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Abstract
Conditional Variational AutoEncoder (CVAE) is
promising for modeling one-to-many relationships
in dialogue generation, as it can naturally gener-
ate many responses from a given context. How-
ever, the conventional used continual latent vari-
ables in CVAE are more likely to generate generic
rather than distinct and specific responses. To re-
solve this problem, we introduce a novel discrete
variable called prior context which enables the gen-
eration of favorable responses. Specifically, we
present Prior Context VAE (PCVAE), a hierarchi-
cal VAE that learns prior context from data auto-
matically for dialogue generation. Meanwhile, we
design Active Codeword Transport (ACT) to help
the model actively discover potential prior context.
Moreover, we propose Autoregressive Compatible
Arrangement (ACA) that enables modeling prior
context in autoregressive style, which is crucial for
selecting appropriate prior context according to a
given context. Extensive experiments demonstrate
that PCVAE can generate distinct responses and
significantly outperforms strong baselines.

1 Introduction
Researchers from both academic and industrial communities
have paid increasing attention to open domain dialogue re-
sponses generation since it is promising in real-world appli-
cations. In this task, for a given context, usually, there are
more than one valid responses, which is the so-called one-to-
many problem [Csaky et al., 2019]. For CVAEs [Sohn et al.,
2015], they have been widely used in dialogue responses gen-
eration. The conventionally used continual latent variables in
CVAE make it convenient to sample in the latent space for
generating different responses, however, they are not suitable
for generating distinct and specific responses but generic re-
sults. In CVAE, a context is mapped to distribution in la-
tent space, and we sample a latent variable in latent space
according to the distribution. This scheme tends to capture
latent variables around the center of the distribution. How-
ever, the distinct responses are far away from each other [Sun
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Figure 1: Illustration of prior context in the latent space of CVAE.
The input context is encoded into a distribution of latent variables
and the decoder can decode a sampled latent variable into a response.
When sampling in latent space, it is more likely to obtain latent vari-
ables around the center of the distribution (deeper colored areas),
however, latent variables corresponding to distinct and specific re-
sponses are usually far away from each other. As a result, most of
them hardly be sampled since they can not get together around the
center. Intuitively, employing prior context in the latent space en-
ables our model to generate responses that are initially hard to be
sampled, and we find these responses are often specific and distinct
in our early experiments.

et al., 2021], which causes them hardly be sampled. To deal
with this problem, we propose to introduce a novel discrete
variable called prior context as shown in Figure 1. Specifi-
cally, we employ vector quantization to quantize the encoded
responses into discrete latent variables (codewords) as prior
context. Thus, during the test time, we can sample from pos-
sible codewords to aid the model to generate distinct and spe-
cific responses. Although vector quantization for discrete la-
tent variables has been studied and applied in various areas,
two critical issues that remain to be addressed to achieve our
goals: i) It is necessary to ensure distinctness and diversity of
prior context for generating more specific responses. How-
ever, the training of vector quantization is unstable, and the
frequently happened codebook collapse problem causes only
a small portion of discrete latent variables to be used, which
inevitably leads to sub-optimal performance. ii) selecting an
appropriate prior context according to the input context is ex-
tremely important for superior performance, however, so far
it is a rarely explored problem. To resolve it, a straightfor-
ward way is to employ an autoregressive model to predict
them. However, in our early experiment, simply training a
model such as a GRU [Cho et al., 2014] is unable to reach
convergence, which causes poor results in testing. To address
the above two challenges, we present a novel CVAE model,
namely Prior Context Variational AutoEncoder (PCVAE), to
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model prior context with two key components:
(1) We propose active codeword transport (ACT) to ac-

tively pull the input embedding towards unused codeword,
which not only resolves the codebook collapse problem but
also improve the distinctness and diversity of prior context.

(2) For the non-convergence problem, we conjecture the
dependency between codewords may be initially unordered,
which is different from a natural language where the next
words are subject to the previous words, causing difficulty for
a autoregressive style model to learn them. To deal with it, we
design an autoregressive codeword arrangement (ACA) that
regularizes the conditional probability distribution between
codewords to fit the autoregressive patterns predicted by a
GRU, which is crucial for successful training.

