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Abstract

3D photography renders a static image into a video
with appealing 3D visual effects. Existing ap-
proaches typically first conduct monocular depth
estimation, then render the input frame to sub-
sequent frames with various viewpoints, and fi-
nally use an inpainting model to fill those miss-
ing/occluded regions. The inpainting model plays
a crucial role in rendering quality, but it is nor-
mally trained on out-of-domain data. To reduce the
training and inference gap, we propose a novel self-
supervised diffusion model as the inpainting mod-
ule. Given a single input image, we automatically
construct a training pair of the masked occluded
image and the ground-truth image with random cy-
cle rendering. The constructed training samples
are closely aligned to the testing instances, with-
out the need for data annotation. To make full use
of the masked images, we designed a Masked En-
hanced Block (MEB), which can be easily plugged
into the UNet and enhance the semantic conditions.
Towards real-world animation, we present a novel
task: out-animation, which extends the space and
time of input objects. Extensive experiments on
real datasets show that our method achieves com-
petitive results with existing SOTA methods.

1 Introduction

Recent advances in generation have delivered impressive
photorealistic visual content, such as images [Rombach et al.,
2022; Wu et al., 2022; Ramesh et al., 2022] and videos [Wu et
al., 2021; Villegas et al., 2022; Singer et al., 2022]. 3D pho-
tography is a special case of video generation that converts a
static image into a 3D video, with applications in virtual real-
ity and animation, attracting wide attention [Shih et al., 2020;
Wiles et al., 2020; Tucker and Snavely, 2020; Jampani et al.,
2021]. It requires the model to generate a sequence of con-
sistent and reasonable subsequent frames (novel views) from
a starting image only by interactively changing the camera
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viewpoint, thus putting forward higher requirements to train-
ing data and model design.

Existing 3D photography methods can be summarized into
two categories: multi-view methods and single-view meth-
ods, as shown in the first two rows in Fig. 1, respectively.
Multi-view methods [Hu et al, 2021; Lai et al., 2021;
Rockwell et al., 2021; Li et al., 2021; Li and Kalantari, 2020]
usually take frames from video, multi-view images, or fake
multi-view images [Han e al., 2022] as input and produce 3D
representations of scenes, such as point clouds [Wiles et al.,
2020] and MPIs (MultiPlane Images) [Tucker and Snavely,
2020], and then train an encoder-decoder model projecting
the source view V' to target view V**1. As shown in the first
row in Fig. 1, such methods need image pairs in training, but
there is a lack of large-scale multi-view datasets.

To alleviate the dependency on multi-view datasets, single-
view methods [Jampani er al., 2021; Shih er al., 2020] try to
train with only RGB image data, first estimate the monocu-
lar depth [Ranftl er al., 2022], and then use MPIs or LDIs
(Layered Depth Images) representations to better inpaint the
occluded regions of target frames. Early method [Shih ef
al., 2020] searches the occluded regions by hard layering the
discontinuities of estimated depth and inpaints the depth and
RGB images separately. Further, [Jampani er al., 2021] ex-
tends a soft depth layering to decompose an image into the
foregrounds and backgrounds, and it prefers inpainting the
backgrounds for preserving foreground details. These single-
view methods convert the 3D photography into an inpainting
task by predefining the masked regions on image data, and
these predefined masks by priors are more suitable for gener-
ation than random masks, therefore, they can generate good
3D videos only trained on single images.

However, facing complex scenes in 3D photography, the
predefined masks in single-view methods are not consistent
with real occluded regions caused by 3D rendering. As shown
in the second row in Fig. 1, single-view methods first prede-
fine the masks according to edge or depth priors (the yellow
masked regions surrounding the foregrounds as in [Jampani et
al., 2021]), and then train GAN-based models to inpaint these
regions towards original images. During inference, they first
render the source frame V' into a masked V' at the target
viewpoint via the 3D renderer W, as the blue masked image
shows in the second row in Fig. 1, and then use the trained
model to inpaint those occluded regions to obtain the novel
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Figure 1: Comparison of different methods. Our proposed self-supervised diffusion belongs to single-view methods but is different from
existing works. We incorporate a pair of 3D rendering function W, W~ to reduce the train/inference gap of existing single-view methods.

view Vi1, Since the rendered masks are different from pre-
defined masks, there is a large gap between training and in-
ference, leading to obvious visual distortions.

