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Abstract

Nested named entity recognition (nested NER) is
a fundamental task in natural language processing.
Various span-based methods have been proposed
to detect nested entities with span representations.
However, span-based methods do not consider the
relationship between a span and other entities or
phrases, which is helpful in the NER task. Besides,
span-based methods have trouble predicting long
entities due to limited span enumeration length. To
mitigate these issues, we present the Propose-and-
Refine Network (PnRNet), a two-stage set predic-
tion network for nested NER. In the propose stage,
we use a span-based predictor to generate some
coarse entity predictions as entity proposals. In the
refine stage, proposals interact with each other, and
richer contextual information is incorporated into
the proposal representations. The refined proposal
representations are used to re-predict entity bound-
aries and classes. In this way, errors in coarse pro-
posals can be eliminated, and the boundary pre-
diction is no longer constrained by the span enu-
meration length limitation. Additionally, we build
multi-scale sentence representations, which better
model the hierarchical structure of sentences and
provide richer contextual information than token-
level representations. Experiments show that Pn-
RNet achieves state-of-the-art performance on four
nested NER datasets and one flat NER dataset.

1 Introduction

Named Entity Recognition (NER) aims to detect the span
and category of all entities in text, which is an essential task
in natural language processing. Notably, named entities are
often nested in other external entities. For instance, in the
sentence “This indeed was one of Uday’s homes”, the entity
“Uday” is nested in the entity “Uday’s homes” while “Uday’s
homes” is also nested in another larger entity “one of Uday’s
homes”. This is because natural language sentences are hi-
erarchical. Smaller-scale entities might be nested in larger-
scale entities as sub-constituency trees.

*Corresponding author

4418

’—v 'J:_| Multi-Scale Contextual Information

This E JE—

indeed > This, LOC T ~ This, FAC

was | E N

one 5 Uday, PER o ]— Uday, PER
o 1 Y

of H I ),

Uday & Uday 's homes, FAC | D —T Uday 's homes, FAC
3 |

s X : )

homes = one of Uday 's, FAC H D = one of Uday 's homes, FAC

1

Propose-Stage Refine-Stage

Figure 1: Span-based predictors are error-prone (we color predic-
tion errors in red). The entity “This” is misclassified due to a lack
of interaction with other related phrases in span-based predictors.
Besides, Span-based methods cannot predict long entities “one of
Uday ’s homes” if we set a small enumeration length limit. PnRNet
addresses these issues with proposal refinement and re-prediction.

Various methods have been proposed to handle the nested
NER task, such as optimized sequence-tagging methods [Ju
et al., 2018; Strakova er al., 2019], hypergraph methods [Lu
and Roth, 2015; Katiyar and Cardie, 2018], transition-based
methods [Wang er al., 2018]. These methods, however, ei-
ther require complex manual-designed tagging schemas or
suffer from error propagation. Recently, span-based methods,
which perform classification over features of candidate spans,
have gained popularity and have achieved promising results
in the NER task [Sohrab and Miwa, 2018; Tan et al., 2020;
Shen et al., 2021; Wang et al., 2020]. Unlike previous meth-
ods, span-based prediction can naturally address the nested
NER task without complex detecting schemas and does not
suffer from error propagation. However, as shown in Fig-
ure 1, span-based methods still have the following two issues.
First, the prediction of an entity may rely on other phrases in
the sentence. But span representations are typically generated
through features of tokens that constitute the span. Therefore
the relationship between a span and other phrases or entities
is not considered in span-based methods, making the span-
based methods error-prone. Second, the length of the enu-
merated span is always limited since exhaustive enumeration
is computationally expensive. Therefore it is hard for span-
based methods to detect long entities.

This paper presents the Propose-and-Refine Network (Pn-
RNet), a two-stage set prediction network for the nested NER.
To address the two previously mentioned issues of the span-
based methods, we apply a two-stage decoding procedure
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to detect named entities, as shown in Figure 1. In the pro-
pose stage, we use a span-based predictor to generate a set of
coarse entity predictions as proposals. In the refine stage, pro-
posals are fed into the transformer decoder [Vaswani er al.,
2017], where proposals interact with each other, and richer
contextual information is aggregated into the proposal repre-
sentations. Finally, the refined proposal representations are
used to re-predict entity boundaries and classes. In this way,
the prediction errors of the coarse proposals can be eliminated
with enriched information, and the boundary prediction is not
constrained by the enumeration length limitation of the span-
based predictor. The final predictions are considered as a set,
and a permutation-invariant loss is applied to train the model.

