
IRE2F: Rethinking Effective Refinement in Language Structure Prediction
via Efficient Iterative Retrospecting and Reasoning

Zuchao Li1,2, Xingyi Guo1, Letian Peng3, Lefei Zhang1,2, and Hai Zhao4,∗

1National Engineering Research Center for Multimedia Software,
School of Computer Science, Wuhan University, Wuhan, 430072, P. R. China

2Hubei Luojia Laboratory, Wuhan 430072, P. R. China
3Computer Science and Engineering, University of California San Diego

4Department of Computer Science and Engineering, Shanghai Jiao Tong University
{zcli-charlie, guoxingyi, zhanglefei}@whu.edu.cn, lepeng@ucsd.edu, zhaohai@cs.sjtu.edu.cn

Abstract
Refinement plays a critical role in language struc-
ture prediction, a process that deals with complex
situations such as structural edge interdependen-
cies. Since language structure prediction is usually
modeled as graph parsing, typical refinement meth-
ods involve taking an initial parsing graph as input
and refining it using language input and other rel-
evant information. Intuitively, a refinement com-
ponent, i.e., refiner, should be lightweight and effi-
cient, as it is only responsible for correcting faults
in the initial graph. However, current refiners sig-
nificantly burden the parsing process due to their
reliance on the time-consuming encoding-decoding
procedure on the language input and graph. To
make the refiner more practical for real-world ap-
plications, this paper proposes a lightweight but
effective iterative refinement framework, IRE2F,
based on the iterative retrospecting and reasoning
without involving the re-encoding process on the
graph. IRE2F iteratively refine the parsing graph
based on interaction between graph and sequence
and efficiently learns the shortcut to update the se-
quence and graph representations in each iteration.
The shortcut is calculated based on the graph rep-
resentation in the latest iteration. IRE2F reduces
the number of refinement parameters by 90% com-
pared to the baseline iterative refiners. Experiments
on various language structure prediction tasks show
that IRE2F performs comparably or better than cur-
rent state-of-the-art refiners, with a significant in-
crease in efficiency.

1 Introduction
Language structure prediction is an important area of research
in natural language processing (NLP), which involves using
computational techniques to analyze and understand the com-
plex structure of natural languages [Sun et al., 2021]. It is
usually modeled as graph parsing, which involves analyzing
the grammatical graph of a sentence or text, or identifying the
relationships between words and phrases in a document.

Encoder Decoder

Base Encoder

Refiner
Decoder

Refiner
Encoder

Encoder

Decoder

Retrospecter

Base Decoder

�

�

�

�

�

�0

�0

�(�−1)

��

�(�−1)
�

��

�

(a) Base Parser

(b) Iterative Refinement

(c) Our IRE2F

�

Figure 1: Architectures of base parser (a), parser with iterative re-
finement (b) [Lyu et al., 2019a; Mohammadshahi and Henderson,
2021], and parser with our proposed IRE2F framework. Arrows in-
dicates the flows in each iteration.

Parsing involves analyzing and representing the grammati-
cal structure of a sentence or text in a structured format like a
tree or graph. A typical parser consists of an encoder, which
vectorizes and contextualizes the input, and a decoder, which
scores and generates the structured output. The initial parsing
output, often referred to as the draft parse, may not be fully
accurate or complete, as it is based on limited information
and may contain errors or inconsistencies. Refinement is a
process that aims to improve the accuracy and completeness
of the parse by incorporating additional information and cor-
recting any errors or inconsistencies. Refinement is important
because it helps to improve the overall quality and reliability
of the parse, which is critical for accurate language structure
prediction.

Iterative refinement is a technique introduced by Lyu et
al. that aims to capture interdependencies between depen-
dents and corresponding labels in graph parsing tasks, which

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5131

is used to refine the parsing graph through fault correction.
The proposed framework takes the initial sequence represen-
tation H0 from the base parser, as well as the sequence and
graph representations H(t−1) and G(t−1) from the latest iter-
ation, as input. The refiner then reasons a new parsing graph
Gt based on this input:

Gt = REFINER(H(t−1),G(t−1),H0).

The above refining process involves capturing missing inter-
dependencies in the input draft parsing graph to reason better
parsing graphs in each iteration. Mohammadshahi and Hen-
derson further proposed using a graph-to-graph encoder to
improve the performance of the refiner.

There is no doubt that iterative refiners can play a signif-
icant role in the performance improvement of graph pars-
ing. However, the current implementation of refiners adds
a significant computational burden to the parser, which goes
against the original idea that refiners are only used to correct
a small number of faults in the draft parses. Specifically, each
iteration in current refiners involves repeating the encoding-
decoding procedure in the base parser, with the only differ-
ence being the inclusion of a merging step between the repre-
sentations from the initial output and previous iterations.

The inefficiency of current iterative refiners is due to the
re-encoding procedure, which involves repeating the time-
consuming encoding process (such as BiLSTM in [Lyu et al.,
2019a] or Graph Transformer in [Mohammadshahi and Hen-
derson, 2021]) in each refining iteration. Motivated by the
fact that errors in graph parsing is non-dominant, we propose
an efficient refiner framework, IRE2F, for graph parsing via
iterative retrospecting and reasoning. As shown in Figure 1,
our framework excludes the expensive encoder from the re-
finer. Instead of refining using H(t−1) and G(t−1) from the
latest iteration, our framework directly learns a retrospecter
with a shortcut Rt from G(t−1) to perform retrospecting and
reasoning.

We compare the proposed IRE2F refiner with previous
state-of-the-art iterative refiners and a high-order refiner on
various language structure prediction tasks. These tasks in-
clude dependency parsing for syntax, semantic dependency
parsing and semantic role labeling for semantics. Our ex-
periments demonstrate that IRE2F reduces the computational
burden in each refinement iteration to 10% while achieving
comparable or better performances. It also has a simpler
structure with significantly fewer parameters, indicating that
the improvement is due to the refinement mechanism rather
than a large number of extra parameters. We also find that
combining IRE2F with higher-order refinement leads to fur-
ther improvement, demonstrating the benefits of multi-stage
refinement.

