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Abstract
In recent years, graph Transformers (GTs) have
been demonstrated as a robust architecture for a
wide range of graph learning tasks. However, the
quadratic complexity of GTs limits their scalability
on large-scale data, in comparison to Graph Neural
Networks (GNNs). In this work, we propose the
Kernel Decomposition Linear Graph Transformer
(KDLGT), an accelerating framework for building
scalable and powerful GTs. KDLGT employs the
kernel decomposition approach to rearrange the or-
der of matrix multiplication, thereby reducing com-
plexity to linear. Additionally, it categorizes GTs
into three distinct types and provides tailored ac-
celerating methods for each category to encompass
all types of GTs. Furthermore, we provide a the-
oretical analysis of the performance gap between
KDLGT and self-attention to ensure its effective-
ness. Under this framework, we select two repre-
sentative GTs to design our models. Experiments
on both real-world and synthetic datasets indicate
that KDLGT not only achieves state-of-the-art per-
formance on various datasets but also reaches an
acceleration ratio of approximately 10 on graphs of
certain sizes.

1 Introduction
Recent years have seen significant advancements in the field
of graph learning, with notable successes across a vari-
ety of domains including social networks [Li et al., 2021;
Zhong et al., 2020], molecular graphs [Huang et al., 2020;
Wang et al., 2021], and knowledge graphs [Liu et al., 2021;
Yasunaga et al., 2021]. One of the key approaches in
this field is Graph Neural Networks (GNNs), which have
been widely adopted as a powerful embedding approach
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for various graph learning tasks [Kipf and Welling, 2017;
Veličković et al., 2018; Hamilton et al., 2017]. The founda-
tion of GNNs is the local sparse message-passing mechanism,
which enables the nodes on the graphs to iteratively exchange
messages through the edges connecting them. However, the
limitations of the message-passing mechanism have become
increasingly apparent in recent research [Xu et al., 2019;
Morris et al., 2019; Maron et al., 2019], leading to a series
of works [Ying et al., 2021; Zhang et al., 2020; Chen et al.,
2022] that have turned to Transformer architectures[Vaswani
et al., 2017] in pursuit of new breakthroughs.

Graph Transformers (GTs) represent a successful endeavor
to deploy Transformer architectures to graph data. By en-
abling nodes to attend to all other nodes within the graphs,
GTs encode graph structures as a soft inductive bias, rather
than the hard-coded message-passing approach. In contrast to
GNNs, GTs utilize absolute and relative positional encodings
(APEs and RPEs) to characterize graph topological struc-
tures, viewing the graphs as complete entities and enabling
long-range interactions for nodes. This overcomes limitations
inherent in the message-passing paradigm, such as limited
expressiveness [Xu et al., 2019], over-smoothing [Alon and
Yahav, 2021], and over-squashing [Alon and Yahav, 2021]
issues. However, despite these achievements, there remain a
plethora of challenges to be addressed in this area of research.

One of the most significant challenges faced by GTs is the
poor scalability. This is due to the global attention mecha-
nism, which results in quadratic time and memory complex-
ity with respect to the number of nodes in the graph. This
problem is particularly pronounced when utilizing GTs on
datasets consisting of larger graphs, such as citation and so-
cial network graphs, as limited GPU memory and excessive
running time impede their performance. Consequently, in the
application scenarios, GTs do not demonstrate a significant
advantage over GNNs.

In this work, we present the Kernel Decomposition Lin-
ear Graph Transformer (KDLGT), an accelerating framework
for building scalable and powerful GTs. Unlike previous
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model-specific approaches, KDLGT is model-agnostic and
aims to provide a general solution for accelerating all GT
models. To achieve this, we employ the kernel decompo-
sition approach, which rearranges the matrix multiplication
order of self-attention by designing a kernel function decom-
position for the softmax function. Under this approach, the
way to deal with RPE matrices becomes the key to reducing
time complexity. Inspired by the fact that the RPE matri-
ces of undirected graphs are symmetric and can be decom-
posed into products of low-dimensional matrices, we cate-
gorize RPE matrices into three types, which cover the most
commonly used RPEs. Using KDLGT, we select two rep-
resentative RPEs (such as Shortest Path Distance) and design
our models. Additionally, we provide a theoretical analysis of
the difference between the KDLGT framework and the tradi-
tional self-attention method, and prove that this gap can be
effectively bounded.

