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Abstract

We consider the problem of navigating in a Markov
decision process where extrinsic rewards are either
absent or ignored. In this setting, the objective is to
learn policies to reach all the states that are reach-
able within a given number of steps (in expectation)
from a starting state. We introduce a novel meta-
algorithm which can use any online reinforcement
learning algorithm (with appropriate regret guaran-
tees) as a black-box. Our algorithm demonstrates a
method for transforming the output of online algo-
rithms to a batch setting. We prove an upper bound
on the sample complexity of our algorithm in terms
of the regret bound of the used black-box RL al-
gorithm. Furthermore, we provide experimental re-
sults to validate the effectiveness of our algorithm
and correctness of our theoretical results.

1 Introduction
The ability to efficiently explore the environment remains
key to sample-efficient reinforcement learning (RL). In set-
tings where rewards are absent or sparse, the exploration
must be autonomous, i.e., it cannot be guided by reward
maximization. Furthermore, many works have argued for
a learning approach in which the agent undergoes an ex-
tended developmental period during which reusable skills
are autonomously learned that will be useful for a wide
range of challenges later (e.g., [Kaplan and Oudeyer, 2003;
Weng et al., 2001]). In this article, we focus on learning to
navigate in an unknown environment using such an approach.

Following [Lim and Auer, 2012], we consider a Markov
decision process (MDP) equipped with at most countably
many states and finitely many actions including a reset action
which brings the agent back to some initial state. No extrinsic
rewards are given and the state-transition probabilities are as-
sumed to be stationary. The goal is to minimize the number of
steps required by the agent to learn to reliably navigate to all
reachable states. Since the number of states is unbounded, the
agent is given as input a “radius” L such that it needs to con-
sider all the states that are reachable within L steps (precise
definitions will follow in the next section). This framework is
particularly suitable when the task is to explore a large-scale

environment and the learner only has enough resources to ob-
serve a small part of it by autonomous exploration. In such
scenarios, it is imperative that the learner first solves simpler
intrinsic goal-oriented tasks prescribed by the given number
of steps L. This model could also be used in scenarios where
the goal is to learn the transition operator directly.

1.1 Related Work
Similar problems have been considered in various research
communities under the name of learning using intrinsic moti-
vation/reward, curiosity-driven learning, automatic goal gen-
eration etc. Owing to the space restrictions, a necessarily
incomplete list of these works include [Schmidhuber, 2010;
Singh et al., 2004; Singh et al., 2010; Oudeyer and Ka-
plan, 2007; Baranes and Oudeyer, 2009; Lopes et al., 2012;
Gottlieb et al., 2013; Houthooft et al., 2016; Achiam and
Sastry, 2017; Ostrovski et al., 2017; Pathak et al., 2017;
Haber et al., 2018; Burda et al., 2019; Azar et al., 2019;
Hazan et al., 2019; Florensa et al., 2018]. Recently, [Ecof-
fet et al., 2019; Ecoffet et al., 2020] have proposed a family
of algorithms for exploration when rewards are sparse or de-
ceptive with experimental validation for the performance of
their algorithms. Our approach could be applicable in sce-
narios similar to the ones considered in [Ecoffet et al., 2019;
Ecoffet et al., 2020] who also exploit the same principle em-
ployed in our article – remember promising states and first
return to such states before intentionally exploring.

[Gajane et al., 2019] consider a variant of the problem at
hand where the transition probabilities can change abruptly.
Another line of work is presented by [Tarbouriech et al.,
2020] in which the authors consider a slightly modified goal
(see [Tarbouriech et al., 2020, Definition 5] for more details).
Recently, [Cai et al., 2022] proved a lower bound, based on
the lower bound of UCRL2 [Jaksch et al., 2010], for the con-
sidered problem. Another relevant work is the “reward-free
RL” paradigm introduced by [Jin et al., 2020]: following its
exploration phase, their algorithm is able to compute near-
optimal policies for a collection of given reward functions.
Although related to the problem at hand at a conceptual level,
their approach remains limited to the finite-horizon setting.
While we focus on showing how a general RL algorithm can
be used for the task of exploration, another line of work (e.g.,
[Agarwal et al., 2020]) studies how exploration algorithms
(i.e., policy cover) can be turned into a general RL algorithm.
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Our proposed algorithm shares some ideas with “online-to-
batch” conversion methods [Littlestone, 1989; Cesa-Bianchi
et al., 2006]. It has been showed that one can obtain expected
risk bounds for a hypothesis drawn randomly among those
generated from online learning algorithms [Helmbold and
Warmuth, 1995; Freund and Schapire, 1999; Cesa-Bianchi et
al., 1997]. [Shalev-Shwartz, 2012] prove that if we have an
online learning algorithm that is guaranteed to have low re-
gret, then the cost of such a random hypothesis is close to the
optimal cost.