Additionally, we build multi-scale sentence representations
to provide richer contextual information in the decoder. As
mentioned before, natural language sentences are hierarchi-
cal. Therefore, representing the input sentence as a hierarchi-
cal structure is natural and helps solve the nested NER prob-
lem. For that purpose, we collect the span features generated
in the propose stage to form multi-scale sentence represen-
tations. In this way, proposals can directly interact with fea-
tures of spans highly related to the predicted entity rather than
token features in the refine stage, which can aggregate hierar-
chical contextual information more effectively.

Our main contributions are as follows:

* We present a novel propose-and-refine two-stage set
prediction network for the nested NER task. With
richer contextualized information aggregated in the re-
fine stage, PnRNet can make more precise predictions
than the span-based predictor. Moreover, PnRNet is not
constrained by the span enumeration length because we
re-predict entity boundaries and classes after proposal
refinement.

* To model the hierarchical structure of natural language
sentences and better detect nested named entities, we
build multi-scale features for decoding to provide richer
hierarchical contextual information.

e Experiments on ACE04, ACEOS5, GENIA, KBP17, and
CoNLLO03 show that our model outperforms all previous
models. We also conduct a detailed ablation study to
validate the effectiveness of these innovations.

2 Model

In this section, we will introduce PnRNet, a two-stage set pre-
diction network for nested NER, as illustrated in Figure 2.

2.1 Stage I: Propose
Span Feature Generation. Given an input sentence X of
plm

length N, we concatenate the contextual embedding x;
generated by a pre-trained language model, word embed-
ding x}"", part-of-speech embedding x7**, and character em-
bedding xgh of each token, and then feed the concatenated
embeddings into a BiLSTM [Hochreiter and Schmidhuber,
1997] for token-level representation x;:

xX; = BiLSTM([X?Im; xyord, xP* x%1) (1)

where [;] denotes concatenation operation.
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We generate span features from token-level sentence rep-
resentations in a bottom-up manner:

2

)

h o — Linear([hl_u;hl_1,i+1]) ifl >1
YT ifl=1

where b, ; denotes the feature of the span (I, ), which is the
[-gram span starting from the ¢-th token. We limit the bottom-
up construction process to spans of length L since exhaustive
span enumeration is computationally expensive, especially
for long sentences.

Entity Proposal. A span-based predictor is used to classify
the entity type of each span with the span features generated
in the previous step. The classification scores of span (I,7) is
computed as follows:

P = Softmax(Linear(hy,;)) ®)

Then the likelihood of that span being an entity can be ob-
tained by:

Piyee = Z P (ty,) 4)
ty, A2

where pf‘j (ty,) indicates the probability of the span (I, ) to be
an entity of type ty,. £ represents all entities in the sentence
and & is a pseudo entity type which means this span is not an
entity.

Span features are sorted by p(; ;)ce in descending order,
and top-K span features which are most likely to be entities
will be picked as the entity proposals Q € R% >4,

It is worth noting that in the nested NER task, the predic-
tion of an entity may rely on other related phrases or entities.
However, the span-based predictor does not model the rela-
tionship between a span and other phrases. Therefore, the
span-based predictor is error-prone, and these entity propos-
als are just coarse predictions. We have to incorporate richer
contextual information into the proposal representation in the
refine stage to get more precise predictions.

2.2 Stage II: Refine

PnRNet uses a transformer decoder [Vaswani et al., 2017] to
refine the coarse entity proposals. The transformer decoder
is composed of a stack of M transformer decoder layers. We
denote U,, € RX*? as the output of decoder layer m. The
coarse entity proposals are fed into the transformer decoder
as the input of the first decoder layer Uy = Q. The output of
each decoder layer will be fed into the next layer, forming an
iterative refining process.

Self-attention. Entities in a sentence are related to each
other. Therefore, modeling the relationship between differ-
ent entities is helpful for NER. In self-attention layer, entity
proposals interact with each other through the multi-head at-
tention mechanism:

USA = MultiHeadAttn(U,,_1, U1, Up1) - (5)

m
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Figure 2: Overview of PnRNet. In the propose stage, PnRNet computes span representations and generates coarse entity proposals with a
span-based predictor. In the refine stage, the proposals are refined through a transformer decoder and finally are used to re-predict boundaries
and entity classes. We collect multi-scale features from span features generated in the propose stage to provide hierarchical contextual
information in proposal refinement. For simplicity of demonstration, we show a PnRNet with span enumeration length limited to L = 4.

