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Abstract

Allocating resources to individuals in a fair man-
ner has been a topic of interest since the ancient
times, with most of the early rigorous mathematical
work on the problem focusing on infinitely divisi-
ble resources. Recently, there has been a surge of
papers studying computational questions regarding
various different notions of fairness for the indivis-
ible case, like maximin share fairness (MMS) and
envy-freeness up to any good (EFX). We survey the
most important results in the discrete fair division
literature, focusing on the case of additive valua-
tion functions and paying particular attention to the
progress made in the last 10 years.

1 Introduction

Fair division is concerned with the fundamental task of fairly
partitioning or allocating a set of resources to a set of peo-
ple with diverse and heterogeneous preferences over these
resources. The associated theory originated in the works
of Steinhaus [1949], Banach, and Knaster (see [Dubins and
Spanier, 1961]), and has been in the focus of economics, ma-
thematics and computer science for the better part of the last
century. Most of the classic work on the problem has been
devoted to the fair division of infinitely divisible resources,
where “fair” here may have different interpretations, with two
predominant ones being proportionality [Steinhaus, 1949]
and envy-freeness [Gamow and Stern, 1958; Varian, 1974].

Compared to the divisible setting, the fair division of indi-
visible resources, which we refer to as discrete fair division,
turns out to be inherently more challenging. Indeed, it is clear
that no reasonable fair solution can be guaranteed in some
cases, e.g., when there is a single valuable item. A typical
remedy to this situation is to employ randomization, and aim
for fairness (e.g., envy-freeness) in expectation.

A fundamentally different approach to discrete fair division
came via the introduction of appropriate relaxations of envy-
freeness and proportionality, originating in the works of Lip-
ton et al. [2004], Budish [2011], Caragiannis et al. [2019b],
Gourves et al. [2014], which are geared to escape adverse ex-
amples. The main notions that were introduced in this litera-
ture were envy-freeness up to one good (EF1), envy-freeness
up to any good (EFX) and maximin share fairness (MMS).

Since then, work on the topic has flourished, centered around
fundamental questions about the existence and the efficient
computation of allocations satisfying these or other related
fairness criteria.

More generally, over the past decade, discrete fair division
had been in the epicenter of computational fair division, for
several different fairness notions and a variety of different set-
tings. In this survey, we highlight the main contributions of
this literature, the most significant variants of the main set-
ting, as well as some of the major open problems in the area.

1.1 The setting

For the general discrete fair division problem we consider
here, there is a set N of n agents and a set M of m goods
which cannot be divided or shared. Each agent 7 is equipped
with a valuation function v; : oM R>¢, which assigns
a non-negative real number to each possible subset of items
and is normalized, i.e., v;(&) = 0. In this survey we focus
on the case where the valuation function of each agent i is
also assumed to be additive, so that v;(S) = >_ s vi(g) for
any subset of items S C M; v;(g) is used as a shortcut for
v;({g}). Other types of valuation functions have also been
studied and are briefly discussed but, unless otherwise speci-
fied, in what follows we refer to the additive case. An alloca-
tion is a tuple of subsets of M, A = (44,...,A,), such that
each agent i € N receives the bundle A; C M, A;NA; =2
for every pair of agents i,j € N, and |J;cy 4i = M. The
objective is to compute a fair allocation, i.e., an allocation
that satisfies a desired fairness criterion.

As already mentioned, since the early fair division litera-
ture there are two predominant fairness notions, namely envy-
freeness and proportionality. An allocation is said to be envy-
free if no agent believes that another agent was given a better
bundle, i.e., envy-freeness depends on pairwise comparisons.

Definition 1 (Envy-freeness). An allocation A is envy-free if
v;(A;) > v;(A;) for every pair of agents 7, j € N.

On the other hand, an allocation is said to be proportional if
each agent is guaranteed her proportional share in terms of
total value, independently of what others get.

Definition 2 (Proportionality). An allocation A is propor-
tional if v;(A;) > v;(M)/n or every agenti € N.

Is not hard to see that in the additive case if an allocation is
envy-free, then it is also proportional, but the converse is not
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necessarily true. Envy-free or proportional allocations do not
always exist in our setting as indicated by the simple example
with two agents and a single good that is positively valued by
both. Since only one of the agents receives the good, the other
agent gets zero value and, thus, she envies the agent with the
item and also does not achieve her proportional share.