We conduct experiments on 10 real-world datasets to
demonstrate the superior performance of our proposed
KDLGT framework. Additionally, we evaluate KDLGT on
a series of synthetic graphs with varying scales to verify its
efficiency. The experimental results show that KDLGT not
only improves learning efficiency significantly but also pre-
serves precision performance effectively and achieves state-
of-the-art results on a variety of datasets. Furthermore, as
anticipated, the acceleration ratio increases as the graph size
increases, indicating the strong scalability of KDLGT. In par-
ticular, KDLGT can achieve an acceleration ratio of approx-
imately 10 on graphs of certain sizes. The contributions of
this paper are listed as follows:

• We propose the KDLGT framework, which successfully
reduces the quadratic complexity of GTs to linear and
improves the scalability of GTs greatly.

• We provide a tight upper bound of the difference gap
between KDLGT and GTs theoretically to illustrate
KDLGT is a well-defined approximation of GTs.

• We conduct experiments on both real-world and syn-
thetic datasets. The experimental results indicate that
KDLGT can significantly improve the learning effi-
ciency while preserving precision performance of GTs
well.

2 Related Works
2.1 Fast Transformers
There have been a lot of works attempting to improve the
efficiency of Transformer models. During the earliest pe-
riod, researchers tend to restrict the context of self-attention
to predefined, fixed patterns, thus limiting the size of the at-
tention matrix and computational complexity. One example
of this approach is the chunking paradigm, which involves
dividing the input sequence into fixed blocks and considering
the local receptive field of each block [Parmar et al., 2018;
Qiu et al., 2020]. Another approach is to limit attention to cer-
tain fixed intervals. Models such as the Sparse Transformer
[Child et al., 2019] and Longformer [Beltagy et al., 2020]
utilize stridden and dilated context windows for attention.

In parallel, another line, the low-rank method, focuses on
optimizing the self-attention architecture by approximating
the self-attention matrix [Wang et al., 2020]. The primary
objective is to reduce the computational complexity of ma-
trix multiplication from N2 to kN , where N is the number of
tokens and k is a constant dependent on the specific model.
One notable example is Linformer [Wang et al., 2020], which
shrinks the length dimension of the keys and values to a
lower-dimensional representation. Besides, by treating self-
attention as kernel functions, various low-rank methods can
be developed through kernelization approaches [Katharopou-
los et al., 2020; Choromanski et al., 2020; Peng et al., 2020],
which adopt an efficient kernelized reconstruction of the self-
attention matrix, thereby avoiding computing N2 matrices.

2.2 Graph Transformers
With the development of Transformer architectures, it is
found that it is effective to adopt the global receptive field
of the Transformers on the graphs [Ying et al., 2021;
Kreuzer et al., 2021; Chen et al., 2022; Zhang et al., 2020;
Mialon et al., 2021]. Different from the Transformer archi-
tectures applied to sequences, the design of graph Transform-
ers emphasizes the use of positional encodings to capture the
topological signal of the graphs. Without such encodings, the
Transformer can only operate on the fully-connected graphs.

SAN [Kreuzer et al., 2021] adopts Laplacian positional en-
codings for the nodes and combines two types of attention
mechanism, one for virtual fully-connected graphs while an-
other for real graph edges. Graphormer [Ying et al., 2021] in-
corporates three different positional encodings, namely cen-
trality, spatial and edge encoding respectively, combined with
dense attention architecture. SAT [Chen et al., 2022] pro-
poses subtree and subgraph extractors to extract structural
features on the graphs, and then uses the similarity scores be-
tween features to define positional encodings.

Among them, there are several works focused on im-
proving the scalability of graph Transformers. GraphGPS
[Rampášek et al., 2022] represents the first attempt to ac-
celerate graph Transformers by combining Fast Transform-
ers with message passing neural networks. GKAT [Choro-
manski et al., 2022] integrates multiple masking mecha-
nisms into Transformer architectures to improve scalability.
Further, NodeFormer [Wu et al., 2022] developes a kernel-
ized gumbel-softmax operator, which reduces the algorith-
mic complexity to linearity and enables the learning of latent
graph structures from large graphs in a differentiable manner.
It represents the first Transformer model capable of scaling
all-pair message passing to large graphs.