Cross-attention with multi-scale features. In order to
model the relationship between the proposal and other
phrases in the input sentences, entity proposals interact with
sentence representations through cross-attention so that richer
contextual information can be aggregated into the representa-
tions of the entity proposals:

USA = MultiHeadAttn(USA H, H) (6)
where H is sentence representation. Since natural language
sentences are hierarchical, we use multi-scale sentence repre-
sentations to provide hierarchical contextual information for
the nested NER task. Therefore, we collect the span rep-
resentations generated in the propose stage to form layered
pyramid-like multi-scale sentence representations:

H; =[h; 1, h, ..., 0y nvoyy1] (7a)

H = Flatten([H;,Ho, ..., Hy)) (7b)

where H; € RW—IH1xd 5 the list of features of spans
with length [, H € Re*4 is the list of all span features,
and c = M is the number of the enumerated spans.
Since H contains features of spans of different lengths, H
can be viewed as the multi-scale representation of the input
sentence. With multi-scale features, proposal representations
can directly attend with features of related spans. Compared
with token-level features, using multi-scale features as keys
and values in cross-attention can aggregate hierarchical con-
textual information more effectively.

Feed-forward layer. The entity proposals processed by the
self-attention layer and the cross-attention layer will be fed
into a feed-forward layer to generate the refined proposals of
the current decoder layer:

U,, = Linear(ReLU(Linear(US%))) ®)

Re-Prediction. In order to eliminate the errors in coarse
proposals with the information incorporated in the trans-
former decoder, we use the output of the last transformer de-
coder layer (U ;) to re-predict entity classes and boundaries.
For each refined proposal u; in U,;, we compute the entity
classification probability of u;:

p® = Softmax(Linear(u;)) ©)

For boundary detection, we first fuse refined entity pro-
posal u; with 1-gram span features (token-level features):

ngse — Hui; h1,1]7 [ui; h172], ceey [ui; hl,NH (10)

And then we perform classification over the fused features to
obtain the probability of each token to be the left and right
boundary of the entity:

p? = Softmax(MLPs(H™®)) 4§ € {1,r} (11)

where MLP is multi-layer perceptron.

2.3 Training Objective

Proposal Loss. We first calculate the loss of the entity pro-
posals generated in the propose stage. The span-based entity
proposal generation is a type classification task, so we use
cross-entropy to obtain the loss between ground truth entity
type and span-based entity classification of all enumerated
spans:

L N-I+1

Eproposal = - Z Z logpf,li(clﬂ) 12)
=1 i=1

where ¢; ; is the ground truth entity type of span (I, 7).
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Refine Loss. The final entity predictions of our PnRNet
are order-agnostic, so we consider them as a set § =
{(pss,pl,pL) | k=1,...,K}. Following Tan et al. [2021],
we compute a permutation-invariant set loss between the fi-
nal entity predictions and ground truths. We first define the
match cost between gold entity yi = (ck, lg, i) and predic-
tion indexed by o (k):

Ematch(ykv ga(k)) = _]l{Ck?é@} [

(13)
Pg?k)(ck) + Pg(k) (Ik) + Pl (1)

where 1 denotes the indicator function. Then, we find an
optimal match between prediction set and gold entities:

K

o= arg min Z Ematch(yka Q(T(k)) (14)
ce€EG K k

This optimal assignment problem can be easily solved by the

Hungarian algorithm [Kuhn, 1955]. The loss for the refine

stage is defined as the sum of the classification loss and the

boundary prediction loss of all K predictions:

K
Leetine(y:9) = = > _{A™log P (k) + Ao, 2
k=1

10g Pl 1y (1) + 10g P (1) (1)1}

s)
where A\, A are loss weights. We train the model with aux-
iliary losses, i.e., using the output of each decoder layer to
predict entities and sum losses of all layers up for fast conver-
gence.

