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Abstract
It is desirable to adaptively determine the number
of dimensions (rank) for PCA according to a given
tolerance of low-rank approximation error. In this
work, we aim to develop a fast algorithm solving
this adaptive PCA problem. We propose to re-
place the QR factorization in randQB EI algorithm
with matrix multiplication and inversion of small
matrices, and propose a new error indicator to in-
crementally evaluate approximation error in Frobe-
nius norm. Combining the shifted power iteration
technique for better accuracy, we finally build up
an algorithm named farPCA. Experimental results
show that farPCA is much faster than the base-
line methods (randQB EI, randUBV and svds) in
practical setting of multi-thread computing, while
producing nearly optimal results of adpative PCA.

1 Introduction
Principal component analysis (PCA) is widely used for di-
mensionality reduction and embedding of input data in ap-
plications of machine learning. However, the application of
PCA to real-world problems which require processing large
data accurately, often costs prohibitive computational time.
Accelerating the PCA computing (i.e. truncated SVD) for
large data is of an absolute necessity.

Randomized matrix decomposition has gained significant
increases in popularity with the rapid increasing of the size of
data. It has been revealed that randomization can be a pow-
erful computational resource for developing algorithms with
improved runtime and stability properties [Halko et al., 2011;
Drineas and Mahoney, 2016; Martinsson and Tropp, 2020].
Compared with traditional algorithms, the randomized algo-
rithm involves the same or fewer floating-point operations
(flops), and is more efficient for large high-dimensional data
sets, by exploiting modern computing architectures. An idea
of randomization is using random embedding to identify the
subspace capturing the dominant actions of a matrix A [Mar-
tinsson and Tropp, 2020] as AΩ, where Ω is the random ma-
trix for embedding. Usually, Ω is a Guassian i.i.d random
matrix [Halko et al., 2011]. And, there are some variants of
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random matrix to accelerate the computation of AΩ, such
as subsampled random Fourier transform matrix [Woolfe et
al., 2008], subsampled random Hadamard transform ma-
trix [Ailon and Chazelle, 2006], and sparse sign matrix [Mar-
tinsson and Tropp, 2020]. With the subspace’s orthonormal
basis matrix Q = orth(AΩ), a so-called QB approximation
is obtained: A ≈ QB. This produces a smaller sketch matrix
B, and facilitates the computation of near-optimal approxi-
mation of A and further its PCA or SVD.

The basic randomized SVD algorithm was presented in
[Halko et al., 2011]. Later on, a lot of variants were pro-
posed for the application problems like image processing
[Benjamin Erichson et al., 2017], network embedding [Zhang
et al., 2019b; Qiu et al., 2021], streaming data processing [Yu
et al., 2017; Zhang et al., 2019a], etc. The algorithm was also
accelerated for better trade-off against accuracy or for large
sparse matrices in application areas [Li et al., 2017; Voronin
and Martinsson, 2015; Bjarkason, 2019; Feng et al., 2018b;
Feng et al., 2018a; Ding et al., 2020].

Usually, the problem of low-rank matrix approximation
falls into two categories [Yu et al., 2018]:

• the fixed-rank problem, where the rank parameter k (i.e.
the number of columns of Q) is given.

• the fixed-precision (or fixed-accuracy, fixed-error) prob-
lem, where we seek the low-rank approximation with
rank as small as possible providing the approximation
error is within a given tolerance (e.g. ∥A−QB∥ ≤ ε).

Most exiting algorithms, including the golden standard svds
in Matlab, solve the fixed-rank problem. The algorithm for
the fixed-precision problem is relatively rarely seen, but it
is essential for the PCA applications where the most suit-
able number of dimensions (rank k) is unknown. Usually, a
smaller k causes inaccuracy in subsequent application, while
a larger k induces large computational cost.

The fixed-precision problem of randomized QB factor-
ization was addressed in [Martinsson and Voronin, 2016;
Yu et al., 2018]. The proposed algorithms are mathemati-
cally equivalent to the basic randomized algorithm in [Halko
et al., 2011], but allow incremental computation with increase
of rank k. Based on an approximation error indicator which
can be efficiently calculated, a randQB EI algorithm was pro-
posed in [Yu et al., 2018] to enable the adaptive computation
of PCA (or truncated SVD) subject to a given approxima-
tion error. Another algorithm for the fixed-precision prob-
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lem was proposed (with name randUBV) in [Hallman, 2022],
based on the block Lanczos bidiagonalization process [Golub
et al., 1981]. Although randUBV costs less runtime than
randQB EI, it lacks the flexibility to produce more accurate
results as there is not a mechanism like the power iteration in
randQB EI. Besides, the randUBV computes a much higher
dimensional subspace than the rank finally determined, which
implies the memory cost of randUBV is relatively larger.
Therefore, randQB EI is more suitable for some real appli-
cations with large sparse matrices. It is currently the foun-
dation for the Matlab function svdsketch. An improve-
ment and application of randQB EI was presented in [Ding et
al., 2020], where the fixed-precision randomized algorithm
is used to automatically determine a number of latent factors
for achieving the near-optimal prediction accuracy during the
subsequent model-based collaborative filtering. However, the
algorithm in [Ding et al., 2020] was implemented in Python
and the comparison was made on CPU time, which makes it
not validated for actual multi-thread computing. And, that al-
gorithm has a flaw resulting in the accuracy issue when more
power iterations are preformed.