3 Preliminaries
In this section, we recap the preliminaries in self-attention
and graph Transformers.

3.1 Vaswani Self-Attention
The self-attention module is the key component of the Trans-
former architectures. It can be represented as the following
formulation:

Att (Q,K,V) = softmax
(
QKT

√
d

)
V, (1)
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where Q,K,V ∈ RN×d, N and d denote the length of se-
quence and embedding dimension, respectively.

Further, after organizing the above formulation, we have:

Att(Q,K,V) = D−1AV, (2)

A = exp

(
QKT

√
d

)
, (3)

D = diag(A1N ), (4)

where 1N ∈ RN is an all-one vector. In the following discus-
sions, we will ignore the constant

√
d, since we can simply set

Q′ = Q/
√
d to replace Q. It can be noticed that the multipli-

cation complexity between D−1 and AV is O(Nd), while
the computation complexity of D,A and AV is O(N2),
O(N2d) and O(N2d), respectively.

3.2 Graph Transformers
Compared with sequence data, graph data has rich structure
features. In GNNs, the edge-based message passing methods
are usually used to describe the graph structures. While for
graph Transformers, positional encodings are usually used to
construct an RPE matrix to describe structures. In general, it
is formulated as:

Att(Q,K,V,B) = softmax
(
QKT

√
d

+B

)
V, (5)

where B ∈ RN×N is RPE matrix. (For preventing ambigu-
ity, in the sequel, N represents the number of nodes in the
graph.)

4 Methodology
In this section, we introduce KDLGT acceleration framework
and our models in detail. First, we begin by summarizing
the effective accelerating approaches for Transformers on
sequential data (Section 4.1).

4.1 Overview of Effective Transformer Approach
Most existing methods for accelerating self-attention adopt
the kernel decomposition approach[Choromanski et al.,
2020]. The core idea is to construct a kernel function ϕ to re-
arrange the order of matrix multiplication and nonlinear func-
tion exp in (3), which can be formulated as:

A = exp(QKT ) ≈ ϕ(Q)ϕ(K)T =: Q′(K′)T , (6)

where Q′,K′ ∈ RN×r, r is the new embedding dimension.
In this way, the computation of attention score matrix A can
be avoided. Instead, we can first compute the multiplication
of (K′)T and V, and then compute the result between Q′

and (K′)TV. The time complexity of the two steps is both
O(Nrd). For (4), similarly, we can reverse the matrix multi-
plication order by letting (K′)T1N first. In specific, we can
approximate Vaswani self-attention as followings:

Âtt(Q,K,V) = D̂−1(Q′((K′)TV)), (7)

D̂ =diag(Q′((K′)T1N )). (8)

The time complexity is reduced from O(N2d) to O(Nrd).

Let κ(x,y) = exp(xTy) ≈ ϕ(x)Tϕ(y), where x,y ∈
Rd. It can be noticed that the most important component
in the kernel decomposition approach is the design of kernel
function ϕ. In this work, we adopt the following well-defined
function ϕ [Choromanski et al., 2020]:

ϕ(x) :=
1√
r
exp

(
−||x||2

2

)(
exp(wT

1 x), . . . , exp(w
T
r x)

)
,

(9)
where wi ∼ N (0, Id), r ≤ d is a sampling number as well
as embedding dimension. We do not discuss here the validity
and stability of function ϕ and refer readers to [Choromanski
et al., 2020] for further details.

4.2 Kernel Decomposition Linear Graph
Transformer

Further, when we turn our perspective to GT, the RPE matrix
B becomes the most significant difference between GTs and
Transformers. Therefore, we focus on the RPE matrix B and
provide a detailed analysis.

Here, we only consider undirected graphs. In this scenario,
as the graph structure is symmetric, B should also be a sym-
metric matrix. Suppose that the rank of B is d′ ≤ N , and
its d′ nonzero eigenvalues are λi, i = 1, . . . , d′, then we can
decompose B as follows:

B =Udiag([λ1, . . . , λd′ , 0, . . . , 0])UT

=Udiag([λ1, . . . , λd′ , 0, . . . , 0])[:, 0 : d′]

(Udiag([1, . . . , 1, 0, . . . , 0])[:, 0 : d′])T .