Despite this impossibility, one could still be interested in
finding envy-free or proportional allocations when they exist.
Unfortunately, it turns out that the problem of even decid-
ing whether an instance admits an envy-free (or proportional)
allocation is NP-complete, which can be shown via a sim-
ple reduction from PARTITION [Lipton et al., 2004]. These
straightforward impossibility results have led to the definition
of multiple relaxations of these two notions, tailored for dis-
crete fair division.

2 Envy-Freeness up to One Good (EF1)

The first such relaxation of envy-freeness is envy-freeness
up to one good (EF1), implicitly introduced by Lipton et
al. [2004], but formally defined by Budish [2011]. According
to EF1 it is acceptable for an agent ¢ to envy another agent j,
as long as there exists a good in j’s bundle the hypothetical
removal of which would eliminate ¢’s envy towards j.

Definition 3 (EF1). An allocation A is envy-free up to one
good (EF1) if, for every pair of agents ¢, 7 € IV, it holds that
v;(A4;) > v (A \ {g}) for some g € A;.

Example 1. To demonstrate the notion of EF1 (as well as
EFX and MMS in Sections 3 and 4 later on), let us consider a
simple example with three agents and five goods. The values
of the agents for the goods are given in the following table:

g1 92 93 g4 G5
a; | 15 3 2 2 6
as | 7 5 5 5 7
az | 20 3 3 3 3

This instance does not admit any envy-free or proportional
allocations. To see this, observe that in any proportional al-
location, agent as must get at least {g1} or {g2, 93,94, 95}-
In the latter case at least one of a; and ay will get no goods,
whereas in the former case a; must get at least three of the
remaining four goods and as must get at least two, which
is not possible. On the other hand, note that the allocation
A1 = {93,094}, A2 = {92,95}, A3 = {91} is EF1: az and a3
are not envious, and the envy of a; towards as and a3 can be
eliminated by the hypothetical removals of g5 from A, and
g1 from Ag respectively. O

There are simple, polynomial-time algorithms for com-
puting EF1 allocations. The first such algorithm is known
as Envy-Cycle Elimination, and was developed by Lipton et
al. [2004] several years before EF1 was formally defined.

Algorithm 1 (Envy-Cycle elimination). Envy-Cycle Elimi-
nation operates in phases. In each phase, it first allocates one
of the available goods to some agent that no other agent en-
vies. Then, it looks for cycles in the current envy-graph (a
graph that contains a node for each agent and a directed edge
from agent ¢ to agent j if and only if ¢ envies 7), and elim-
inates them by appropriately reallocating the bundles of the
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involved agents. This guarantees that there is always an agent
no one envies at the beginning of the next phase.

While Envy-Cycle Elimination works for any monotone
valuations, for the additive case EF1 allocations can be com-
puted using a much simpler draft algorithm, known as Round-
Robin [Caragiannis et al., 2019b].

Algorithm 2 (Round-Robin). Round-Robin fixes an ordering
of the agents and, according to this ordering, it lets one agent
at a time choose their favorite available good until all goods
have been allocated.

To see why Round-Robin achieves EF1 allocations, con-
sider two agents ¢ and j, such that ¢ comes before j in the
ordering. As ¢ has the chance to pick a good before j in ev-
ery single round of the algorithm, ¢ cannot envy j. Of course,
agent 7 may envy agent ¢. Let g be the first good chosen by 7.
From that point on, we can see the execution of the algorithm
on the remaining goods as a fresh run where now j has the
chance to pick a good before ¢ in every round. So j does not
envy ¢’s bundle after the removal of good g from it.

While EF1 allocations are rather easy to achieve, as
demonstrated above, Caragiannis et al. [2019b] identified an
interesting inherent connection between EF1 and the notion
of maximum Nash welfare (MNW).

Definition 4 (MNW allocation). An allocation A is said to
be a maximum Nash welfare (MNW) allocation if (a) it max-
imizes the product of agent values [ [, v;(4;), and (b) in case
the Nash welfare of all allocations is 0, it then maximizes the
product for the agents with positive value.

