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Abstract

Audio-visual speech recognition (AVSR) research
has gained a great success recently by improv-
ing the noise-robustness of audio-only automatic
speech recognition (ASR) with noise-invariant vi-
sual information. However, most existing AVSR
approaches simply fuse the audio and visual fea-
tures by concatenation, without explicit interac-
tions to capture the deep correlations between
them, which results in sub-optimal multimodal
representations for downstream speech recognition
task. In this paper, we propose a cross-modal global
interaction and local alignment (GILA) approach
for AVSR, which captures the deep audio-visual
(A-V) correlations from both global and local per-
spectives. Specifically, we design a global interac-
tion model to capture the A-V complementary rela-
tionship on modality level, as well as a local align-
ment approach to model the A-V temporal consis-
tency on frame level. Such a holistic view of cross-
modal correlations enable better multimodal repre-
sentations for AVSR. Experiments on public bench-
marks LRS3 and LRS2 show that our GILA out-
performs the supervised learning state-of-the-art.
Code is at https://github.com/YUCHENOO5/GILA.

1 Introduction

With recent advancement of deep learning techniques, auto-
matic speech recognition (ASR) has achieved quite good per-
formance [Graves, 2012; Vaswani et al., 2017]. However,
ASR systems are usually vulnerable to noise and would de-
grade significantly when put under noisy conditions [Sumby
and Pollack, 1954]. To improve their performance under var-
ious scenarios, recent works on noise-robust speech recogni-
tion have made some progress [Wang et al., 2020].

A currently popular research direction on robustness com-
bines audio (A) and visual (V) features to benefit from the
noise-invariant lip movement information. With use of two
modalities, audio-visual speech recognition (AVSR) systems
move one step closer to how human perceives speech [Sumby
and Pollack, 1954] and achieve better performance in many
application scenarios [Biswas et al., 2016; Koguchi er al.,
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2018]. Thanks to recent advance of neural network, AVSR
has achieved a remarkable success [Afouras et al., 2018a;
Makino et al., 2019; Xu et al., 2020; Ma et al., 2021;
Pan et al., 2022; Shi et al., 2022a; Shi et al., 2022b;
Hsu and Shi, 2022]. However, most existing AVSR works
simply employ feature concatenation for audio-visual (A-V)
fusion, without explicit interactions to capture deep correla-
tions between them [Raij et al., 2000]: 1) From global per-
spective, they may not capture the complementary relation-
ship between A-V modalities. Such relationship means when
one modality is missing or corrupted, the other modality can
supply valid information for downstream task [Wang et al.,
2022]. Failure to capture it would make the system confused
about the significance of each modality and thus degrade the
performance [Hori et al., 2017; Tao and Busso, 2018]. 2)
From local perspective, they may ignore the temporal align-
ment between A-V frames, which could be a problem due to
the ambiguity of homophenes [Kim er al., 2022] where same
lip shape could produce different sounds. Such misalignment
between lip and audio sequences would increase the difficulty
of efficient multimodal fusion and affect final performance
[Tsai et al., 2019; Lv et al., 2021].

To capture the global complementary relationship between
different modalities, cross-attention has been widely investi-
gated in recent multimodal studies to learn the inter-modal
correspondence [Lee er al., 2020; Li et al., 2021; Goncalves
and Busso, 2022; Mercea et al., 2022]. Despite the effec-
tiveness, it fails to simultaneously preserve the intra-modal
correspondence that could adaptively select the information
of each individual modality for the inter-modal correspon-
dence modeling [Wang et al., 2022], which thus results in
sub-optimal complementary relationship between modalities.

From the local perspective, contrastive learning has been
popular for cross-modal temporal alignment to model the
frame-level consistency [Korbar ef al., 2018; Morgado ef al.,
2021; Yang et al., 2022], but they seem to only align the
multimodal features within same model layer, ignoring the
alignment across different layers. Since different-layer fea-
tures contain semantic representations of different granular-
ities [Gu er al., 2021], we argue that the alignment between
them could capture extra contextual information to improve
the modeled temporal consistency.

In this paper, we propose a cross-modal global interaction
and local alignment (GILA) approach to effectively capture
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the deep audio-visual correlations from both global and lo-
cal perspectives. Specifically, we propose an attention-based
global interaction (GI) model to capture the A-V complemen-
tary relationship on modality level. On top of the vanilla
cross-attention, we propose a novel iterative refinement mod-
ule to jointly model the A-V inter- and intra-modal correspon-
dence. It could adaptively leverage the information within
each individual modality to capture the inter-modal corre-
spondence, which thus results in better complementary re-
lationship between A-V modalities. With global knowledge
of A-V correlations, the system may still be less aware of
the local details. To this end, we further design a cross-
modal local alignment (LA) approach via contrastive learn-
ing to model the A-V temporal consistency on frame level.
Based on the vanilla within-layer alignment, we propose a
novel cross-layer contrastive learning approach to align A-V
features across different GI model layers. Such design could
capture extra contextual information between the different-
granularity semantic representations, which enables more in-
formative temporal consistency between A-V frames. As a
result, our proposed GILA can capture deep holistic correla-
tions between A-V features and finally generate better multi-
modal representations for downstream recognition task.

To the best of our knowledge, this is the first AVSR work
to model deep A-V correlations from both global and local
perspectives. Our main contributions are summarized as:

* We present GILA, a novel approach to capture deep
audio-visual correlations for AVSR task, from both
global and local perspectives.