1.2 Main Contribution
We show that any RL algorithm with sublinear regret Tα,
α < 1, can be converted into an exploration algorithm. To the
best of our knowledge, our work provides the inaugural algo-
rithm to convert any RL algorithm with sublinear regret into
an exploration algorithm with suitable guarantees on its sam-
ple complexity. This formally verifies the intuition that any
small regret algorithm needs to explore its environment, at
least implicitly. This also shows that RL algorithms that take
advantage of a particular transition structure of an environ-
ment, resulting in improved regret bounds, can be converted
into a corresponding exploration algorithm for this environ-
ment. Our black-box approach of using an RL algorithm as
a subroutine leads to the generality of our proposed solution,
which is one its main strengths. The structure of the proposed
algorithm and its analysis may also serve as a worthy addition
to the literature of online-to-batch conversion methods.

2 Problem Setting
In this section, we present the problem setting first introduced
by [Lim and Auer, 2012] 1. We consider a discrete-time
Markov decision process M with no external rewards. We
assume a countable, possibly infinite state space S and a fi-
nite action space A. Upon executing an action a in state s,
the environment moves to the next state s′ selected randomly
according to the unknown transition probabilities P (s′|s, a).

The learning agent is expected to solve the autonomous
exploration problem in which the goal is to find a policy for
each state reachable from a starting state. In the following,
we assume (without loss of generality) the starting state s0 to
be fixed, and hence it will be omitted from any notation.
Definition 1 (Navigation time). For any policy π, let τπ(s)
be the expected number of steps before reaching s for the first
time when executing policy π starting from s0.

We further set τ∗(s) :=minπ τπ(s). The learner will be
given a number L > 0 and we may naively demand that it
finds all the states reachable in at most L steps:
Definition 2 (L-reachable states). We let SL denote the set of
all the states reachable in at most L steps i.e.,

SL :={s ∈ S : τ∗(s) ≤ L}.
Since the state space might be infinite, a learner could wan-

der off in some direction or get stuck without being able to re-
turn to the starting state. To exclude this possibility, we make
Assumption 1.

1Readers may consult the list of symbols given in the extended
version of this article to quickly look up the notation.

Assumption 1. In every state s, there is a designated
RESET action available, such that P (s0|s,RESET) = 1.

Definition 3 (Policy on S′ ⊂ S). We define a policy π on
S′ ⊂ S to be a policy with π(s) = RESET for any s ̸∈ S′.

[Lim and Auer, 2012] show that, in general, efficient learn-
ing to discover all the states in SL is not possible. Rather, we
require the learners to discover only the incrementally reach-
able states, S→L .

Definition 4 (Incrementally reachable states). Let≺ be some
partial order on S. The set S≺L of states reachable in L steps
with respect to ≺, is defined inductively as follows:

• s0 ∈ S≺L ,

• if there is a policy π on {s′ ∈ S≺L : s′ ≺ s} with τπ(s) ≤
L, then s ∈ S≺L .

We define the set S→L of states incrementally reachable in L
steps with respect to some partial order to be S→L :=

⋃
≺ S≺L ,

where the union is over all possible partial orders.

As [Lim and Auer, 2012], we are interested in the num-
ber of exploration steps needed to be able to navigate to in-
crementally reachable states from s0 efficiently. Thus, given
parameters L and ϵ, a suitable exploration algorithm will be
able to determine

• a set K ⊇ S→L , and

• for every s ∈ K, a policy πs with τπs
(s) ≤ (1 + ϵ)L,

after a certain number of exploration steps dependent on L
and ϵ.

3 Algorithm and Main Result
In this section, we present our proposed algorithm called
META-EXPLORE (given in Algorithm 1) and an upper bound
on its number of exploration steps. The motivation for using a
black-box approach in META-EXPLORE is that it provides the
generality of converting an arbitrary online RL algorithm into
an exploration algorithm. The main idea of META-EXPLORE
is to consider reaching a particular state as a sub-problem that
is solved by using an arbitrary online RL algorithm A with
regret guarantees (e.g. UCRL2 from [Jaksch et al., 2010],
REGAL from [Bartlett and Tewari, 2009]). To reach a partic-
ular state, several hypotheses (defined in Section 3.1 below)
are formed using the black-box RL algorithm A.