2 Related Work
2.1 Language Structure Prediction
Early work in language structure prediction focused on devel-
oping rule-based systems [Bocharova, 2008], which involved
manually defining the rules for analyzing and representing the
structure of a language. More recently, there has been a shift
towards the use of machine learning techniques for language

structure prediction, such as statistical parsing [Nivre et al.,
2009] and graph-based parsing [Chen and Manning, 2014;
Li et al., 2022b].

Neural dependency parsing has become the dominant ap-
proach for language structure prediction and can be divided
into two main categories: transition-based parsers and graph-
based parsers. Transition-based neural parsers use a word
buffer and a word stack to monotonically decide the next ac-
tion to take , while graph-based parsers assign global scores to
edges and labels in order to directly construct the full depen-
dency graph in one-shot. Early graph-based neural parsers
such as [Kiperwasser and Goldberg, 2016] and [Hashimoto
et al., 2016] used BiLSTMs and MLPs to contextualize and
compute the global scores on the possible pair representa-
tions. Since the introduction of the deep biaffine attention
by [Dozat and Manning, 2017], dot product with bias mech-
anism have been widely used in dependency parsing. Simi-
lar to syntactic dependency parsing, graph-based parsers have
also been successfully applied to semantic dependency pars-
ing [Peng et al., 2017; Dozat and Manning, 2018; Jia et al.,
2020; Kurita and Søgaard, 2019].

2.2 Refinement

Iterative refinement has been shown to be effective in lan-
guage generation tasks such as machine translation [Lee et
al., 2020] and long text generation [Hua and Wang, 2020],
which is resulted from helping understanding complex se-
quence [Li et al., 2022a]. In natural language understanding
tasks, iterative refinement is often used for label annotation.
In the work of [Gui et al., 2020], researchers used a varia-
tional structure to evaluate the uncertainty of labels annotated
in the first run and leveraged this uncertainty information to
guide the refinement runs to only correct labels with high un-
certainty and avoid changing labels with low uncertainty.

In language structure prediction, there are two styles of
iterative refinement for graph-based parsers. In [Lyu et al.,
2019a], intermediate representations are extracted and passed
to subsequent iterations without being decoded into explicit
graphs or trees. While in [Mohammadshahi and Henderson,
2021], graphs decoded from the base parser or refiner are
combined with the sentence as new inputs and fed through
a Transformer encoder to generate new representations. In
this work, we adopt the former style of refinement and de-
sign a novel refiner framework via efficient retrospecting and
reasoning on the intermediate representations.

3 IRE2F Framework

Our IRE2F framework, like the general refiner framework,
consists of both a base parser and refinement components.
The base parser is responsible for encoding of the input and
initial parsing, while the refinement component focuses on
correcting any errors or faults in the initial parsing or encod-
ing and improving the overall structure of the output. The
refinement component takes the output of the base parser, as
well as additional input information, and uses it to iteratively
refine the structure until it meets the desired criteria.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5132

3.1 Base Parser
To create a base parser for the initial parsing, we follow the
model structure of biaffine parser (BIAF) proposed in [Dozat
and Manning, 2017]. Given an input sentence with n words
X , we first embed the words and their linguistic features
Xfeat. We also obtain pre-trained contextualized represen-
tations from a pre-trained language model (PLM) to a strong
baseline. Finally, we concatenate these representations to ob-
tain the initial representation H0:

H0 = EMBED(X)⊕ EMBED(Xfeat)⊕ PLM(X)

where ⊕ refers to the concatenation operation, and EMBED(·)
represents the randomly initialized embedding layer.

The BiLSTM has a long history of being a successful
choice for encoding sequential data and has been widely used
in various language structure prediction tasks, demonstrating
strong performance. Therefore, we chose to use the BiLSTM
as the encoder for our base model. In our work, we contextu-
alize the initial representations H0 using a stacked multi-layer
BiLSTM encoder to produce C. We then project C using two
linear layers to obtain head and dependent role-specific rep-
resentations CH and CD.

C = BILSTMbase(H0),

CH = WH
baseC + bHbase,

CD = WD
baseC + bDbase,

where WH
base and WD

base are learnable weight parameters,
bHbase and bDbase are bias items.

In language structure prediction as graph parsing, relation-
ships between words are modeled as scores of edges between
graph nodes. Therefore, performing pair scoring on role-
specific representations is fundamental to enable graph rea-
soning. Biaffine attention mechanism has demonstrated ex-
cellent pair scoring ability since it was proposed. Therefore,
in the base parser, we fed head and dependent representations
into a biaffine attention scorer to get the scores for the exis-
tence and label of each possible edge.

BIAF(CH , CD) = CT
HWBCD +WHCH +WDD + b,

S = BIAFbase(CH , CD),

where WB ∈ Rd×(c+1)×d,WH,WD ∈ R(c+1)×d, and b is
a bias item. Here c refers to the number of relationship cate-
gories, d is the dimension of input representations. The (c+1)
is due to the introduction of a null relation, and S is recog-
nized as the graph representation which can be further de-
coded to a graph G.

3.2 Rethinking Refinement
The refinement methods in the literature can be di-
vided into three categories: Sequence Representation-
Driven, Joint Sequence-Structure Representation-Driven, and
Higher-Order Representation-Driven.
Sequence Representation-Driven (SRD) focuses on tun-
ing the graph representation generated by the base parser
based on the iteratively-updated sequence representation to
achieve the purpose of refinement. It involves using the out-
put of the base model as input to the refinement process, and

then updating the representation based on this draft parses and
iterative encoding.

In [Lyu et al., 2019a], the predicted logits from the previ-
ous iteration are merged with re-encoded representations in
the current iteration. For example, in iteration t, this process
involves using a BiLSTM encoder to re-contextualize the ini-
tial representation H0 to Ct, which is then projected to Ct

H
and Ct

D as in the base parser. The refiner merges the current
representation of the parsing graph St in the iteration t with
Ct
H , Ct

D using specific merge operations (like multiple linear
projections) into a tuned graph representation S̃t ∈ Rn×n×d:

S̃t = MERGEt(S(t−1), Ct
H , Ct

D),

where MERGE(·) is the process of combining the previous
parsing output S(t−1) with the current step’s representataions
Ct
H and Ct

D during the interative refinement process. In [Lyu
et al., 2019a], this is achieved by summing up the probability
mass of all labels in S(t−1) and fusing them through a linear
layer projection, which is then added to Ct

H and Ct
D. S̃t is

further mapped by a linear projection into St ∈ Rn×n×(c+1).