To this end, we propose a novel self-supervised diffusion
model, which only trains on single images but can generate
high-quality 3D videos shown in Fig. 1. To align inpainting
masks towards real occluded masks, we use the same 3D ren-
derer W to compose a cycle rendering (W, W ~1). In cycle
rendering, we first use W to randomly render the image V* to
a virtual image at a nearby viewpoint, and then we use W1
to render the virtual image back to the viewpoint of V%, As a
result, we obtain the masked V¢ with occluded regions. Fur-
ther, we utilize a conditional diffusion model that denoises
cycle-rendered masked images into original images. We re-
gard the masked images as the conditions, and the original
images as the ground-truth images of our diffusion model, re-
spectively. During inference, we can inpaint the masked V1
via our trained diffusion model to generate the novel view
Vitl This self-supervised way effectively reduces the gap
between training and inference, guaranteeing the high quality
of generated 3D videos. To fully leverage the semantic in-
formation of masked images, we present a Masked Enhanced
Block (MEB) to better embed them into the denoising UNet.
Specifically, the masked images and occluded masks are fed
into the MEBs via two stacked spatially adaptive normaliza-
tion layers [Park et al., 2019]. By leveraging the enhanced
module to inpaint masked images, our model outputs higher
fidelity results with fewer visual distortions. To further pro-
mote the visual quality and diversity of novel views, we can
transfer the text-to-image knowledge into our self-supervised
diffusion model, relieving the pressure of inpainting.

Towards the real application of animation, we further

present a novel task: out-animation, which requires models
to generate videos that extend the space and time dimensions
of input objects (or selected parts of an image). We propose
a two-stage pipeline: we first perform the image outpainting
with the same denoising network to generate consistent and
reasonable scenes for input objects according to their con-
tent and text prompts, and then sample the 3D videos via
the trained self-supervised diffusion model. Experiments on
novel view synthesis and image outpainting of real datasets
validate the effectiveness of our method.
We summarize our contributions as follows:

e We propose a novel self-supervised diffusion model,
which trains only on single images but can generate
high-quality 3D photography videos.

* We propose MEB, a Masked Enhanced Block that lever-
ages the unmasked image conditions for the denoising
process of our diffusion model.

e We present a novel task: out-animation, and adapt the
proposed diffusion models to the new task. Experiments
on real datasets validate the effectiveness of our models.

2 Related Work

2.1 3D Photography

Multi-view methods. Many methods [Han er al., 2022;
Hu et al., 2021; Lai et al., 2021; Rockwell et al., 2021;
Li et al., 2021; Li and Kalantari, 2020; Wang et al., 2022a;
Mildenhall et al., 2021] learn to predict the 3D repre-
sentations (such as NeRf [Mildenhall et al., 2021], point
clouds [Wiles er al., 2020], and MPIs [Tucker and Snavely,
2020] using multi-view supervision, so they assume many
views such as related two views or multi-views can be used
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to train the models. [Tucker and Snavely, 2020] first applies
the MPI representations from single image input and renders
them to novel views, and then predicts the target views via
multi-view supervision. SynSin [Wiles er al., 2020] proposes
a novel point cloud renderer that transfers the latent 3D point
cloud features into the target views, and rendered features
are passed a refinement network to generate target predic-
tions. To alleviate the lack of large-scale in-the-wild multi-
view datasets, AdaMPI [Han et al., 2022] trains an inpainting
network via warp-back strategy to construct fake multi-view
datasets and then trains an MPI-based model.