Let Bq = Udiag([λ1, . . . , λd′ , 0, . . . , 0])[:, 0 : d′], Bk = U

diag([1, . . . , 1, 0, . . . , 0])[:, 0 : d′], where Bq,Bk ∈ RL×d′
,[:

, i : j] represents the i to j rows of the second dimension, then
we have B = BqB

T
k .

Inspired by this, we categorize RPE matrices into the fol-
lowing three types for discussion and propose the Kernel De-
composition Linear Graph Transformer (KDLGT) accelerat-
ing framework.

Multiplication Decomposition
B = BqB

T
k , where Bq,Bk ∈ RN×d′

and d′ ≪ N , we have:

⟨Qi,Kj⟩+ ⟨B(i)
q ,B

(j)
k ⟩ = ⟨[Qi,B

(i)
q ], [Kj ,B

(j)
k ]⟩.

Therefore, QKT + B = [Q,Bq][K,Bk]
T , where [, ] repre-

sents concatenation operator. If we view [Q,Bq] and [K,Bk]
as Q and K in (6), then it can be accelerated by kernel decom-
position approach, and the complexity is O(N(d+ d′)r).

Addition Decomposition
Bij = bi + bj , b ∈ RN , we have:

⟨Qi,Kj⟩+ bi + bj = ⟨[Qi,bi, 1], [Kj , 1,bj ]⟩.
Thus QKT + B = [Q,b,1N ][K,1N ,b]T . Same as above,
the complexity is O(N(d+2)r) using the kernel decomposi-
tion approach.

Ineffective Decomposition
Suppose the rank of B is d′ = O(N), in this case, there is
no direct effective acceleration method, such as the shortest
path distance (SPD). However, we can still design approxi-
mate schemes to replace this type of RPE matrix (See sub-
section 4.3).
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Figure 1: Illustration of the accelerating procedure of the KDLGT framework. The top and bottom of the left side represent the LSAT and
SAPDGT modules, which are of the multiplication decomposition and addition decomposition types, respectively. The right side represents
the rearrange of matrix multiplication order in kernel decomposition approach.

4.3 Our Models
As shown in Figure 1, we propose two types of models suit-
able for different decomposition scenarios under the KDLGT
framework.

Linear Structure-Aware Transformer
There are lots of designs of RPE that match multiplication
decomposition. We take Structure-Aware Transformer (SAT)
[Chen et al., 2022] as an example, which summarizes a series
of multiplication-decomposition RPEs. Specifically, the RPE
matrix can be represented as:

BSAT
ij = κSAT(φ(vi, G), φ(vj , G)), (10)

κSAT(x,x
′) = ⟨Wqx,Wkx

′⟩/
√
d, (11)

where Wq,Wk ∈ Rd×d are parameter matrices and φ(v,G)
is a structure extractor that extracts vector representations
of some subgraph centered at v in the graph G. The struc-
ture extractor here includes k-subtree GNN extractor and k-
subgraph GNN extractor, which describe the structural infor-
mation of different granularities, respectively.

It can be easily noticed that:

BSAT = SWq(SWk)
T /

√
d, (12)

where S ∈ RN×d,Si = φ(vi, G). Then, let BSAT
q = SWq ,

BSAT
k = SWk/

√
d, we have:

BSAT = BSAT
q (BSAT

k )T . (13)

It is clear that the SAT model can be accelerated under the
multiplication decomposition framework. Additionally, other
similar RPE designs can also be implemented within this
framework.

Shortest Anchor Path Distance Graph Transformer
Shortest Path Distance (SPD) is a commonly used type of
RPE in GTs. However, unfortunately, in most cases, the rank
of the SPD RPE matrix is quite high, which makes it difficult
and meaningless to decompose (ineffective decomposition).

To address this issue, we propose a new type of distance,
Shortest Anchor Path Distance (SAPD) to approximate SPD
distance, which can be easily decomposed.

The general idea is that we only focus on the distances be-
tween anchor nodes and nodes rather than recording the dis-
tances between all pairs of nodes on the graph, thereby ac-
celerating the computation. Anchor nodes, as a kind of coor-
dinates, can re-characterize the distance relationship between
nodes on the graph. Take arbitrary node a ∈ V as anchor
node, we define SAPD induced by a as followings:

da(vi, vj) =
1

2
d(vi, a) +

1

2
d(a, vj), (14)

where vi, vj ∈ V , 1 ≤ i, j ≤ N , d(·, ·) denotes SPD.
In order to ensure rationality, we adopt linear transforma-

tion f instead of the embedding method similar to SPD for
encoding RPE:

B
SAPD(a)
ij = f(da(vi, vj)) =

1

2
f(d(vi, a)) +

1

2
f(d(a, vj)).