St = WG,tS̃t + bG,t

where WG,t and bG,t are learnable parameters.
Joint Sequence-Structure Representation-Driven
(JSSRD) focuses on completely re-encoding the de-
coded draft parse and the input sequence to obtain a new
joint representation to identify errors or faults in the graph
for refinement. In the proposed method of [Mohammadshahi
and Henderson, 2021], the draft graph from the base parser or
last iteration is passed through a graph-informed Transformer
encoder to produce updated representations, which is then
used to produce the new parsing graph. This differs from
the approach in [Lyu et al., 2019a], which only considers
the representations from the base parser and the previous
iteration in the refinement process, rather than the draft graph
itself.

Zt = GRAPHTRANSFt(H0,G(t−1)),

Ct
H = WH,tZt + bH,t,

Ct
D = WD,tZt + bD,t.

where GRAPHTRANSF(·) involves encoding the previous
parsing graph to obtain new representations. In [Moham-
madshahi and Henderson, 2021], it is implemented as a Re-
cursive Non-autoregressive Graph-to-Graph Transformer. Ct

H
and Ct

D are then scored into St and decoded to graph Gt as in
the base biaffine parser.

St = BIAFt(Ct
H , Ct

D),

Gt = DECODE(St).

Higher-Order Representation-Driven (HORD) involves
incorporating higher-order information, such as interdepen-
dencies between graph edges, into the graph representations
for refinement to improve the base model’s performance [Li
et al., 2020]. [Wang et al., 2019] proposed a refiner with
second-order features, which inducts based on second-order
relationships among edges. The refiner uses Variational In-
ference (VI) for utilizing second-order representations into

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5133

...

...

Softmax

(
!

" 𝑊#
$,$ ⋯ 𝑊#

$,&

⋮ ⋱ ⋮
𝑊#

",$ ⋯ 𝑊#
",&

×

Relation-aware Attention

⨂

LayerN
orm

FFN

R
esidual

B
iaffine

B
iaffine ⊕

𝐶'

𝐶(𝑆(*+$)

𝑆*

Relation Embeddings

Base Parser

Figure 2: Process of our proposed retrospecting via message passing process. Dashed lines represent update operations during iterations.

the graph representations to further improve the final parsing
performance.

Specifically, the second-order refiner predicts three second-
order representations between words: siblings, co-parents,
and grandparents. To get these representations, second-order
refiner introduces a triaffine attention mechanism for scoring:

S(bi) = TRIAF(r1, r2, r3) = r3
T r1

TUr2.

Similar to graph representations, second-order representa-
tions Vsib, Vcop and Vgrp are extracted on the role-specific
sequence representations:

V(sib) = TRIAF(sib)(CH , CD, CD),

V(cop) = TRIAF(cop)(CH , CD, CH),

V(grp) = TRIAF(grp)(CH , CB , CD),

where Cλ = Wλ
soC + bλso, λ ∈ H,D,B, and B indicates the

role of both head and dependent. Then these second-order
representations are used to refine the first-order graph repre-
sentations by Mean Field Variational Inference [Wang et al.,
2019] to form final graph representations:

St = MFVI(S0,V(sib),V(cop),V(grp)).

3.3 Retrospecting via Message Passing
In the methods SRD, JSSRD, and HORD, the sequence repre-
sentation, joint sequence-structure representation, and high-
order representation are used to guide the refinement of the
graph representation, respectively, by re-encoding or addi-
tional scoring. However, this leads to a heavily increased
computational cost relative to the base parser. To address this
issue, we propose a new approach that uses message passing
in graph representation learning to retrospect the draft graph
representation, allowing for the update of the graph represen-
tation without the need for re-encoding or additional complex
computations on the graph or sequence representation.

Specifically, the proposed retrospecting mechanism up-
dates the graph representations by commuting between head-
dependent related representations, allowing for a shortcut be-
tween related words based on the parsed graph in previous
iterations. The process for refining graph representations us-
ing retrospective message passing involves taking head and

But Robert Showalter , an official , said no

A0

said

Showalter

n3

n4

A0

Initial Graph

r13

r14

said

Showalter

n3

n4

A0

Retrospecting via Message Passing

r13

r14

But Robert Showalter , an official , said no

A0
AM-DIS

Draft Graph:

Reasoning:

Figure 3: An instance showing how message passing works for pars-
ing graph refinement. The “reasoning” process refers to the process
of generating a new graph based on the draft parse and text input. It
involves updating a node’s representation by incorporating informa-
tion from neighboring nodes in draft parses and refining the graph
structure through iterative refinement.

dependent representations and parsing graph representations
from the previous iteration as input. A relation-aware at-
tention mechanism integrates the graph representations into
relation-aware sequence representations, which involves a
soft embedding process to transform relationship logits into
relation features. Relation features are then fused with role-
specific sequence features using element-wise product op-
erations to obtain relation-aware sequence features, allow-
ing head and dependent representations to interact with la-
bel features. Then, the message passing is finished by pass-
ing relation-aware sequence representations to inform about
heads and dependents. The resulting relation-aware sequence
representation is then used to reason a new graph represen-
tation, merged with the input graph representation using a
shortcut mechanism to produce the output graph representa-
tion for the current iteration. The proposed approach enables
considering the previous parsing graph when refining the cur-
rent one.

For example, in the semantic role labeling task shown in

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5134

Figure 3, the shortcut informs the predicate ‘said’ that it has
an ‘A0’ argument ‘Showalter’ in the refining iteration. As a
result, the predicate ‘said’ is able to successfully reason the
missing ‘AM-DIS’ argument ‘But’ thanks to the relationship
between arguments ‘But’ and the shortcut-identified ‘Showal-
ter’. In other words, ‘Showalter’ and ‘But’ are parts of a sen-
tence that have a local relationship, ‘But’ serves to connect
the clause containing ‘Showalter’ with the implied contrast-
ing clause. The shortcut mechanism updates the represen-
tation using the draft parse and establishes a connection be-
tween ‘Showalter’ and ‘said’. The updated representation is
subsequently used to further refine the tree in the next itera-
tion, making it easier to reason about the connection between
‘But’ and ‘said’.