Single-view methods. Single-view methods [Tucker and
Snavely, 2020; Shih et al., 2020; Jampani et al., 2021;
Kopf et al., 2020; Niklaus et al., 2019] only require sin-
gle view images with LDIs (Layered Depth Images) [Shih
et al., 2020] representations. Most single-view methods es-
timate the dense monocular depths and fill in the predefined
occluded regions. 3d photo [Shih et al., 2020] makes full
use of the three inpainting modules that separately inpaint the
edges, depth, and color images to predict the impressive novel
views. SLIDE [Jampani er al., 2021] proposes a soft layering
to separate an image into foregrounds and backgrounds, and
then it prefers inpainting the color and depth of backgrounds,
therefore, it better preserves the foreground details.

2.2 Image Synthesis

Text-conditional Image Synthesis

Text-to-image recently becomes popular due to the remark-
able success of autoregressive models and diffusion models.
Parti [Yu et al., 2022] and NUWA-Infinity [Wu et al., 2022]
are two-stage approaches, which first compress an image into
discretized latent space, and autoregressively predict discrete
image tokens based on text tokens. Diffusion-based methods
generate the images via a denoising network conditioned on
text representations, such as DALL-E2 [Ramesh er al., 2022],
Imagen [Saharia er al., 2022], and Stable-Diffusion [Rom-
bach et al., 2022].

Semantic Image Synthesis

This task aims to create images from semantic segmentations,
and the challenge is to generate better images in terms of
visual fidelity and spatial alignment. SPADE [Park et al.,
2019] is the most popular method to achieve promising im-
ages by easily introducing a spatially adaptive normalization
layer. From this conditional normalization perspective, meth-
ods [Liu et al., 2019; Tan et al., 2021; Wang et al., 2021;
Zhu et al., 2020] have designed more tailored ways to embed
the semantic masks.

Recently, researchers also pay more attention to Image
Inpainting and Image Outpainting. Inpainting aims to fill
missing regions in images, while outpainting tries to extend
the images. Some text-conditional image synthesis methods
could directly adapt the outpainting or inpainting. Stable-
Diffusion and DALL-E2 can be applied on both outpainting
and inpainting tasks. The core of 3D photography is simi-
lar to image-inpainting, but inpaints the occluded regions for
moved 3D target views. The MEB in our UNet is inspired
by the various embedding ways of semantic masks, but we
utilize the diffusion models rather than GAN-based models.
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3 Methodology

In this paper, we propose a novel self-supervised diffusion
model for learning 3D photography. We are the first to lever-
age the diffusion model for 3D photography, and the qual-
ity of novel views will benefit from the randomness continu-
ously involved by noise at each step. We organize the rest of
this section as follows: we first review the conditional diffu-
sion models. Then, we present our self-supervised diffusion
model. After that, we will present the out-animation task, and
introduce our pipeline for achieving this task.

3.1 Preliminaries

We briefly review the theory of conditional diffusion mod-
els [Ho et al., 2020]. Conditional diffusion models are latent
variable models that aim to learn the form of py(zo|c) while
the conditional data follows g(zg|c), where ¢ is the condition.
The joint distribution pg(zo.7|c) is called the reverse process,
which is a Markov chain with learned Gaussian transitions
starting at p(z7) = N (zr; 0, 1), as shown below:

T

Pa(Zo;T\C) = p(ZT) Hpe(zt—ﬂzt, C), (D
t=1

p@(zt—l |Zt7 C) = N(Zt—ﬁ M@(Zh C, t)a Ee(zt’ c, t)) 2

where ¢ is an arbitrary timestep. The approximate posteriors
q(z1.7|20), called the forward process, is fixed as a Markov
chain that gradually adds Gaussian noise to the data obeying
a variance scheduler 51, ..., 8r:

T
q(z1:7|20) 1= HQ(Zt|Zt—1), 3)
t=1

q(z¢|2e—1) == N (245 /1 — Bizi—1, i) €]

We define oy := 1—5; and &y := szl a,. Then we sample
z; at the timestep ¢ in closed form as follows:

q(zt]20) = N (z¢; Vaizo, (1 — a)I) %)

The conditional diffusion models are trained to minimize the
variational lower bound (VLB), and the objective is equiva-
lent to a denoising process as follows:

Etfl = Ezo,c,eNN(O,I),t HE - 66(Zt,tac)”§} (6)

where £;_; is the loss function at the timestep ¢t — 1, and €g
is the denoising network.

3.2 Self-supervised Diffusion Model

To address the lack of large-scale multi-view data and gen-
erate high-quality 3D videos, we present the self-supervised
diffusion model. The two crucial parts of our model are
the self-supervised strategy for denoising and the M-UNet (a
modified UNet with several masked enhanced blocks).

Self-supervised strategy. Previous works [Li ef al., 2022;
Han ef al., 2022] attempted to construct the training pairs
from images, i.e., occluded images and ground-truth images,
to get rid of the requirement for multi-view datasets. But they
only trained the traditional inpainting models to inpaint the
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Figure 2: The overall framework. (a) A self-supervised way to train the diffusion model to inpaint the rendered masked regions which align
closely to real occlusions, and (b) inferences a consistent and realistic 3D video by our effective model with the small train-inference gap.

RGBD images, which are prone to predict inconsistent re-
sults in occluded regions. To this end, we take the best of the
strong synthesis capability of the diffusion model to facilitate
the high visual quality of these occluded regions.

Inspired by [Li et al., 2022], we use a cycle rendering way
to achieve the self-supervised diffusion process in our model.
The overall self-supervised denoising process is shown in
Fig. 2 (a). The cycle rendering includes a forward render-
ing and a back rendering. Given an input image, we regard
it as the i-th frame V. In forward rendering, we first es-
timate the depth image D? by monocular depth estimation
(such as [Ranftl er al., 2022]). Then, we randomly sample a
nearby viewpoint, which is a virtual viewpoint with a relative
camera pose T' = [R|t], where R is the rotation matrix and ¢
is the translation matrix. We render the frame V' to a pseudo
next frame V't at that virtual viewpoint as follows:

(VL DY = W(VE, D' T) )
where W is the same 3D render process as [Liu et al., 2021].
In forward rendering, we can find some occluded regions de-
riving from the depth image D", marked by M+, so we
obtain the pair (V**!, M**1) as shown in Fig. 2 (a). How-
ever, we do not have the ground truth of this frame. So, we

render this occluded next frame back to the original viewpoint
via a back rendering as follows:

(f/i’ﬁi) W((f/—ﬂrl.Mz#l’DiJrl.MiJrl)?Tfl) 8)
where 7~! is the inverse camera pose, and mask

M+ is element-wise multiplied with the RGBD frame

(f/”l , Ditl ), and then the render way is same as the forward
rendering. After that, we can obtain a masked image with

mask (V?, M) at the same viewpoint with original frame V%,

These pairs {(V?, M?), V*} enable the diffusion model to in-
paint the occluded regions only on single images by a self-

supervised way. We regard the masked images Vias image
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conditions, and the image V' is the ground truth of our dif-
fusion model. We will encode the masked images to latent
features, and input them into M-UNet with masks and text
prompts as conditions. We encode the ground truth to latent
features zg, and we add the noise to latent features as follows:

2, = Vauzo + /(1 — @y )e 9

The noisy latent features z; are fed into M-UNet with the
timestep ¢ to predict the added noise €. At every timestep, the
denoising objective is the MSE loss between € and e.