(15)
In experiments, we set f(x) = cx, where c ∈ R is a learnable
parameter. Considering that the farther the distance is, the
lower the weight should be, we set c < 0.

Let bSAPD(a) = [ 12f(d(vi, a))]
N
i=1, then we have:

B
SAPD(a)
ij = b

SAPD(a)
i + b

SAPD(a)
j . (16)

Therefore, BSAPD(a) can do addition decomposition and thus
accelerate. In practice, we select K ≪ N nodes on the graph
as anchor nodes and pool the embedding about different an-
chor nodes to get node features. The overall time complexity
is O(NK(d+ 2)r), which is still linear.

In order to ensure that the anchor nodes are evenly dis-
tributed on the graph, we adopt a greedy algorithm[Pavan and
Pelillo, 2006] with time complexity of O(N) to solve the k-
dominant set on the graph as the anchor nodes set, where k is
a receptive field hyperparameter. In this way, we can ensure
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that there is at least one anchor node in the k-hop neighbor-
hood of each node and the absolute error between SPD and
SAPD is within k, that is:

|d(vi, vj)− da(vi, vj)| ≤ k. (17)

5 Theoretical Analysis
In order to ensure the effectiveness of KDLGT, we ana-
lyze the difference gap in the attention matrix distribution of
Vaswani self-attention and the kernel decomposition method,
draw the following conclusion and make a detailed proof.
Lemma 1. Let

P (Qi,Kj) =
E[κ(Qi,Kj)]

E[
∑N

k=1 κ(Qi,Kk)]
,

P ′(Qi,Kj) =
E[ϕ(Qi)

Tϕ(Kj)]

E[
∑N

k=1 ϕ(Qi)Tϕ(Kk)]
.

Then we have:

1− cmax

1 + cmax
≤ P ′(Qi,Kj)

P (Qi,Kj)
≤ 1 + cmax

1− cmax
,

in which cij =
√

1
r (exp(∥Qi +Kj∥2)− 1), while cmax =

max{cij}Ni,j=1.

Proof. For simplicity, here we note κ′(Qi,Kj) = ϕ(Qi)
T

ϕ(Kj). According to Lemma 2 in [Choromanski et al.,
2020], we have:

MSEκ,κ′
(Qi,Kj) = (cijκ(Qi,Kj))

2, (18)

where MSEκ,κ′
(Qi,Kj) = E[(κ(Qi,Kj) − κ′(Qi,Kj))

2].
Since for any random variable X, E(X2) = E2(X)+Var(X),
E[X] ≤

√
E[X2] holds, we have:

E[∥κ(Qi,Kj)− κ′(Qi,Kj)∥] ≤ cijκ(Qi,Kj). (19)

Expanding and rearranging (19), we can derive:

(1− cij)E[κ(Qi,Kj)] ≤E[κ′(Qi,Kj)]

≤(1 + cij)E[κ(Qi,Kj)] (20)

Let cmax
i = max{cij}Nj=1. Here, we assume that cij ∈ [0, 1).

Moreover, we obtain:

1− cij
1 + cmax

i

≤ P ′(Qi,Kj)

P (Qi,Kj)
≤ 1 + cij

1− cmax
i

. (21)

Finally, after further scaling, we have:

1− cmax

1 + cmax
≤ P ′(Qi,Kj)

P (Qi,Kj)
≤ 1 + cmax

1− cmax
. (22)

It can be easily verified that P ′(Qi,Kj) = P (Qi,Kj) for
∀i, j ∈ {1, 2, . . . , N} if cmax = 0, which means that the dis-
tance of Vaswani and approximated self-attention matrix dis-
tributions is upper-bounded by the constant cmax. Besides,
this upper bound increases monotonically with cmax. It is
worth noting that we have assumed that the range of cij is

[0, 1) in the proof. This assumption can be validated from an
experimental point of view. In practice, after normalization
layers which are stacked following self-attention blocks, the
mean and variance of Qi and Kj are 0 and 1, respectively.
Therefore, E[cij ] = 0, and this also implies that cmax has
a large probability distribution around 0, which we also ver-
ify in Section 6.2. In conclusion, the difference between the
two matrix distributions can be effectively controlled theoret-
ically. Therefore, our KDLGT framework is a well-defined
linear approximation of quadratic GTs.