In particular, Caragiannis et al. [2019b] showed that MNW
allocations are always EF1 and also Pareto optimal (PO). This
result shows that there exist allocations that combine fairness
with other desired properties, in particular with PO. How-
ever, it is known that MNW allocations are generally hard
to compute in polynomial time (in fact, it is hard to even ap-
proximate them [Hoefer ef al., 2021]). Hence, the question
of whether it is possible to efficiently compute EF1 and PO
allocations was left open. Barman et al. [2018b] recently
made progress by computing such allocations in pseudo-
polynomial time. This brings us to our first open problem.

Open Problem 1. Can an EF1 and PO allocation be com-
puted in polynomial time?

3 Envy-Freeness up to Any Good (EFX)

While EF1 is easy to achieve, in many cases it is a fairly weak
fairness notion; an EF1 allocation is considered to be fair for
an agent even when a very highly-valued good is hypotheti-
cally removed from another agent’s bundle (e.g., a house or
an expensive car). For example, consider agent a;’s perspec-
tive of the allocation in Example 1, where the proposed EF1
solution requires the removal of rather valuable goods for the
agent. A very natural refinement of the notion is the stricter
relaxation of envy-freeness up to any good (EFX) that was
introduced in 2016 by Caragiannis ef al. [2019b] in the con-
ference version of their work but also somewhat earlier by
Gourves et al. [2014] under the name near envy-freeness. An
allocation is said to be EFX if the envy of an agent ¢ towards
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another agent j can be eliminated by the hypothetical removal
of any good in j’s bundle.

Definition 5 (EFX). An allocation A is envy-free up to any
good (EFX) if, for every pair of agents i, j € NV, it holds that
vi(A;) > v (A \ {g}) for any g € A; such that v;(g) > 0.

Example 2. Consider again the instance of Example 1. The
allocation A; = {g3,94}, A2 = {g2,95}, Az = {g1} is
not EFX, since the envy of a; towards ao cannot be elimi-
nated by removing gs (a1’s least favorite good in As) from
As. Nevertheless, it is easy to modify this allocation to get
B]_ = {94,95}, Bg = {gg,gg}, Bg = {91} which is EFX.
Indeed, the envy of a; towards agz can be eliminated by re-
moving g; from Bj3, whereas the envy of a, towards a; can
be eliminated by removing g4 from Bjy; in both cases the hy-
pothetical removal involves the envious agent’s least valued
good in the other agent’s bundle. O

In contrast to EF1, where the existence is guaranteed via
simple polynomial-time algorithms, the existence of EFX al-
locations is a challenging open problem. Procaccia [2020] in
fact referred to this as “fair division’s most enigmatic ques-
tion”. In the past few years, a sequence of works have posi-
tively answered this question for important special cases, cen-
tered mainly around two axes: a small number of agents or
restricted agents’ valuations.

EFX for two and three agents: Plaut and Roughgarden [2020]
showed that an EFX allocation always exists and can be ef-
ficiently computed when there are only two agents. In a
breakthrough paper, Chaudhury et al. [2020] showed that
EFX allocations always exist for instances with three agents
and described a procedure that computes such an allocation
in pseudo-polynomial time; computing EFX allocations for
three agents in polynomial time is still an open problem.

EFX for restricted valuations: In [Plaut and Roughgarden,
20201, it was also shown that EFX allocations exist and can be
computed in polynomial time when all agents agree on the or-
dering of the goods with respect to their values. For instances
where there are only two distinct possible values that an agent
may have for each good, Amanatidis et al. [2021a] showed
that EFX allocations exist and can be efficiently computed
for any number of agents; later, Garg and Murhekar [2021]
showed that this is possible even in conjunction with PO.
In fact, Amanatidis et al. [2021a] also demonstrated an in-
teresting connection between EFX and MNW allocations for
bi-valued instances, by showing that MNW implies EFX. A
similar result was later shown by Babaioff et al. [2021b] for
general valuations with binary (i.e., 0 or 1) marginals.

Here, it is instructive to mention that in the related litera-
ture, the requirement that the inequality must hold only for
positively-valued goods in the definition of Caragiannis et
al. [2019b] stated above is often dropped. This stronger ver-
sion of EFX is usually called EFX, [Kyropoulou et al., 2020].
In the case of binary valuations, a special case of bi-valued in-
stances, the distinction makes a difference but in more general
settings, the existence and computation of EFXj allocations
can be reduced to the existence and computation of EFX al-
locations; see [Amanatidis et al., 2021a] for a related discus-
sion. It is easy to see that envy-freeness implies EFXg, which
implies EFX, which in turn implies EF1.
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While the aformentioned results are positive first steps to-
wards showing the existence of EFX allocations, a general
positive (or negative) result still remains elusive. This brings
us to our second open problem, which is one of the most im-
portant open problems in fair division.