M-UNet. Based on UNet, we propose M-UNet with a set
of Masked Enhanced Blocks (MEBs). Traditional inpainting
networks struggle to predict consistency content for occluded
regions, and one reason is that unmasked spatial information
suffers loss in image-to-image networks, as well as the con-
catenation in diffusion models [Wang et al., 2022b]. The
diffusion model is very flexible for receiving conditions, so
we design a masked enhanced block to fully leverage the un-
masked regions. As shown in Fig. 3 (a), we take the same
architecture of UNet as in Stable-diffusion [Rombach et al.,
2022], but we design several MEBs for the downblocks of the
UNet, since image conditions would suffer less loss when em-
bedded into downblocks [Wang er al., 2022b]. We utilize two
stacked spatially normalization layers to embed the masked

image features z* and the mask M°® for enhancing the spatial
information, and add the timestep ¢ embedding as normal, as
shown in Fig. 3 (b). We formulate the stacked spatially nor-
malization layers as follows:

£ = s (M) (72(2) -Norm(F =)+ 8, () + Aaa (M) (10)

where the f©~! and f? are the input and output features. ()
and S(-) are the convolution layers to map latent features
or masks into high-level spatially-adaptive features and add
them with input features. The enhancement denotes that the
embedded mask further enhances the spatial information of
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Figure 3: Illustrations of M-UNet (a) and Masked Enhanced Block
(MEB) (b). MEB is a key component of M-UNet.

unmasked regions. We add the skip-connection at the start
of MEB, the start of the first embed layer, and the start of
second embed layer, as shown in Fig. 3 (b), and h;_; and h;
are the input and output features of MEB. We insert the MEB
into each downblock to fully leverage the image conditions.
The stacked normalization layers are crucial parts of M-UNet,
which performs better than other embedding ways.

Training. The training process is shown in Fig. 2 (a). We
denote the M-UNet as ¢y, the~ noise added from Gaussian dis-

tribution as ¢, the mask as M  and the occluded image fea-

tures as z' = F(V?) encoded by KL-VAE encoder [Rombach
et al., 2022]. The text prompt features are denoted as p en-
coded by CLIP text encoder [Radford et al., 2021]. We regard

conditions of M-UNet as the set of ¢ = {M?, z’, p}, and then
we learn the conditional self-supervised diffusion model via:

LV =Epwicenoin.| lle — ezt olz| an

with ¢ uniformly sampled from {1,...,T'}, €p is optimized
during training. To support the classifier-free guidance sam-
pling, we randomly drop 10% text prompts during training.

Sampling. We use the classifier-free guidance for sampling
videos with our diffusion model as shown in Fig. 2 (b). Given
the it frame V7, we first forward render it to obtain an oc-
cluded image and mask (V! M#*1). The occluded image
is encoded to latent features z‘*!. We use the blank text ()
with the mask and occluded fegtures as the extra conditions,
and normal conditions ¢ = { M1 7T p} consists of the

text prompt, the mask, and occluded image features. The
guidance way in the sampling procedure can be formulated:

éo(z¢,c) = ee(zt,c)+s~(69(zt,c)—€9(zt7]\7[”1,2”1,0)) (12)

where s is the guidance scale. We sample the latent fea-

tures on a subset {z,,,...,%s}, Where 7 is an increasing
sub-sequence of [0, ..., T of length S + 1. We denoise each
Z,, to Z,, , as follows:

1 1
Zr, 1 =/ ( o 1€9(zr;,€))+4/1 — ar, _;é(2r;,€)
Var, \Var,

13)
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Figure 4: Two-stage pipeline for out-animation.

This is known as the DDIM sampler. At the start of sam-
pling, z . is the pure Gaussian noise, after .S steps, we obtain
the predicted features Z,, as the red dotted arrow shows in
Fig. 2 (b), and Z,, can be decoded to a predicted Vit frame
with a single pass through KL-VAE decoder D. Then, we can
randomly sample a 3D video iteratively.

3.3 Out-animation

Towards real-world animation, we propose a new task named
Out-animation, which generates complete videos with refer-
ence to given input objects. The challenge is how to generate
high-quality and diverse videos which contain the input ob-
jects and retain their inherent properties.