6 Experiments
In this section, we present an evaluation of the precision
and efficiency of our proposed Linear Structure-Aware Trans-
former (LSAT) and Shortest Anchor Path Distance Graph
Transformer (SAPDGT) in comparison to state-of-the-art
models on several graph benchmark datasets.

6.1 Experimental Setup
Datasets
We investigate the performance of LSAT and SAPDGT on
both real-world datasets and synthetic datasets. The dataset
statistical details are presented in Table 1.

For real-world datasets, 6 graph-level datasets and 4
node-level datasets are adopted. The benchmarking-GNN
[Dwivedi et al., 2020] (ZINC), OGB [Hu et al., 2020]
(OGBG-MOLHIV) and TUD [Morris et al., 2020] (MUTAG,
COX2 MD, PROTEINS, NCI1) are all popular graph-level
benchmark datasets, where each graph represents a molecule,
and nodes represent atoms in the molecules. The Cora, Cite-
seer and PubMed [Yang et al., 2016] are popular citation
datasets, whose nodes represent academic papers and node
features are the word bag of papers. LastFM-Asia [Rozem-
berczki and Sarkar, 2020] is a social network that was col-
lected from the public API in March 2020. Their nodes are
LastFM users from Asian countries and edges are mutual
follower relationships between them. The node features are
extracted based on the artists liked by the users. In the ex-
periments, for the datasets without public splits, we use ran-
dom split with the ratio of training/validation/test sets being
7/1.5/1.5.

For synthetic datasets, we generate a series of graphs for
efficiency experiments. The size of the synthetic graphs in-
creases from 211 to 214 in proportion to

√
2. (When the size

is a non-integer, it will be rounded down.) Besides, we adopt
6-regular graphs here to limit the density of the graph,

Baselines
In the experiments, in addition to comparing with SAT and
Graphormer which are quadratic-complexity graph Trans-
formers and used as precision performance upper bound,
we also select the following effective graph Transformers as
strong baselines.

• GPS [Rampášek et al., 2022] GPS is an effective
GT architecture designed through GNN + Performer
paradigm. In experiments, we use its Laplacian eigen-
vectors encodings (LapPE) and random-walk structural
encoding (RWSE) as position encodings. In order to
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Dataset # graphs # classes Avg # nodes Avg # edges

ZINC ∼250,000 − 23.2 49.8
OGBG-MOLHIV 41127 2 25.5 27.5

MUTAG 188 2 17.9 57.5
COX2 MD 303 2 41.2 43.5
PROTEINS 1113 2 39.1 184.7

NCI1 4110 2 29.8 94.5
Cora 1 7 2708 5429

Citeseer 1 6 3312 4732
PubMed 1 3 19717 44338

LastFM-Asia 1 18 7624 27806

Table 1: Statistics of real-world datasets. The symbol in # classes
column represents the regression task.

avoid the influence of the GNN encoder in the GPS
model, we set None (no GNN encoder) as the compari-
son experiment.

• GKAT [Choromanski et al., 2022] GKAT is a GT model
which applies low-rank masked attention via Random
Walks Graph-Nodes Kernel (RWGNK).

• DGT [Park et al., 2022] DGT reduces self-attention
quadratic time complexity by performing sparse atten-
tion with dynamically sampled key and value pairs.

Settings
Our models are implemented in PyTorch. We use Adam
[Kingma and Ba, 2015] as the optimizer and set hyper-
parameter ϵ to 1e-7 and (β1, β2) to (0.99, 0.999), respec-
tively. Besides, the initial learning rate is set to 1e-4 with
a linear decay learning rate scheduler. The training and infer-
ence batch sizes are both set to 128. All models are trained
and evaluated on 3 NVIDIA RTX 3090 GPUs for the fairness
of efficiency comparison.