Open Problem 2. Does an EFX allocation exist for instances
with n > 4 agents and unrestricted additive valuations?

3.1 Relaxations of EFX

Instead of focusing on exact EFX allocations, a growing line
of work has taken a different approach by aiming to compute
allocations that are approximately EFX, for different notions
of approximation. The first such notion is in terms of multi-
plicative approximations to the values obtained by the agents.

Definition 6 (o-EFX). Let o € (0,1]. An allocation A is a-
EFX if, for every pair of agent i, j € N, itholds that v;(4;) >
a-v;(A; \ {g}) forany g € A; such that v;(g) > 0.

Plaut and Roughgarden [2020] were the first to pursue this,
showing that 1/2-EFX allocations always exist, even for sub-
additive valuation functions, and later Chan et al. [2019]
showed that computing such allocations can be done in poly-
nomial time. The approximation ratio for the additive case
was further improved by Amanatidis et al. [2020] to ¢ — 1 ~
0.618 by combining Round-Robin and Envy-Cycle Elimina-
tion with some appropriate pre-processing. To this end, we
have the following open question:

Open Problem 3. What is the best possible a for which a-
EFX allocations exist?

A positive answer to Open Problem 2 would establish that
a = 1 in Open Problem 3, but a negative answer would
make the latter open problem very meaningful in its own
right. Additionally, as is the case for all of these notions, the
next natural question is whether existence can be paired with
polynomial-time algorithms for finding such allocations, or
whether some kind of computational hardness can be proven.

Another recent approach is that of relaxing the requirement
to allocate all available goods. Clearly, if done without any
constraints, this makes the problem trivial: simply leaving all
goods unallocated, results in an envy-free allocation. How-
ever, the objective here is to only leave “a few” goods un-
allocated (e.g., donate them to charity instead), or remove
some goods without affecting the maximum possible Nash
social welfare by “too much”. On this front, Caragiannis et
al. [2019a] showed that it is possible to compute an EFX al-
location of a subset of the goods, the Nash welfare of which
is at least half of the maximum Nash welfare on the origi-
nal set. Chaudhury et al. [2020] presented an algorithm that
computes a partial EFX allocation, but the number of unallo-
cated goods is at most n — 1, and no agent prefers the set of
these goods to her own bundle. The latter result was recently
improved by Berger ef al. [2021] who showed that the unallo-
cated goods can be decreased to n — 2 in general, and to just
one for the case of 4 agents. Finally, Chaudhury ef al. [2021]
showed that a (1 —e)-EFX allocation with at most a sublinear
number of unallocated goods and high Nash welfare can be
computed in polynomial time. This motivates the next open
problem.
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Open Problem 4. Is it possible to achieve an exact EFX al-
location by donating a sublinear number of goods?

4 Maximin Share Fairness (MMS)

Besides the two additive relaxations of envy-freeness dis-
cussed so far, an extensively studied fairness notion in dis-
crete fair division is maximin share fairness, also introduced
by Budish [2011]. The notion can be seen as a generalization
of the rationale of the well-known cut-and-choose protocol,
which is known to guarantee an envy-free partition of a divis-
ible resource. Here the goal is to give to each agent ¢ goods of
value at least as much as her maximin share p (M), which is
the maximum value this agent could guarantee for herself by
partitioning the goods into n disjoint bundles and keeping the
worst of them. As such, it is a relaxation of proportionality.