3 Experiments
3.1 Setting

Dataset. We conduct experiments on four wildly used
nested NER datasets — ACE04 [Doddington et al., 20041,
ACEOQ5 [Walker er al., 2006], GENIA [Ji et al., 2017], and
KBP17 [Ohta et al., 2002]. Following [Katiyar and Cardie,
2018], we split samples of ACE04 and ACEOQ5 into train, dev,
test set by 8:1:1, and split samples of GENIA into train/deyv,
test set by 9:1. For KBP17, we split all documents into
866/20/167 documents for train, dev, and test set, following
[Lin et al., 2019]. We also conduct experiments on a flat NER
dataset, CONLLO3 [Tjong Kim Sang and De Meulder, 2003].

Evaluation metric. Entity prediction is considered correct
when both span and category are correctly predicted. We con-
sider precision, recall, and F1 score as our evaluation metrics.
We additionally report classification F1 score and localization
F1 score in the ablation study for detailed analysis.

Implementation details. We use pre-trained BERT [Devlin
et al., 2019] as the contextual encoder. For a fair comparison,
we use the BERT-base-cased model for the KBP17 dataset,
BERT-large-cased model for ACE04, ACEQS, and CoNLLO03
datasets, and BioBERT-large-cased-v1.1 [Lee et al., 2020] for
GENIA dataset. We use GloVe (100d) [Pennington et al.,
2014] as our pre-trained word embedding in all experiments
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Model ACE04

Pr. Rec. F1
Katiyar and Cardie [2018]  73.60 71.80 72.70
Strakové et al. [2019] - - 84.40
Li et al. [2020] 85.05 86.32 85.98
Wang et al. [2020] 86.08 86.48 86.28
Yu et al. [2020] 87.30 86.00 86.70
Yan et al. [2021] 87.27 86.41 86.84
Tan et al. [2021] 88.46 86.10 87.26
Shen et al. [2021] 87.44 8738 8741
PnRNet 87.90 88.34 88.12
Model ACEO05

Pr. Rec. F1
Katiyar and Cardie [2018]  70.60  70.40  70.50
Lin et al. [2019] 7620 73.60 74.90
Wang et al. [2020] 83.95 8539 84.66
Yan et al. [2021] 83.16 86.38 84.74
Yu et al. [2020] 85.20 85.60 8540
Li et al. [2020] 87.16 86.59 86.88
Shen et al. [2021] 86.09 87.27 86.67
Tan et al. [2021] 8748 86.63 87.05
PnRNet 86.27 89.04 87.63
Model GENIA

Pr. Rec. Fl1
Lin et al. [2019] 75.80 7390 74.80
Strakova et al. [2019] - - 78.31
Wang et al. [2020] 79.45 7894 79.19
Yan et al. [2021] 78.87 79.6  79.23
Tan et al. [2021] 82.31 78.66 80.44
Yu et al. [2020] 81.80 79.30 80.50
Shen et al. [2021] 80.19 80.89 80.54
PnRNet 82.68 81.04 81.85
Model KBP17

Pr. Rec. F1
Jietal [2017] 76.20 73.00 72.80
Lin et al. [2019] 7770 71.80 74.60
Li et al. [2020] 80.97 81.12 80.97
Tan et al. [2021] 8491 83.04 83.96
Shen et al. [2021] 85.46 82.67 84.05
PnRNet 86.51 84.06 85.27
Model CoNLLO03

Pr. Rec. F1
Lample et al. [2016] - - 90.94

Devlin et al. [2019] - - 92.8

Strakova et al. [2019] - - 93.38
Wang et al. [2020] - - 93.43
Li et al. [2020] 9233 94.61 93.04
Yu er al. [2020] 93.7 93.3 93.5
PnRNet 93.18 94.14 93.66

Table 1: Main Results on four nested NER datasets (ACE04,
ACEQ5, GENIA, KBP17) and one flat NER dataset (CoNLLO3).
Our PnRNet achieves state-of-the-art performance in Fl-score on
all these datasets.
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Entity Proposal Multi-Scale ACE04 GENIA
Proposal  Refinement  Features 7y g1 "Cig FI Pr.  Rec. FI  Loc.FI Cls.FI  Pr.  Rec. FI

v v v 92.34 91.75 87.90 88.34 88.12 84.65 88.17 82.68 §81.04 81.85

v v 89.52 88.40  81.54 8540 83.42 84.13 87.75 82.58 80.33 81.44

v 90.35 91.57 84.40 88.04 86.18 84.42 88.87 81.10 82.20 81.65

v v 91.75 90.78 86.86 87.12 86.99 83.89 8742  82.02 79.93 80.96

Table 2: Ablation Study
except GENIA and use BioWordVec [Chiu ez al., 2016] for len  support Proposal ~ Final
the GENIA dataset. We set the span enumeration length limit