The definition of Out-animation is: Given input objects
(or selected parts of an image), out-animation aims to extend
input objects along both space and time dimensions and out-
puts an animated video.

In this work, we present a simple two-stage pipeline. Our
pipeline consists of two stages as shown in Fig. 4, and both
only depend on the denoising M-UNet.

For stage-1, input objects may have arbitrary shapes. To
generate desired complete images, we can train our diffu-
sion model based on M-UNet to denoise input objects to the
ground truth images. Training data can be collected from se-
mantic segmentation datasets (such as COCO [Caesar et al.,
2018]). Similar to our strategy for inpainting 3D photogra-
phy, we regard source images as the ground truth and seg-
mented objects and masks as image conditions. Also, text
prompts are conditions for this diffusion model. For infer-
ence of a new scene, we input the masks, objects, and text
prompts to the trained diffusion model. Then, after S steps
denoising process, we can obtain the final latent features, and
decode them to the first frame V! via KL-VAE decoder. The
stage-2 pipeline regards results that came from stage-1 as the
starting frame, and iteratively renders the current frame V*
and then generates the next frame V**! as shown in Fig. 4.

Our method is different from the 3d photography meth-
ods [Shih er al., 2020; Jampani et al., 2021; Li et al., 2022]
based on depth-inpainting, since we only utilize depth images
in our rendering processes. We aim to leverage the diffu-
sion model to predict better novel views, rather than training
a complex model or extra model for depth-inpainting.
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4 Experiments

For a fair comparison with state-of-the-art methods, we
evaluate synthesis results on two datasets, RealEstatelOk
(RE10K) [Zhou et al., 2018] which provides about 10 million
frames derived from about 80k video clips of static scenes,
and MannequinChallenge (MC) [Li et al., 2019] with more
than 170k frames derived from about 2k YouTube videos. To
validate the effectiveness of our M-UNet, we also evaluate
the image outpainting in COCO [Caesar er al., 2018].

Baselines and Metrics. For novel view synthesis, we
quantitatively and qualitatively compared our method with
recent state-of-the-art methods for which code is re-
leased: SynSin [Wiles et al., 2020], Single-image MPI
(SMPI) [Tucker and Snavely, 20201, 3d-photo [Shih et al.,
2020], and AdaMPI [Han et al, 2022]. In our experi-
ments, we evaluate the released pretrained models. SynSin
and SMPI models were trained on RealEstate10K. 3d-photo,
AdaMPI, and ours were trained on COCO. For a fair compari-
son, 3d-photo, AdaMPI, and our method all use MiDaS [Ran-
ftl et al., 2022] for depth estimation. SynSin and SMPI mod-
els are trained on RE10K, which randomly samples source
and target frames from 57K training clips. Our model loaded
the weights from Stable-diffusion, and only trained the 3D
photography on COCO. We use the same intrinsic matrices,
source camera poses and target camera poses for all methods.
Following 3d-photo [Shih er al., 2020], we measure three
metrics including LPIPS [Zhang er al., 2018], PSNR, and
SSIM. For image outpainting, we quantitatively and qualita-
tively compared with the pretrained model SDM-v1.4 [Rom-
bach et al., 2022] and the finetuned version on COCO by our
implement. We measure the FID, IS, and CLIP-SIM of out-
painted images with ground-truth images. Metric details can
be found in the supplementary.