Definition 7 (MMS). Let A, (M) be the collection of possi-
ble allocations of the goods in M to n agents. An allocation
A is said to be maximin share fair (MMS) if for each agent
i € N,itholds that v;(A;) > u?(M) = max minwv;(95).
BEA, (M) SEB
Example 3. Returning to the instance of Example 1, we can
see that u3 (M) = 6, since it is not possible to partition the
items into three sets with strictly more value, but 6 is guar-
anteed by the partition {g1}, {92,93,94}, {g5}. Similarly,
us(M) = 7 and p3(M) = 6. Therefore, By = {g4,95},
By = {92,953}, B3 = {g1}, from Example 2, is an MMS
allocation, but A1 = {g3,g4}, A2 = {gg,gg,}, Ag = {gl},
from Example 1, is only a 2/3-MMS allocation as agent a;
gets a bundle of value 4 = 2/3- u3 (M) (see also below). O

While it is easy to see that computing MMS allocations or
even computing the maximin share of an agent is an NP-hard
problem using a reduction from PARTITION, there is a PTAS
for the latter task [Woeginger, 1997]. The first breakthrough
about MMS was that allocations that guarantee it do not al-
ways exist when there are more than two agents [Kurokawa
et al., 2018; Kurokawa er al., 2016], yet it is possible to com-
pute approximate MMS allocations. We say that an alloca-
tion is a-MMS, for o € (0, 1], if each agent 7 is guaran-
teed to get value at least oy (M). To this end, Kurokawa et
al. [2018] showed how to find 2/3-MMS allocations, albeit
not in polynomial time. Amanatidis et al. [2017b] matched
this guarantee in polynomial time, as did Barman and Krish-
namurthy [2020] with a much simpler algorithm. The barrier
of 2/3 was broken by Ghodsi ef al. [2021] who designed an
elaborate (3/4 — ¢)-approximation algorithm. A simpler al-
gorithm with a slightly improved approximation guarantee of
3/4 + 1/(12n) was proposed by Garg and Taki [2021]. On
the negative side, Feige er al. [2021] recently showed that it
is impossible to achieve an approximation bound better than
39/40. Barman and Krishnamurthy [2020] and Ghodsi et
al. [2022] designed algorithms for computing approximate
MMS allocations for richer classes of valuations (such as sub-
modular, XOS, and subadditive).

Open Problem 5. Is it possible to improve upon the bound
of 3/4 + 1/(12n) for additive valuations? Is there a stronger
inapproximability bound than 39/40?

As expected, by restricting the number of agents or the
space of the valuation functions, one can get stronger results.

MMS for four or fewer agents: When there are only two
agents a simple cut-and-choose protocol always produces an
MMS allocation. Specifically, the first agent partitions the set
of goods as equally as possible (thus the worst set has value
equal to her maximin share) and the second agent chooses
who gets each of these sets. As suggested above, the first
step is computationally hard but producing a (1 — &)-MMS
allocation in polynomial time is still possible. Even though
in the general case, the algorithm of Kurokawa et al. [2018]
guaranteed a 2/3-approximation, for three or four agents it
guarantees an improved 3 /4-approximation. The approxima-
tion factor for the case of three agents was then improved to
7/8 [Amanatidis ez al., 2017b] and later to 8/9 [Gourves and
Monnot, 2019], whereas for the case of four agents the factor
was improved to 4/5 [Ghodsi et al., 2021].

MMS for restricted valuations: It follows by Definition 7 that
MMS allocations exist for instances where all agents have
identical valuation functions. Bouveret and Lemaitre [2016]
showed that, unlike with EFX, the hardest instances for MMS
(among all possible instances) are the ones where all agents
agree on the ordering of the goods. They also suggested a
simple construction of exact MMS allocations when the val-
uation functions are binary.

This result can be generalized, as MMS allocations always
exist and can be computed efficiently for ternary valuation
functions [Amanatidis et al., 2017b] and for bi-valued valu-
ation functions [Feige, 2022]. Ebadian et al. [2021] showed
that this is also the case when there are at most two values per
agent (possibly not common across all agents) and for general
instances where the value of each good is at least as much as
the value of all lesser goods combined.

Open Problem 6. Are there other classes of structured val-
uations for which MMS is guaranteed to exist, such as when
there are only a few (but more than two) possible values?

