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Abstract
How should a machine intelligence perform unsu-
pervised structure discovery over streams of sen-
sory input? One approach to this problem is to cast
it as an apperception task. Here, the task is to con-
struct an explicit interpretable theory that both ex-
plains the sensory sequence and also satisfies a set
of unity conditions, designed to ensure that the con-
stituents of the theory are connected in a relational
structure.
However, the original formulation of the apper-
ception task had one fundamental limitation: it
assumed the raw sensory input had already been
parsed using a set of discrete categories, so that
all the system had to do was receive this already-
digested symbolic input, and make sense of it. But
what if we don’t have access to pre-parsed input?
What if our sensory sequence is raw unprocessed
information?
The central contribution of this paper is a neuro-
symbolic framework for distilling interpretable the-
ories out of streams of raw, unprocessed sensory
experience. First, we extend the definition of the
apperception task to include ambiguous (but still
symbolic) input: sequences of sets of disjunctions.
Next, we use a neural network to map raw sen-
sory input to disjunctive input. Our binary neu-
ral network is encoded as a logic program, so the
weights of the network and the rules of the the-
ory can be solved jointly as a single SAT prob-
lem. This way, we are able to jointly learn how
to perceive (mapping raw sensory information to
concepts) and apperceive (combining concepts into
declarative rules).

1 Introduction
There are, broadly speaking, two approaches to interpret-
ing the results of machine learning systems [Miller, 2018;
Rudin, 2018; Murdoch et al., 2019]. In one approach, post-
hoc interpretation, we take an existing machine learning sys-

∗This paper was originally published in Artificial Intelligence
[Evans et al., 2021].

tem, that has already been trained, and try to understand its
inner state. In the other approach, designing explicit already-
interpretable machine learning systems, we constrain the de-
sign of the machine learning system to guarantee, in advance,
that its results will be interpretable.

In this paper, we take the second approach to unsupervised
learning. Our system takes as input a temporal sequence of
raw unprocessed sensory information, and produces an in-
terpretable theory capturing the regularities in that sequence.
It combines an unsupervised program synthesis system for
constructing explicit first-order theories, with a binary neural
network that transforms raw unprocessed sensory informa-
tion into symbolic information that can be accessed by the
program synthesis system. Thus, the system jointly synthe-
sizes an explanatory symbolic theory, connected to a learned,
sub-symbolic perceptual front-end.

1.1 Unsupervised Learning and Apperception
Consider a machine, equipped with various sensors, receiv-
ing a stream of sensory information. Somehow, it must make
sense of this sensory stream. But what, exactly, does “making
sense” involve, and how, exactly, should it be performed?

Unsupervised learning occupies a curious position within
the space of AI tasks in that, while it is acknowledged to be
of central importance to the progress of the field, it is also
frustratingly ill-defined. What, exactly, does it mean to “make
sense” of unlabelled data? There is no consensus on what the
problem is, let alone the solution.

Self-supervised learning has emerged as a well-defined
sub-field within unsupervised learning [Sermanet et al., 2018;
Pathak et al., 2017]. Here, the task is to use the unlabelled
sensory sequence as a source of supervised learning prob-
lems: we try to predict future states given previous states.
Now, the vague under-specified unsupervised learning prob-
lem has been replaced by the well-defined task of predicting
certain data points conditioned on others.

But there is more, we submit, to making sense than just
predicting (or retrodicting) held-out states. Predicting future
held-out states is certainly part of what is involved in making
sense of the sensory given—but it is not, on its own, suffi-
cient.

Recently, we proposed an alternative approach to unsuper-
vised learning [Evans et al., 2021]. The problem of “making
sense” of sequences is formalised as an apperception task.
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Here, the task is to construct an explicit theory that both ex-
plains the sequence and also satisfies a set of unity conditions
designed to ensure that the constituents of the theory—the
objects, properties, and propositions—are combined together
in a relational structure. We developed an implementation,
the APPERCEPTION ENGINE, and showed, in a range of ex-
periments, how this system is able to outperform recurrent
networks and other baselines on a range of tasks, including
Hofstadter’s Seek Whence dataset [Hofstadter, 1995].