6.2 Experimental Results
Graph and Node Representation Experiments
Table 2 summarizes the performance of LSAT and SAPDGT
on graph-level and node-level datasets. First of all, in general
it can be observed that the precision performance degradation
of LSAT and SAPDGT is not significant compared to SAT
and Graphormer, respectively. Additionally, it is notewor-
thy that SAPDGT achieves better results than its upper bound
Graphormer on the MUTAG, PROTEINS, and NCI1 datasets,
and LSAT also outperforms its upper bound SAT on the Cora,
Citeseer, and LastFM-Asia datasets. This highlights the ex-
ceptional generalization capability of our proposed KDLGT.

Specifically, on graph-level tasks, LSAT and SAPDGT
achieve state-of-the-art results on the OGBG-MOLHIV,
COX2 MD, PROTEINS, and NCI1 datasets. Besides, there
is a significant performance margin between LSAT, SAPDGT
and baselines on the NCI1 dataset. Furthermore, by compar-
ing the results of GPS with or without GNN encoders, it can
be observed that the contribution of GNN encoders to the per-
formance of GPS is substantial. If the blessing of GNN en-
coders is lost, the performance of GPS will drop sharply. We
think that this method of using GNN encoders to enhance per-
formance is not specific to GPS and is applicable to various
GT models, including our proposed models. Therefore, it is
fairer and more reasonable to compare the performance of our

Figure 2: The accelerating ratio experimental results of the LSAT to-
wards the SAT. The left and right sub-graphics represent the results
of evaluating (forward only) and training (including both forward
and backward), respectively. The parameter d denotes the embed-
ding dimension of the models. The exceeding of the x-tick range
indicates the out-of-memory problem of the SAT.

model with the GPS model without GNN encoders. Under
these conditions, it can be observed that LSAT and SAPDGT
achieve state-of-the-art results on all graph-level datasets.

In regards to node-level tasks, unfortunately, it can be no-
ticed that SAT and Graphormer do not perform well on node
classification datasets with high edge homogeneity such as
the Cora, Citeseer, and PubMed datasets. As a result, LSAT
and SAPDGT do not exhibit significant advantages over the
baselines on these datasets. Conversely, on the node classifi-
cation datasets with low edge homogeneity such as LastFM-
Asia, LSAT outperforms the baselines by a significant mar-
gin. This illustrates that LSAT is more suitable for learning
on large-scale, low-homogeneity graph data.

Efficiency Experiments
Here, we take the multiplication decomposition type, specif-
ically LSAT, as an example, and use the accelerating ratio as
a metric to analyze the performance of our proposed KDLGT
framework under different graph sizes and model settings of
embedding dimension d. The number of attention heads is
fixed at 4 and the number of label classes of synthetic data is
set to 5. The results of evaluating and training are recorded
and presented in Figure 2.

First of all, it can be noticed that LSAT exhibits signifi-
cant acceleration efficiency compared to SAT on large-scale
graph data, achieving a remarkable result of 9.63x under cer-
tain data scales. Since LSAT is linear complexity while SAT
is quadratic, it is expected that the acceleration ratio should
increase linearly with respect to graph size N in theory, which
is also supported by the results presented in Figure 2. It
should be noted that here the horizontal axis is log2(N), thus
the curve actually grows linearly.

Moreover, the embedding dimension d also plays an im-
portant role. Generally, as the ratio of N/d increases, the ac-
celeration ratio becomes more pronounced. In extreme cases,
such as when N ≤ 211.5, the acceleration ratio may be less
than 1 due to the relatively small size of the graph, where d
becomes the dominant factor affecting efficiency. In this sce-
nario, the time saved by the KDLGT framework is less than
the time required for other additional operations (such as sam-
pling), resulting in an overall increase in time. This indicates
that the KDLGT framework is more suitable for accelerating
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Model ZINC OGBG-MOLHIV MUTAG COX2 MD PROTEINS NCI1

MAE↓ AUCROC↑ Acc↑ Acc↑ Acc↑ Acc↑

SAT 0.082 ± 0.004 79.54± 1.32 92.26± 1.66 70.63± 1.54 77.51± 2.43 81.69± 1.08
Graphormer 0.122 ± 0.006* 74.55± 1.06 92.30± 2.73 68.33± 0.71 75.10± 1.07 78.95± 1.52