In this work, our aim is to develop a fast adaptive ran-
domized PCA algorithm to handle real-world dense or sparse
matrices with multi-thread computing. Firstly, we remove
the QR factorization (which has poor parallel efficiency1)
in randQB EI algorithm, while employing a new formula to
evaluate the approximation error in the Frobenius norm dur-
ing the iterative process. Then, we add the power iteration
into the algorithm in a more efficient manner to enable the
fixed-precision factorization for better quality. Finally, comb-
ing the shifted power iteration technique [Feng et al., 2022]
for better accuracy, we build up a fast adaptive randomized
PCA (farPCA) algorithm. The codes of farPCA are shared
on GitHub (https://github.com/XuFengthucs/farPCA).

Experimental results show that, if fixing rank k farPCA
produces more accurate result than randQB EI with same
number of power iterations (p), and the reduction of error is
up to 2.9X with p=10. Compared with randUBV, farPCA
costs similar runtime and produce results with lower rank,
while owning the flexibility to produce better approximation
with more power iterations. For the adaptive PCA problem,
the farPCA algorithm costs less runtime than randQB EI on
all test cases, and the speed-up ratio is up to 1.9X. Compared
with svds, the farPCA implemented in C produces nearly
the same optimal results while reducing the runtime by 16X
through 96X and reducing the memory cost by 75%.

2 Preliminaries
We follow Matlab conventions in pseudo-codes of algorithm.

2.1 Singular Value Decomposition and PCA
Suppose matrix A ∈ Rm×n. Without loss of generality, we
assume m ≥ n. The economic SVD of A is A = UΣVT,
where U = [u1,u2, · · · ,un] and V = [v1,v2, · · · ,vn] are

1Although there are highly-efficient paralell QR algorithms for
tall and skinny matrices, e.g. [Demmel et al., 2012], they have not
been employed in Matlab or other libraries yet.

orthonormal matrices with left and right singular vectors re-
spectively, and the diagonal matrix Σ ∈ Rn×n contains the
singular values σ1, σ2, · · · , in descending order. Suppose Uk

and Vk are matrices with the first k columns of U and V,
and Σk is the k × k upper-left submatrix of Σ. Then, A is
approximated by its truncated SVD Ak:

A ≈ Ak = UkΣkV
T
k . (1)

Notice that Ak is the best rank-k approximation of A in either
spectral norm or Frobenius norm [Eckart and Young, 1936].

The approximation properties of the SVD explain the
equivalence between SVD and PCA. Suppose each row of
matrix A is an observed data. The matrix is assumed to
be centered, i.e., the mean of each column is equal to zero.
Then, the leading left singular vectors {ui} of A represent
the principal components. Specifically, u1 is the normalized
first principal component.

2.2 Randomized Algorithms for PCA and
Fixed-Precision Matrix Factorization

The basic randomized SVD algorithm [Halko et al., 2011]
can be described as Algorithm 1, where Ω is a Gaussian
i.i.d random matrix, and the orthonormalization operation
“orth(·)” can be implemented with a call to a packaged QR
factorization. The power iteration in Step 3 through 5 is for
improving the accuracy of result, where the orthonormaliza-
tion alleviating the round-off error in floating-point computa-
tion is performed after every matrix-matrix multiplication.

With the power iteration not considered, the m×l orthonor-
mal matrix Q = orth(AΩ) includes the orthogonal ba-
sis vectors of approximate dominant subspace of range(A),
i.e., span{u1,u2, · · · ,ul}. Therefore, A ≈ QQTA =
QB according to Step 6. When the economic SVD is per-
formed on the short-and-fat l× n matrix B, the approxi-
mate truncated SVD of A is finally obtained. Employing
the power iteration, one obtains Q = orth((AAT)pAΩ), if
the intermediate orthonormalization steps are ignored. This
makes Q better approximate the basis of dominant subspace
of range((AAT)pA), same as that of range(A), because
(AAT)pA’s singular values decay more quickly than those
of A [Halko et al., 2011]. So, the computed results are more
accurate, and the larger p makes more accurate results and
more computational cost as well.