In our experiments, we compare our model with various di-
alogue CVAE baselines on two authoritative dialogue datasets
and conduct further experiments to verify the effectiveness of
our proposed model.

To conclude, our contributions can be summarized as fol-
low:

• We introduce the prior context for generating distinct
and specific responses in dialogue generation and pro-
pose PCVAE that models prior context with discrete la-
tent variables. To the best of our knowledge, PCVAE is
the first model to learn and select prior context automat-
ically without manual intervention.

• We propose ACT which resolves the codebook collapse
problem and prompts the model to automatically dis-
cover potential prior context. Meanwhile, ACA is de-
signed to deal with the non-convergence problem in the
training of the autoregressive model, which is crucial for
selecting appropriate codeword combinations of prior
context for a given context.

• Empirical experiments demonstrate the effectiveness of
our model. Further analyses reveal the unique advan-
tages of our methods.

2 Related Work
Dialogue Generation. The dialogue generation in the open
domain is a challenging task. Early works [Graham, 2015;
Sordoni et al., 2015] suffered from the generic response
problem. To tackle this problem, there are two major ap-
proaches including improving the architecture of the neural
dialog model and introducing external knowledge. In this pa-
per, we focus on the former one which includes enhancing
the model with attention mechanism [Bahdanau et al., 2015;
Luong et al., 2015], applying Reinforce Learning [Liu et al.,
2020; Zhang et al., 2018a], GAN [Feng et al., 2020; Zhang
et al., 2018b], and variational reasoning [Zhao et al., 2017;
Gao et al., 2019; Sun et al., 2021; Zhao et al., 2018].

Vector Quantization. Vector quantization in VAE is first
proposed by [van den Oord et al., 2017] for image generation.
The process of quantization is selecting a vector (codeword)
that is closest to the input vector from a random-initialized
vector table (codebook). We refer to the selected vector as
the quantized vector of the input.

However, vector quantization suffers from the notorious
codebook collapse problem. The codebook collapse is that
the input vectors are only mapped to a very small portion of
the codewords, which results in the inferior representation
of the discrete latent variables. The existing methods that
deal with codebook collapse include random restart [Dhari-
wal et al., 2020; Lancucki et al., 2020] that reinitializes
the codeword in the codebook to improve the usage and
Population-Based Training (PBT) [Jaderberg et al., 2017;
Dieleman et al., 2018] that dynamically adjusts the hyper-
parameters in the objective function of vector quantization.
However, the random restart inevitably changes the indexes
of codewords which disturbs the process of selecting prior
context and the PBT method can only prevent the decrease of
codeword usage but we expect more unused codewords could
be utilized. In a word, no existing method is well fitted for
our needs. Thus, we propose an ACT to satisfy our demand.

Conditional Variational Autoencoder. The CVAE [Sohn
et al., 2015; Yan et al., 2016] is a variational reasoning model
that uses a conditional signal (context) to generate more spe-
cific data (responses). CVAEs have been widely applied in
dialogue response generation. Previous work that introduces
manually defined information including dialog act [Zhao et
al., 2017], word-level representation [Gao et al., 2019] can
be viewed as utilizing a discrete latent variable with external
explicit semantic meaning. Except for methods using manu-
ally predefined information, there are unsupervised methods
including DI-VAE and DI-VST [Zhao et al., 2018] focus on
improving the interpretability of learned discrete latent vari-
ables, and SpeaCVAE [Sun et al., 2021] uses the clustering
method to find group information to resolve the one-to-many
and many-to-one problem.

Our work differs from these as follows: (1) We focus on
automatically discovering potential prior context, while pre-
vious work uses a fixed number of discrete latent variables
which is rather limited in the real world. (2) we improve the
quality of the codebook in vector quantization and overcome
the well-known codebook collapse problem. (3) a compre-
hensive solution is proposed to properly select prior context.