* We propose a cross-modal global interaction (GI) model
to capture A-V complementary relationship on modal-
ity level, as well as a local alignment (LA) approach to
model the A-V temporal consistency on frame level.

» Experimental results on two public benchmarks demon-
strate the effectiveness of our GILA against the state-of-
the-art (SOTA) supervised learning baseline, with up to
16.2% relative WER improvement.

2 Related Work

Audio-Visual Speech Recognition. Most existing AVSR
works focus on novel architectures and supervised learn-
ing methods, investigating how to effectively model and
fuse the audio-visual modalities. TM-seq2seq [Afouras et
al., 2018a] proposes a Transformer-based [Vaswani er al.,
2017] AVSR system with sequence-to-sequence loss. Hyb-
RNN [Petridis er al., 2018] proposes a RNN-based AVSR
system with hybrid seq2seq/CTC loss [Watanabe et al.,
2017]1. RNN-T [Makino et al., 2019] employs recurrent
neural network transducer [Graves, 2012] for AVSR task.
EG-seq2seq [Xu et al., 2020] builds a joint audio enhance-
ment and multimodal speech recognition system based on
RNN. LF-MMI TDNN [Yu et al., 2020] proposes a joint
audio-visual speech separation and recognition system based
on TDNN. Hyb-Conformer [Ma er al., 2021] proposes a
Conformer-based [Gulati er al., 2020] AVSR system with
hybrid seq2seq/CTC loss, where the audio-visual streams
are encoded separately and then concatenated for decod-
ing, which has achieved the supervised learning SOTA on

5077

both LRS3 and LRS2 datasets. MoCo+wav2vec [Pan et al.,
2022] employs self-supervised pre-trained audio/visual front-
ends to improve AVSR performance, which has achieved the
SOTA on LRS2 dataset. However, these studies simply con-
catenate the audio and visual features for multimodal fusion,
without explicit interactions to capture their deep correla-
tions. Recently proposed AV-HuBERT [Shi er al., 2022a;
Shi et al., 2022b] employs self-supervised learning to capture
contextual correlations between audio-visual features, and the
latest u-HuBERT [Hsu and Shi, 2022] extends it to a unified
framework of multimodal and unimodal pre-training, which
has achieved the SOTA on LRS3 dataset. However, they re-
quire a large amount of unlabeled data and computing re-
sources. In this work, we propose a novel supervised learning
approach called GILA to efficiently capture deep A-V corre-
lations from both global and local perspectives.

Cross-Modal Modality-Level Interaction. Attention meth-
ods have been widely investigated to interact between differ-
ent modalities to capture their complementary relationship, in
various multimodal applications such as A-V emotion recog-
nition [Goncalves and Busso, 2022], A-V action localiza-
tion [Lee et al., 2020], etc. Recent works employ cross-
attention to enable extracted features of different modalities
to attend to each other [Lee et al., 2020; Li et al., 2021;
Goncalves and Busso, 2022; Mercea et al., 2022], which
is found effective to capture the inter-modal correspondence
and significantly improves the system performance. How-
ever, they may not simultaneously preserve the intra-modal
correspondence that could adaptively select the unimodal in-
formation for inter-modal correspondence modeling [Wang
et al., 2022]. To this end, we propose a novel iterative re-
finement module to jointly model the inter- and intra-modal
correspondence, where the key idea is introducing a bottle-
neck feature to recurrently collect multimodal information.

Cross-Modal Frame-Level Alignment. Cross-modal align-
ment aims to model the temporal consistency between se-
quences of different modalities, and alleviate the frame-level
misalignment problem in some scenarios [Tsai et al., 2019;
Lv et al., 2021; Kim et al., 2022]. This is typically done
by contrastive learning where the correspondence between
positive pairs is trained to be stronger than those of nega-
tive pairs [Chopra er al., 2005]. Recently, contrastive learn-
ing is popular for cross-modal temporal alignment, which has
achieved significant improvement on various tasks [Korbar et
al., 2018; Morgado et al., 2021; Yang et al., 2022]. How-
ever, they seem to only align features of multiple modalities
within same model layer, ignoring the alignment across dif-
ferent layers that could learn extra contextual information be-
tween different-granularity semantic representations. In this
work, we propose a cross-layer contrastive learning approach
for holistic A-V alignments.

3 Methodology

In this part, we first introduce the overall architecture of pro-
posed GILA in Section 3.1. Then, we describe its two main
components, i.e., the cross-modal global interaction model in
Section 3.2 and local alignment approach in Section 3.3. Fi-
nally, we explain the training objective in Section 3.4.
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Figure 1: Block diagrams of proposed GILA: (a) Overall architecture, (b) Global Interaction (GI) model, (c) Iterative Refinement module.
The £ asr denotes speech recognition loss, and £, 4 denotes local alignment loss.

3.1 Overall Architecture

As illustrated in Figure 1(a), the proposed GILA system con-
sists of front-end module, fusion module and recognition
module. We first introduce a front-end module to pre-process
the synchronized audio-video input streams, which employs
a linear projection layer for audio front-end and a modified
ResNet-18 [Shi et al., 2022a] for visual front-end. We also
concatenate the processed A-V features to build a bottleneck
feature Xy to collect multimodal information. Then, we
propose a fusion module for audio-visual fusion. Specifically,
we propose a global interaction model and a local alignment
approach to capture deep A-V correlations. The resulted au-
dio, visual and bottleneck features are then concatenated to
generate the multimodal feature Xps,. Finally, we intro-
duce a Transformer-based recognition module to encode the
multimodal feature and predict the output tokens. The over-
all training objective consists of the speech recognition loss
L asr and the local alignment loss L, 4.