Algorithm 1 Basic randomized PCA with power iteration

Input: A ∈ Rm×n, rank parameter k, oversampling param-
eter s, power parameter p

Output: U ∈ Rm×k, S ∈ Rk×k, V ∈ Rn×k

1: l← k + s, Ω← randn(n, l)
2: Q← orth(AΩ)
3: for j ← 1, 2, · · · , p do
4: G← orth(ATQ), Q← orth(AG)
5: end for
6: B← QTA
7: [U,S,V]← svd(B, ′econ′)
8: U←QU(:, 1:k), S←S(1 :k, 1:k), V←V(:, 1:k)
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In [Yu et al., 2018], a randomized QB factorization algo-
rithm for the fixed-precision problem was proposed, where Q
and B are sought to ensure ∥A −QB∥F < ε. It is a variant
of the procedure producing Q and B in Alg. 1 executed in an
incremental manner, with an efficient technique to calculate
the Frobenius norm of approximation error. It is described
as Alg. 2, where a block Gram-Schmidt procedure is used to
realize the orthonormalization to compute Q in Alg. 1. This
enables the incremental construction of the QB factorization.
Due to ∥A − QB∥2F = ∥A∥2F − ∥B∥2F , the approximation
error in Frobenious norm can be evaluated easily for large or
sparse A (by Steps 2 and 12 in Alg. 2) [Yu et al., 2018]. Be-
sides, the power iteration on matrix A − QB is applied in
Alg. 2 to enhance the accuracy of result. Notice that because
the power iteration in Ding’s Algorithm 3 [Ding et al., 2020]
approximates the dominant subspace of range(A) instead of
that of range(A−QB) in randQB EI, it leads to inaccurate
results when p increases. This is validated by the experimen-
tal results in the Appendix. The error tolerance is often set
ε = ϵ∥A∥F , ϵ ∈ (0, 1). For obtaining the results of PCA,
Steps 7 and 8 in Alg. 1 can be executed afterwards. And, a
post-processing step can be done to determine the smallest
rank r meeting the error tolerance.

We use the count of floating-point operations (flops) to an-
alyze the time cost of algorithm. The flop count of Alg. 2 with
Step 7 and 8 in Alg. 1 is

FC2 =2Cmulnnz(A)k + Cmul(2m+ n)k2 + 2Cqrmkb

+ Csvdnk
2 + p(Cmulnnz(A)(k +

k2

b
)

+ Cmul(m+ n)(k − b)2 + Cqr(m+ n)kb),
(2)

where 2Cmulnnz(A)k reflects the matrix-matrix multiplica-
tion on A in Step 4 and 10, Cmul(2m + n)k2 reflects the
matrix-matrix multiplication of dense matrices, 2Cqrmkb re-
flects the QR factorization in Step 4 and 9, Csvdnk

2 reflects
the economic SVD on B, and p(Cmulnnz(A)(k + k2

b ) +

Cmul(m + n)(k − b)2 + Cqr(m + n)kb) reflects the opera-
tions in power iteration in Step 5 through 8.

3 Fast Adaptive PCA Based on Randomized
Matrix Factorization Skills

As QR factorization used in randQB EI has relatively poor
efficiency in multi-thread computing, our idea for accelera-
tion is to replace it with matrix-matrix multiplication and the
inversion of small matrix, which are of better parallel effi-
ciency. We first accelerate the randQB EI without power it-
eration, with a new formula to evaluate the approximation
error in Frobenius norm. Then, we add the power iteration
into the algorithm in an more efficient manner, where the em-
ployment of QR is reduced to the least. Finally, combing the
shifted power iteration technique with dynamic shifts [Feng
et al., 2022] and the proposed techniques for accelerating
randQB EI for fix-precision factorization, we propose the fast
adaptive randomized PCA algorithm (named farPCA) with
better quality of results.

Algorithm 2 randQB EI with power iteration

Input: A ∈ Rm×n, error tolerance ε, block size b, power
parameter p

Output: Q∈Rm×k, B∈Rk×n, s.t. ∥A−QB∥F <ε
1: Q← [ ], B← [ ]
2: E ← ∥A∥2F , tol← ε2

3: for i← 1, 2, · · · do
4: Ωi ← randn(n, b), Qi ← orth(AΩi −QBΩi)
5: for j ← 1, 2, · · · , p do
6: Gi ← orth(ATQi −BTQTQi)
7: Qi ← orth(AGi −QBGi)
8: end for
9: Qi ← orth(Qi −QQTQi)

10: Bi ← QT
i A

11: Q← [Q,Qi], B← [B;Bi]
12: E ← E − ∥Bi∥2F
13: if E < tol then break
14: end for

3.1 Remove QR from the randQB EI Algorithm
According to Alg. 2 without power iteration, the QR factor-
ization has poor efficiency in multi-thread computing. So,
how to replace the the QR factorization with other operations
for better parallel efficiency is the focus. According to the fol-
lowing proposition, we can remove QR factorization to pro-
duce Q and B with the same accuracy of approximation as
Alg. 1 without the power iteration.

Proposition 1. Suppose A ∈ Rm×n, Ω ∈ Rn×k is a Gaus-
sian i.i.d random matrix, Y = AΩ, W = ATY and the
economic SVD of Y is Y = ÛΣ̂V̂

T
. Then, setting

Q = YV̂Σ̂−1,B = (WV̂Σ̂−1)T. (3)

produces the approximation of QB to A which is of same
accuracy as that in Alg. 1 without power iteration and over-
sampling. And, if tr(·) denotes the trace of a matrix,

∥B∥2F = tr(WTW(YTY)−1). (4)

Proof. Because Û is the matrix with left singular vectors of
Y, Û is also the solution of orth(Y). Therefore, we can set

Q = orth(AΩ) = orth(Y) = Û = YV̂Σ̂−1. (5)

Then, combing (5) and W = ATY we have

B = QTA = (WV̂Σ̂−1)T. (6)

Because Q is the orthonormalization of AΩ, this approxima-
tion QB performs with the same accuracy as A ≈ QB in
Alg. 1 without power iteration and oversampling. Then,

∥B∥2F =∥WV̂Σ̂−1∥2F = tr(Σ̂−1V̂TWTWV̂Σ̂−1)

