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Abstract

If an agent, or a coalition of agents, has a strategy,
knows that she has a strategy, and knows what the
strategy is, then she has a know-how strategy. Sev-
eral modal logics of coalition power for know-how
strategies have been studied before.

The contribution of the article is three-fold. First, it
proposes a new class of know-how strategies that
depend on the intelligence information about the
opponents’ actions. Second, it shows that the coali-
tion power modality for the proposed new class of
strategies cannot be expressed through the standard
know-how modality. Third, it gives a sound and
complete logical system that describes the interplay
between the coalition power modality with intel-
ligence and the distributed knowledge modality in
games with imperfect information.

1 Introduction

The Battle of the Atlantic was a classical example of the
matching pennies game. British (and American) admirals
were choosing routes of the allied convoys and the Germans
picked routes of their U-boats. If their trajectories crossed,
the Germans scored a win, if not the allies did. Neither of
the players appeared to have a strategy that would guarantee
a victory.

The truth, however, was that during the most of the bat-
tle one of the sides had exactly such a strategy. First, it was
the British who broke German Enigma cipher in summer of
1941. Although the Germans did not know about the British
success, they changed codebook and added fourth wheel to
Enigma in February 1942 thus preventing the British from
decoding German messages. The very next month, in March
1942, German navy cryptography unit, B-Dienst, broke the
allied code and got access to convoy route information. The
Germans lost their ability to read allied communication in
December 1942 due to a routine change in the allied code-
book. The same month, the British were able to read German
communication as a result of capturing codebook from a U-
boat in Mediterranean. In March 1943, the Germans changed

*This paper is an extended abstract of an article in Journal of
Artificial Intelligence Research [Naumov and Yuan, 2021].
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codebook again and, unknowingly, disabled British ability to
read German messages. Simultaneous, the Germans caught
up and started to decipher British transmissions again [Budi-
ansky, 2002; Showell, 2003].

At almost any moment during these two years one of the
sides was able to read the communications of the other side.
However, the two sides never have been able to read each
other’s messages at the same time to notice that the other side
knows more than it should have known. As a result, neither
of them was able to figure out that their own code is insecure.
Finally, in May 1943, with the help of US Navy, the British
cracked German messages while the Germans still were read-
ing British. It was the first time the allies understood that their
code was insecure. A new convoy cipher was immediately
introduced and the Germans have never been able to break it
again, while the allies continued reading Enigma-encrypted
transmissions till the end of the war [Budiansky, 2002].

In this article, we study coalition power in strategic games
assuming that the coalition has intelligence information about
the moves of all or some of its opponents. Throughout the
article, we refer to the information about the future actions of
the other agents simply as “the intelligence”. We write [C]r¢
if a coalition C has a strategy to achieve an outcome ¢ in
one step as long as the coalition has the intelligence about the
move of each agent in set /. For example,

[British]Germans(Convoy is saved).

Strategic games could be generalized to strategic games
with imperfect information. Unlike perfect information
strategic games, the initial state in an imperfect information
game could be unknown to the players. For example, consider
a hypothetical setting in which a British convoy and a German
U-boat have to choose between three routes from point A to
point B: route 1, route 2, and route 3, see Figure 1. Let us
furthermore assume that it is known to both sides that one of
these routes is blocked by Russian naval mines. Although the
mines are located along route 1, neither the British nor the
Germans know this. If the British have an access to the in-
telligence about German U-boats, then, in theory, they have a
strategy to save the convoy. For example, if the Germans will
use route 2, then the British can use route 3. However, since
the British do not know the location of the Russian mines,
even after they receive information about German plans, they
still would not know how to save the convoy.
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Figure 1: Three routes from point A to point B.

Modality [C]z¢ is the coalitional power modality pro-
posed by Marc Pauly [Pauly, 2001; Pauly, 2002]. He gave
a sound and complete axiomatization of this modality in the
case of perfect information strategic games. It has been
suggested in several recent works that, in the case of the
games with imperfect information, strategic power modality
in Marc Pauly logic should be restricted to existence of know-
how! strategies [Agotnes and Alechina, 2019; Naumov and
Tao, 2017a; Fervari et al., 2017; Naumov and Tao, 2018b;
Naumov and Tao, 2018c; Naumov and Tao, 2018a; Cao and
Naumov, 2020]. That is, modality [C]¢ should stand for
“coalition C' has a strategy, it distributively knows that it has
a strategy, and it distributively knows what the strategy is”. In
this article we adopt this approach to strategic power with in-
telligence. For example, in the imperfect information setting
depicted in Figure 1, after receiving the intelligence report,
the British have a strategy, they know that they have a strat-
egy, but they do not know what the strategy is:

—[British]Germans (Convoy is saved).