3.2 Cross-Modal Global Interaction (GI)

As shown in Figure 1(b), we propose a cross-modal global
interaction model to capture the complementary relationship
between A-V modalities. Specifically, we first introduce
cross-attention to interact audio-visual features to capture
inter-modal correspondence. On top of that, we further pro-
pose a novel iterative refinement (IR) module to jointly model
the inter- and intra-modal correspondence, aiming to better
capture the complementary relationship on modality level.

Cross-Attention aims to capture the A-V inter-modal cor-
respondence. As illustrated in Figure 1(b), the 1nput audio-
visual features of ¢-th GI model layer (i.e., X'~ X e
{1,2,3}) are first sent into two separate self—attentlon mod—
ules [Vaswani ef al., 2017] for modeling, which generates two

intermediate features, Fjl and F{,
Fjy = LN(X + MHA(X 7, X0 X00),
Fi = IN(X + MEAC, X, X0,
where “LN” denotes layer normalization [Ba et al,
2016], “MHA” denotes multi-head scaled dot-product atten-
tion [Vaswani et al., 2017].

Then, we introduce cross-attention to enable audio-visual
features to attend to each other for complementation, in order
to capture the inter-modal correspondence:

H}) = LN(Fj + MHA(F, Fy,, Fy,)),
Hy, = LN (Fy, + MHA(Fy, Fjy, Fi)),
After that, we utilize position-wise feed-forward network
(FFN) [Vaswani et al., 2017] to generate outputs:
XY = LN(H', + FEN(HY),
X{, = LN(H{, + FFN(H},),
where FEN consists of two linear layers with a ReLU [Glorot
et al., 2011] activation in between.

Iterative Refinement (IR) aims to jointly model the A-V
inter- and intra-modal correspondence, where the bottleneck
feature plays a key role. As shown in Figure 1(c), the input
bottleneck feature X 5} first attends to the A/V feature from
cross-attention (i.e., X f4, X ‘i/) respectively, followed by con-
volution to generate two residual features RY and R,

= Conv(Attention(X 5}, X, X)),
i, = Conv(Attention(X 5, X1/, X1)),

where “Conv” denotes a 1 x 1 convolution layer followed
by batch normalization (BN) [Ioffe and Szegedy, 2015] and
parametric ReLU (PReLU) activation.

(D

2)

3)

“4)
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Figure 2: Block diagrams of proposed cross-modal local alignment approach: (a) Overview, (b) Within-Layer (WL) contrastive learning, (c)

Cross-Layer (CL) contrastive learning.

The attention blocks aim to build interactions between in-
dividual audio/visual feature and the bottleneck feature that
contains multimodal information. Therefore, the individ-
ual A/V modality can not only attend to the other modal-
ity, but also attend to itself simultaneously. As a result, we
can jointly model the inter- and intra-modal correspondence,
which helps extract the useful information in A/V modality.

Finally, we add the two generated residual features to input
bottleneck feature, in order to refine more informative multi-
modal representations:

Xpy = LN(X5y + Ry + Ry), )

With increasing multimodal information in the bottleneck
feature, the IR module in next GI model layer can better cap-
ture the A-V correspondences by Equation 4, and so on. Such
refining mechanism enables IR module to effectively model
the inter- and intra-modal correspondence.

3.3 Cross-Modal Local Alignment (LA)

In order to learn more local details of A-V correlations, we
further propose a cross-modal local alignment approach to
model the temporal consistency between A-V frames, as pre-
sented in Figure 2. Specifically, we first introduce within-
layer contrastive learning to align the A-V features within
same GI model layer. Based on that, we propose a novel
cross-layer contrastive learning method for A-V alignment
across different GI model layers, aiming to learn more in-
formative A-V temporal consistency on frame level.

Within-Layer (WL) Contrastive Learning aims to align
the A-V features within same GI model layer. As illus-
trated by Figure 2(a)(b), we select the i-th layer’s interme-
diate features F'Y and F}, for alignment. Denote that Iy =
{Fi |21}, FL = {F |2, ), i € {1,2,3}, T is number of
frames. Given each audio frame th, the model needs to
identify its corresponding visual frame F‘i/t from the entire
visual sequence, and vice versa. In this sense, the A-V se-
quences can get well aligned to each other.
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The within-layer contrastive loss is defined as:

log exp ((F4,, Fy,)/7)
Z 1exp(<F£, i) 7)
Zl

)
exp((Fy,, F)y )/T)
Yoy exp((Fy,, Fy ) /7))’
WL = [Cazv(FAaFv) +‘Cv2a(FV’FA)} /2, 6
)

where (-,-) denotes cosine similarity, 7 is temperature pa-
rameter. The two alignment directions (i.e., a2v, v2a) are
averaged to obtain the final WL contrastive loss.

Lazv(FA7FV

£ (P ) =

Cross-Layer (CL) Contrastive Learning aims to align the
A-V features across different GI model layers. As presented
in Figure 2(a)(c), we select the j-th layer’s output audio fea-
ture X?, and k-th layer’s output visual feature X% for align-
ment, where j, k € {0,1,2,3}, j # k. Particularly, in this
work we select (4, k) € {(0,3),(3,0)} to align the input and
output A-V features of entire GI model, where more selec-
tions are discussed in ablation study (See Section 4.3).