Quantitative Results on RealEstatel0k. RealEstatel10k
(RE10K) [Zhou et al., 2018] is a video dataset consisting of
10K YouTube videos of static scenes. We randomly sample
1K video clips from test set for evaluation. We use the given
camera intrinsics and extrinsics following RE10K. Specifi-
cally, we choose the first frame (¢=1) from each test clip
as the source view and consider the fifth (¢=5) frame and
tenth (t=10) frames as target views. We compute the eval-
uation metrics between predictions and ground-truth views.
The results are shown in Tab. 1. We report our results
of the trained model loaded from Stable-diffusion and the
model only trained on COCO from scratch. 3d-photo and
our method do not need video datasets and perform zero-shot
on RE10K dataset because both are only trained on COCO.
Compare with multi-view methods (SynSin and SMPI), our
method outperforms SynSin on almost all results and shows
better LPIPS than SMPI, indicating that we can achieve high
realistic results than others. However, since we will generate
new better content for occluded regions, the structural simi-
larity with GT target views would slightly drop, but show bet-
ter visual effects. Compared zero-shot performance with 3d-
photo and AdaMPI, we perform better results than 3d-photo
by a large margin and competitive results with AdaMPI.

Quantitative Results on MannequinChallenge (MC).
MC is a video dataset of video clips of people freezing in
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LPIPS] PSNR{ SSIM?
Method Video t=5 t=10 t=5 t=10 t=5 t=10
3d-photo* 0209 0266 1600 1527 043 041
SynSin v 0063 0097 2442 2173 081 071
SMPI v 0055 0106 2690 2332 087 0.78
AdaMPT* 0056 0.100 2583 2201 084 073
Ours (Scratch)* 0.052 0099 2511 2118 083 072
Ours* 0.049 0.095 2535 2136 084 072

Table 1: Results on RealEstatelOK. * denotes zero-shot perfor-
mance. Underline masks the single-view methods. We evaluate the
target views at two timesteps t=5 and t=10, size=256x256.

LPIPS| PSNR? SSIM?
Method Video t=3 t=5 t=3 t=5 t=3 t=5
3d-photo 0495 0590 11.88 1123 029 0.27
SynSin v 0304 0404 1553 13.83 044 037
SMPI v 0349 0453 1626 14.56 047 041
AdaMPI 0.298 0393 1621 1435 049 041
Ours (Scratch) 0277 0372 1587 1387 047 037
Ours 0272 0367 1601 1399 047 0.38

Table 2: Zero-shot Results on MannequinChallenge, underline
masks the single-view methods. Two timesteps ¢=3 and ¢=5.

diverse and natural poses, which is collected and processed
similarly to RE10K. Similar to [Jampani ef al., 20211, we
randomly sample 200 video clips from the test set, and we
choose the first frame (¢=1) as the source view, and the third
frame (£=3) and fifth frame (¢=5) as target views. The results
are shown in Tab. 2. Our method outperforms 3d-photo and
SynSin on all results by a large margin. Our method achieved
the best LPIPS and comparable results for PSNR and SSIM
with SMPI and AdaMPI, indicating the best perceptual simi-
larity and good structure similarity.

Quantitative Results on COCO. We filter COCO-
2017 [Caesar ef al., 2018] to an outpainting dataset contain-
ing 117266 training images and 4952 test images, and de-
tails can be found in the supplementary. We evaluate the
pretrained Stable-diffusion V1.4 (SDM), a finetuned model
(SDM-FT) on COCO for the text-to-image task. And we fine-
tune a model (w/ concat) via concatenation in the input layer.
Evaluation results are shown in Tab. 3. SDM-FT achieves
a better FID than SDM, but degrades on IS and CLIP-SIM.
It is reasonable that the generated images from the finetuned
model are closer to the original images, while the quality, di-
versity, and text relevance are slightly worse. Our model sig-

Method FID| ISt CLIP-SIM?t
SDM (T2I) 16.77 35.13 0.3212
SDM-FT (T2I) 13.01 34.09 0.3112
SDM w/ cross-fusion 11.33 38.40 0.3214
SDM w/ concat 11.22  36.08 0.3223
Ours w/ MEB, full (Scratch) 16.51 35.95 0.3218
Ours w/ MEB, w/o mask 10.66  37.59 0.3216
Ours w/ MEB, full 10.65 38.61 0.3226

Table 3: Outpainting results on COCO.
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Input View  GT Target 3d Photo SMPI AdaMPI

mcC

(a) Qualitative Results for 3D Photography on Benchmarks (RE10K, MC)

SynSin Ours

Input GT SDM

SDM-FT Ours

A Small
Object

A bird is trying to find food in the water.

o

Objects

A bus coming around the corner on a city street.