But in our initial implementation, there was one fundamen-
tal limitation: we assumed the sensory input was provided in
symbolic form. We assumed some other system had already
parsed the raw sensory input into a set of discrete categories,
so that all the APPERCEPTION ENGINE had to do was receive
this already-digested symbolic input, and make sense of it.
But what if we don’t have access to pre-parsed input? What
if our sensory sequence is raw unprocessed information—a
sequence of noisy pixel arrays from a video camera, for ex-
ample?

1.2 Overview
Our central contribution is an approach for unsupervised
learning of interpretable symbolic theories from raw unpro-
cessed sensory data. We achieve this through a major exten-
sion of the APPERCEPTION ENGINE so that it is able to work
from this raw input. This involves two phases. First, we ex-
tend the APPERCEPTION ENGINE to receive ambiguous (but
still symbolic) input: sequences of disjunctions. Second, we
use a neural network to map raw sensory input to disjunc-
tive input. Our binary neural network is encoded as a logic
program, so the weights of the network and the rules of the
theory can be found jointly by solving a single SAT prob-
lem. This way, we are able to simultaneously learn how to
perceive (mapping raw sensory information to concepts) and
apperceive (combining concepts into rules).

We tested our system in three domains. In the first domain,
the APPERCEPTION ENGINE learned to solve sequence in-
duction tasks, where the sequence was represented by noisy
MNIST images [LeCun et al., 1998]. In the second, it learned
the dynamics of Sokoban from a sequence of noisy pixel ar-
rays. In the third, it learned to make sense of sequences of
noisy ambiguous data without knowledge of the underlying
spatial structure of the generative model.

This system is, to the best of our knowledge, the first sys-
tem that is able to learn explicit provably correct dynamics
of non-trivial games from raw pixel input. We discover that
generic inductive biases embedded in our system suffice to
induce these game dynamics from very sparse data, i.e. less
than two dozen game traces. We see this as a step toward ma-
chines that can flexibly adapt and even synthesize their own
world models [Ha and Schmidhuber, 2018], starting from raw
sub-symbolic input, while organizing and representing those
models in a format that humans can comprehend, debug, and
verify.

2 Experiments
Here, we describe two of the three sets of experiments. For
more details, see [Evans et al., 2021].

2.1 Seek Whence with Noisy Images
The Seek Whence dataset is a set of challenging sequence
induction problems designed by Douglas Hofstadter [Hofs-
tadter, 1995].

The Data
In Hofstadter’s original dataset, the sequences are lists of dis-
crete symbols. In our modified dataset, we replaced each dis-
crete symbol with a corresponding MNIST image.

To make it more interesting (and harder), we deliberately
chose particularly ambiguous images. Consider Figure 1.
Here, the leftmost image could be a 0 or a 2, while the next
could be a 5 or possibly a 6. Of course, we humans are
unphased by these ambiguities because the low Kolmogorov
complexity [Li and Vitányi, 2008] of the high-level symbolic
sequence helps us to resolve the ambiguities in the low-level
perceptual input. We would like our machines to do the same.

For each sequence, the held-out data used for evaluation is
a set of acceptable images, and a set of unacceptable images,
for the final held-out time step. See Figure 1. We provide a
slice of the sequence as input, and use a held-out time step for
evaluation. If the correct symbol at the held-out time step is
s, then we sample a set of unambiguous images representing
s for our set of acceptable next images, and we sample a set
of unambiguous images representing symbols other than s for
our set of unacceptable images.

The Model
In this experiment, we combined the APPERCEPTION EN-
GINE with a three-layer perceptron with dropout that had been
pre-trained to classify images into ten classes representing
the digits 0 − 9. For each image, the network produced a
probability distribution over the ten classes.

We chose a threshold (0.1), and stipulated that if the prob-
ability of a particular digit exceeded the threshold, then the
image possibly represents that digit. According to this thresh-
old, some of the images (the first, third, eighth, and twelfth)
of Figure 2 are ambiguous, while others are not.

Our pre-trained neural network MNIST classifier has ef-
fectively turned the raw apperception task into a disjunctive
apperception task. Once the input has been transformed into a
sequence of disjunctions, we apply the APPERCEPTION EN-
GINE to resolve the disjunctions and find a unified theory that
explains the sequence.

2.2 Sokoban
In Section 2.1, we used a hybrid architecture where the out-
put of a pre-trained neural network was fed to the APPER-
CEPTION ENGINE. We assumed that we already knew that
the images fell into exactly ten classes (representing the dig-
its 0 − 9), and that we had access to a network that already
knew how to classify images.