= tr(WTWV̂Σ̂−2V̂T)= tr(WTW(YTY)−1).
(7)

In Proposition 1, Eq. (3) reflects that we can compute
Y = AΩ and W = ATY incrementally to generate the
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Algorithm 3 Faster randQB EI without power iteration

Input: A ∈ Rm×n, error tolerance ε, block size b
Output: Q∈Rm×k, B∈Rk×n, s.t. ∥A−QB∥F <ε

1: Y ← [ ], W← [ ]
2: E ← ∥A∥2F , tol← ε2

3: for i← 1, 2, · · · do
4: Ωi ← randn(n, b)
5: Yi ← AΩi, Wi ← ATYi

6: Y ← [Y,Yi], W← [W,Wi]
7: Z← YTY, T←WTW
8: if E − tr(TZ−1) < tol then break
9: end for

10: [V̂, D̂]← eig(Z)

11: Q← YV̂sqrt(D̂)−1, B← (WV̂sqrt(D̂)−1)T

matrices Q and B at the end of process, instead of comput-
ing Q and B incrementally with QR factorization in Step
4 and 9 of Alg. 2. Therefore, QR factorization can be re-
moved in randQB EI. Besides, we can derive a new ap-
proach to evaluate the approximation error in the Frobenius
norm according to (4) in Proposition 1. Combing (4) and
∥A−QB∥2F = ∥A∥2F − ∥B∥2F in randQB EI yields

∥A−QB∥2F = ∥A∥2F − tr(WTW(YTY)−1), (8)

which reflects tr(WTW(YTY)−1) can be used to evaluate
the approximation error in the Frobenius norm. So, a faster
randQB EI without power iteration is derived in Algorithm 3.

In Alg. 3, matrices Y and W are computed incrementally
in Step 5 and 6. Then, Z = YTY and T = WTW are
computed in Step 7. Notice that Z and T can be computed
incrementally in each iterative step to reduce the time cost.
In Step 8, the new approach to evaluate the approximation
error in the Frobenius norm is used according to (8). Usually,
TZ−1 is implemented by solving linear equations. When the
results satisfy the error tolerance, the eigen-decomposition of
Z is computed firstly in Step 10, and Q and B are computed
in Step 11 according to (3) to replace the economic SVD of
Y for reducing the time cost. Because the QR factorization
in Alg. 2 is replaced by matrix-matrix multiplication in Step
7 and 11, solving linear equations of two small matrices in
Step 8 and eigen-decomposition of a small matrix in Step 10
in Alg. 3, Alg. 3 is of better parallel efficiency.

3.2 Inclusion of Power Iteration
Although Alg. 3 is a faster randQB EI procedure for fixed-
precision problems, it lacks the flexibility to produce better
approximation with the power iteration scheme. Our idea is
to develop an efficient power iteration scheme with the com-
puted matrices.

Suppose H = A −QB. In the power iteration of Alg. 2,
the matrix-matrix multiplication on the left and right side of
H is performed in Step 6 and Step 7. Therefore, how to
change the formulation of QB in H with the computed ma-
trices in Alg. 3 is the focus. Because Y, W and Z = YTY
are computed in Alg. 3, combining (3) in Proposition 1 yields

QB = YV̂Σ̂
−2

V̂TWT = Y(YTY)−1WT, (9)

Algorithm 4 Faster fixed-precision QB factorization

Input: A ∈ Rm×n, error tolerance ε, block size b, power
parameter p

Output: Q∈Rm×k, B∈Rk×n, s.t. ∥A−QB∥F <ε
1: Y ← [ ], W← [ ]
2: E ← ∥A∥2F , tol← ε2

3: for i← 1, 2, · · · do
4: Ωi ← randn(n, b)
5: for j ← 1, 2, · · · , p do
6: Wi ← ATAΩi −WZ−1WTΩi

7: Ωi ← orth(Wi)
8: end for
9: Yi ← AΩi, Wi ← ATYi

10: Y ← [Y,Yi], W← [W,Wi]
11: Z← YTY, T←WTW
12: if E − tr(TZ−1) < tol then break
13: end for
14: [V̂, D̂]← eig(Z)

15: Q← YV̂sqrt(D̂)−1, B← (WV̂sqrt(D̂)−1)T

which reflects that QB can be represented by YZ−1WT. So,
we can perform the power iteration with H=A−YZ−1WT.
Besides, we can reduce one orthonormalization in each step
of power iteration as that in [Voronin and Martinsson, 2015;
Feng et al., 2018a] to reduce the time cost with little sacrifice
on accuracy. With these developments, the following power
iteration steps can be applied after Step 4 in Alg. 3

5: for j ← 1, 2, · · · , p do
6: Yi ← AΩi −YZ−1WTΩi

7: Wi ← ATYi −WZ−1YTYi

8: Ωi ← orth(Wi)
9: end for

In each step of the power iteration, Wi = HTHΩi is
computed. Combining Yi ← AΩi − YZ−1WTΩi and
Wi ← ATYi −WZ−1YTYi in Step 6 and Step 7 above,
and the fact W = ATY, we can derive that

Wi=ATYi−WZ−1YTYi

=AT(AΩi−YZ−1WTΩi)−WZ−1YT(AΩi−YZ−1WTΩi)

=ATAΩi−WZ−1WTΩi−WZ−1WTΩi+WZ−1WTΩi

=ATAΩi−WZ−1WTΩi.
(10)

This means we can reduce two times of matrix-matrix mul-
tiplication on Y for Y(Z−1WTΩi) and YTYi and once so-
lution of linear equations for Z−1(YTYi) to compute Wi

efficiently. Combining the efficient power iteration, the faster
fixed-precision QB factorization is described in Algorithm 4.