In Figure 2, we illustrate the process for refining graph rep-
resentations using retrospective message passing. In iteration
t, our refinement takes the head and dependent representa-
tions, C(t−1)

H and C
(t−1)
D , as well as the parsing graph repre-

sentations from the previous iteration, S(t−1), as input. We
employ a relation-aware attention mechanism to integrate the
graph representations into relation-aware sequence represen-
tations, which involves a soft embedding process to transform
relationship logits into relationship features.

Q(t−1)
i,j = SOFTMAX(S(t−1)

i,j),

E(t−1)
i,j =

c∑
k=1

Q(t−1)
i,j,k Wk

E ,

where i, j refers to the edge from i-th word to j-th word.
Qi,j,k thus represents the probability of the k-th label on the
edge. Wk

E is the embedding for k-th label. The final output
E(t−1)
i,j is a sum of all label embeddings weighted by their

existing probabilities on the edge.
We then fuse relation features with role-specific sequence

features using element-wise product operations to obtain
relation-aware sequence features. This allows head and de-
pendent representations to interact with label features.

IH,(t−1)
i,j = E(t−1)

i,j × C(t−1),i
H ,

ID,(t−1)
i,j = E(t−1)

i,j × C(t−1),j
D ,

where × represents the element-wise product operation. IH ,
ID represents the interaction results of relation features with
their heads and dependents.

We further apply layer normalization, a feedforward net-
work (FFN), and residual connection to the relation-aware se-
quence representations, as done in [Vaswani et al., 2017], to
improve the learning efficiency and reduce the risk of overfit-
ting. These techniques enable the model to learn more com-
plex relationships between the input and output, and improve
optimization and generalization by learning the residual map-
ping between the input and output.

RH,(t−1) = FFN(LAYERNORM(IH,(t−1))),

RD,(t−1) = FFN(LAYERNORM(ID,(t−1))),

Ct
H = C

(t−1)
H +RH,(t−1),

Ct
D = C

(t−1)
D +RD,(t−1).

Models PTB CTB
UAS LAS UAS LAS

[Dozat and Manning, 2017] 95.74 94.08 89.30 88.23
[Ma et al., 2018] 95.87 94.19 90.59 89.29
[Clark et al., 2018] 96.60 95.00 - -
[F & G, 2019] 96.04 94.43 - -
[Ji et al., 2019] 95.97 94.31 - -
[Zhou and Zhao, 2019] 96.09 94.68 91.21 89.15
[Zhang et al., 2020] 96.14 94.49 - -
[Wang and Tu, 2020] 95.98 94.34 90.81 89.57

BIAF 96.62 94.97 91.66 89.49
BIAF+SRD 96.68 95.10 91.82 89.65
BIAF+JSSRD 96.66 95.01 91.88 89.66
BIAF+HORD 96.71 95.13 91.90 89.63
BIAF+IRE2F 96.85 95.31 92.04 89.88
BIAF+HORD+SRD 96.53 95.02 91.75 89.60
BIAF+HORD+JSSRD 96.87 95.29 92.14 89.92
BIAF+HORD+IRE2F 96.98 95.60 92.13 89.97

Table 1: Results on PTB-3.3 test set. Results in underline that the
improvement of results over the BIAF baseline is significant (α =
0.01).

After the above process, message passing is finished by pass-
ing IH to inform CD about its heads and passing ID to CH
to inform about its dependents.

The resulting relation-aware sequence representation is
then used to reason a new graph representation, merged with
the input graph representation using a shortcut mechanism to
produce the output graph representation for iteration t. This
allows us to consider the previous parsing graph when refin-
ing the current one.

S̃t = BIAF(Ht, Dt),

St = SHORTCUT(S(t−1), S̃t),

where Ht represents the sequence representation in the t-th it-
eration, H0 denotes the input embeddings, and SHORTCUT(·)
is implemented as element-wise addition.

4 Experiments
4.1 Datasets
We conducted experiments on three language structure pre-
diction tasks: syntactic dependency parsing (SynDP), seman-
tic dependency parsing (SemDP) and semantic role labeling
(SRL).
SynDP We evaluate our proposed framework on traditional
treebanks for English (PTB-3.3 [Marcus et al., 1993]) and
Chinese (CTB-5.1 [Xue et al., 2002]) and also on the mul-
tilingual benchmark of universal dependency treebanks v2.3,
in which 12 languages are selected following [Mohammad-
shahi and Henderson, 2021] for comparison with previous
systems.
SemDP We conduct experiments on the datasets from
SemEval-2015 shared task [Oepen et al., 2015], which in-
cludes three subtasks: DELPH-IN MRS-Derived Bi-Lexical
Dependencies (DM), Enju Predicate–Argument Structures
(PAS), and Prague Semantic Dependencies (PSD). Each sub-
task includes test sets in two domains: in-domain (ID) and
out-of-domain (OOD).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5135

Languages BIAF +SRD +JSSRD +IRE2F

ar 85.55 85.88 85.95 85.99
eu 87.54 87.63 87.60 87.86
zh 88.87 89.02 89.32 89.40
en 90.75 90.80 91.29 91.82
fi 91.87 92.15 92.48 92.58
he 90.72 90.69 91.27 91.20
hi 94.21 94.25 94.18 94.44
it 94.68 94.70 95.00 94.97
ja 95.32 95.46 95.40 95.59
ko 86.73 87.25 87.35 87.26
ru 95.23 95.54 95.64 95.93
sv 91.68 91.86 92.05 92.12
tr 68.38 69.17 69.96 70.16
Avg. 89.34 89.57 89.80 89.95

Table 2: Performance comparison among baseline and different re-
finers on universal dependency treebanks v2.3. LAS metrics are
reported in this table.

SRL In our experiments on SRL, we use the CoNLL09
shared task [Hajic et al., 2009] which includes datasets in 7
languages [Li et al., 2021].