(b) Qualitative Results for Outpainting on COCO

Figure 5: Qualitative results on benchmarks. (a) 3D Photography results, our method generates clear visual content and preserves details
better than others. (b) Image Outpainting results, our method is able to handle various input objects and generate realistic images.

nificantly reduces the FID score to 10.65, and achieves bet-
ter IS and CLIP-SIM than Stable-diffusion models. Without
the pretrained weights, our model can still achieve better out-
painting results than SDM on all metrics. We also compare
with the cross fusion, introduced two learnable weights [Zhu
et al., 2020] to embed masks, and a variant of our method
without masks. Our embedding way shows better quality, di-
versity, and text relevance, and also shows the improvement
by the enhancement of masks.

Qualitative Results. We qualitatively compare the novel
view synthesis in RE10K and MC. In Fig. 5. (a), the goal is
to generate a better target view given the input view when the
camera moves. The first two rows show results on RE10K,
and the second row shows the details in the same regions that
need to be generated. Such as the right occlusion regions of
trees, 3d-photo produces results with large visual distortions
and other methods generate blurrier results, while our method
generates the best realistic results and preserves the structures
better. We show another sample in a more challenging bench-
mark MC in the last two rows. 3d-photo generates worse re-
sults with more artifacts and the wrong position, and other
methods also generate blurrier results in occlusion regions,
while our method generates clear content in these regions and
preserves the clear details for other regions. We compare var-
ious outpainted sample results in COCO in Fig. 5. (b). We
use the same captions to generate the scenes for all meth-
ods. Compared with SDM and SDM-FT, our method gener-
ates more consistent and high-fidelity results.

Model Analysis. We vary the guidance strength for out-
painting task on COCO in Fig. 6. The experiment reveals
that increasing guidance strength leads to improvements in
both FID and IS. However, it also indicates that once guid-
ance strength surpasses 7.5, the gains in both FID and IS
become less significant. We compare the inference time for
generating one frame in Table. 4. Our method shows signif-
icant improvement compared to 3d-photo and is comparable

—_ N P ——
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Lol E
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Figure 6: Diversity and quality by varying guidance strength.

Method Backbone Time (second)
3d-photo [Shih er al., 2020] CNN 120
SynSin [Wiles et al., 2020] GAN 1.8
SMPI [Tucker and Snavely, 2020] GAN 1.8
AdaMPI [Han et al., 2022] GAN 0.6

Ours Diffusion 4

Table 4: Inference time for 1 frame on NVIDIA’s V100 GPU.

to other GAN-based methods. Tab. 4 illustrates a 20-step dif-
fusion process. However, it is possible to improve the speed
by sacrificing performance with fewer steps.

5 Conclusion

To reduce the train-inference gap in 3D photography train-
ing on single images, a novel self-supervised diffusion model
is proposed that can generate high-quality 3D videos from
single images. We first generate the masked regions that
are closely aligned to real occluded regions in 3D rendering
and then train a diffusion model with masked enhanced mod-
ules to inpaint these regions. Towards the real application of
animation, we present the out-animation, which extends the
space and time of input objects. Experimental results on real
datasets validate the effectiveness of our method.
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Ethical Statement

This work can be used to generate backgrounds of images,
which may include people, products, etc. Therefore, this
technology may be wrongly used to infringe copyright or per-
sonal privacy. Out-animation can generate new content and
carry risks related to deceptive and otherwise harmful con-
tent. As technology improves, it will mistake generated im-
ages for authentic ones. Meanwhile, more research needs to
be done to change the societal biases in training data.
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