In Step 6 of Alg. 4, the computation of Wi is simplified
as (10). And, the QR factorization is just used once in Step 7
to alleviate the round-off error in floating-point computation.
Compared with Alg. 2, Alg. 4 is of better parallel efficiency
due to fewer times of QR factorization and matrix-matrix
multiplication and more solutions of linear equations for two
small matrices in the power iteration.
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3.3 Shifted Power Iteration for Better Accuracy
When computing Wi = HTHΩi with H=A−YZ−1WT in
the power iteration of Alg. 4, the shift power iteration scheme
in [Feng et al., 2022] can be applied to improve the accuracy.
The following lemma [Feng et al., 2022] states how to use the
shift properly to perform the shifted power iteration.

Lemma 1. Suppose 0 < α≤σb(H
TH)/2 and i ≤ b, where

σi(·) denotes the i-th singular value. Then, σi(H
TH−αI) =

σi(H
TH) − α. And, the left singular vector corresponding

to the i-th singular value of HTH−αI is the same as the
left singular vector corresponding to the i-th singular value
of HTH.

Lemma 1 shows that, if we choose a positive shift α ≤
σb(H

TH)/2, the computation HTHΩi can be changed to
(HTH−αI)Ωi in the power iteration, with the same approx-
imated dominant subspace. This is called the shifted power
iteration in [Feng et al., 2022], which can improve the accu-
racy with the same power parameter p. Because computing
σb(H

TH) directly is difficult, we can use the singular val-
ues of HTHΩi to approximate σb(H

TH) according to the
following lemma [Feng et al., 2022].

Lemma 2. Suppose A ∈ Rm×m and Ωi ∈ Rm×b (b ≤
min(m,n)) is an orthonormal matrix. Then,

σi(AΩi) ≤ σi(A) , for any i ≤ b . (11)

Suppose Ωi ∈ Rn×b is the orthonormal matrix in power
iteration of Alg. 4. According to Lemma 2,

σi(H
THΩi) ≤ σi(H

TH), i ≤ b, (12)

which means that we can set α = σb(H
THΩi)/2 to guar-

antee the requirement of α in Lemma 1 for performing the
shifted power iteration. In order to do the orthonormalization
for alleviating round-off error and calculate σb(H

THΩi), we
implement “orth(·)” with the eigSVD algorithm from [Feng
et al., 2022]. eigSVD applies eigen-decomposition to com-
pute the results of economic SVD efficiently, and the resulted
matrix of left singular vectors includes the orthonormal basis
of same subspace compared with QR factorization. Because
Ωi at the first step of power iteration is not an orthonormal
matrix, we obtain the value of α at the second step of power
iteration, and then perform eigSVD((HTH−αI)Ωi) in the
following iteration steps.

Because the singular values of(HTH−αI)Ωi are computed
in the shifted power iteration, according to Lemmas 1 and 2,
combining 0 < α ≤ σb(H

TH)/2 and i ≤ b yields

σi((H
TH− αI)Ωi)+α≤σi(H

TH− αI)+α=σi(H
TH),

(13)
which states how to use the singular values of (HTH−αI)Ωi

to approximate σi(H
TH). Therefore, in each step of the

shifted power iteration we can obtain a valid value of shift
and update α with it if we have a larger α for better accuracy.

3.4 The Overall Algorithm
Apart from the shifted power iteration for better accuracy, we
can accelerate the computation of economic SVD of B for
faster approximate PCA. Inspired by eigSVD algorithm, we

Algorithm 5 Fast adaptive randomized PCA (farPCA)

Output: A ∈ Rm×n, error tolerance ε, block size b, power
parameter p

Input: U ∈ Rm×k, S ∈ Rk×k, V ∈ Rn×k such that ∥A −
USVT∥F < ε

1: Y ← [ ], W← [ ]
2: E ← ∥A∥2F , tol← ε2

3: for i = 1, 2, · · · do
4: Ωi ← randn(n, b), α← 0
5: for j ← 1, 2, · · · , p do
6: Wi ← ATAΩi −WZ−1WTΩi − αΩi

7: [Ωi, Ŝ,∼]← eigSVD(Wi)

8: if (j > 1 and α < Ŝ(b, b)) then α← (α+Ŝ(b, b))/2
9: end for

10: Yi ← AΩi, Wi ← ATYi

11: Y ← [Y,Yi], W← [W,Wi]
12: Z← YTY, T←WTW
13: if E − tr(TZ−1) < tol then break
14: end for
15: [V̂, D̂]← eig(Z)

16: P← V̂sqrt(D̂)−1

17: [Ṽ, D̃]← eig(PTTP) #calculate eig(BBT)

18: S← sqrt(D̃)

19: U← YPṼ, V←WPṼS−1

use the eigen-decomposition of BBT to compute the eco-
nomic SVD of B. Practically, we use the computed Z and T
to produce BBT according to (3) as