3 Proposed Methods
We define x ∈ X as a response utterance, c ∈ C as a
given context. In a dialogue CVAE, the goal is to model
p(x) =

∫
p(x|c)p(c)dc. In our model, we further intro-

duce the y ∈ Y and z ∈ Z that are latent variables of
prior context and response, respectively. Thus, this goal can
be rewritten as modeling p(x) =

∫
p(x|z, c)p(z, c)dzdc and

p(z, c) =
∫
p(z|y, c)p(y|c)p(c)dy. We employ neural net-

works to model those distributions. We refer to the contin-
ual latent variables pϕ(z|y, c) as a prior network and we in-
troduce a recognition network pθ(z|x, c) to approximate the
true posterior distribution q(z|y, c). Here, ϕ and θ represent
the parameters of the prior network and recognition network,
respectively. Both pϕ(z|y, c) and pθ(z|x, c) are assumed to
follow isotropic Gaussian distribution. The p(x|z, c) gener-
ation network follows a Dirac distribution and the p(y|c) is
a discrete latent variable that follows a sequential conditional
probabilistic distribution modeled by a prior context planning
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Figure 2: Overview of PCVAE.

network. The overview of our model is shown in Figure 2.
In the following, we will first introduce the encoding

phrase including prior network, recognition network. Then
we introduce decoding phrase including generation network.
Then we illustrate how our model learns prior context au-
tomatically with vector quantization to generate discrete la-
tent variables y and prior context planning network to learn
p(y|c). Finally, we illustrate active codeword transport and
autoregressive codeword arrangement in detail.

3.1 Encoding
In this section, we show how to use a prior network to en-
code context and a recognition network to encode responses
for obtaining a distribution of their associated latent variables.
A two-layer GRU is used to encode input context as hc and
response utterance as hx. Then, to obtain the latent variables
that capture deeper semantic meaning, the hc and hx are com-
pressed through ND layers of MLPs, which results in ec and
ex, respectively. After that, a prior network and a recognition
network are employed to obtain the parameters of their cor-
responding continual latent variables distribution, which can
be described as follows: µc

log(σ2
c )

e′c

 = MLPc([ec, y]),

[
µx

log(σ2
x)

]
= MLPx([ex, ec])

where [·, ·] means concatenation of variables, e′c is a con-
ditional signal to guide the generation in decoding, y is
learned discrete latent variable for prior context, which will
be described later. We define pϕ(z|y, c) ∼ N (µc, σ

2
c I)

and pθ(z|x, c) ∼ N (µx, σ
2
xI). The reparameterization

trick [Kingma and Welling, 2014] is used to sample a la-
tent variable z from the pθ(z|x, c) in training phrase and
pϕ(z|y, c) in testing phrase, respectively. We employ KL
divergence LK = DKL(pθ(z|x, c)∥pϕ(z|y, c)) to make
pϕ(z|y, c) approximate to pθ(z|x, c).

3.2 Decoding
In this section, we introduce the decoding process of our
model that utilizes the output of the prior network and recog-
nition network. In generation network, the conditional signal

e′c and z is concatenated as the input ed = [e′c, z]. The infor-
mation of responses are reconstructed from ed through ND

layers of MLP. The final output is used as the initial states
of a two-layer GRU to generate the expected responses. We
use negative log-likelihood LG as the objective function of
generation.

3.3 Prior Context Learning
Vector Quantization. We employ a codebook with random
initialization codewords vi and i ∈ {1, cdots,NE}. The in-
put ex and ec are transformed into an input vector for quanti-
zation as ey = MLP([ex, ec]). After that, ey is chunked into
NK parts ey,j with the same size of vi. We achieve quantiza-
tion by quantizing function as follows:

I(ey,j , vk) =

{
1 for k = argmink∥ey,j − vk∥2
0 otherwise

(1)

when I(ey,j , vk) = 1, we map ey,j to vk. Then we concate-
nate all selected vk to obtain the discrete latent variable y. We
apply the straight-through estimator [Bengio et al., 2013] to
train the codewords as:

Lvq =

NK∑
j=1

NE∑
k=1

I(ey,j , vk)(∥sg[vk]− ey,j∥22

+ β∥vk − sg[ey,j ]∥22)

(2)