5 Further Notable Fairness Notions

EFL and EFR: The EFX notion was defined as a more re-
alistic counterpart to EF1, however, as we discussed in Sec-
tion 3, it is still unknown if it can always be guaranteed. This
has led to the definition of notions that lie “in-between” EF1
and EFX. Barman et al. [2018a] defined the notion of envy-
freeness up to one less-preferred good (EFL) according to
which an agent ¢ may envy another agent j if either A; con-
tains at most one good that ¢ values positively, or the envy
of ¢ can be eliminated by the hypothetical removal of a good
g € A; such that v;(A4;) > v;(g). They showed that EFL
allocations always exist and can be computed using a variant
of Envy-Cycle Elimination. Farhadi et al. [2021] defined the
notion of envy-freeness up to a random good (EFR) according
to which the envy of an agent ¢ towards another agent j can
be eliminated in expectation after the hypothetical removal of
a randomly chosen good from A;. They showed that a 0.73-
EFR allocation can be computed in polynomial time.

Open Problem 7. Does an EFR allocation always exist?

PMMS and GMMS: Several variations of MMS have also
been considered. Caragiannis er al. [2019b] defined the no-
tion of pairwise maximin share fairness (PMMS) according
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to which, for every pair of agents 7 and j, ¢’s value for A;
must be at least as much as the maximum she could obtain
by redistributing the set of goods in A; U A; into two bun-
dles and picking the worst of them. In other words, instead of
requiring the maximin share guarantee to be achieved for the
set of all agents, PMMS requires that it is achieved for any
pair of agents. Despite the apparent similarities in the defini-
tions of PMMS and MMS, Caragiannis et al. [2019b] showed
that their exact versions are actually incomparable. The main
open problem here is the following.

Open Problem 8. Does a PMMS allocation always exist?

Interestingly, showing the existence of PMMS allocations
is at least as hard as showing the existence of EFX allocations
(Open Problem 2), as PMMS implies EFX. For approximate
PMMS, the best known result is 0.781 by Kurokawa [2017].

An even stronger notion, which implies both MMS and
PMMS, is that of groupwise maximin share fairness (GMMS)
defined by Barman et al. [2018al, and which requires that the
maximin share guarantee is simultaneously achieved for any
possible subset of agents. Barman er al. [2018a] showed that
GMMS allocations exist for some restricted settings, such as
when the agents have binary or identical values. They also
showed that any EFL allocation is 1/2-GMMS, and thus such
an allocation can be computed efficiently. The currently best
known approximation of GMMS is 4/7 [Amanatidis et al.,
2020; Chaudhury et al., 2020]. The implication relations be-
tween all the aforementioned notions has been used many
times to show that particular algorithms have guarantees that
hold for multiple notions at once. We refer the reader to the
paper of Amanatidis et al. [2018] for a discussion of the rela-
tions between (approximate versions of) these notions.

Open Problem 9. What is the best possible « for which -
GMMS allocations exist?

Propl, PropX and PropM: A line of work has also focused
on relaxations of proportionality that are similar in essence
to EF1 and EFX. Conitzer et al. [2017] defined the notion of
proportionality up to one good (Propl) according to which
each agent could obtain her proportional share if given one
extra good. An allocation that is Propl and PO always ex-
ists [Conitzer er al., 2017] and can be computed in poly-
nomial time [Barman and Krishnamurthy, 2019]. Aziz et
al. [2020] defined PropX which demands that each agent can
obtain her proportional share when given the least positively-
valued good among those allocated to other agents. PropX
is rather demanding and it cannot be always guaranteed,
even in simple scenarios. Recently, Baklanov et al. [2021a;
2021b] introduced the notion of proportionality up to the
maximin good (PropM) and showed that such allocations al-
ways exist and can be computed in polynomial time.

6 Other Topics

Here we consider other interesting directions like the relation
between fairness and efficiency, or the possibility to achieve
fairness when the agents are strategic. Finally, we briefly dis-
cuss further meaningful discrete fair division settings.
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6.1 Fairness and Efficiency

There is a significant line of work that considers the question
of whether it is possible to simultaneously achieve fairness
and efficiency. A common type of efficiency is that of Pareto
optimality, which, as we already discussed, can be guaran-
teed in conjunction with some fairness notions, like EF1 and
Propl. Another natural goal is to (approximately) maximize
some objective function of the values of the agents, such as
the social welfare, i.e., the total value of the agents for the
goods they receive. To this end, Bertsimas ef al. [2011] and
Caragiannis et al. [2012] defined the Price of Fairness, a
measure which, similarly to the approximation ratio for al-
gorithms, measures the deterioration of the objective due to
the fairness requirement (which may refer to any fairness no-
tion).