4.2 Configurations
We use the hyperparameter setup from [Dozat and Man-
ning, 2017] and [Dozat and Manning, 2018] for SynDP
and SemDP, respectively. For English datasets, we use
GloVe [Pennington et al., 2014] as pre-trained word em-
beddings, and fasttext [Bojanowski et al., 2017] for other
languages. We also include lemma and part-of-speech
features, which are embedded using randomly initial-
ized embedding layer. For character features, we en-
code the sequence using a character BiLSTM. We use
bert-large-uncased as the pre-trained language model
for English and bert-base-multilingual-cased
for other languages, except for Chinese which uses
bert-base-chinese.

We implemented the SRD and JSSRD refiners based on the
methods described in [Lyu et al., 2019a] and [Mohammad-
shahi and Henderson, 2021]. For SynDP, we implemented
the HORD refiner following the method in [Wang and Tu,
2020], for SemDP, we implemented it based on the method in
[Wang et al., 2019], and for SRL, we implemented it based
on the method in [Li et al., 2020]. The number of iterations
in the refiners was determined through experiments on PTB
for SynDP, PAS for SemDP, and CoNLL09-En for SRL.

In the refinement training, we use the sum of the loss be-
tween the golden edges and labels with scores from all iter-
ations as the total loss. For SemDP and SRL tasks, we use
binary cross-entropy loss for edges and cross-entropy loss
for labels. For SynDP, we use cross-entropy loss for both
edges and labels. We train the model using Adam optimizer
[Kingma and Ba, 2015] with a decaying learning rate. The
code is available at https://github.com/zcli-charlie/iRe2f.

4.3 Results
SynDP According to the results in Table 1 on SynDP, our
baseline models performed well and were comparable to pre-

viously reported results. Comparing our IRE2F with SRD,
JSSRD and HORD, our IRE2F achieves better refinement
performance on the same strong BIAF baseline, illustrating
the effectiveness of our method. The full model with IRE2F
achieved competitive results with previous best models1 with-
out stronger pre-trained language model and complex model
designs. This demonstrates that our retrospecting refinement
is a general and effective mechanism that can be applied to
SynDP.

In addition, since the contributions of HORD and SRD,
JSSRD, and IRE2F are independent, we further combine
them. The experimental results show that the model com-
bining the two refinement mechanisms has been further im-
proved compared to using a single method. This suggests that
the improvement brought about by the refinement of SRD,
JSSRD and IRE2F does not solely depend on the high-order
information present in the graph, but also on better graph rep-
resentation learning.

Furthermore, we conducted experiments on universal de-
pendency treebanks to verify the effectiveness of our refine-
ment framework on multilingual scenarios. We compared the
performance of IRE2F with other iterative refiners, and the
results are presented in Table 2. These experiments showed
that our proposed IRE2F framework outperforms other itera-
tive refiners and is able to achieve superior results on multiple
languages.

SDP Table 3 shows the comparison of our models with pre-
vious state-of-the-art methods. We first test the performance
of the baseline biaffine model and various refinements includ-
ing SRD, JSSRD, HORD, and IRE2F. We find that all these
refinements lead to performance gains and are comparable
to previously reported results. However, based on the BiAF
baseline, our IRE2F framework brings about the biggest pars-
ing performance improvement. Furthermore, our model can
achieve further improvement on the stronger second-order
baseline, which again indicates that IRE2F refinement is or-
thogonal to high-order refinement. The results reached by our
full model, which combines IRE2F and HORD refinements,
have set new state-of-the-arts on all SemDP datasets.

SRL We report in Table 4 the results on pre-identified pred-
icates setting for 7 languages on the SRL task. BIAF+IRE2F
and BIAF+HORD have improved the parsing performance
compared to the baseline BIAF, which reflects the impor-
tance of refinement in this task. Furthermore, superimposing
IRE2F on top of HORD shows even greater improvements in
all seven languages compared to the BIAF baseline. Among
them, ca, es, and en languages have the greatest improve-
ment. This is because the proportion of second-order struc-
tures in these languages is small, so HORD brings limited
improvement, and the effectiveness of our IRE2F comes from
graph representation learning, which can still play a role.

Computing Efficiency To demonstrate the computational
efficiency advantages of IRE2F compared to existing refine-
ments, we selected the DM task in SemDP to compare model

1It is worth noting that the results reported in the table are based
on the BERT pre-training model only, and stronger pre-training
models have not been considered as they are not our focus.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5136

https://github.com/zcli-charlie/iRe2f

Models DM PAS PSD Avg.

ID OOD ID OOD ID OOD ID OOD

[Du et al., 2015] 89.09 81.84 91.26 87.23 75.66 73.28 85.34 80.78
[Almeida and Martins, 2015] 88.21 81.75 90.88 86.88 76.36 74.82 85.15 81.15
[Peng et al., 2017] 90.40 85.30 92.70 89.00 78.50 76.40 87.20 83.60
[Wang et al., 2018] 90.30 84.90 91.70 87.60 78.60 75.90 86.90 82.80

BIAF [Dozat and Manning, 2018] 93.70 88.90 93.90 90.60 81.00 79.40 89.50 86.30
BIAF+HORD [Wang et al., 2019] 93.90 89.50 94.20 91.30 81.40 79.50 89.80 86.80

BIAF 94.61 91.59 95.04 93.04 82.55 80.38 90.73 88.34
BIAF+SRD 94.56 91.80 95.03 93.12 82.60 80.35 90.73 88.42
BIAF+JSSRD 95.01 91.72 95.19 93.33 82.96 80.59 91.05 88.55
BIAF+HORD 94.87 91.80 95.35 93.70 83.07 80.71 91.10 88.74
BIAF+IRE2F 95.02 91.94 95.63 93.94 83.05 80.82 91.23 88.90
BIAF+HORD+IRE2F 95.43 92.06 95.52 94.01 83.52 80.90 91.49 89.02

Table 3: Comparison of results on SemEval-2015 test sets for DM, PAS, PSD subtasks.

Models ca cs de en es ja zh Avg.