BBT=(WV̂Σ̂−1)T(WV̂Σ̂−1)=Σ̂−1V̂TWTWV̂Σ̂−1,
(14)

where V̂ and Σ̂ are the matrices with right singular vec-
tors and singular values of Y computed by the eigen-
decomposition of Z. According to (14), we can firstly com-
pute the eigen-decomposition of k × k Z and then com-
pute Σ̂−1V̂TTV̂Σ̂−1 with two times of matrix-matrix mul-
tiplication on two k × k matrices to compute BBT, which
costs much less time compared with computing BBT directly
when k ≪ n. After executing the eigen-decompostion of
BBT: [Ṽ, D̃] = eig(BBT), we can compute the approxi-
mate PCA results of A as

S← sqrt(D̃), U← QṼ, V← BTṼS
−1

. (15)

Combining this fast approach to produce approximate PCA
and the shifted power iteration scheme with dynamic shift, we
propose the fast adaptive randomized PCA in Algorithm 5
named farPCA. In Alg. 5, the shifted power iteration is used
in Step 6 to improve the accuracy. In Step 7, the eigSVD al-
gorithm is used to compute both the left singular vectors and
the singular values. The shift is updated dynamically when
the new shift is larger according to (13) in Step 8. Finally,
the computations in Step 15 through 19 are used to compute
the approximate PCA of A efficiently according to (14) and
(15). In order to find better PCA result, a post-processing
step which searches the computed singular values to find the
smallest r such that ∥A −UrSrV

T
r ∥F < ε is actually exe-
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cuted [Yu et al., 2018]. The flop count of Alg. 5 is

FC5 =2Cmulnnz(A)k + Cmul(2m+ 2n)k2

+ p(Cmulnnz(A)(k+
k2

b
) + Cmuln(k−b)2

+ 2Cmulnkb),

(16)

where 2Cmulnnz(A)k reflects the matrix-matrix multipli-
cation on A in Step 10, Cmul (2m + 2n)k2 reflects the
matrix-matrix multiplication in Step 12 and 19, and p(Cmul

nnz(A)(k+ k2

b ) + Cmuln(k−b)2+2Cmulnkb) reflects the
operations in power iteration in Step 5 through 9. Suppose
we use eigSVD to replace the economic SVD in Alg. 2, the
Csvdnk

2 in FC2 is replaced by 2Cmulnk
2. Then, we can

derive
FC2−FC5 =Cmulnk

2 + 2Cqrmkb+ q(Cmulm(k − b)2

+ Cqr(m+ n)kb− 2Cmulnkb).
(17)

Because of Cqr > 2Cmul in practice, FC2−FC5 > 0, which
reflects the less flop count of farPCA.

4 Experiments
All experiments are carried out on a Ubuntu server with two
8-core Intel Xeon CPU (at 2.10 GHz) and 512 GB RAM. The
proposed algorithms are implemented both in Matlab and in
C with MKL2 and OpenMP directives for multi-thread par-
allel computing. We use the shared codes of randUBV 3

and randQB EI 4 for comparison. We also implemented
randQB EI in C with MKL and OpenMP. svds in Matlab
2020b is used for computing the accurate results. All the
programs are evaluated with wall-clock runtime in 16-thread
computing. We firstly compare Alg. 2 (randQB EI), Alg. 4
and Alg. 5 (farPCA) to validate the proposed techniques.
Then, we compare farPCA with randQB EI, randUBV and
svds to validate the overall efficiency of farPCA.

Four real-world matrices are considered for testing. One
is a scenic image [Yu et al., 2018] (named Image), repre-
sented by a 9, 504× 4, 752 matrix. The other three are sparse
matrices: an 82, 168 × 82, 168 social network matrix from
SNAP [Leskovec and Krevl, 2014] with 948,464 nonzero el-
ements, a 138, 493 × 26, 744 matrix from Movielens dataset
[Harper and Konstan, 2016] named Movielens-20m with
20,000,263 nonzero elements, and a 270, 896×45, 115 matrix
from Movielens dataset named Movielens with 26,024,289
nonzero elements, which is larger than Movielens-20m. The
average number of nonzeros per row ranges from 12 to 144
for the three matrices.

4.1 Validation of the Proposed Techniques
Under spectral (or Frobenius) norm, the computational result
(Û, Σ̂ and V̂) of the randomized algorithms has the following
multiplicative guarantee [Musco and Musco, 2015]:

∥A− ÛΣ̂V̂T∥ ≤ (1 + ϵ)∥A−Ak∥, (18)
2https://software.intel.com/content/www/us/en/develop/tools/

oneapi/components/onemkl.html
3https://github.com/erhallma/randUBV
4https://github.com/WenjianYu/randQB auto

with high probability. Based on (18), we use

ϵF =
∥A− ÛΣ̂V̂T∥F − ∥A−Ak∥F

∥A−Ak∥F
, and (19)

ϵs =
∥A− ÛΣ̂V̂T∥2 − ∥A−Ak∥2

∥A−Ak∥2
, (20)

as first two error metrics to evaluate the accuracy of random-
ized PCA algorithms in Frobenius norm and spectral norm.