The Price of Fairness for EF1 and EFX allocations (only
for instances with two agents) was considered by Bei et
al. [2021]. Barman er al. [2020] managed to close a gap
on the price of EF1 that was left open in the work of Bei
et al. [2021], and also showed tight bounds for other fair-
ness notions, in particular, 1/2-MMS and Prop1. Halpern and
Shah [2021] showed tight bounds on the Price of EF1 and of
approximate MMS under the constraint of having only ordi-
nal information about the agent values, a typical assumption
made in the context of distortion in social choice [Anshele-
vich ef al., 2021].

6.2 Fair Division with Strategic Agents

Most of the papers mentioned so far, studied the problem
from an algorithmic perspective under the assumption that the
agents are non-strategic. In the strategic version of the prob-
lem, an agent may intentionally misreport how she values the
goods in order to end up with a better bundle. This introduces
an additional layer of difficulty, as the goal is to produce fair
allocations according to the true values of the agents, while
their declarations might be far from truth. This version of
the problem has been considered mostly from a mechanism
design without monetary transfers perspective, in which the
utility of an agent is defined as her (true) value for her bundle.

A first direction was the design of fruthful mechanisms
(i.e., mechanisms where no agent has an incentive to lie) that
are also fair. Caragiannis er al. [2009], showed that no truth-
ful mechanism for two agents and two goods can always out-
put allocations of minimum envy. Amanatidis ef al. [2016]
revisited the problem for the case of two agents and any num-
ber of goods, and showed that no truthful mechanism can al-
ways output a-MMS allocations, for o« > 2/m. A character-
ization of truthful mechanisms for two agents, showing that
truthfulness and fairness are incompatible (in the sense that
there is no truthful mechanism with bounded fairness guaran-
tees under any meaningful fairness notion) was provided by
Amanatidis et al. [2017al. This impossibility, however, does
not apply to restricted cases. Halpern et al. [2020] showed
that for binary valuations, there is a polynomial-time truth-
ful mechanism that produces EF1 and PO allocations, and
Babaioff et al. [2021a] showed an analogous result with re-
spect to MMS. In fact, Babaioff et al. [2021a] also showed
that for the submodular analog of binary valuations, there is
a truthful mechanism that always outputs EFX allocations.
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More recently, the aforementioned impossibility results led
to a different direction, where the focus was shifted to the sta-
ble states of non-truthful mechanisms. In particular, Amana-
tidis er al. [2021b] studied mechanisms that always have pure
Nash equilibria, and showed that every allocation that corre-
sponds to an equilibrium of Round Robin is EF1 with respect
to the (unknown) true values of the agents.

Open Problem 10. Are there mechanisms that always have
pure Nash equilibrium allocations with stronger guarantees
than EF1?

6.3 Notable Variants of the Setting

We conclude by giving a brief overview of other interesting
settings in discrete fair division and their main results.

Arbitrary Entitlements. So far, it is always assumed that
agents have equal entitlements over the goods. However,
there are settings where the fairness of an allocation must be
considered with respect to asymmetric entitlements, e.g., in
many inheritance scenarios, closer relatives have higher enti-
tlements often determined by law. In order to capture fairness
in the presence of arbitrary entitlements, one may generalize
existing notions to their weighted counterparts, like weighted
MMS [Farhadi et al., 2019] and weighted EF1 [Chakraborty
etal.,2021], or tweek their definitions approprietly, like in the
MMS-inspired £-out-of-d share of Babaioff et al. [2021c]. In
a recent work, Babaioff ez al. [2021b] introduce the notion of
AnyPrice share (APS) as the maximum value an agent can
guarantee to herself if she has a budget equal to her entitle-
ment and the goods are adversarially priced with prices that
sum up to 1, and show how to efficiently compute an alloca-
tion where everyone gets value no less than 3/5 of her APS.