CoNLL-2009 ST 80.3 85.4 79.7 85.6 80.5 78.2 78.6 81.19
[Zhao et al., 2009] 80.3 85.2 76.0 86.2 80.5 78.2 77.7 80.59
[Marcheggiani et al., 2017] − 86.0 − 87.7 80.3 − 81.2 −
[Mulcaire et al., 2018] 79.45 85.14 69.97 87.24 77.32 76.00 81.89 79.57
[Lyu et al., 2019b] 80.91 87.62 75.87 90.99 80.53 82.54 83.31 83.11
[He et al., 2019] 85.14 89.66 80.87 90.86 84.60 83.76 86.42 85.90

BIAF [Li et al., 2020] 86.40 91.48 85.21 91.23 86.60 85.55 88.24 87.82
BIAF+HORD [Li et al., 2020] 86.90 91.93 85.54 91.77 86.96 85.90 88.69 88.24
BIAF+IRE2F 87.15 91.90 85.68 92.03 87.35 85.95 88.57 88.38
BIAF+HORD+IRE2F 87.40 92.16 85.93 92.11 87.52 86.10 88.87 88.58

Table 4: Results on the CoNLL-2009 in-domain test sets. Semantic-F1 score is the evaluation metric.

Models Params Efficiency

Base Refine Train (↑) Infer (↑)

BIAF 161.98M − 1.02 186.2
BIAF+SRD 161.98M 133.28M 0.71 138.6
BIAF+JSSRD 161.98M 152.10M 0.52 98.0
BIAF+HORD 161.98M 19.42M 0.83 140.9
BIAF+IRE2F 161.98M 13.23M 0.95 152.5

Table 5: Comparison of the parameters and efficiencies of models
without and with different refinements. In efficiency, the metric for
Train is epoch/hour, and for Infer is sentences/second.

parameters and efficiency. The results are shown in Ta-
ble 5. The models with +SRD, +JSSRD, +HORD, +IRE2F
have consistent base parameters with the BiAF baseline, and
the introduction of refinement brings additional parameters.
Among them, IRE2F has the least additional parameters,
about 90% less than the previous minimum SRD, which is
related to its mechanism of directly updating the graph rep-
resentation based on retrospecting without re-encoding. Cor-
respondingly, IRE2F has the least decrease in training and in-
ference speed compared to the baseline, while JSSRD has the
most decrease, which may be due to the need to perform ad-
ditional MFVI in high-order reasoning. By comparing with
+SRD, +JSSRD, +HORD, we conclude that IRE2F is an effi-
cient refinement framework.

5 Further Analysis
5.1 Ablation Study
We present an ablation study of the structural design of IRE2F
in Table 6. After removing the SHORTCUT, the parsing per-
formance drops significantly, even lower than the BIAF base-
line. This illustrates that in the iterative refinement process of
IRE2F, it is crucial to update the graph representation gradu-
ally, which can reduce the difficulty of graph representation
learning. Removing RELATTN also resulted in a decrease in
performance, which demonstrates that the graph representa-
tion is not only dependent on the edges, but the relationship
between edges is also crucial for refinement. The removal
of FFN and RESIDUAL makes IRE2F unable to be success-
fully trained, indicating that it is helpful to effectively learns
complex representations and overcomes the limitations like
vanishing gradient problem.

5.2 Different Iterations
IRE2F performs iterative refinement of graph representations.
We show in Table 7 the effect of the number of iterations on
the parsing performance of SynDP and SemDP tasks. Com-
pared to no refinement, even one round of refinement can
achieve better results. Further increasing the number of itera-
tive rounds leads to an improvement in parsing performance.
However, the optimal number of iterations for different tasks
varies depending on the complexity of the parsing graph. The

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5137

Settings SemDP (PAS) Params Speed

ID OOD Refine (Sent/Sec)

BIAF 95.04 93.04 − 186.2
BIAF+IRE2F 95.63 93.94 13.23M 152.5

- SHORTCUT 93.74 92.01 13.23M 153.8
- RELATTN 95.39 93.26 2.95M 168.4
- FFN 95.46 92.98 11.75M 159.7
- RESIDUAL 52.44 31.63 13.23M 154.1

Table 6: Ablation study of SHORTCUT, Relation-aware Attention
(RELATTN), FFN and Residual connection (RESIDUAL) structures
in IRE2F.

number of iterative rounds should not be as high as possible.
After the effect of refinement and improvement reaches a the
optimal, continuing to increase will not bring about any fur-
ther improvement or may even result in a decline.

5.3 More Discussion for Longer Sentences
In the iterative refinement method, both [Lyu et al., 2019a]
and [Mohammadshahi and Henderson, 2021] have compared
the performance of using iterative refinement on different de-
pendency distances, and it is indeed true that iterative re-
finement can improve the parsing accuracy of instances with
longer dependency distances. Additionally, we also con-
ducted separate statistics on the UD v2.3 test set based on
sequences of different lengths. From the statistical results
shown in Figure 4, there is indeed a trend of greater improve-
ment for longer sequences, but it is not a perfect match. On
the one hand, sequences with longer lengths have greater de-
pendency distances, but they are not entirely consistent. On
the other hand, sequences of different lengths have different
proportions in the test set, which can lead to bias in certain
length intervals.

0–20 20–40 40–60 60–80 80–100 100+

85

90

95

Length

L
A

S(
%

)

BIAF+IRE2F

BIAF

Figure 4: performance on different length spans.

6 Conclusion and Future Work
In this paper, we presented an efficient refinement framework,
IRE2F, for language structure prediction tasks. IRE2F per-
forms refinement by iteratively retrospecting and reasoning
on the graph representations directly, without the need for

Iter. SynDP (PTB) SemDP (PAS)

UAS LAS ID OOD

1 96.75 95.19 95.12 93.29
2 96.70 95.22 95.29 93.52
3 96.81 95.26 95.27 93.56
4 96.76 95.19 95.33 93.64
5 96.85 95.31 95.23 93.51
6 96.81 95.24 95.27 93.48

Table 7: Influence of number of refine iterations for the performance
of IRE2F.

re-encoding. By introducing the novel relation-aware atten-
tion, our structure achieved significant improvement. Further-
more, our proposed IRE2F can also be combined with other
refinement frameworks like HORD for further improvement.
Through various experiments, we demonstrated that IRE2F
outperforms existing state-of-the-art refinement frameworks
in terms of performance and computational efficiency. Since
our refinement approach is orthogonal to the choice of base
parser, we evaluated our proposed method using only the bi-
affine parser. This parser is widely used and is a strong foun-
dation for graph parsing. However, we anticipate that our
approach can be applied to other base parsers as well, which
would demonstrate its generalization ability for future work.
We also plan to investigate its performance with other base
parsers.