Where the stop-gradient operation sg is used since the above
selecting approach is intractable. β is a weight coefficient.
Piror Context Planning. The indexes of selected code-
words can be viewed as an ordered index sequence. We em-
ploy a GRU p(y|c) to predict y, as we do not have the ground-
truth response to acquire ey in the testing phase. To learn
the p(y|c), we can obtain it through marginalizing the x in
p(y|c, x) in training as follows:

p(y|c) =
∑
x

p(y|c, x)p(x) (3)

where the p(y|c, x) is the probability distribution of quantiz-
ing function I . Then we can train the GRU in a autoregressive
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manner as follow:

Lpcp = −
NK∑
j

log p(yj |yj−1, · · · , y1, c) (4)

Autoregressive Codeword Arrangement. Intuitively, the
ground-truth indexes in training are non-differentiable, which
leads to an uncontrolled conditional probability distribution
of indexes. It may cause unordered dependency, as we
have mentioned. We propose to directly pull the p(y|c) and
p(y|c, x) to each other as:

DKL(p(y|c)∥p(y|c, x)) =
NK∑
j=1

p(yj |c) log
p(yj |c)

p(yj |c, x)
(5)

However, the gradient of the p(y|c, x) is intractable, which
prevents us from training it to obey autoregressive style dis-
tribution. To resolve the problem, we introduce a probability
predicting network Ψ(ey) to mimic the p(y|c, x) and we train
Ψ by approximating the p(y|c, x) in equation 1. The above
steps can be summarized as follows:

Laca = argmin
ey∼L

[DKL(p(y|c)∥Ψ(ey))]

+DKL(Ψ(ey)∥p(y|c, x))
(6)

Notably, introducing Ψ(ey) makes all parameters involved in
generating ey affected. Since ey determines p(y|c, x) in the
forward pass, p(y|c, x) will also tend to obey autoregressive
style distribution, despite it being intractable.
Active Codeword Transport. The general idea of ACT is
to move the ey (target) to the unused codewords (source), and
thus the currently unused codewords would be selected and
used in the subsequent training. To this end, the first problem
is how to select unused codewords. Intuitively, we should se-
lect as many unused codewords as possible while minimizing
change to ey . For this purpose, we assume there is a center
where the currently used codewords tend to gather, and there
are extensive unused codewords around it as shown in the
Figure. 3. We dynamically estimate this center using moving
mean predicting:

ec = ec · γm + (1− γm)

NB∑
i=1

eiy
NB

(7)

Where the NB is minibatch size and eiy represents the i-th
sample in a batch. Then, we calculate the corresponding di-
rection vector eir = eiy − ec for each ey . We use those direc-
tion vectors to predict the near unused codewords and define

Did you change your 
hair?

You know 
the deal.

R1: You Know the deal.

How would 
you like it?

Yes, I just have 
short hair.

Encoder Decoder

Continual Latent Space

Unused Codeword

Used Codeword

Source (𝐞𝐲)

Predicted Center

Direction Vector

Target (Codeword)

Figure 3: Illustration of active codeword transport.

them as a target set T while ey in the same batch are as a
source set S:

T = {vq(eiy + j ∗ eir)},S = {ei(j)y } (8)

where j ∈ {0, 1, · · · , NK}, i ∈ {0, 1, · · · , NB}, vq means
the vector quantization operation as we have defined, (j) in
S indicate additional repeated elements to balance the num-
ber of elements between T and S . After finding targets, the
second problem is how to assign the source to the target ap-
propriately. We must avoid different ey being transported to
the same unused codeword while minimizing the total mov-
ing distance. We can formalize this problem as an optimal
transport problem and employ Wasserstein distance to resolve
it:

W(φ, ν) = inf
π∈

∏
(φ,ν)

∫
S×T

d(s, t)dπ(s, t) (9)

where the transport plans π that distributes the mass in φ to
match that in ν. The ground metric d(s, t) = ∥s − t∥22 pro-
vides the cost of moving a unit of mass from s ∼ φ to t ∼ ν.
However, the above equation is intractable, therefore we tend
to employ a sinkhorn divergence [Cuturi, 2013] to get an ap-
proximate optimal transport solution Lact = W∗(φ, ν) for
training.