At the same time, since the Russians presumably know the
location of their mines,

[British, Russians]Germans (Convoy is saved).

This article contains two main technical results. First, we
show that know-how with intelligence modality [C];¢ cannot
be defined through the standard know-how modality. Second,
we give a complete logical system that describes the interplay
between the coalition power with intelligence modality [C];
and the distributed knowledge modality K¢ in the imperfect
information setting. The most interesting axiom of our sys-
tem is a generalized version of Marc Pauly’s [Pauly, 2001;
Pauly, 2002] Cooperation axiom that connects intelligence I
and coalition C' parameters of the modality [C];.

2 Games with Imperfect Information

For any sets X and Y, by X we mean the set of all functions
from Y to X. Throughout the article we assume a fixed (pos-
sibly infinite) set of agents .4 and a nonempty set of proposi-
tional variables.

Definition 1. A game is a tuple (W,{~g}oca, A, M, ),
where

'Know-how strategies were studied before under different
names. While Jamroga and Agotnes talked about “knowledge to
identify and execute a strategy” 2007, Jamroga and van der Hoek
discussed “difference between an agent knowing that he has a suit-
able strategy and knowing the strategy itself” 2004. Van Benthem
called such strategies “uniform” 2001. Wang gave a complete ax-
iomatization of “knowing how” as a binary modality 2015; 2018,
but his logical system does not include the knowledge modality.

1. W is a set of states,

2. ~g is an “indistinguishability” equivalence relation on
set W for each agent a € A,

3. A is a nonempty set, called the “domain of actions”,

4. M C W x A4 x W is a relation called “aggregation
mechanism”,

5. mis a function that maps propositional variables to sub-
sets of W.

A function ¢ from set A is called a complete action pro-
file.

Figure 2 depicts a diagram of the Battle of the Atlantic
game with imperfect information as described in the intro-
duction. For the sake of simplicity, we treat the British, the
Germans, and the Russians as single agents, not groups of
agents. The game has five states: 1, 2, 3, s, and d. States 1,
2, and 3 are three “initial” states that correspond to possible
locations of Russian mines along route 1, route 2, or route
3. Neither the British nor the Germans can distinguish these
states, which is shown in the diagram by labels on the dashed
lines connecting these three states. The Russians know loca-
tion of the mines, and, thus, they can distinguish these states.
The other two states are “final” states s and d that describe if
the convoy made it safe (s) or was destroyed (d) by either a
U-boat or a mine. The designation of some states as “initial”
and others as “final” is specific to the Battle of the Atlantic
game. In general, our Definition 1 does not distinguish be-
tween such states and we allow games to take multiple con-
secutive transitions from one state to another.

Figure 2: Battle of the Atlantic with imperfect information.

The domain of actions A in this game is {1,2,3}. For
the British and the Germans actions represent the choice
of routes that they make for their convoys and U-boats re-
spectively. The Russians are passive players in this game.
Their action does not affect the outcome of the game. Tech-
nically, a complete action profile is a function § from set
{British, Germans, Russians} into set {1,2,3}. Since, there
are only three players in the Battle of the Atlantic game, it
is more convenient to represent function § by triple bgr €
{1,2,3}3, where b is the action of the British, g is the action
of the Germans, and c is the action of the Russians.

The mechanism M of the Battle of the Atlantic game is
captured by the directed edges in Figure 2 labeled by com-
plete action profiles. Since value r in a profile bgr does not
affect the outcome, it is omitted on the diagram. For exam-
ple, directed edge from state 1 to state s is labeled with 23
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and 32. This means that the mechanism M contains triples
(1,231,5), (1,232, s), (1,233, s), (1,321, s), (1, 322, s), and
(1,323, s).

The definition of a game that we use here is more general
than the one used in the original Marc Pauly’s semantics of
the logic of coalition power. Namely, we assume that the
mechanism is a relation, not a function. On one hand, this al-
lows us to talk about nondeterministic games where for each
initial state and each complete action profile there might be
more than one outcome. On the other hand, this also allows
no outcome to exist for some combinations of the initial states
and the complete action profiles. If in a given state under a
given complete action profile there is no next state, then we
interpret this as termination of the game. This resembles a
user choosing to quit a computer application: once the quit
button is pressed, the application terminates without reach-
ing any new state. If needed, games with termination can be
excluded and an additional axiom —[C]z_L be added to the
logical system. The proof of the completeness will remain
mostly unchanged.