META-EXPLORE proceeds in rounds. In each round, it
evaluates a target state to examine if a (1 + ϵ)L-step pol-
icy for that state can be found, for a given threshold ϵ. At the
end of a particular round, if the algorithm determines (with
high confidence) that a (1 + ϵ)L-step policy for the chosen
target state has been found, the round is deemed a success
round, otherwise it is called a failure round. At the end of a
successful round, the chosen target state is added to the set
of “known” states K. On the other hand, at the end of a fail-
ure round, the algorithm is said to have rejected the target
state. The algorithm maintains another set U, called the set of
candidate states i.e., states that are potential members of S→L .
Note that, in any round, the algorithm tries to find a policy on
K at that time in order to reach the target state.
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3.1 Major Steps of the Algorithm
Each round consists of three steps – state discovery, choice of
target state, and target state evaluation.

State Discovery
Whenever the algorithm discovers a new known state snew, it
explores the neighborhood of snew to add to the set of candi-
date states U. That is, in snew every action a ∈ A is sampled⌈
L log 8AL|K|2

δ

⌉
times. By definition of a known state, the

algorithm has a (1+ ϵ)L-step policy πsnew to reach snew from
the starting state s0. To sample any action a ∈ A in snew,
the algorithm first resets to s0 and then uses πsnew to reach
snew. Thus, sampling each action once requires on average
(1 + ϵ)L + 1 steps at most. Any neighboring states of snew
which are not already in K are added to U. The algorithm
also keeps hold of the neighboring states discovered by each
known state. Every time a new state becomes known, all the
neighboring states {s} of the previously known states such
that s /∈ K are also added to the set of candidate states U.
Note that a neighboring state is added to U even if it has been
previously rejected by the algorithm. This is done to ensure
that if a target state sr ∈ S→L is erroneously rejected by the
algorithm because the preceding states from some partial or-
der (see Definition 4) were not in K at that time, sr will be
considered as a target state again (this reasoning is explained
in detail in Section 4.5 below).

Choice of Target State
The target state for the current round is chosen arbitrarily
without replacement from the set of candidate states U. The
algorithm stops when U is empty.

Target State Evaluation
This step forms the crux of the algorithm. Consider a round r
with target state s̄. Let us define an environmental episode
(or, simply an episode) as a series of time steps beginning at
the initial state s0 and ending when s̄ is reached. An online
RL algorithm A (with given regret guarantees) is run on the
induced MDP Ms̄ for Λ environmental episodes, where Λ is
as defined in Step 3 in Algorithm 1.
Definition 5 (Induced MDP). In the induced MDP Ms̄, all
the actions in state s̄ suffer loss 0 and lead back to the ini-
tial state. All the states {s|s /∈ K ∧ s ̸= s̄} are merged into a
single auxiliary state at which only the RESET action is pos-
sible suffering loss 1. Actions in all the other states behave
the same as in the original MDP and suffer loss 1.

Thus, minimizing the total loss in Ms̄ is equivalent to min-
imizing the number of steps to reach the target state s̄.

At the beginning of each episode, the history of A in the
current round is recorded. The recorded history comprises the
state-action-state transition counts from the current round.
Definition 6 (Hypothesis). A hypothesis is a run of the RL
algorithm A from a particular history point. This means that
A uses the history up to this point to determine its behavior.

The number of time steps spent in episode i are recorded
in T r

i and let Γ :=
⌈(
1 + 1

ϵ

)
L
⌉
. Let

p̂r :=

∑Λ
i=1 1{T r

i >Γ}

Λ
, (1)

Algorithm 1 META-EXPLORE

Input: A confidence parameter δ ∈ (0, 1), an error threshold
ϵ > 0, L ≥ 1, the initial state s0 and an algorithm A with a
regret bound of B(#States,#Actions) · Tα ·Dβ .
Output: A set of reachable states K and corresponding poli-
cies πs̄ for all s̄ ∈ K.
Initialization: Initialize snew ← s0, the set of candidate
states U← {} and the set of known states K← {}.
Set ϵ← min(1,ϵ)

8 .
In each round r = 1, 2, . . . :

1. State Discovery: If snew /∈ K, add snew to K and then
sample each action a ∈ A in snew for

⌈
L log 8AL|K|2

δ

⌉
times. Add any neighboring state /∈ K to the set of can-
didate states U. Furthermore, all the neighboring states
{s} of the previously known states such that s /∈ K are
also added to the set of candidate states U. Here, we add
a neighboring state to U even if it has been previously
rejected by the algorithm.

2. Choice of Target State: Stop the algorithm if U is
empty. Otherwise choose an arbitrary candidate state
from U as the target state s̄ and U← U \ {s̄}.