Denote that X% = {X7 [, }, X§ = {X{, |12, }, where
T is number of frames. First, we randomly sample 77 A-V
frame pairs from them for alignment, as a dropout to prevent
over-fitting. Therefore, we can write the sampled frames as
{(X%,, XE)|t eI}, where I C {1,2,...,T}, |[I| =

Then, we introduce a vector-quantization (VQ) mod-
ule [Baevski et al., 2019] to discretize the sampled audio-
visual frames to a finite set of representations, which results
in quantized targets to enable more effective contrastive learn-
ing, especially between different-layer features that usually
locate in distant domains [Baevski et al., 2020]:

Finally, we calculate cross-layer contrastive loss to align
the audio/visual frames to the quantized visual/audio repre-

74 =vQ(Xxi), Z§, tel, ()
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sentations respectively, similar to WL contrastive loss:

Zl exp <XAt th>/7)

£a2v (X,Zla ZV

tel Znel, exp( < >/T)
Ean Xk,Zj — lo exp( <X ZAt>/T)
(Xv, 24 Z S er e (XE, 24 ) /7))
£ = [ (x4, 28 + z”?“(Xw z3)] /2,
¢))

where I; contains the index ¢ and another 100 randomly-
selected indexes from I, for positive and negative samples
respectively [Baevski er al., 2020]. The two alignment direc-
tions are averaged to obtain the final CL contrastive loss.

3.4 Training Objective

We first calculate cross-entropy based sequence-to-sequence
loss [Watanabe et al., 2017] for speech recognition, as in-
dicated by L 4sr in Figure 1(a). Then, we build the local
alignment loss £, 4 from WL and CL contrastive learning:

Lra= Z A - L + Z NEY - L )
(4.k)

where M = {1,2,3}, N = {(0,3),(3,0)}, Ay, and N3
are weighting parameters for different training objectives.

We combine them to form the final training objective and
train the entire GILA system in an end-to-end manner:

Larra=Lasr+Lra (10)

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on two large-scale pub-
licly available datasets, LRS3 [Afouras et al., 2018b] and
LRS2 [Chung et al., 2017]. LRS3 dataset collects 433 hours
of transcribed English videos from TED and TEDx talks.
LRS2 dataset contains 224 hours of video speech from BBC
programs. More details can be found in [Shi er al., 2022a].
Baselines. We employ AV-HuBERT! [Shi er al., 2022al
as our baseline, but for fair comparison we discard the
pre-training stage. To evaluate our GILA, we select some
popular AVSR methods for comparison: TM-seq2seq, TM-
CTC, Hyb-RNN, EG-seq2seq, RNN-T, LF-MMI TDNN,
Hyb-Conformer, MoCo+wav2vec, AV-HuBERT (LARGE),
u-HuBERT (LARGE), which are introduced in Section 2.
Implementation Details. For model configurations, our
baseline follows AV-HUBERT LARGE [Shi er al., 2022a]
with 24 Transformer encoder layers and 9 decoder layers.
For fair comparison, we build the GILA with 3 GI model
layers, 12 Transformer encoder layers and 9 decoder lay-
ers. All other model configurations are same as AV-HuUBERT
LARGE. The number of parameters in our baseline and GILA
are 476M and 465M respectively. We also use Conformer as
our backbone, with the convolution kernel size of 31.

"https://github.com/facebookresearch/av_hubert
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Method Backbone LM WER(%) .
Clean  Noisy
TM-seq2seq [2018al Transformer v/ 7.2 -
EG-seq2seq [2020] RNN - 6.8 -
RNN-T [2019] RNN - 4.5 -
Hyb-Conformer [2021] Conformer v 2.3% -
AV-HuBERT [2022a] Transformer - 1.4%% 5 @k
u-HuBERT [2022] Transformer - 1.2 -
Baseline 3.75 17.22
+ GI Transformer ) 3.29 15.06
+LA 2.88 13.35
+ DA 2.61 11.14
GILA (0urs) —gseTine 264 1189
+ GI Conformer ) 2.31 10.34
+LA 2.04 8.97
+ DA 1.96 7.03

Table 1: WER (%) of GILA and prior works on LRS3 banchmark.
“GI” denotes global interaction model, “LA” denotes local align-
ment approach, “DA” denotes data augmentation. “LM” denotes
language model rescoring. * denotes using hybrid seq2seq/CTC
loss for training, external LM rescoring for inference and extra
data to pre-train the audio/visual front-ends. ** denotes using self-
supervised pre-training with extra unlabeled data (> 1,700 hours).

Method Backbone M WER(%) .

Clean  Noisy
TM-seq2seq [2018al Transformer v 8.5 -
TM-CTC [2018a] Transformer v 8.2 -
Hyb-RNN [2018] RNN v 7.0 -
LF-MMI TDNN [2020] TDNN v 5.9 -
Hyb-Conformer [2021] Conformer v 3.7% -
MoCo+wav2vec [2022] Transformer - 2.6%% -

Baseline 5.79 25.52

+ GI Transformer ) 4.98 21.91

+LA ; 4.31 18.84

+ DA 4.02 15.70

GILA (0urs) g ceTine 409 17.83

+ GI Conformer ) 3.54 15.41

+LA 3.17 13.75

+ DA 3.10 11.24

Table 2: WER (%) of our GILA and prior works on the LRS2 bench-
mark. * denotes the same as that in Table 1. ** denotes using self-
supervised pre-trained audio/visual front-ends.