Definition 2. For any states w,w' € W and any coalition C,
let w ~c w' ifw ~g w for each agent a € C.

In particular, w ~g w’ for any two states of the game.

Lemma 1. For any coalition C, relation ~¢ is an equiva-
lence relation on set W. O

3 Syntax and Semantics

In this section, we define the syntax and the semantics of our
formal system. By a coalition we mean any finite subset of the
set of all agents .A. Finiteness of coalitions will be important
for the proof of the completeness.

Definition 3. Ler ® be the minimal set of formulae such that
1. p € ® for each propositional variable p,
2. p =Y, e dforall p,ip € P,

3. Koy € @ for each formula ¢ € ® and each coalition
CCA,

4. [Clpp € ® for each formula ¢ € ® and all disjoint
coalitions B, C.

In other words, the language of our logical system is de-
fined by grammar:

pi=p|p|le—=p|Kop|[Clpy,

where coalitions C and B are disjoint. Formula K stands
for “coalition C' distributively knows ¢ and formula [C]z¢
for “coalition C distributively knows strategy to achieve ¢ as
long as it gets the intelligence on actions of coalition B”. We
assume that Boolean constants T and L are defined through
negation, implication, and a propositional variable in the stan-
dard way.

By an action profile of a coalition C' we mean any function
from set AC. For any two functions f, g, we write f =x ¢ if
f(z) = g(z) for each z € X.

Next is the key definition of this article. Its part 5 gives the
semantics of modality [C] 5. This part uses state w’ to capture
the fact that the strategy succeeds in each state indistinguish-
able by coalition C from the current state w. In other words,
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the coalition C' knows that this strategy will succeed. Except
for the addition of coalition B and its action profile /3, this
is essentially the same definition as the one used in [Agotnes
and Alechina, 2019; Naumov and Tao, 2017a; Fervari et al.,
2017; Naumov and Tao, 2017b; Naumov and Tao, 2018c;
Naumov and Tao, 2018b; Naumov and Tao, 2018al.

Definition 4. For any game (W,{~y}aca, A, M, ), any
state w € W, and any formula ¢ € ®, let satisfiability re-
lation w &  be defined as follows:

1. wlk p, if w € w(p), where p is a propositional variable,
2. wlk =, ifwlF @

3wl =Y, ifwl porwl- 1,

4

. w kKo, if w' IF o for each w' € W such that w ~¢
w’,

5. w |- [C] e, if for any action profile B € AP of coali-
tion B there is an action profile v € A€ of coalition C
such that for any complete action profile § € A* and
any states w',u € Wif 8 =g,y =¢ §, w ~¢c w', and
(w',8,u) € M, then u |- .

For example, for the game depicted in Figure 2,
1 I [British, Russians]Germans (Convoy is saved).

Indeed, statement 1 ~pifish Russians W' is true only for
one state w’ € W, namely state 1 itself. Then, for
any action profile 8 € {1,2,3}{0ermans} of the single-
member coalition {Germans} we can define action profile
v e {1,2, 3}{British, Russians} as, for example,

if @ = British and 5(Germans) = 2,
if a = British and $(Germans) = 3,

3,
Y(a) =42,

1, if a = Russians.
In other words, if profile 3 assigns the Germans route 2, then
profile «y assigns the British route 3 and vice versa. Assign-
ment of an action to the Russians in not important. This way,
no matter what the Germans’ action is, the British convoy will
avoid both the German U-boat and the Russian mines in the
game that starts from state w’ = 1. At the same time,

1 IF =[British] Germans (Convoy is saved).

because the British cannot distinguish states 1, 2, and 3 with-
out the Russians. In other words, 1 ~pyisn w’ for any
state w’ € {1,2,3}. Thus, for each action profile § €
{1,2,3}{Germans} e need to have a single action profile

v € {1,2,3}{British. Russians} (hat would bring the convoy
to state s from any of the states 1, 2, and 3. Such profile ~
does not exist because, even if the British know where the
Germans U-boat will be, there is no single strategy to choose
path that would avoid Russian mines from all three indistin-
guishable states 1, 2, and 3.