3. Target State Evaluation: Run A with confidence pa-
rameter δr := δ

4π2|K|3AL log
8AL|K|2

δ

on the induced MDP

Ms̄ for

Λ :=
[
B(|K|, A)(1 + 3ϵ)α+βLα+β−1

] 1
1−α

· 2
max (4,β/1−α)

ϵmax (4,1/1−α)
· log

(
1

δr

)
environmental episodes. Note that an environmental
episode in Ms̄ begins at the initial state s0 and is only
completed when the target state s̄ is reached. At the be-
ginning of each environmental episode, store the history
of A in the current round r.
If Λ environmental episodes are not completed in
Tr :=(1 + 3ϵ)LΛ time steps, then the current round r
is stopped with it being considered a failure round; the
state s̄ is said to be rejected by the algorithm; and the
algorithm proceeds to the next round.
Otherwise, at the end of Λ environmental episodes per-
form the following check. Let Γ :=

⌈(
1 + 1

ϵ

)
L
⌉
. Let T r

i
be the number of time steps spent in the environmental
episode i. Let

p̂r :=

∑Λ
i=1 1{T r

i >Γ}

Λ
.

If
(

(1+5ϵ)L + (p̂r+ϵ)
1 − (p̂r+ϵ) ≤ (1 + 8ϵ)L

)
The current round is a success round.
Associate the Λ history points of the current round
with the state s̄.
Set snew ← s̄.

Else
The state s̄ is said to be rejected by the algorithm
and the current round is deemed a failure round.

Proceed to the next round.
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i.e., the fraction of the total Λ episodes that failed to end in Γ
time steps. At the end of Λ environmental episodes, a perfor-
mance check is carried out. If

(1 + 5ϵ)L + (p̂r + ϵ)

1 − (p̂r + ϵ)
≤ (1 + 8ϵ)L, (2)

then the current round is declared as a success round and a
new round will begin with the target state s̄ added to K. This
performance check is to ensure that the number of times A
failed to reach the target state s̄ within Γ time steps is low.
To prevent expending too many time steps on unpromising
target states, if Λ environmental episodes are not completed
in Tr (defined in Step 3 in Algorithm 1) time steps, then the
current round is a failure round and a new round will begin.

3.2 Description of the Output Policy
On the completion of the algorithm, the output is composed
of K and the corresponding Λ history points for each state
s ∈ K. The output policy πs for a state s ∈ K is as follows:

1. Draw a history point (with replacement) from the Λ his-
tory points associated with s uniformly at random.

2. Start running the algorithm A from the history point cho-
sen in the previous step.

3. If s is not reached in Γ steps, execute the RESET action
and go back to step 1.

3.3 Performance Guarantee
The following theorem constitutes our main result.

Theorem 1. If META-EXPLORE is run with an on-
line RL algorithm A with a regret upper bound of
B(#States,#Actions)·Tα ·Dβ , then with probability 1−δ,
it

(a) discovers a set of states K ⊇ S→
L , such that S :=|K|≤

|S→(1+ϵ)L|,

(b) terminates after Õ

(
S2A·[B(S,A)]

1
1−α ·L2+

α+β−1
1−α

ϵ
max (4, 1

1−α )

)
ex-

ploration steps 2,

(c) for each s ∈ K, outputs a policy πs with τπs
(s) ≤ (1 +

ϵ)L,

where D is the diameter as defined by [Jaksch et al., 2010,
Definition 1] and B(#States,#Actions) is some function
of the number of states and the number of actions.

The number of exploration steps stated in the theorem
could be seen as the sample complexity of META-EXPLORE.

3.4 Relation to Existing Work
[Lim and Auer, 2012] introduced this exploration problem
and provided a specific algorithm whereas [Tarbouriech et al.,
2020] consider a variant of this problem with small branching
(i.e. a small set of successor states for each action).

Disregarding log factors, the sample complexity in [Lim
and Auer, 2012] is SAL3/ϵ3 for L(1 + ϵ) reachability, and

2The notation Õ ignores logarithmic factors.

in [Tarbouriech et al., 2020] it is SAGL5/ϵ2 for L+ ϵ reach-
ability, where G is the branching factor. To make the results
comparable, we set ϵ = Lϵ, which gives SAGL3/ϵ2 for [Tar-
bouriech et al., 2020]. Thus, [Tarbouriech et al., 2020] give a
better dependency on ϵ for a small branching factor, but note
that G could be as large as S.