Acknowledgements
Corresponding author: Hai Zhao. Zuchao Li and Letian Peng
made equal contributions to this work. This work was sup-
ported by the Special Fund of Hubei Luojia Laboratory under
Grant 220100014. Hai Zhao was funded by the Key Projects
of National Natural Science Foundation of China (U1836222
and 61733011). We thank the anonymous reviewers for their
careful reading of our manuscript and their many insightful
comments and suggestions.

References
[Almeida and Martins, 2015] Mariana S. C. Almeida and

André F. T. Martins. Lisbon: Evaluating turbosemantic-
parser on multiple languages and out-of-domain data. In
Daniel M. Cer, David Jurgens, Preslav Nakov, and Torsten
Zesch, editors, Proceedings of the 9th International Work-
shop on Semantic Evaluation, SemEval@NAACL-HLT
2015, Denver, Colorado, USA, June 4-5, 2015, pages 970–
973, 2015.

[Bocharova, 2008] V Bocharova. Rule-based language
structure prediction. Natural Language Engineering,
14(3):299–321, 2008.

[Bojanowski et al., 2017] Piotr Bojanowski, Edouard Grave,
Armand Joulin, and Tomas Mikolov. Enriching word vec-
tors with subword information. Transactions of the Asso-
ciation for Computational Linguistics, 5:135–146, 2017.

[Chen and Manning, 2014] Dan Chen and Christopher D
Manning. A fast and accurate dependency parser using

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5138

neural networks. In Proceedings of EMNLP, pages 740–
750, 2014.

[Clark et al., 2018] Kevin Clark, Minh-Thang Luong,
Christopher D. Manning, and Quoc Le. Semi-supervised
sequence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1914–1925,
October-November 2018.

[Dozat and Manning, 2017] Timothy Dozat and Christo-
pher D. Manning. Deep biaffine attention for neural depen-
dency parsing. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings, 2017.

[Dozat and Manning, 2018] Timothy Dozat and Christo-
pher D. Manning. Simpler but more accurate semantic de-
pendency parsing. In Iryna Gurevych and Yusuke Miyao,
editors, Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 2: Short Pa-
pers, pages 484–490, 2018.

[Du et al., 2015] Yantao Du, Fan Zhang, Xun Zhang, Wei-
wei Sun, and Xiaojun Wan. Peking: Building semantic
dependency graphs with a hybrid parser. In Daniel M. Cer,
David Jurgens, Preslav Nakov, and Torsten Zesch, editors,
Proceedings of SemEval@NAACL-HLT, pages 927–931,
2015.

[Fernández-González and Gómez-Rodrı́guez, 2019] Daniel
Fernández-González and Carlos Gómez-Rodrı́guez.
Left-to-right dependency parsing with pointer networks.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 710–716, Minneapolis,
Minnesota, June 2019.

[Gui et al., 2020] Tao Gui, Jiacheng Ye, Qi Zhang,
Zhengyan Li, Zichu Fei, Yeyun Gong, and Xuanjing
Huang. Uncertainty-aware label refinement for sequence
labeling. In Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu, editors, Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
2316–2326, 2020.

[Hajic et al., 2009] Jan Hajic, Massimiliano Ciaramita,
Richard Johansson, Daisuke Kawahara, Maria Antònia
Martı́, Lluı́s Màrquez, Adam Meyers, Joakim Nivre,
Sebastian Padó, Jan Stepánek, Pavel Stranák, Mihai
Surdeanu, Nianwen Xue, and Yi Zhang. The conll-2009
shared task: Syntactic and semantic dependencies in
multiple languages. In Jan Hajic, editor, Proceedings of
the CoNLL, pages 1–18, 2009.

[Hashimoto et al., 2016] Kazuma Hashimoto, Caiming
Xiong, Yoshimasa Tsuruoka, and Richard Socher. A joint
many-task model: Growing a neural network for multiple
NLP tasks. CoRR, abs/1611.01587, 2016.

[He et al., 2019] Shexia He, Zuchao Li, and Hai Zhao.
Syntax-aware multilingual semantic role labeling. In Pro-

ceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5350–5359, November 2019.

[Hua and Wang, 2020] Xinyu Hua and Lu Wang. PAIR:
planning and iterative refinement in pre-trained transform-
ers for long text generation. In Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu, editors, Proceedings of
EMNLP, pages 781–793, 2020.

[Ji et al., 2019] Tao Ji, Yuanbin Wu, and Man Lan. Graph-
based dependency parsing with graph neural networks. In
Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 2475–2485, July
2019.

[Jia et al., 2020] Zixia Jia, Youmi Ma, Jiong Cai, and Kewei
Tu. Semi-supervised semantic dependency parsing using
CRF autoencoders. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pages 6795–6805, July 2020.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Con-
ference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings, 2015.

[Kiperwasser and Goldberg, 2016] Eliyahu Kiperwasser and
Yoav Goldberg. Simple and accurate dependency parsing
using bidirectional LSTM feature representations. Trans.
Assoc. Comput. Linguistics, 4:313–327, 2016.

[Kurita and Søgaard, 2019] Shuhei Kurita and Anders
Søgaard. Multi-task semantic dependency parsing with
policy gradient for learning easy-first strategies. In Pro-
ceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2420–2430, Florence,
Italy, July 2019.

[Lee et al., 2020] Jason Lee, Raphael Shu, and Kyunghyun
Cho. Iterative refinement in the continuous space for non-
autoregressive neural machine translation. In Bonnie Web-
ber, Trevor Cohn, Yulan He, and Yang Liu, editors, Pro-
ceedings of EMNLP, pages 1006–1015, 2020.

[Li et al., 2020] Zuchao Li, Hai Zhao, Rui Wang, and Kevin
Parnow. High-order semantic role labeling. In Findings of
the Association for Computational Linguistics: EMNLP
2020, pages 1134–1151, November 2020.