Note that item 4 of Definition 4 interprets the knowledge
modality K¢ as distributed knowledge of coalition C'. Simi-
larly, the knowledge of “how”, implicitly referred to by item 5
of the same definition through indistinguishability relation
~¢, is also distributed knowledge of coalition C'. Thus, even
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if a coalition knows how to achieve ¢, it is possible that no
single individual member of the coalition might know how to
do this. In order for the coalition to execute a strategy that
it knows, its members might need to communicate with each
other to “assemble” the distributed knowledge. The mecha-
nism and the result of such a communication is not a trivial
issue. For example, if a statement ¢ is distributively known
to a coalition, then ( might even be false after such a commu-
nication [Agotnes and Wéng, 2017]. In this article, following
the existing tradition in the logics of distributively knowing
strategy, we investigate the properties of distributed knowl-
edge on an abstract level, without considering the communi-
cation between the agents required to execute the strategy. Of
course, one can potentially consider the other forms of group
knowledge such as individual knowledge (each agent in the
group knows) and common knowledge. However, know-how
strategies based on either of the last two forms of knowledge
do not satisfy the Cooperation axiom listed in Section 4. As a
result, they are significantly less interesting from the logical
point of view.

Finally, observe that the formula Kg¢ means that state-
ment ¢ is satisfied in all states of the game. Modality K4 is
sometimes referred to as universal modality.

4 Axioms

In this section, we present our formal logical system, Know-
How Logic with the Intelligence, for reasoning about the
interplay between distributed knowledge modality Ko and
know-how with intelligence modality [C] 5.

Definition 5. In addition to the propositional tautologies in
language ®, the axioms of the Know-How Logic with the In-
telligence are

1. Truth: Kcp — ¢,

Distributivity: Ko(p — ) = (Kop = Ke),
Negative Introspection: Koy — Ko—Ke g,
Epistemic Monotonicity: Koo — Kpp, where C C D,
Strategic Introspection: [Clpp — Ko [Clae,

Empty Coalition: Kgp — [z,

NS AR N

Cooperation: for any pairwise disjoint sets B, C, and
D, [Cls(¢ = ¥) = ([Dlp,cy — [C, D]py),

8. Intelligence Monotonicity: [Clpp — [Clprp, where
BC B,

9. None to Analyze: D)y — [D]ze.

Note that in the Cooperation axiom above and often
throughout the rest of the article we abbreviate BUC as B, C'.
However, we keep writing B U C' when notation B, C' could
be confusing.

Next, we define two derivability relations. A unary relation
F ¢ and a binary relation X + ¢, where X C & is a set of
formulae and ¢ € & is a formula.

Definition 6. - ¢ if there is a finite sequence of formulae that
ends with o such that each formula in the sequence is either
an axiom or could be obtained from the previous formulae

using the Modus Ponens, the Epistemic Necessitation, or the
Strategic Necessitation inference rules:

0, =Y ® o
P ’ Key’ [Cley

If - ¢, then we say that ¢ is a theorem of our logical sys-
tem.

Definition 7. X & ¢ if there is a finite sequence of formulae
that ends with o such that each formula in the sequence is
either a theorem, or an element of X, or could be obtained
from the previous formulae using only the Modus Ponens in-
ference rules.

Note that if set X is empty, then statement X + ¢ is equiv-
alent to I (. Thus, instead of & - ¢ we write - . We say
that set X is consistent if X » L.

5 Main Results

By @~ we denote the fragment of language ® in which
modality in occurrences of modality [B]cp set C is empty.
The proofs of the following results appear in the full version
of this paper [Naumov and Yuan, 2021].

Theorem 1 (undefinability). The modality [C]pp is not de-
finable in language .

Theorem 2 (soundness). For any state w € W of any game
(W, {~a}aca, A, M, ), any set of formulae X C ®, and
any formula ¢ € @, if w I+ x for each formula x € X and
X F o, then w I+ .

Theorem 3 (completeness). IfY ¥ o, then there is a state w
of a game such that w |+ x for each x € Y and w ¥ .

6 Conclusion

In this article, we proposed the notion of a strategy with in-
telligence, proved that corresponding know-how modality is
not definable through the standard know-how modality, and
gave a sound and complete axiomatization of a bimodal logic
that describes the interplay between the strategic power with
intelligence and the distributed knowledge modalities in the
setting of strategic games with imperfect information.

A natural question is decidability of the proposed logical
system. Unfortunately, the standard filtration technique [Gab-
bay, 1972] can not be easily applied here to produce a finite
model. Indeed, it is crucial for the proof of the completeness
that for each action there is another action with a higher value
of the “key” component. Thus, for the proposed construction
to work, the domain of choices must be infinite. One perhaps
might be able to overcome this by changing the second com-
ponent of the action from an infinite linear ordered set to a
finite circularly “ordered” set as in rock-paper-scissors game,
but we have not been able to prove this.
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