But what if these assumptions fail? What if we are doing
pure unsupervised learning and don’t know how many classes
the inputs fall into? What if we want to jointly train the neu-
ral network and solve the apperception problem at the same
time?

In this next experiment, we combined the APPERCEP-
TION ENGINE with a neural network, simultaneously learn-
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Figure 1: Seek-Whence tasks using MNIST images.
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Figure 2: Solving Seek-Whence tasks from raw MNIST images.

ing the weights of the neural network and also finding an in-
terpretable theory that explains the sensory given.

We used Sokoban1 as our domain. Here, the system is pre-
sented with a sequence of noisy pixel images together with
associated actions. The system must jointly (i) parse the noisy
pixel images into a set of persistent objects, and (ii) construct
a set of rules that explain how the properties of those objects
change over time as a result of the actions being performed.
We wanted the learned dynamics to be 100% correct. Al-
though next-step prediction models based on neural networks
are able, with sufficient data, to achieve accuracy of 99%
[Buesing et al., 2018], this is insufficient for our purposes. If
a learned dynamics model is going to be used for long-term
planning, 99% is insufficiently accurate, as the roll-outs will
become increasingly untrustworthy as we progress through
time, since 0.99t quickly approaches 0 as t increases.

The Data
In this task, the raw input is a sequence of pairs contain-
ing a binarised 20 × 20 image together with a player ac-
tion from A = {north, east , south,west}. In other words,
R = B20×20 × A, and (r1, ..., rT ) is a sequence of (image,
action) pairs from R.

Each array is generated from a 4× 4 grid of 5× 5 sprites.
Each sprite is rendered using a certain amount of noise (ran-
dom pixel flipping), and so each 20×20 pixel image contains

1Sokoban is a puzzle game where the player controls a man who
moves around a two-dimensional grid world, pushing blocks onto
designated target squares.

the accumulated noise from the various noisy sprite render-
ings.

Each trajectory contains a sequence of (image, action)
pairs, plus held-out data for evaluation. Because of the noisy
sprite rendering process, there are many possible acceptable
pixel arrays for the final held-out time step. These accept-
able pixel arrays were generated by taking the true underly-
ing symbolic description of the Sokoban state at the held-out
time step, and producing many alternative renderings. A set
of unacceptable pixel arrays was generated by rendering from
various symbolic states distinct from the true symbolic state.
Note that the acceptable and unacceptable images are used
only for evaluation, not for training. Figure 3 shows an ex-
ample.

In our evaluation, a model is considered accurate if it ac-
cepts every acceptable pixel array at the held-out time step,
and rejects every unacceptable pixel array. This is a stringent
test. We do not give partial scores for getting some of the
predictions correct.

The Model
In outline, we convert the raw input sequence into a disjunc-
tive input sequence by imposing a grid on the pixel array and
repeatedly applying a binary neural network to each sprite in
the grid.

Figure 4 shows the best theory found by the APPERCEP-
TION ENGINE from one trajectory of 17 time steps. When
neural network next-step predictors are applied to these se-
quences, the learned dynamics typically fail to generalise
correctly to different-sized worlds or worlds with a differ-
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Figure 3: The Sokoban task. The input is a sequence of (image, action) pairs. For the held-out time step, there is a set of acceptable images,
and a set of unacceptable images. Note that the acceptable and unacceptable images are used only for evaluation, not for training.
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Figure 4: Interpreting Sokoban from raw pixels. Raw input is converted into a sprite grid, which is converted into a grid of types v0, v1, v2.
The grid of types is converted into a disjunctive apperception task. The APPERCEPTION ENGINE finds a unified theory explaining the
disjunctive input sequence, a theory which explains how objects’ positions change over time. The top four rules of R (in blue) describe how
the man X moves when actions are performed. The middle four rules (in magenta) define four invented predicates p1, ...p4 that are used to
describe when a block is being pushed in one of the four cardinal directions. The bottom four rules (in red) describe what happens when a
block is being pushed in one of the four directions.

ent number of objects [Buesing et al., 2018]. But the the-
ory leaned by the APPERCEPTION ENGINE applies to all
Sokoban worlds, no matter how large, no matter how many
objects. Not only is this learned theory correct, but it is prov-
ably correct
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