3.4 Training Objective
In PCVAE, the training objective includes six parts: (1) re-
sponse generation loss LG, (2) posterior approximating loss
LK , (3) vector quantization loss Lvq , (4) prior context plan-
ning loss Lpcp, (5) autoregressive codeword arrangement loss
Laca, and (6) active codeword transport loss Lact. The total
loss is as follows, where λ1,λ2 are weight factors:

Ltotal = LG +λ1LK +Lvq +Lpcp +Laca +λ2Lact. (10)

4 Experiment
Datasets. We employ two authoritative datasets for our ex-
periment, including MultiWoz [Zang et al., 2020] for cross-
domain task-oriented dialogue and Cornell Movie [Danescu-
Niculescu-Mizil and Lee, 2011] for open-domain dialogue.
Specifically, we use MultiWoz 2.2, which contains 3,406
single-domain dialogues and 7,032 multi-domain dialogues,
and all dialogues are task-oriented. The Cornell Movie con-
sists of 220,579 conversational exchanges between 10,292
pairs of movie characters. We further convert them into two
turn dialogue datasets that the model has to generate a re-
sponse given three context utterances. Although on single
turn dialogue the one-to-many situations appear more fre-
quently, it may just contain an uninformative utterance such
as ”ok” where too many acceptable responses exist.
Baselines. We choose the Seq2Seq model, CVAE, and var-
ious dialogue CVAEs as baselines. kgCVAE [Zhao et al.,
2017] uses manually predefined dialog acts as additional la-
tent variables. SepaCVAE [Sun et al., 2021] uses an unsuper-
vised clustering method to obtain group information to guide
the generation. DCVAE [Gao et al., 2019] replaces conven-
tional continual latent variables with discrete latent variables
and adopts the predefined word-level knowledge. Note that
we do not compare PLM/RL/GAN-based methods since we
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BLEU-1 BLEU-4 Distinct-1 Distinct-2 METEOR

MultiWoz

Seq2Seq 0.274 0.130 0.038 0.130 0.166
CVAE 0.402 0.191 0.075 0.506 0.243

kgCVAE 0.449 0.205 0.077 0.513 0.273
SepaCVAE 0.447 0.203 0.078 0.529 0.268

DCVAE 0.451 0.214 0.076 0.511 0.261
PCVAE 0.505 0.241 0.086 0.557 0.301

Improvement (%) 11.89 12.61 10.83 5.22 10.26

Corncell Movie

Seq2Seq 0.218 0.094 0.025 0.108 0.111
CVAE 0.248 0.107 0.048 0.313 0.126

SepaCVAE 0.278 0.120 0.050 0.413 0.135
DCVAE 0.265 0.115 0.052 0.464 0.142
PCVAE 0.411 0.203 0.071 0.661 0.207

Improvement (%) 47.67 68.55 35.87 42.59 46.14

Table 1: Responses generation performance. Improvements com-
pute as relative gains compared with the previous state-of-the-art
method. The best results are highlighted in boldface.

focus on the improvement from introducing prior context, and
we can easily replace our backbone with other architectures
for better performances.

Metrics and Evaluation. We employ several widely used
metrics, including BLEU-1, BLEU-4 [Papineni et al., 2002],
Distinct-1, Distinct-2 [Li et al., 2016], and METEOR [Baner-
jee and Lavie, 2005]. All results are the mean values of five
runs with different random seeds.

Implementation Details. We use word embeddings with
200 dimensions and hidden states with 300 dimensions for
encoding and decoding GRU. We initialize the word embed-
ding from Glove embedding [Pennington et al., 2014] and
use the NLTK tokenizer [Bird et al., 2009]. The number of
layers ND of MLPs for compression and reconstruction is
set to 2 with hidden sizes ranging from 200 to 300. We use
NK = 4 codebooks and NE = 8192 codewords. The γm
used in moving mean predicting is set to 0.95. The β used in
vector quantization is set to 0.25. In training, we use batch
size NB = 192 and Adam optimizer with an initial learning
rate of 1e-3 for both of the datasets. We decrease the learning
ratio by 0.8 when the worse valid loss is obtained in the vali-
dation phase and stop training as the learning rate is down to
1e-5. For other models, we adopt their official code if avail-
able. Otherwise, we adapt their key techniques to our model.
For a fair comparison, we replace their encoder and decoder
with the same as our model.