We can instantiate META-EXPLORE with UCRL2 [Jaksch
et al., 2010] which is also the basis for the algorithm in
[Lim and Auer, 2012]. The regret bound for UCRL2 is
Õ(DS

√
AT ), which gives the sample complexity bound of

Õ(S4A3L3/ϵ4) for META-EXPLORE when using UCRL2
as a black-box subroutine. Alternatively, we can instan-
tiate META-EXPLORE with UCRL2b [Fruit et al., 2020]
which has the regret bound of Õ

√
DSGAT . The sam-

ple complexity bound of META-EXPLORE using UCRL2b is
Õ(S3GA2L2/ϵ4).

As seen above, in terms of L, the sample complexity bound
of META-EXPLORE using UCRL2b is better than that of ei-
ther [Lim and Auer, 2012] or [Tarbouriech et al., 2020]. How-
ever, in terms of S and A, the sample complexity bound for
META-EXPLORE using either UCRL2 or UCRL2b is more
than that of [Lim and Auer, 2012], [Tarbouriech et al., 2020]
and [Cai et al., 2022]. This is mainly caused by additional
exploration due to the use of a black-box algorithm. It is
worthwhile to note that the main strength of our approach
is generality of converting any RL algorithm with sublinear
regret into an exploration algorithm. By the generality of our
conversion, it is reasonable to expect that our meta-algorithm
using black-box RL algorithms can not achieve the sample
complexity of specifically optimized algorithms.

4 Analysis
First, we provide a brief road-map of the proof of Theorem 1.
To prove (a), we prove, with high probability, that none of the
states in S→

L is “missed”. To prove (b), it suffices to prove a
high probability upper bound on the total number of rounds,
as the number of time steps in any round is upper-bounded by
(1+3ϵ)LΛ. Finally, to prove (c), we show that any state in K
satisfies a bound on the navigation time of its corresponding
output policy.

In the following, we see that the below statements hold
with high probability:

• If there is a neighboring state s that is reachable with
probability at least 1/L from a known state, then s will
be among the candidate states U after state discovery.

• If a state s̄ reachable in L steps (in expectation) using a
policy on K (at the beginning of the round) is selected
as a target state, then s̄ it will be added to K at the end
of the round.

• If a state s̄ is added to K, then the corresponding output
policy reaches s̄ in (1 + ϵ)L steps (in expectation).

While our analysis uses some results from [Lim and Auer,
2012], there are major difficulties resulting from the black-
box RL algorithm: there is no notion of the most promis-
ing state, exploration needs to be organized differently, and
– most importantly – individual runs of the black-box algo-
rithm need to be stitched together to obtain policies for the
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reachable states. The stitching requires a completely differ-
ent approach in the analysis.

4.1 Decomposition into Episodes and Hypotheses
In the following, we consider a fixed successful round r. Note
that although some of the values considered subsequently
(such as K, Λ, or the target state s̄) depend on r, this de-
pendence is not reflected in the notation. For i = 1, . . . ,Λ,
let Hi−1 be the run of the algorithm A from the ith history
point (i.e. Hi−1 is the policy run in episode i).

Let the cumulative loss of policy π after T steps in MDP M
with initial state s be denoted by L(M, π, s, T ). Since both
the MDP Ms̄ and the starting state s0 are fixed for the con-
sidered round r, we use L(π, T ) in place of L(Ms̄, π, s0, T )
wherever it is clear from the context.

The value 1
T E[L(π, T )] is the expected average loss up to

step T . Let the average loss of policy π be defined as

ν(π) := lim
T→∞

1

T
E[L(π, T )]. (3)

Let ν∗ be the optimal average loss. Then as per the (high-
probability) regret bound of A,

L(A, T )− Tν∗ ≤ B(#States,#Actions) · Tα ·Dβ

with probability at least 1 − δ where δ is the confidence pa-
rameter. Such high-probability regret bounds (e.g., [Jaksch et
al., 2010, Theorem 2]) also contain a log term in δ. For ease
of exposition, we choose to ignore the log term in the regret
bound of A as it will only contribute a log term in the sam-
ple complexity bound for META-EXPLORE and the claimed
sample complexity bound in Theorem 1 is in terms of Õ.

Let the cumulative loss of the hypothesis Hi−1 during the
environmental episode i be Lr

i . Let us also define Lr
i,Γ as the

cumulative loss in episode i before reaching either the target
state or Γ :=

⌈(
1 + 1

ϵ

)
L
⌉

time steps. Then

Lr
i,Γ =

{
Lr

i , if Lr
i ≤ Γ,

Γ otherwise.
(4)

4.2 Number of Steps before Reaching either the
Target State or Γ Time Steps

Let Tπ,Γ(s̄) be the random number of steps taken by policy π
before reaching either the target state s̄ or Γ time steps starting
from the initial state s0.