Group Fairness. In the model we discussed in the main
part of the survey, each agent is assumed to be unrelated to
other agents. However, there are applications where it makes
more sense for agents to be grouped together (e.g., each group
might correspond to a family). Several models capturing sce-
narios along these lines have been considered in the literature.
Suksompong [2018] focused on a setting where each agent
derives full value from all the goods allocated to the group
she belongs to, and showed bounds on the best possible ap-
proximation of MMS. Kyropoulou ef al. [2020] considered
EF1 and EFX allocations in the same setting, as well as in
settings with dynamic group formation; some of these results
were later improved by Manurangsi and Suksompong [2021]
using ideas from discrepancy theory. Segal-Halevi and Suk-
sompong [2019] focused on the case of democratic fairness,
where the goal is to compute allocations that are considered
fair (e.g., satisfying EF1) by a high fraction of the agents in
each group. A different model was studied by Conitzer et
al. [2019], where goods given to a group are then distributed
among its members, and thus the agents derive value only
from the goods allocated personally to them.

Online Fair Division. Our model here is static, as all items,
agents, and their valuation functions do not change over time.
Online fair division considers settings where the agents or
the goods arrive in an online manner. In the most com-
mon model there is a fixed set of agents, items arrive one

by one, and they need to be allocated to the agents immedi-
ately and irrevocably [Aleksandrov et al., 2015; Aleksandrov
and Walsh, 2020]. Usually, in order to bypass strong negative
results and show that it is possible for envy to vanish over
time or the allocations to always remain EF1, the values of
the goods are assumed to be bounded [Benade et al., 2018;
Zeng and Psomas, 2020] or a limited number of reallocations
is allowed [He et al., 2019]. The alternative model which con-
siders a fixed set of resources and agents who arrive or depart
over time has not been considered for indivisible resources,
partially because it is very challenging to achieve positive re-
sults [Kash et al., 2014].

Randomness in Fair Division. Until very recently there
were barely any works on randomized algorithms for dis-
crete fair division. This is partially due to the strong general
preference for deterministic algorithms / mechanisms within
the Computational Social Choice community (which is well-
justified in many settings, yet such a discussion is beyond the
scope of this survey), but also due to the nature of the problem
itself. On one hand, randomness cannot help with achieving
ex-post fairness, i.e., fairness in each resulting allocation, for
any of the deterministic notions mentioned herein. On the
other hand, achieving ex-ante envy-freeness, i.e., envy free-
ness with respect to the expected utilities, is trivial; just allo-
cate all the goods to a single agent uniformly at random. Free-
man ef al. [2020] proposed an algorithm that achieves ex-ante
envy-freeness but is also ex-post EF1, i.e., all the possible al-
locations it outputs are deterministically EF1. Aziz [2020]
gave a simpler algorithm with the same fairness guarantees
that also satisfies a weak efficiency property. Finally, in a
somewhat different direction, Caragiannis et al. [2021] stud-
ied interim envy-freeness, a notion which lies between ex-
ante and ex-post envy-freeness.

Subsidies. As we saw in Section 6.2, even in a game-
theoretic setting no monetary transfers are allowed in fair di-
vision problems. Indeed, arbitrary payments would signifi-
cantly alter the flavor of these problems and often go against
their motivation. A recent line of work, however, considers
the question of whether it is possible to pay the agents just
a small amount of money (subsidy) on top of a given alloca-
tion in order to make it envy-free (when the subsidies are also
taken into consideration). Allocations for which this can be
done are called envy-freeable. Halpern and Shah [2019], who
introduced the problem, showed that the total subsidy needed
to turn an envy-freeable allocation into an envy-free one is
at most (n — 1)muv*, where v* is the maximum value of any
agent for any good. This upper bound was later improved to
(n — 1)v* by [Brustle et al., 2020]. More recently, Caragian-
nis and Toannidis [2021] provided approximation guarantees
and hardness results for computing an envy-freeable alloca-
tion that minimizes the total amount of subsidies.

Fair Division under Constraints. Depending on the applica-
tion, some allocations may not be feasible due to restrictions
such as connectivity, cardinality, separation, or budget con-
straints. Such models have recently attracted the attention of
the community. Rather than referring to specific works, we
point the reader to the survey of Suksompong [2021] which
discusses this part of the literature in detail.
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Chores and Mixed Manna. Beyond discrete fair division of
goods that we focus on in this survey, there is a significant
line of work that considers similar questions when items can
be seen as chores (which are negatively valued by the agents),
or mixed manna (a mixture of both goods and chores). As
such settings are out of the scope of our survey, we refer the
reader to the works of Aziz et al. [2022], Li et al. [2021], Aziz
et al. [2017], Sun et al. [2021] and references therein.
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