4.1 Responses Generation Performance
The experiment results are shown in Table 11. As we can see,
PCVAE outperforms strong baselines significantly on both
datasets. The higher BLEU and Distinct implies the effec-
tive of specific prior context, which is beneficial for improv-
ing the diversity and distinctness of the generated responses.
Moreover, PCVAE obtains more performance gain on open-
domain dataset (Corncell Movie) than multi-domain task-
oriented dataset (MultiWoz), which implies that our model

1kgCVAE is not tested on Corncell Movie dataset since the dia-
log cat is unavailable.

Model BLEU-1 BLEU-4 Distinct-1 Distinct-2

PCVAE-None 0.251 0.107 0.049 0.307
PCVAE-VQ 0.243 0.091 0.046 0.289

PCVAE-ACT 0.267 0.118 0.054 0.322
PCVAE-ACA 0.311 0.146 0.059 0.475

PCVAE 0.411 0.202 0.071 0.661

Table 2: The performance of various models for ablation study.

can better handle the one-to-many problem. Thus, we con-
jecture the performance gains of PCVAE mainly come from
automatically discovered potential prior context, while other
models can only rely on their limited signals. Further, we find
the really used codeword in testing on MultiWoz are about
1400 while on corncell movie them are about 7400, which
means our model can utilize more prior context when poten-
tial response are more diverse and distinct. It also confirms
that our model benefits from the prior context.

4.2 Ablation Study
In this section, we evaluate the effectiveness of our proposed
components. Specifically, we introduce several variants of
PCVAE by discarding certain components. PCVAE-VQ re-
moves both ACT and ACA with only vector quantization
left, and PCVAE-None further removes the vector quantiza-
tion to evaluate the backbone performances. PCVAE-ACT
and PCVAE-ACA remove ACA and ACT, respectively. The
ablated results are shown in Table 2. We can observe that:
(1) simply applying vector quantization to the model can not
bring any improvement. (2) Performances of all models with-
out ACA are close and disappointing. We believe that this
phenomenon is caused by the non-convergence problem of
the prior context planning network that prevents a model from
utilizing appropriate prior context. (3) Comparing the perfor-
mance gap between PCVAE-ACT and PCVAE-VQ with that
between PCVAE and PCVAE-ACA, although the ACT en-
ables model access to better prior context, we can not obtain
a satisfactory result without a proper selection. In turn, once
we can appropriately select prior context, our model would
fully benefited from prior context discovered by ACT, which
significantly improves the performance of our model.

4.3 Qualitative Analysis
The randomly sampled responses generated by PCVAE and
baseline models are shown in Table 3. The two samples are
from Corncell Movie and MultiWoz, respectively. In the first
sample, all other models response something related to the
air tickets or trip, while only PCVAE properly answer the
question whether to see it off. We conjecture this is mainly
because our prior context can provide pertinent detail rather
than the related general topic information, and it enables our
model to generate more specific response. In the second sam-
ple, the context is asking a receipt. We can find that Sep-
aCVAE and DCVAE realize the general meaning of context
(purchasing) but fail to figure out the distinctness between
ordering and requiring a receipt. For kgCVAE, although it
provides a acceptable response for the given context, “it will
be ready soon” is rather generic. In contrast, our response
is specific and informative. We believe this is because prior
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Context&Response (1)

C: i will have a lunch in the airport before
our trip, will you see me off?
R1: sorry, i can’t. i have a tennis class later.
R2: sure, let’s have a lunch before you leave.

kgCVAE ok, i can buy your a air tickets.

SepaCVAE wow, sound exciting. how about your trip ?

DCVAE oh, when will you leave?

PCVAE sure, i will go with my friends.

Context&Response (2)

C: did you have the receipt sent to me?
R1: i will text the receipt to your right now.
R2: i will have them send the receipt to your
email, talk to you soon.

kgCVAE it will be ready soon.

SepaCVAE your order is confirmed.

DCVAE ok, your order is sent to text message.