to L = 16, the number of layers of the transformer decoder ?11 i’g?g 50.0% 2(6)12 gg;i
to M = 3. We pick K = 60 proposals with the highest ’ 626 2(0 6"7 0) 87'44 88.14
scores as entity proposals, a number significantly larger than 3 318 ( | 0' 5 (70 ) 3 5' 08 88.0 6
the number of entities in most sentences. 1 149 24-9'%)0) 83:28 85:62
3.2 Overall Performance S 107.(3.5%) 80.51  84.65
6-8 172 (5.7%) 77.01 83.28
Table 1 demonst.rates the overall.performance of our PnR- 9-16 105 (3.5%) 62.55 73.83
Net compared with various baselines. The experiments on 17- 39 (1.3%) ) 73.42

nested NER datasets show that our PnRNet outperforms all
previous methods by a large margin. Specifically, PnRNet
achieves +0.71%, +0.58%, +1.31%, and +1.22% gain in F1-
score in ACE04, ACEO5, GENIA, and KBP17. On the flat
NER dataset CoONLLO3, PnRNet also achieves SOTA perfor-
mance. It shows that modeling interactions between entities
and incorporating richer hierarchical contextual information
into the entity proposals not only help in detecting nested en-
tities but also improve the performance of the flat NER.

3.3 Ablation Study

We conduct the ablation study in the following three aspects,
as shown in Table 2.

Span-based entity proposal. To validate the effectiveness
of our proposal generation process, we replace these proposal
features with a set of randomly initialized learnable embed-
dings. The Fl-score drops by -4.7% and -0.41% in ACE04
and GENIA datasets without entity proposal. It shows that
proposal representations generated in the first stage provide
necessary information for entity recognition compared with
randomly initialized vectors.

Proposal refinement. In the ablation experiment without
proposal refinement, we directly evaluate the performance of
the span-based predictor. The performance drops by -1.94%
and -0.20% in ACE04 and GENIA compared with full PnR-
Net. This indicates aggregating richer contextual information
and modeling the relationship with other phrases can benefit
the performance of NER.

Multi-scale feature. In the ablation experiment without
multi-scale features, we use the output of the sequence en-
coder (H = [x1,X3,...,Xy]), which is the token-level
sentence representation, to provide contextual information
in proposal refinement. The performance drops by -1.13%
and -0.89% in ACE(04 and GENIA datasets. It shows that
multi-scale sentence representations provide richer hierarchi-
cal contextual information, which is helpful in entity recog-
nition.
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Table 3: Comparison of Fl-score between the entity proposals gen-
erated by the span-based predictor in the propose stage and the fi-
nal prediction of PnRNet on entities of different lengths in ACEO4.
The span-based entity predictor cannot propose spans that exceed
the span enumeration length limitation L, which is 16 in this exper-
iment.

3.4 Detailed Analysis of the Effect of the Proposal
Refinement

For detailed analysis, we compare the performance between
span-based proposals and the final predictions of PnRNet on
entities of different lengths. As shown in Table 3, as the entity
length grows, the performance of the span-based entity recog-
nition (entity proposals) declines significantly. In contrast,
the performance of the final prediction only gets a slight drop.
Furthermore, the two-stage detection still has satisfactory per-
formance on very long entities, even when it exceeds the pre-
diction limits of the span-based predictor used in the propose
stage. This indicates the refine stage of PnRNet, which per-
forms interaction between proposals and incorporates multi-
scale contextual information into proposal features, helps a
lot in recognizing nested named entities, especially for long
entities.

3.5 Visualization of Multi-Scale Cross-Attention
Weight

We visualize the cross-attention weight map of the last de-
coder layer of our PnRNet to confirm the effectiveness of
the multi-scale features. As shown in Figure 3, four spans
with the highest attention scores are “law professor” (the pre-
dicted entity of the proposal), “rick pildes” (the person name
of the “law professor”), “law professor rick pildes” (an entity
related to “law professor”) and “you” (another entity men-
tioned in this sample). This indicates that through multi-scale
features, the entity proposal can directly attend to features of
spans that are highly related to the proposal in cross-attention.
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Figure 3: We show an example from the ACEO4 dataset to illustrate
the multi-scale attention weight of PnRNet. We visualize the cross-
attention weight of a certain attention head in the last decoder layer.
The query of the illustrated cross-attention weight is an entity pro-
posal that finally predicts “law professor”’(PER).