The system inputs are log filterbank features for audio
stream and lip regions-of-interest (ROIs) for video stream.
To sample A-V frame pairs in CL contrastive learning, we
first sample starting indexes from (X9, X3-) with probability
of 0.4 and from (X%, X{,) with 0.45 respectively, and then
cut out 10 consecutive frames after each sampled index. To
calculate contrastive loss, we use the same VQ module in
wav2vec2.0 [Baevski et al., 2020], and set the temperature
parameter 7 to 0.1. We further use data augmentation to im-
prove noise robustness, where we add MUSAN noise [Sny-
der et al., 2015] following prior work [Shi et al., 2022b],
and report WER results on both clean and noisy test sets.
The weighting parameters Ny, (i € {1,2,3})/A57 /ALY are
set to 0.001/0.08/0.01 respectively. All hyper-parameters are
tuned on validation set. Our training follows the finetuning
configurations in [Shi et al., 2022a] and takes ~ 1.3 days on
4 V100-32GB GPUs, which is much more efficient than AV-
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WER(%)
Method Backbone Clean Noisy
Baseline 3.75 17.22
+ cross-attention 3.50 1590
+IRmodule  ransformer-LARGE 3% yg
+ both (GI) 329 15.06
Baseline 2.64 11.89
+ cross-attention 2.45 10.94
+ 1R module Conformer-LARGE 553 114
+ both (GI) 231 1034

Table 3: Effect of global interaction (GI) model and its two sub-
modules on LRS3 benchmark. “+ cross-attention” denotes using
cross-attention module separately, “+ IR module” denotes using it-
erative refinement module separately, where the self-attention and
FFN modules in GI model are always maintained.

HuBERT pre-training (~ 15.6 days on 64 V100-GPUs). The
details of data augmentation, model and training configura-
tions follow previous work [Shi ef al., 2022b].

4.2 Main Results

Results on LRS3. Table 1 compares the performance of our
proposed GILA with existing methods on LRS3 benchmark.
Under clean test set, our best model outperforms the super-
vised learning SOTA by 14.8% relatively (2.3%—1.96%),
while without the CTC training loss, external LM rescor-
ing and extra A/V front-end pre-training that their method
uses. Moreover, the proposed GILA has also achieved signif-
icant WER improvements over our baseline (3.75%—2.61%,
2.64%—1.96%). Specifically, its two main components, i.e.,
GI model and LA method, both contribute a lot to the im-
provements, and the data augmentation also yields better re-
sults. We can also observe similar improvements on noisy
test set. In addition, the Conformer backbone significantly
outperforms Transformer (2.61%—1.96%).

Results on LRS2. Table 2 compares the performance of our
GILA with existing AVSR methods on LRS2 benchmark.
Under clean test set, our best model achieves 16.2% rela-
tive WER improvement over the supervised learning SOTA
(3.7%—3.10%). Moreover, the GILA has also achieved
significant improvements over our baseline (5.79%—4.02%,
4.09%—3.10%), where the GI model, LA method and data
augmentation all yield positive contributions.

Therefore, our GILA has achieved new supervised learn-
ing SOTA on both LRS3 and LRS2 benchmarks, with up
to 16.2% relative WER improvement over the best baseline.
It also moves closer to the self-supervised learning SOTA
(1.96% vs. 1.2%, 3.10% vs. 2.6%) while costs no unlabeled
data and much less computing resources (See Section 4.1).

4.3 Ablation Study

Effect of Global Interaction Model. Table 3 summarizes
the effect of proposed GI model and its two sub-modules,
i.e., cross-attention and IR modules. We first observe that us-
ing cross-attention to capture inter-modal correspondence can
improve the WER results (3.75%—3.50%, 2.64%—2.45%).
Further improvements can be achieved by adding IR module
to jointly model the inter- and intra-modal correspondence
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Baseline +IR + both (Gl)

(k) U]

Figure 3: Cosine similarity matrix (after softmax) between audio-
visual (row 1), audio-audio (row 2) and visual-visual (row 3) se-
quence embeddings in GI model. The column 1-4 denotes base-
line, baseline + cross-attention, baseline + IR module, baseline +
both (GI), respectively. In row 1, horizontal axis denotes visual se-
quences in a batch and vertical axis denotes the audio sequences,
which are selected from LRS3 test set. Sequence embedding is ob-
tained by temporal pooling on the output audio/visual sequences,
e, X5, X3

(3.50%—3.29%, 2.45%—2.31%), where using it separately
can also improve. Similar improvements can be observed on
the noisy test set. Therefore, these results verify the effective-
ness of our proposed GI model.

Visualizations of Inter- and Intra-Modal Correspondence.
Figure 3 visualizes the captured inter- and intra-modal corre-
spondence by our GI model, using similarity matrixes where
the diagonal elements denote cosine similarity between true
A-V, A-A or V-V pairs. We first observe chaotic mappings
between A-V embeddings in baseline from Figure 3(a). After
introducing cross-attention to interact A-V features, we can
capture some inter-modal correspondence between true A-V
pairs, i.e., (b) vs. (a). However, it fails to capture the A/V
intra-modal correspondence, i.e., (f) vs. (e), (j) vs. (i). Thus,
we further propose an iterative refinement module to jointly
model the inter- and intra-modal correspondence, which im-
proves significantly as indicated by the clearer diagonals in
column 4. As a result, our GI model can effectively capture
both inter- and intra-modal correspondence.