For i = 1, 2, . . . ,Λ, let us define:

Zi :=E[THi−1,Γ(s̄)]− Lr
i,Γ. (5)

Let Fi be the filtration of history till the end of episode i.
Since the policy run in episode i is Hi−1 and Hi−1 is Fi−1-
measurable, E[Lr

i,Γ|Fi−1] = E[THi−1,Γ(s̄)]. Then Zi with
respect to Fi−1 is a martingale difference sequence.

Let Qr be a random hypothesis drawn from the uniform
distribution over the Λ hypotheses formed at the start of each
of the Λ episodes. Then the expected number of steps taken
by Qr before reaching either the target state s̄ or Γ time steps
can be written as

E [TQr,Γ(s̄)] =
1

Λ

Λ∑
i=1

E
[
THi−1,Γ(s̄)

]

≤ 1

Λ

Λ∑
i=1

Lr
i +

1

Λ

Λ∑
i=1

Zi. (6)

Here we use Eq. (4) and the definition of Zi given in Eq. (5).
In the appendix given with the extended version of this article,
we prove the upper bounds given in Eq. (7) and Eq. (8) using
the regret bound of subroutine A and the construction of our
algorithm META-EXPLORE.

1

Λ

Λ∑
i=1

Lr
i ≤

1

Λ
Trν

∗ +
1

Λ
B(|K|, A) · Tα

r ·Dβ (7)

with probability at least 1− δr.

1

Λ

Λ∑
i=1

Zi ≤ ϵL. (8)

with probability at least 1− δr.
From Eq. (6), (7) and (8), and using Tr :=(1 + 3ϵ)LΛ,

E [TQr,Γ(s̄)] ≤
1

Λ
Trν

∗ +
1

Λ
B(|K|, A) · Tα

r D
β + ϵL

≤ Tr

Λ
+

1

Λ
B(|K|, A) · Tα

r D
β + ϵL

≤ (1 + 5ϵ)L. (9)
The second inequality follows from the application of Lemma
4 while the last inequality is true using Proposition 1. Gath-
ering the error probabilities, Eq. (9) is true with probability
at least 1− (2δr + 2δr) = 1− 4δr.

4.3 Failure Probability to Reach the Target State
in Γ Steps

Let pπ,Γ be the true probability of failure to reach the target
state s̄ in Γ steps while following policy π from s0.

In the appendix given with the extended version of this arti-
cle, we prove the upper bound given in Eq. (10). In this proof,
we show that, for i = 1, 2 . . . ,Λ, Yi := pHi−1,Γ − 1{T r

i >Γ}
is a martingale difference sequence and then use Azuma-
Hoeffding inequlaity [Azuma, 1967; Hoeffding, 1963].

pQr,Γ ≤ p̂r + ϵ (10)
with probability at least 1− δr.

4.4 Bound on the Optimum Navigation Time and
the Navigation Time of the Output Policy

The output policy for s̄ ∈ K is denoted as πs̄.
Lemma 1. Let r be a successful round and s̄ be the con-
cerned target state, then with probability at least 1− 2δr,

τ∗(s̄) ≤ (1 + ϵ)L.

Lemma 2. Let r be a successful round and s̄ be the con-
cerned target state, then with probability at least 1− 5δr,

τπs̄(s̄) ≤ (1 + ϵ)L.

Please see the extended version submitted with the supple-
mentary material for this article for the proof of Lemma 1 and
2. We prove these lemmas by first forming an equation for
τπs̄

(s̄) in terms of E [Tπs̄,Γ(s̄)]. Then we use the upper bound
on E [Tπs̄,Γ(s̄)] from Eq. (9), Eq. (10) and the construction of
META-EXPLORE, particularly the check given in Eq. (2).
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4.5 Bound on the Probability of Erroneously
Rejecting a Target State s̄ ∈ S→L

Since S→L is unknown, the algorithm needs to make sure that,
with high probability, none of the states in S→L are “missed”.
This is proven by Lemma 12 in [Lim and Auer, 2012] which
states that with high probability, unless all of S→L is known,
at least one of the states in S→L \K is also in U and that state
is reachable in L steps with a policy on K at that time. Then,
below we prove that if a state s̄ ∈ S→L , such that it is reachable
in L steps with a policy on K at that time, is selected as the
target state, then with high probability, it becomes known.
Lemma 3. Consider a round r with target state s̄ ∈ S→L . Let
K be the set of known states at the beginning of round r. If
∃π on K such that τπ(s̄) ≤ L, then the probability of failure
is at most 2δr.