PCVAE a receipt will be texted to your mobile de-
vice.

Table 3: Examples of generated responses by previous methods and
our model.

context provided by our model contain more distinct informa-
tion, which can aids our model generate response with points
and avoid generic result.

4.4 Analysis
Effect of Prior Context. We further evaluate the effect of
prior context on performance. To this end, we change NE to
vary the representation capacity of a codebook and restrict the
influence of prior context to see how it related to the model
performance. We conduct the experiment on the MultiMoz
dataset and show the results in Table 4. As we can see, in-
creasing NE always leads to better performances, which ver-
ifies our intuition that prior context enables PCVAE to gen-
erate more diverse and relevant responses. Additionally, We
observe that the performance gains gradually saturated as we
keep increasing NE . We believe this is because more avail-
able codewords make it harder to select prior context prop-
erly. It also means that we can always use a relatively large
NE to obtain competitive performances.

Active Codeword Transport. We evaluate the effective-
ness of ACT for overcoming the codebook collapse problem.
To this end, we measure the codebook usage and the mean
Lvq of vector quantization in testing. The NE is set to 8192.
We also compare four different training setups: (1) Standard:
without any heuristics; (2) RS: applying random restarts; (3)
PBT: applying population based training. (4) ACT: applying

NE Codeword usage BLEU-1 BLEU-4 Distinct-1 Distinct-2

8 8 0.418 0.202 0.077 0.514
128 79 0.486 0.231 0.082 0.527

1024 445 0.534 0.252 0.086 0.576
2048 879 0.568 0.261 0.087 0.583
4096 1206 0.577 0.275 0.090 0.601
8192 1471 0.580 0.277 0.091 0.605

Table 4: Effect of prior context on generation performances. The
codeword usage refers to the number of actually used codewords.

Metric Standard RS PBT ACT

Codeword usage 559 845 723 1471
Mean Lvq 0.1521 0.1637 0.1591 0.1382

Table 5: Codeword usage and mean vector quantization loss in test-
ing.

Metric Ground kgCVAE SepaCVAE DCVAE PCVAE

Fluency 1.01 3.45 3.95 3.67 3.48
Diversity 2.10 2.85 2.59 3.15 2.17
Relevance 1.08 2.62 2.97 3.59 2.24

Table 6: Human evaluation scores of each model. Best results are
presented in boldface. Note that “Ground” is the ground-truth re-
sponse from the used datasets.

active codeword transport. The experiment result is shown in
Table 5. As we can see, the ACT method achieves the high-
est codeword usage, which demonstrates its superior perfor-
mance among various previous methods. At the same time,
ACT also reduces the mean vector quantization loss, which is
beneficial for improving the quality of the codebook.

4.5 Human Evaluation

In this section, we provide a human evaluation of our model.
Following [Sun et al., 2021], we randomly sample 200 re-
sponses generated by different models on the test set of Multi-
Woz, respectively. The samples are provided to three annota-
tors with linguistic backgrounds, and we ask them to rank the
generated responses considering fluency, diversity, and rele-
vance, respectively. Ties are permitted. Fluency measures
the closeness to words from humans, diversity measures the
amount of specific information, and relevance measures se-
mantic relevance to the context. The results are shown in
Table 6. As we can see, although the fluency score of each
model is close, PCVAE outperforms other methods signifi-
cantly on diversity and relevance. It implies that PCVAE can
generate more specific responses about the given context at-
tributed to our superior prior context.

5 Conclusion

This paper proposes a novel hierarchical deep CVAE named
PCVAE to automatically learn high-quality prior contexts for
generating distinct and specific responses. Specifically, we
introduce prior context, a discrete latent variable which aids
model resolve the one-to-many problem in dialogue genera-
tion effectively. Moreover, we propose active codeword trans-
port and autoregressive codeword arrangement. The former
is to discover potential prior context, the later is to effectively
train a prior context planning network to select appropriate
prior context for a given context. These mechanisms are es-
sential for instantiating our model and achieving superior per-
formance. The experimental results show that PCVAE out-
performs strong baselines significantly and further analyses
demonstrate the effectiveness of our proposed methods.
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