[Li et al., 2021] Zuchao Li, Hai Zhao, Shexia He, and Jiaxun
Cai. Syntax role for neural semantic role labeling. Com-
put. Linguistics, 47(3):529–574, 2021.

[Li et al., 2022a] Zuchao Li, Zhuosheng Zhang, Hai Zhao,
Rui Wang, Kehai Chen, Masao Utiyama, and Eiichiro
Sumita. Text compression-aided transformer encoding.
IEEE Trans. Pattern Anal. Mach. Intell., 44(7):3840–3857,
2022.

[Li et al., 2022b] Zuchao Li, Junru Zhou, Hai Zhao, Zhisong
Zhang, Haonan Li, and Yuqi Ju. Neural character-level
syntactic parsing for chinese. J. Artif. Intell. Res., 73:461–
509, 2022.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5139

[Lyu et al., 2019a] Chunchuan Lyu, Shay B. Cohen, and
Ivan Titov. Semantic role labeling with iterative structure
refinement. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan, editors, Proceedings of EMNLP-IJCNLP,
pages 1071–1082, 2019.

[Lyu et al., 2019b] Chunchuan Lyu, Shay B. Cohen, and
Ivan Titov. Semantic role labeling with iterative structure
refinement. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1071–1082,
November 2019.

[Ma et al., 2018] Xuezhe Ma, Zecong Hu, Jingzhou Liu,
Nanyun Peng, Graham Neubig, and Eduard Hovy. Stack-
pointer networks for dependency parsing. In Proceedings
of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 1403–
1414, July 2018.

[Marcheggiani et al., 2017] Diego Marcheggiani, Anton
Frolov, and Ivan Titov. A simple and accurate syntax-
agnostic neural model for dependency-based semantic
role labeling. In Proceedings of the 21st Conference
on Computational Natural Language Learning (CoNLL
2017), pages 411–420, August 2017.

[Marcus et al., 1993] Mitchell P. Marcus, Beatrice Santorini,
and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330, 1993.

[Mohammadshahi and Henderson, 2021] Alireza Mo-
hammadshahi and James Henderson. Recursive non-
autoregressive graph-to-graph transformer for dependency
parsing with iterative refinement. Trans. Assoc. Comput.
Linguistics, 9:120–138, 2021.

[Mulcaire et al., 2018] Phoebe Mulcaire, Swabha
Swayamdipta, and Noah A. Smith. Polyglot seman-
tic role labeling. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 667–672, July 2018.

[Nivre et al., 2009] Joakim Nivre, Wim Peters, and Ivan
Titov. Statistical dependency parsing: An introduction.
Synthesis Lectures on Human Language Technologies,
2(1):1–175, 2009.

[Oepen et al., 2015] Stephan Oepen, Marco Kuhlmann,
Yusuke Miyao, Daniel Zeman, Silvie Cinková, Dan
Flickinger, Jan Hajic, and Zdenka Uresová. Semeval 2015
task 18: Broad-coverage semantic dependency parsing. In
Daniel M. Cer, David Jurgens, Preslav Nakov, and Torsten
Zesch, editors, Proceedings of SemEval@NAACL-HLT,
pages 915–926, 2015.

[Peng et al., 2017] Hao Peng, Sam Thomson, and Noah A.
Smith. Deep multitask learning for semantic dependency
parsing. In Regina Barzilay and Min-Yen Kan, editors,
Proceedings of ACL, pages 2037–2048, 2017.

[Pennington et al., 2014] Jeffrey Pennington, Richard
Socher, and Christopher Manning. GloVe: Global vectors

for word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, October 2014.

[Sun et al., 2021] Kailai Sun, Zuchao Li, and Hai Zhao.
Multilingual pre-training with universal dependency learn-
ing. In Marc’Aurelio Ranzato, Alina Beygelzimer,
Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan, editors, NeurIPS, pages 8444–8456, 2021.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett, editors, NeurIPS, pages
5998–6008, 2017.

[Wang and Tu, 2020] Xinyu Wang and Kewei Tu. Second-
order neural dependency parsing with message passing
and end-to-end training. In Kam-Fai Wong, Kevin Knight,
and Hua Wu, editors, Proceedings of AACL/IJCNLP,
pages 93–99, 2020.

[Wang et al., 2018] Yuxuan Wang, Wanxiang Che, Jiang
Guo, and Ting Liu. A neural transition-based approach for
semantic dependency graph parsing. In Sheila A. McIl-
raith and Kilian Q. Weinberger, editors, Proceedings of
AAAI, pages 5561–5568, 2018.

[Wang et al., 2019] Xinyu Wang, Jingxian Huang, and
Kewei Tu. Second-order semantic dependency parsing
with end-to-end neural networks. In Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics, pages 4609–4618, July 2019.

[Xue et al., 2002] Nianwen Xue, Fu-Dong Chiou, and
Martha Palmer. Building a large-scale annotated Chinese
corpus. In COLING 2002: The 19th International Confer-
ence on Computational Linguistics, 2002.

[Zhang et al., 2020] Yu Zhang, Zhenghua Li, and Min
Zhang. Efficient second-order treecrf for neural depen-
dency parsing. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel R. Tetreault, editors, Proceedings of
ACL, pages 3295–3305, 2020.

[Zhao et al., 2009] Hai Zhao, Wenliang Chen, Jun’ichi
Kazama, Kiyotaka Uchimoto, and Kentaro Torisawa. Mul-
tilingual dependency learning: Exploiting rich features for
tagging syntactic and semantic dependencies. In Proceed-
ings of CoNLL, pages 61–66, 2009.

[Zhou and Zhao, 2019] Junru Zhou and Hai Zhao. Head-
Driven Phrase Structure Grammar parsing on Penn Tree-
bank. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 2396–
2408, July 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

5140

	Introduction
	Related Work
	Language Structure Prediction
	Refinement

	iRe2f Framework
	Base Parser
	Rethinking Refinement
	Retrospecting via Message Passing

	Experiments
	Datasets
	Configurations
	Results

	Further Analysis
	Ablation Study
	Different Iterations
	More Discussion for Longer Sentences

	Conclusion and Future Work