“ Health officials in [[Saudi [Arabia]gpg ]ope have asked pil-
grims visiting its holy sites to wear masks in crowded places to
stop the spread of the MERS coronavirus .

On the contrary , the patent owner may continue to pursue
[[lits Jora]per rights through the courts .

Table 4: Case study. We mark coarse proposals in red, the corre-
sponding final predictions in blue, and ground truths in green. For
simplicity, we omit other irrelevant proposals and predictions and
only show one pair of proposal and its corresponding final predic-
tion in each case.

With the power of multi-scale features, the transformer de-
coder can aggregate hierarchical information that is helpful
to detect named entities, improving the performance of the
nested NER.

3.6 Case Study

We illustrate some cases in Table 4 to show that our PnR-
Net can eliminate errors in coarse proposals through proposal
refinement. In case 1, by aggregating richer contextual in-
formation, boundary errors in the coarse proposal (“Arabia”)
can be fixed in the final prediction (“Saudi Arabia”). In case
2, the pronoun entity “its” is misclassified by the span-based
predictor as a PER. By interacting between the entity proposal
and other proposals and contextual phrases, our PnRNet can
correctly classify the entity class as an ORG.

4 Related Work

Various methods have been proposed to recognize nested
named entities. Since traditional sequence tagging meth-
ods [Huang et al., 2015; Lample et al., 2016] which pre-
dict a label for each token cannot address nested named
entities, some optimized tagging schemes are proposed to
cope with the nested NER task [Ju er al., 2018; Strakovd
et al., 2019]. Hypergraph methods [Lu and Roth, 2015;
Katiyar and Cardie, 2018] represent the parsing structure of
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the input sentence as a hypergraph and detect nested entities
on the graph. Transition-based methods [Wang et al., 2018]
generate a sequence of constituency parsing actions to detect
nested entities.

Span-based methods predict entities with span representa-
tions. Sohrab and Miwa [2018] exhaustively enumerate spans
and generate span representation with boundary token fea-
tures and pooling features of span tokens. Tan et al. [2020]
first predict boundary and then perform classification over
span features. Wang er al. [2020] use a pyramid model
to generate span representations layer by layer. Yu et al
[2020] use a bi-affine operation to compute span classifica-
tion scores. Shen et al. [2021] perform boundary regression
after span-based prediction. Span-based methods can natu-
rally address the nested NER task without complex detecting
schemas and have achieved promising performance. How-
ever, span representations does not model the relationship
with other contextual phrases or entities. Besides, span-based
methods have difficulty predicting long entities because the
span enumeration length is limited to reduce computational
complexity. Our PnRNet solves all these two issues through
proposal refinement and re-prediction.

Other studies design new architectures or incorporate dif-
ferent paradigms for the nested NER task. Lin et al. [2019]
first identify anchor words of entity mentions and then de-
tect entity boundaries. Li et al. [2020] use a machine read-
ing comprehension model for the nested NER. Yan et al.
[2021] model the nested NER as a sequence generation task.
Since the nested NER task is essentially an order-agnostic
set prediction problem, Tan et al. [2021] use a sequence-
to-set neural network to detect entities as a set and apply a
permutation-invariant set loss for training. However, most
of these methods only use token-level encodings as sentence
representations, which have difficulty representing the hierar-
chical structure of natural language sentences. We mitigate
this issue with multi-scale sentence representation.

5 Conclusion

This paper presents a novel two-stage set prediction net-
work named Propose-and-Refine Network. Firstly, we use
a span-based predictor to generate a set of coarse entity pre-
dictions as proposals. Then proposals are fed into a trans-
former decoder for further refinement and finally re-predict
entity boundaries and entity classes. So prediction errors in
coarse entity proposals can be eliminated, and the model can
better detect long entities. Moreover, we generate multi-scale
sentence representations to provide richer hierarchical con-
textual information of the input sentence. Finally, we apply a
cross-entropy loss for the entity proposals and a permutation-
invariant set loss for the final predictions. Experiments show
that our model achieves state-of-the-art performance on flat
and nested NER datasets.
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