Another guarantee proposed in [Musco and Musco, 2015],
which is stronger and more meaningful in practice, is:

∀i ≤ k, |uT
i AATui − ûT

i AATûi| ≤ ϵσk+1(A)2, (21)

where ui is the i-th left singular vector of A, and ûi is the
computed i-th left singular vector. This is called per vec-
tor error bound for singular vectors. In [Musco and Musco,
2015], it is demonstrated that the per vector guarantee (21)
requires each computed singular vector to capture nearly as
much variance as the corresponding accurate singular vector,
which is better to evaluate the accuracy of computed singular
vectors compared with (18). Based on (21), we also use

ϵPVE = max
i≤k

|uT
i AATui − ûT

i AATûi|
σk+1(A)2

(22)

to evaluate the accuracy. Notice that the metric (19), (20) and
(22) were also used in [Allen-Zhu and Li, 2016] with name
“Fnorm”, “spectral” and “rayleigh(last)”.

In order to validate the presented techniques, we vary
power parameter p while keeping b = 20 and k = 200, and
compare the randQB EI (Alg. 2), the algorithm accelerated
by matrix skills ( Alg. 4), the proposed farPCA with shifted
power iteration (Alg. 5) on two synthetic dense matrices, Im-
age and Movielens-20m. The synthetic matrices are of 1,000
× 1,000 (denoted by Dense1 and Dense2), and randomly gen-
erated with the i-th singular value following σi = 1/i and
σi = 1/

√
i, respectively. This means the singular values of

Dense2 decay slower than those of Dense1. With the accurate
results obtained from svds, the corresponding error metrics
(19), (20) and (22) are calculated to plotted in Fig. 1 with
varied number of power iterations.

From Fig. 1 we see that, using the shift technique in Sec-
tion 3.3 (Alg. 5) consistently results in more accurate results
when the number of power iteration is larger than 2. Alg. 4
with more efficient matrix computation produces the same re-
sults as the original Alg. 2, which validates the correctness of
proposed techniques in Section 3.1 and 3.2. On Dense1, Alg.
5 with p = 5 produces the results with similar accuracy of
Alg. 2/Alg. 4 with p = 8, which means about 38% times of
power iteration are reduced. And, the reduction of error ϵF
of farPCA increases with the number of power iteration, it
ranges from 2.5X to 2.9X if the number of power iteration
is 10. Although not depicted in Fig. 1, we want to mention
that Alg. 4 runs faster than Alg. 2 with the speed-up ratios
up to 1.3X and 1.2X for case Image and Movielens-20m, re-
spectively. This validates the efficiency of the techniques pro-
posed in Section 3.1 and 3.2.
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Figure 1: Error curves of the randomized algorithms with varied p value for case Dense1, Dense2, Image and Movielens-20m (k=200, b=20).

Case randUBV randQB EI (p=1) farPCA (p=1) randQB EI (p=5) farPCA (p=5)
Time k r Time k r Time k r SP Time k r Time k r SP

Image 1.47 611 451 1.68 470 467 1.29 470 467 1.3 3.56 470 427 2.85 470 427 1.3
SNAP 339 7389 5655 337 6568 5482 229 6568 5482 1.5 662 5747 5086 377 5747 5078 1.8

Movielens-20m 112 1335 1230 162 1068 999 140 1068 999 1.2 469 1068 875 415 1068 873 1.1
Movielens 243 1804 1062 308 1353 1062 265 1353 1062 1.2 878 1353 973 761 1353 972 1.2

Table 1: Comparison of randQB EI, randUBV and farPCA in Matlab (b = min(m,n)/100, ε = 0.1∥A∥F for Image and ε = 0.5∥A∥F for
the other cases). The unit of runtime is second, and SP is the speed-up ratio of farPCA to randQB EI with same power parameter p.

Case randQB EI (p=1) farPCA (p=1) randQB EI (p=5) farPCA (p=5) svds

Time k r Time k r SP Time k r Time k r SP SP-s Time k r

Image 1.21 470 467 1.00 470 467 1.2 3.03 470 427 2.29 470 427 1.3 17 39.9 427 426
SNAP 221 6568 5482 158 6568 5481 1.4 419 5747 5086 227 5747 5078 1.9 96 21760 5078 5073

Movielens-20m 30.6 1068 999 23.8 1068 999 1.3 87.2 1068 875 60.4 1068 873 1.4 17 1026 873 872
Movielens 79.2 1353 1062 51.5 1353 1062 1.5 200 1353 973 127 1353 972 1.6 16 2063 972 972

Table 2: Comparison of randQB EI and farPCA in C with MKL (b = min(m,n)/100, ε = 0.1∥A∥F for Image and ε = 0.5∥A∥F for the
other cases). The unit of runtime is second. SP and SP-s are the speed-up ratios of farPCA to randQB EI and to svds, respectively.

4.2 Validation of farPCA

We compare the finally developed farPCA (Alg. 5) with ran-
dUBV [Hallman, 2022], randQB EI [Yu et al., 2018] and
svds in Matlab with the fixed-precision low-rank factoriza-
tion task on real-world test cases. The error tolerance is set
ε = 0.1∥A∥F for the case Image, and ε = 0.5∥A∥F for the
rest cases. The block parameter b is set to min(m,n)/100.