Here, we provide a proof-sketch of Lemma 3. Please see
the extended version of this article for the complete proof.
Proof-skecth. First we use Lemma 11 from [Tarbouriech et
al., 2019] to show that if s̄ ∈ S→L then Tr ≤ (1 + 3ϵ)LΛ with
probability at least 1− δr. Then using a similar process as in
the proof of Eq. (10), we show that the performance check in
Eq. (2) is satisfied with probability at least 1− δr.

Let sr ∈ S→L be a state which was erroneously rejected
by the algorithm at the end of round r. Let K′ be the set of
known states at the beginning of round r. Then either one of
the following is true :

1. ∃π on K′ such that τπ(sr) ≤ L.
2. ∄π on K′ such that τπ(sr) ≤ L.
The first case is handled by Lemma 3.
Assume that Lemma 3 holds for each round. For the

second case, by the definition of incrementally reachable
states S→L (see Definition 4), there exists a sequence of states
s0, s1, s2, . . . , sn and a policy π on those states such that
τπ(sr) ≤ L. Moreover, each state si in the sequence is also
incrementally reachable with respect to the states in the se-
quence preceding si. So for each state si in the sequence,
there exists a policy on s0, . . . , si−1 that can reach si in L
steps (in expectation). Thus for each state si, there is an
s ∈ s0, . . . , si−1 and an action a with P (si|s, a) ≥ 1

L . Using
Lemma 17 from [Lim and Auer, 2012], each of these states
would be discovered using state discovery with high proba-
bility. In the sequence s0, s1, s2, . . . , sn, there exists a state
s′ which is immediately reachable from s0. When s′ is con-
sidered as the target state, it would be added to K. Simi-
larly, each state si in the sequence would be added to K if
s0, s1, . . . , si−1 is in K at the beginning of the round. If not,
we repeat the same argument. Then, eventually when sr is
considered as a target state in a round with s0, s1, . . . , sn al-
ready in K, it would be added to K at the end of the round.

4.6 Supplementary Lemmas and Propositions
In the following, we provide proof-sketches. Please consult
the extended version of this article for the complete proofs.
Lemma 4. Let ν(π) be as defined in Eq. (3). Then,

ν(π) =
τπ(s̄)

τπ(s̄) + 1
.

The Lemma follows from the definition of ν(π) and
Lemma 9 in [Tarbouriech et al., 2019].
Lemma 5. Let Ms̄ be an induced MDP with τ∗(s) ≤ x for
every state s. Then the diameter of Ms̄ is at most x+ 1.

For arbitrary s1, s2, we construct a non-stationary policy
with the expected navigation time from s1 to s2 of at-most
x + 1. Then we utilize the fact that for a given (fixed) MDP
the optimal average reward is attained by a stationary policy
and cannot be increased by using non-stationary policies.
Proposition 1. For any successful round, with probability at
least 1− 2δr,

1

Λ
B(|K|, A) · Tα

r ·Dβ ≤ ϵL.

Proposition 1 follows from Lemma 1 and Lemma 5.

4.7 Proof of Theorem 1
Proof. Here, we prove the three claims stated in Theorem 1.
(a) From Section 4.5, the probability of erroneously reject-

ing a state from S→L is bounded by the sum of the prob-
ability that Lemma 3 does not hold in some round r,
which is at most

∑
r 2δr and the total error probability of

Lemma 12 and Lemma 17 from [Lim and Auer, 2012],
which is δ/4. From Lemma 1, all the states s ∈ K have
τ∗(s) ≤ (1 + ϵ)L with probability at least 1 −

∑
r 2δr.

Hence, S :=|K|≤ |S→(1+ϵ)L|.
(b) Exploration steps during state discovery: As ex-

plained in Section 3.1, sampling each action in a new
known state s requires at most (1 + ϵ)L + 1 steps
on average. Since each action a ∈ A is sampled⌈
L log 8AL|K|2

δ

⌉
times for a state s ∈ K, the number

of exploration steps during state discovery due to all S
states in K is O

(
SAL2 log 8ALS2

δ

)
.

