieve this goal, the delay adver-
sary has two states: low loss state and high loss state. For
t-th round, if delay adversary is at low loss state, it splits

li(a) = lt(o)(a) + lgl)(a) for each arm a € A, so that
3
19(a) = truncy 1 (W, + 1 o) — 1Y (am1) 3

If delay adversary is at high loss state, it splits {;(a) =
z§°)(a) + lil)(a) for each arm @ € A, so that

3
lEO) (a) = trunc[%’l](Wt + Z) - 1751,)1 (atfl) (4)

Howeyver, sometimes lﬁo) (a) computed by equation (3) and
equation (4) might not lie in [0, [;(a)], which means the split-

ting is not valid. For example, if lgl_)l (at—1) = 0, and the
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delay adversary is at high loss state in round ¢, then consider
the best arm Z, [,(Z) = truncps y)(Wy + 3 — ¢) is strictly

less than truncs ;) (We + 3) when [W;| < 1,50 lgo)(Z) com-
puted according to (4) is greater than [;(Z), which is invalid.
Similar situation happens when delay adversary is at low loss
state and I\, (a;_1) > W, + e |Wy<3i—e

In order to avoid the above situation, the delay adversary
will use the following procedure to switch its loss state wise-
ly. Let S; be the state of delay adversary in round ¢. In
round ¢, before splitting the true loss, delay adversary check-

s lgi)l (at—1), the loss delayed from the previous round. If

lt(i)l (at—1) < e and S;_1 = high loss, switch the state to low

loss, i.e. S; = low loss. If lgi)l (ag—1) > i —eand S;_; =
low loss, switch the state to high loss, i.e. S; = high loss.

Otherwise, keep the state unchanged, S; = S;_;. This pro-

cedure keeps l,gl)(a) € [0,1/4] for all a and ¢. Remember
we applied a [1/2, 1] truncation on the true loss, this lead to
1) < 1/4 < 1/2 < l(a), thus 11V € [0,1,(a)], V¢, a. Tt
shows that this state switching procedure is valid. Moreover,
we let the delay adversary start from high loss state.

As we will show in Section 4.3, the times of state switches
of the delay adversary is closely related to the information
learner can get. The following lemma gives an upper bound
to the times of state switches.

Lemma 3. If Z = i, delay adversary performs at most fiqsé

state switches, where T; denotes the number of rounds arm i
has been been selected.

4.3 Proof Sketch of Theorem 3

The choice of a deterministic learner in ¢-th round is deter-
mined by the observed loss sequence [§(ay),- - ,1§_1(at—1)
before ¢{-th round. Let F; be the o-field generated by
19(ay), - ,19_q(az_1) and F = Fr. Let P be the dis-
tribution of observed loss sequence {I¢(a;)}l_,, P; be the
distribution of [£(a;) conditioned on the observation histo-
ry I9(a1), -+ ,19_1(az—1). Let P* = P(:|Z = i) and P} =
P:(-| Z = 4). Our first step is to bound the total variation be-
tween P and P, denoted by D7, (PY, P*). We show the total
variation is upper bounded by the width of the parent function
and the number of times the arm 7 is chosen, see Lemma 4.
Then, intuitively, if the total variation is small, which means
that it is hard to distinguish distribution P° and P?, the regret
will be large.

Lemma 4. D%, (P°,PY) < (¢/o) W

w(p*) is the width of p*.

, where

Proof Sketch. By chain rule of KL divergence

T
D (P||P') =) Epo [Drcr,(BY||P})]
t=1
For any fixed deterministic learner and condition on any re-
alized observation sequence [9(a1),19(az), - ,19_1(at—1),
let S} be the state of delay adversary when Z = i. The

most important observation is Dy, (PY[|P}) < %H{S}: #
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S/’;*(t)}. This means the learner obtains KL-divergence to
distinguish the case Z = 0 and Z = i only when S} #
S;*(t). Moreover, we Cap bound Zthl I{Si # S;;*(t)} <
w(p*) Zstl I{S:_; # S’}. Then we use Lemma 3 to get an
upper bound of D7, (P°||P*). Then apply Pinsker’s inequal-

ity, we get D, (PO, PY) < (e/a)\/%]gfom. O

Proof Sketch of Theorem 3. To lower bound the regret, we
first considers untruncated regret

T T
Ry = !'(a;) — min U(a*
T Zt(t) a*eAZt( )
t=1 t=1
It can be lower bounded in terms of total variations between

PV and PP? for i > 0.

N e(K-1)T eT
E >
[fr] 2 =3 +1

K
~ 1 2 Prv(P P

i=1
By choosing suitable ¢ and o, we can prove E[Ryp| >
Q(K'/3T2/3) by using Lemma 4. Now we turn to true re-

gret Rp. When |[Wy| < 2 —¢eforany t € [T], Ry = Rr.

Lemma 2 tells us this happens with at least a constant prob-
ability if we choose o carefully. If Rr #N Rr, we use the
trivial bound Ry > 0. Therefore E[Ry] > Q(K/3T?/3),

O

5 Conclusion

In this paper, we generalize the previous works of bandits
with composite anonymous delayed feedback. We consid-
er the non-oblivious loss adversary with bounded memory
and the non-oblivious delay adversary. Though the exter-
nal pseudo-regret incurs 2(7") lower bound, for policy regret,
we propose a mini-batch wrapper algorithm which can con-
vert any standard non-oblivious bandit algorithm to the algo-
rithm which fits our setting. By applying this algorithm, we
prove a O(T2/3) policy regret bound on K -armed bandit and
bandit convex optimization, generalizing the results of [Cesa-
Bianchi et al., 2018] and [Wang et al., 2021]. We also prove
the matching lower bound for K-armed bandit problem, and
our lower bound works even when the loss sequence is obliv-
ious.
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