We further investigate the relationship between these two
correspondences. When compared to baseline, using cross-
attention can learn better inter-modal correspondence, i.e.,
(b) vs. (a), while using it on top of IR module achieves
significantly more improvements, i.e., (d) vs. (c). Sim-
ilar phenomenon can be observed on WER results in Ta-
ble 3. It indicates that the proposed IR could be beneficial
to cross-attention, where its captured intra-modal correspon-
dence could help to model the inter-modal correspondence,
thus results in better A-V complementary relationship.
Effect of Local Alignment Approach. Table 4 summarizes
the effect of proposed LA method and its two components,
i.e., within-layer and cross-layer contrastive learning. We
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Method Backbone Cle\ZII{ER(ggisy

GI model 329  15.06
+ WL contrastive learning 3.03 1392
+ CL contrastive learning Transformer-LARGE 3.11 1436
+ both (LA) 2.88 1335

GI model 231  10.34
+ WL contrastive learning 2.13 9.53
+ CL contrastive learning Conformer-LARGE 2.18 9.70
+ both (LA) 2.04 897

Table 4: Effect of local alignment (LA) approach and its two com-
ponents on LRS3 benchmark.

WER(%) | X0 XL X2 X3P

X5 | - 212 211 207
Xy 212 - 212 209
X3 209 210 - 211

X35 206 208 210 -

Table 5: Effect of cross-layer contrastive learning. We select dif-
ferent A-V feature pairs (X%, X) for cross-layer alignment. The
baseline we use in this study is GI model with WL contrastive learn-
ing (2.13% WER in Table 4).

first introduce WL contrastive learning for audio-visual align-
ment within same GI model layer, which can improve the
WER performance (3.29%—3.03%, 2.31%—2.13%). Fur-
ther improvements can be achieved by adding CL contrastive
learning to align the A-V features across different layers
(3.03%—2.88%, 2.13%—2.04%), where using it separately
can also improve. Similar improvements can be observed on
noisy test set. Therefore, these results validate the effective-
ness of our proposed LA method.

Effect of Cross-Layer Contrastive Learning. Table 5 fur-
ther analyzes the effect of cross-layer contrastive learning,
where we report WER results of alignment between differ-

ent A-V feature pairs (X%, X{-). We observe that the more
layers our A-V alignment across (i.e., larger |j — k[), the bet-
ter performance we can achieve, where the best two results
(2.07%, 2.06%) are achieved by aligning the input and out-
put A-V features of entire GI model. After combining them,
we can achieve even better WER result, as indicated in Ta-
ble 4 (2.04%). The reason could be that, the higher-layer fea-
tures contain semantic representations of larger granularity,
or larger receptive field. Therefore, the A-V alignment across
more layers also means across larger granularity gap, which
could learn richer cross-modal contextual information and re-
sults in more informative A-V temporal consistency.

Visualizations of Audio-Visual Temporal Consistency.
Figure 4 visualizes the A-V temporal consistency modeled by
within-layer and cross-layer contrastive learning, using atten-
tion map where the diagonal elements indicate the attention
weights between corresponding A-V frames. We first observe
misalignment between A-V sequences in GI model, such as
the one-to-many lip-audio mappings shown in Figure 4(a).
Our proposed WL contrastive learning can help model the
temporal consistency between A-V sequences, as indicated
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Gl model +W + both (LA)

Figure 4: Attention weight map between different audio-visual se-
quences with LA method: row 1: (X35, X%), row 2: (X%, X?%),
row 3: (X%, X?). The column 1-4 denotes GI model, GI + WL
contrastive learning, GI + CL contrastive learning, GI + both (LA),
respectively. The x-axis denotes visual frames in an utterance and
y-axis denotes the audio frames in utterance, which is selected from
LRS3 test set.

A0-V3 A3-V3

A3-V0

by the clearer diagonal in (b). Similar improvements can be
observed on cross-layer temporal consistency, i.e., (£)/(j) vs.
(e)/(i), while we also observe some vertical and horizontal
stripes near the diagonal, which indicate the granularity gap
between different-layer features.

Then in the proposed CL contrastive learning that consists
of two alignment directions (See Equation 8), the low-layer
features first learn rich A-V contextual correlations from the
high-layer features that with large receptive field, which al-
leviates the granularity gap between them, i.e., (g)/(k) vs.
(e)/(1), (h)/(1) vs. (£)/(j). Meanwhile, the high-layer features
can learn clearer A-V contextual mappings by aligned to the
low-layer features that with small granularity, as indicated by
the brighter diagonals in Figure 4 (column 3 vs. column 1,
column 4 vs. column 2). As a result, the proposed cross-layer
alignment can capture rich cross-modal contextual informa-
tion to learn better A-V temporal consistency.

5 Conclusion

In this paper, we propose a cross-modal global interaction
and local alignment (GILA) approach for audio-visual speech
recognition, in order to capture the deep audio-visual corre-
lations from both global and local perspectives. In particular,
we first propose a global interaction model to capture the A-V
complementary relationship on modality level. Furthermore,
we design a cross-modal local alignment approach to model
the A-V temporal consistency on frame level. Such a holis-
tic view of cross-modal correlations enable better multimodal
representations for AVSR. Experimental results on two pub-
lic benchmarks demonstrate that our approach has achieved
the state-of-the-art in supervised learning methods.



Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

Acknowledgments

This research is supported by ST Engineering Mission Soft-
ware & Services Pte. Ltd under collaboration programme
(Research Collaboration No.: REQ0149132). The compu-
tational work for this article was partially performed on re-
sources of the National Supercomputing Centre, Singapore
(https://www.nscc.sg).

References

[Afouras er al., 2018a] Triantafyllos Afouras, Joon Son
Chung, Andrew Senior, Oriol Vinyals, and Andrew Zis-
serman. Deep audio-visual speech recognition. [EEE
transactions on pattern analysis and machine intelligence,
2018.

[Afouras et al., 2018b] Triantafyllos Afouras, Joon Son
Chung, and Andrew Zisserman. Lrs3-ted: a large-scale
dataset for visual speech recognition. arXiv preprint
arXiv:1809.00496, 2018.

[Ba et al., 2016] Jimmy Lei Ba, Jamie Ryan Kiros, and Ge-
offrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[Baevski et al., 2019] Alexei Baevski, Steffen Schneider,
and Michael Auli. vg-wav2vec: Self-supervised learning
of discrete speech representations. In International Con-
ference on Learning Representations, 2019.

[Baevski et al., 2020] Alexei Baevski, Yuhao Zhou, Abdel-
rahman Mohamed, and Michael Auli. wav2vec 2.0: A
framework for self-supervised learning of speech repre-
sentations. Advances in Neural Information Processing
Systems, 33:12449-12460, 2020.

[Biswas et al., 2016] Astik Biswas, Prakash Kumar Sahu,
and Mahesh Chandra. Multiple cameras audio visual
speech recognition using active appearance model visual

features in car environment. [International Journal of
Speech Technology, 19(1):159-171, 2016.

[Chopra e al., 2005] Sumit Chopra, Raia Hadsell, and Yann
LeCun. Learning a similarity metric discriminatively,
with application to face verification. In 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pages 539-546. IEEE,
2005.

[Chung et al., 2017] Joon Son Chung, Andrew Senior, Oriol
Vinyals, and Andrew Zisserman. Lip reading sentences
in the wild. In 2017 IEEE conference on computer vision
and pattern recognition (CVPR), pages 3444-3453. IEEE,
2017.

[Glorot et al., 2011] Xavier Glorot, Antoine Bordes, and
Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 315-323. JMLR
Workshop and Conference Proceedings, 2011.

[Goncalves and Busso, 2022] Lucas Goncalves and Carlos
Busso. Auxformer: Robust approach to audiovisual emo-
tion recognition. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 7357-7361. IEEE, 2022.

5083

[Graves, 2012] Alex Graves. Sequence transduction with re-
current neural networks. arXiv preprint arXiv:1211.3711,
2012.

[Gu et al., 2021] Chunbin Gu, Jiajun Bu, Zhen Zhang, Zhi
Yu, Dongfang Ma, and Wei Wang. Image search with text
feedback by deep hierarchical attention mutual informa-
tion maximization. In Proceedings of the 29th ACM In-
ternational Conference on Multimedia, pages 4600—4609,
2021.

[Gulati et al., 2020] Anmol Gulati, James Qin, Chiu Chung-
Cheng, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming
Pang. Conformer: Convolution-augmented transformer
for speech recognition. In Interspeech, pages 5036-5040,
2020.

[Hori et al., 2017] Chiori Hori, Takaaki Hori, Teng-Yok Lee,
Ziming Zhang, Bret Harsham, John R Hershey, Tim K
Marks, and Kazuhiko Sumi. Attention-based multimodal
fusion for video description. In Proceedings of the IEEE
international conference on computer vision, pages 4193—

4202, 2017.

[Hsu and Shi, 2022] Wei-Ning Hsu and Bowen Shi. u-
hubert: Unified mixed-modal speech pretraining and zero-
shot transfer to unlabeled modality. In Advances in Neural
Information Processing Systems, 2022.

[Toffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In
Proceedings of the 32nd International Conference on
Machine Learning, volume 37, pages 448-456. PMLR,
2015.

[Kim et al., 2022] Minsu Kim, Jeong Hun Yeo, and
Yong Man Ro. Distinguishing homophenes using multi-
head visual-audio memory for lip reading. In Proceed-
ings of the 36th AAAI Conference on Artificial Intelligence,
Vancouver, BC, Canada, volume 22, 2022.

[Koguchi et al., 2018] Yuto Koguchi, Kazuya Oharada, Yuki
Takagi, Yoshiki Sawada, Buntarou Shizuki, and Shin
Takahashi. A mobile command input through vowel lip
shape recognition. In International Conference on Human-
Computer Interaction, pages 297-305. Springer, 2018.

[Korbar et al., 2018] Bruno Korbar, Du Tran, and Lorenzo
Torresani. Cooperative learning of audio and video models
from self-supervised synchronization. Advances in Neural
Information Processing Systems, 31, 2018.

[Lee et al., 2020] Jun-Tae Lee, Mihir Jain, Hyoungwoo
Park, and Sungrack Yun. Cross-attentional audio-visual
fusion for weakly-supervised action localization. In Inter-
national Conference on Learning Representations, 2020.

[Lietal,2021] Junnan Li, Ramprasaath ~ Selvaraju,
Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and
Steven Chu Hong Hoi. Align before fuse: Vision and
language representation learning with momentum distilla-
tion. Advances in neural information processing systems,
34:9694-9705, 2021.


https://www.nscc.sg

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

[Lv er al., 2021] Fengmao Lv, Xiang Chen, Yanyong Huang,
Lixin Duan, and Guosheng Lin. Progressive modality re-
inforcement for human multimodal emotion recognition
from unaligned multimodal sequences. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2554-2562, 2021.