GPS (None + LapPE) 0.425± 0.081 71.15± 1.59 87.21± 3.28 65.22± 1.01 72.02± 1.51 68.07± 1.33
GPS (GNN + LapPE) 0.131± 0.003 76.60± 0.63 90.65± 1.23 67.39± 0.62 75.60± 1.22 71.47± 0.89
GPS (None + RWSE) 0.213± 0.008 73.09± 0.88 86.21± 2.09 68.89± 0.96 71.43± 2.88 73.26± 1.97
GPS (GNN + RWSE) 0.070± 0.004* 78.80± 0.49* 91.38± 0.77 73.91± 0.35 74.91± 0.98 75.53± 1.48
GKAT - - 87.94± 1.54 63.03± 1.14 75.80± 3.80* 75.20± 2.40*

LSAT 0.130± 0.002 78.98± 1.78 90.18± 1.85 69.69± 1.32 76.22± 1.64 81.33± 0.71
SAPDGT 0.159± 0.008 73.75± 1.41 93.16± 3.32 67.76± 1.68 77.27± 2.05 81.99± 1.03

Model Cora Citeseer PubMed LastFM-Asia

SAT 83.06± 0.81 73.83± 0.79 89.19± 0.29 85.33± 0.79
Graphormer 73.34± 0.43 64.51± 0.53 OOM 70.88± 0.94

GPS (None + LapPE) 80.98± 0.76 75.90± 0.65 OOM 72.57± 0.86
GPS (GNN + LapPE) 84.05± 0.59 85.30± 0.28 OOM 73.31± 0.41
GPS (None + RWSE) 82.08± 0.52 81.30± 1.01 OOM 78.14± 0.55
GPS (GNN + RWSE) 89.37± 0.19 90.89± 0.38 OOM 80.83± 0.52
GKAT 73.84± 0.94 69.22± 0.80 72.31± 0.58 77.65± 1.02
DGT 87.45± 0.60* 77.04± 0.57* 89.22± 0.14* -

LSAT 83.37± 0.21 74.03± 0.32 89.03± 0.06 85.42± 0.27
SAPDGT 72.02± 0.85 62.63± 1.17 OOM 71.27± 1.34

Table 2: Test performance on graph-level (upper) and node-level (lower) datasets. Shown results are the mean ± s.d. of 10 runs with different
random seeds. Results with * are taken from the corresponding works. OOM represents out of memory. Highlighted ones are the top first,
second, third results, respectively.

Figure 3: The distribution of the cmax in the bottom and top model
layers.

large-scale data, which aligns with the goal of this research.
Lastly, it is not surprising that the KDLGT framework also

optimizes the space complexity of the Vaswani self-attention.
In the experiments, we notice that when N > 214, an out-of-
memory (OOM) problem occurs for SAT while LSAT can
still operate normally. In conclusion, the KDLGT frame-
work achieves obvious advantages in both time complexity
and space complexity when applied to large-scale graph data.

The Distribution of the cmax

We conduct the cmax distribution experiment on the NCI1
dataset as ablation studies. We adopt a three-layer LSAT
model and fix the parameters after training for experiments.
For visualization, we randomly sample 1, 000 graphs and use
the frequency of occurrence to approximate the probability

distribution. In particular, we directly obtain the maximum
value of the cmax of different attention heads for simplicity.
The experimental results are shown in Figure 3.

Overall, it can be observed that the distribution of the cmax

is concentrated around 0, which supports our assumption in
Section 5. Therefore, it is reasonable to assert that cij ∈ [0, 1)
for ∀i, j ∈ {1, 2, . . . , N}.

Taking the bottom layer as an example, we can verify the
distribution gap between SAT and LSAT attention matrix ex-
actly. The expectation and maximum values of cmax are
around 0.1 and 0.3, corresponding to the upper bound value
1 + cmax/1− cmax of 1.22 and 1.86, respectively. Consider-
ing the extremely infrequent occurrence of maximum value,
we think this numerical behavior is acceptable.

7 Conclusion
In this work, we present the Kernel Decomposition Linear
Graph Transformer (KDLGT), an accelerating framework for
building scalable and powerful GTs. Under KDLGT frame-
work, we select two representative GTs and design our mod-
els LSAT and SAPDGT. On one hand, a rigorous theoretical
analysis is conducted to ensure performance guarantees. On
the other hand, a series of experiments are carried out to eval-
uate the KDLGT in terms of precision and efficiency. Both
the theoretical analysis and experimental results demonstrate
that the KDLGT not only significantly improves learning ef-
ficiency but also preserves the precision performance of the
GTs and achieves state-of-the-art results on various datasets.
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