Exploration steps during target state evaluation:
Since each action a ∈ A is sampled in each s ∈ K

for
⌈
L log 8AL|K|2

δ

⌉
times, at most

⌈
AL log 8ALS2

δ

⌉
states are added to U due to a single known state. As
|K|= S, and the neighbors (which are not in K cur-
rently) of all the previous known states are added to
the set of candidate states every time a new state be-
comes known, the total number of rounds is at-most
O
(⌈

S2AL log 8ALS2

δ

⌉)
. Thus, the total number of ex-

ploration steps during target state evaluation is at most

= Õ

(⌈
S2AL log

8ALS2

δ

⌉
· (1 + 3ϵ)L

· 2
max (4,β/(1−α))

ϵmax (4,1/(1−α))

·
[
B(S,A) · (1 + 3ϵ)α+β · Lα+β−1

] 1
1−α

)

= Õ
( 1

ϵmax (4,1/(1−α))
· S2A[B(S,A)]

1
1−α

· L2+α+β−1
1−α

)
.
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(c) As per Lemma 2, for all s ∈ K, output policy πs satisfies
τπs(s) ≤ (1 + ϵ)L with probability 1−

∑
r 5δr.

Collecting the error probabilities, the total probability of fail-
ure is at most δ

4 +
∑

r 9δr ≤ δ, where we use the fact that∑∞
i=1

1
i2 = π2

6 and at most |K|·
⌈
AL log 8AL|K|2

δ

⌉
states are

added to U due to a single known state.

5 Experimental Results
In this section, we provide experimental results on simulated
examples to validate the effectiveness of our proposed al-
gorithm and our theoretical results. Note that since this is
the first work providing a general conversion from a regret-
minimizing RL algorithm to an exploration algorithm, there
is no benchmark available.

Below, we describe the problem setting used in our ex-
periments. The MDP is of unbounded state space and has
2 actions – 0 and 1. The states are structured similar to a
tertiary tree with the starting state being the root. On tak-
ing action 0 in a state node, transition to the left child occurs
with very high probability P0,l, transition to the middle child
occurs with very low probability P0,m and transition to the
right child occurs with very low probability P0,r. On tak-
ing action 1 in a state node, transition to the left child occurs
with very low probability P1,l, transition to the middle child
occurs with very low probability P1,m and transition to the
right child occurs with very high probability P1,r.

We use either UCRL2 [Jaksch et al., 2010] or UCRL2b
[Fruit et al., 2020] as a black-box subroutine for META-
EXPLORE. The problem settings used in the experiments are
described in Table 1. All the results shown in this article are
averaged over 100 independent runs. Figure 1 shows the em-
pirical sample complexity for META-EXPLORE for problem
setting 1 using δ = 0.2 and ϵ = 2/3. Figure 2 shows the em-
pirical sample complexity for META-EXPLORE for problem
setting 2 using δ = 0.1 and ϵ = 1/3. For each value of the
number of reachable states shown in Figure 1 and 2, both the
instantiations of META-EXPLORE were able to find appro-
priate output policies for corresponding reachable states in at
least 1−δ fraction of the runs. In the appendix given with the
extended version of this article, we provide additional exper-
imental results.

The experimental results show that, using an appropri-
ate RL algorithm as a black-box, our algorithm explores the
state space properly. For both the theoretical upper bound
and the empirical sample complexity, META-EXPLORE us-
ing UCRL2b shows better dependence on L than META-
EXPLORE using UCRL2 which corroborates the dependence
proven in Theorem 1. We also note, in general, for higher
values of the number of reachable states (i.e., higher values of
L), the empirical sample complexity tends to be much better

Setting P0,l P0,m P0,r P1,l P1,m P1,r

Setting 1 0.90 0.050 0.050 0.050 0.050 0.90
Setting 2 0.95 0.025 0.025 0.025 0.025 0.95

Table 1: Description of problem settings

Figure 1: Results for setting 1 with δ = 0.2, and ϵ = 2/3

Figure 2: Results for setting 2 with δ = 0.1, and ϵ = 1/3

than the sample complexity promised by the theoretical upper
bounds. This further provides a testimony for our approach
which is better able to leverage knowledge gained from solv-
ing simpler problems (i.e., smaller values of L) in order to
solve more difficult problems efficiently. It also points to a
way of improving the empirical performance of our approach
in scenarios where solutions for simpler problems are known
and can be provided to the algorithm which will in turn use
them to find solutions for difficult problems in an efficient
manner.

6 Concluding Remarks

We considered the problem of autonomous exploration in an
unknown stationary environment. Our proposed algorithm
can use any online RL algorithm (with appropriate regret
guarantees) as a black-box to solve the relevant sub-tasks. We
proved an upper bound on its sample complexity in terms of
the regret bound of the used black-box RL algorithm. Our
experimental results demonstrate the applicability of our pro-
posed algorithm for the considered problem and the correct-
ness of our theoretical results.

Interesting directions for future work include: 1) extend-
ing the problem definition to include non-stationary environ-
ments, 2) extending the solution approach to solve the multi-
-goal stochastic shortest path problem introduced by [Cai et
al., 2022].
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