[Ma er al., 2021] Pingchuan Ma, Stavros Petridis, and Maja
Pantic. End-to-end audio-visual speech recognition with
conformers. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7613-7617. IEEE, 2021.

[Makino et al., 2019] Takaki Makino, Hank Liao, Yannis
Assael, Brendan Shillingford, Basilio Garcia, Otavio
Braga, and Olivier Siohan. Recurrent neural network
transducer for audio-visual speech recognition. In 2079
IEEE automatic speech recognition and understanding

workshop (ASRU), pages 905-912. IEEE, 2019.

[Mercea et al., 2022] Otniel-Bogdan Mercea, Lukas Riesch,
A Koepke, and Zeynep Akata. Audio-visual generalised
zero-shot learning with cross-modal attention and lan-
guage. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10553—
10563, 2022.

[Morgado er al., 2021] Pedro Morgado, Nuno Vasconcelos,
and Ishan Misra. Audio-visual instance discrimination
with cross-modal agreement. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1247512486, 2021.

[Pan er al., 2022] Xichen Pan, Peiyu Chen, Yichen Gong,
Helong Zhou, Xinbing Wang, and Zhouhan Lin. Lever-
aging unimodal self-supervised learning for multimodal
audio-visual speech recognition. In Proceedings of the
60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4491-4503,
Dublin, Ireland, May 2022. Association for Computational
Linguistics.

[Petridis er al., 2018] Stavros Petridis, Themos Stafylakis,
Pingchuan Ma, Georgios Tzimiropoulos, and Maja Pan-
tic.  Audio-visual speech recognition with a hybrid
ctc/attention architecture. In 2018 IEEE Spoken Language
Technology Workshop (SLT), pages 513-520. IEEE, 2018.

[Raij er al., 2000] Tommi Raij, Kimmo Uutela, and Riitta
Hari. Audiovisual integration of letters in the human brain.
Neuron, 28(2):617-625, 2000.

[Shi et al., 2022a] Bowen Shi, Wei-Ning Hsu, Kushal
Lakhotia, and Abdelrahman Mohamed. Learning audio-
visual speech representation by masked multimodal clus-
ter prediction. In International Conference on Learning
Representations, 2022.

[Shi er al., 2022b] Bowen Shi, Wei-Ning Hsu, and Abdel-
rahman Mohamed. Robust self-supervised audio-visual
speech recognition. arXiv preprint arXiv:2201.01763,
2022.

[Snyder et al., 2015] David Snyder, Guoguo Chen, and
Daniel Povey. Musan: A music, speech, and noise cor-
pus. arXiv preprint arXiv:1510.08484, 2015.

5084

[Sumby and Pollack, 1954] William H Sumby and Irwin
Pollack. Visual contribution to speech intelligibility in
noise. The journal of the acoustical society of america,

26(2):212-215, 1954.

[Tao and Busso, 2018] Fei Tao and Carlos Busso. Gating
neural network for large vocabulary audiovisual speech
recognition. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 26(7):1290-1302, 2018.

[Tsai et al., 2019] Yao-Hung Hubert Tsai, Shaojie Bai,
Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, and
Ruslan Salakhutdinov. Multimodal transformer for un-
aligned multimodal language sequences. In Proceedings
of the conference. Association for Computational Linguis-
tics. Meeting, volume 2019, page 6558. NIH Public Ac-
cess, 2019.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. Advances in neural information processing systems,
30, 2017.

[Wang er al., 2020] Zhong-Qiu Wang, Peidong Wang, and
DeLiang Wang. Complex spectral mapping for single-
and multi-channel speech enhancement and robust asr.
IEEE/ACM transactions on audio, speech, and language
processing, 28:1778-1787, 2020.

[Wang et al., 2022] Daheng Wang, Tong Zhao, Wenhao Yu,
Nitesh V Chawla, and Meng Jiang. Deep multimodal com-
plementarity learning. IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

[Watanabe er al., 2017] Shinji Watanabe, Takaaki Hori, Suy-
oun Kim, John R Hershey, and Tomoki Hayashi. Hybrid
ctc/attention architecture for end-to-end speech recogni-
tion. IEEE Journal of Selected Topics in Signal Process-
ing, 11(8):1240-1253, 2017.

[Xu er al., 2020] Bo Xu, Cheng Lu, Yandong Guo, and Ja-
cob Wang. Discriminative multi-modality speech recog-
nition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14433—
14442, 2020.

[Yang er al., 2022] Jinyu Yang, Jiali Duan, Son Tran, Yi Xu,
Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul
Chilimbi, and Junzhou Huang. Vision-language pre-
training with triple contrastive learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15671-15680, 2022.

[Yu et al., 2020] Jianwei Yu, Shi-Xiong Zhang, Jian Wu,
Shahram Ghorbani, Bo Wu, Shiyin Kang, Shansong Liu,
Xunying Liu, Helen Meng, and Dong Yu. Audio-visual
recognition of overlapped speech for the Irs2 dataset. In
ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
6984-6988. IEEE, 2020.



	Introduction
	Related Work
	Methodology
	Overall Architecture
	Cross-Modal Global Interaction (GI)
	Cross-Modal Local Alignment (LA)
	Training Objective

	Experiments
	Experimental Setup
	Main Results
	Ablation Study

	Conclusion