We not only record the runtime, but also list k and r in tables,
where k is the rank at which the computing process is termi-
nated and r is the final output rank after the post-processing.
The smaller k and r represent smaller space cost and better
quality of result, respectively.

The comparison results of the algorithms’ Matlab versions
are listed in Table 1. From it we see that, farPCA produces
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the same or smaller rank r than randQB EI. The smaller r
is due to the shifted power iteration used in farPCA. As for
the runtime, with the proposed techniques farPCA is faster
than randQB EI with up to 1.8X speedup. The peak mem-
ory usages of farPCA are 0.50 GB, 15.9 GB, 3.18 GB and
7.54 GB for Image, SNAP, Movielens-20m and Movielens,
respectively, which are similar to those of randQB EI (0.50
GB, 17.4 GB, 3.09 GB and 7.44 GB). Although randUBV
costs similar or less runtime than that of farPCA (p = 1),
the larger k reflects that randUBV often results larger r and
much larger k (implying much larger memory cost). The peak
memory usages of randUBV for the four cases are 0.50 GB,
16.2 GB, 3.60 GB and 8.79 GB, showing prominent increase
for large sparse matrices. Notice that farPCA can produce
better results with larger p, while randUBV lacks the flexibil-
ity to reach better approximation.

As our aim is to develop a PCA tool for practical usage,
we should also compare the algorithms implemented in C.
The results are listed in Table 2. The results of svds are
also listed for a reference, which also runs in multi-thread
computing. As we know, there is not a C implementation of
svds, possibly because implementing it in C cannot remark-
ably improves its performance due to its inside algorithm.
Since svds is not able to solve the fixed-precision factoriza-
tion problem, we use the r computed by farPCA with p = 5
as the input rank (k) for svds, and record its runtime and
further obtain the optimal rank r. From Table 2, we see that
the algorithms implemented in C with MKL cost less runtime
than those implemented in Matlab (Table 1), especially for
large cases. This speed-up is as large as 6.9X for Movielens-
20m with p = 5, and much larger than that of randQB EI
algorithm (4.4X for the same case). This reflects that farPCA
is more friendly for actual multi-thread computing. While
comparing farPCA and randQB EI, larger speed-up ratios are
observed (up to 1.9X). Moreover, the peak memory usages
of farPCA are also similar to those of randQB EI (0.45 GB,
14.1 GB, 2.81 GB and 6.52 GB for the four cases), which are
smaller than those of Matlab programs due to better memory
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Figure 2: Error curves of randQB EI, the algorithm in [Ding2020]
and farPCA with varied p value for case Image (k=200, b=20).

management in the C implementation.
With the results of svds we see that, the speed-up ratio

of farPCA (p = 5) in Matlab to svds ranges from 2.5X to
58X, while that of farPCA (p = 5) in C ranges from 16X to
96X. This shows the practical efficiency of proposed farPCA.
For result quality, the r of farPCA with p = 5 is nearly the
same as that of svds, which implies farPCA produces the
nearly optimal low-rank approximation. The peak memory
usages of farPCA with p = 5 are 0.45 GB, 12.2 GB, 2.81 GB
and 6.52 GB for the cases, which are much smaller than 0.78
GB, 48.7 GB, 7.93 GB and 16.4 GB consumed by svds.
All these suggest that the proposed farPCA is able to pro-
duce near-optimal results with much less computational cost
than svds, while owning the ability of performing adap-
tive PCA. An additional experiment with varied number of
threads in Appendix shows that farPCA is more friendly for
multi-thread computing.

5 Conclusion
A faster randomized PCA algorithm named farPCA is pro-
posed for adaptively determining the number of dimensions
(rank) of PCA for a given error tolerance. It includes opti-
mized matrix operations for multi-thread parallel computing,
efficient incremental error indicator, and shifted power iter-
ation for better approximation accuracy or quality of result.
Experimental results show that farPCA runs up to 1.9X faster
than randQB EI, and produces nearly the same optimal re-
sults while reducing the runtime by 16X through 96X when
compared with svds.

A Appendix
A.1 The Flaw in Ding’s Algorithm 3
The Step 14 in Ding’s Algorithm 3 [Ding et al., 2020], i.e.
[Ql,∼] ← lu(A(ATQl)) approximates the dominant sub-
space of range(A) instead of that of range(A−QB) in
randQB EI, which leads to inaccurate results when p in-
creases. We plot the error curves of randQB EI, Ding’s algo-
rithm and farPCA on Image in Fig. 2 which shows that Ding’s
algorithm produces results with large error when p>7.

A.2 Experiments with Different Number of
Threads

We compare the randQB EI and farPCA implemented in C
with multi-thread computing and different number of threads.
The results are listed in Table 3, which show the speed-up
ratio increases with the number of threads.

Case Method nt=2 nt=4 nt=8 nt=16

Movielens
Time of randQB EI 862 526 268 200

Time of farPCA 671 342 171 127
SP 1.28 1.54 1.56 1.57

SNAP
Time of randQB EI 1766 1091 614 419

Time of farPCA 1343 633 335 227
SP 1.31 1.72 1.83 1.85

Table 3: The runtimes and speed-up ratios of randQB EI and farPCA
in C with MKL (p = 5). The unit of runtime is second. nt is the
number of threads. SP is the speed-up ratio of farPCA to randQB EI.
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