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Abstract
A machine learning task can be viewed as a se-
quential pipeline of different algorithmic choices,
including data preprocessing, model selection,
and hyper-parameter tuning. Automated machine
learning selects this sequence in an automated man-
ner. While such approaches are natural in super-
vised settings, they remain challenging for unsu-
pervised tasks such as outlier detection because of
the lack of availability of label-centric feedback. In
this paper, we present an instance-level metalearn-
ing approach for outlier detection. This approach
learns how outlier instances are related to normal
points in many labeled data sets to create a super-
vised meta-model. This meta-model is then used
on a new (unlabeled) data set to predict outliers.
We show the robustness of our approach on several
benchmarks from the OpenML repository.

1 Introduction
Machine learning tasks contain multiple choices across var-
ious stages of data processing, such as imputation, scaling,
model selection, and hyper-parameter setting. Each such se-
quence of choices is referred to as a pipeline. The goal of au-
tomated machine learning is to optimize the pipeline choice
for the specific data set and task at hand. Although automated
machine learning is popular in the supervised setting [Boun-
effouf et al., 2020; Feurer et al., 2015; Franceschi et al., 2017;
He et al., 2021; Hutter et al., 2011; Lai et al., 2021; Lee et
al., 2019; Li et al., 2018; Li et al., 2008; Vartak et al., 2017;
Wistuba et al., 2015; Yao et al., 2018], only a few methods ex-
ist for unsupervised tasks such as clustering and outlier detec-
tion [Bahri et al., 2022; Burnaev et al., 2015; Fan et al., 2019;
Mourer et al., 2023; Singh and Vanschoren, 2022; Zhao et al.,
2021]. Unsupervised settings are also challenging because of
the lack of label-centric feedback.

A key insight is that even though unsupervised settings do
not enable learning from new data sets, one can still learn
about the types of pipeline choices that work well in other
data sets where supervision is available. Such supervised
settings correspond to imbalanced classification problems in
which rare classes are treated as outliers. Rare class in-
stances often exhibit typical structural relationships to the

full data set, which can be captured as a supervised meta-
model and leveraged for outlier identification in a new data
set. This instance-level knowledge that captures structural re-
lationships between instances and full data (for both outliers
and non-outliers) can be transferred into a model that is used
to identify outliers in a new, unlabeled data set. This approach
is referred to as metalearning — however in the literature
metalearning often transfers dataset-level knowledge [Zhao
et al., 2021], whereas the approach in this paper transfers
instance-level knowledge. The key advantage of instance-
level knowledge is that it is able to learn important local
characteristics of the data that are salient for outlier detec-
tion. Such characteristics create a much more refined model
for metalearning. The work is also closely related to out-
lier ensembles [Aggarwal, 2013; Aggarwal and Sathe, 2015;
Aggarwal and Sathe, 2017] because it does not identify a sin-
gle pipeline for outlier identification but uses a combination
function of the scores from different pipelines in an instance-
specific way. This combination function of scores from dif-
ferent pipelines is learned in the form of a meta-model that
is constructed using the knowledge gained from external data
sets. Therefore, the contributions of this paper are as follows:
• We propose an instance-level metalearning approach, re-

ferred to as T-AutoOD for outlier detection. This meta-
model is learned using a labeled resource of classifica-
tion data sets and it builds a model of how the outputs
from different pipelines should be combined in order to
obtain the most accurate outlier score.
• It is shown how this learned model can be used to find

outliers on a new unlabeled data set, which essentially
creates a supervised meta-model for ensembling differ-
ent pipelines in an instance-specific way.
• Experimental results are presented showing the compet-

itiveness of the approach over existing baselines.
This approach is a form of transfer learning [Pan and Yang,
2009] from imbalanced classification data sets (i.e., super-
vised anomaly detection data sets), which are copiously avail-
able. This collection is referred to as the transfer resource.
Since the transfer resource is used to learn how the scores
from different pipelines are combined to create a unified out-
lier score, it can be viewed as a metalearning ensemble.
In this sense, this work combines ideas from metalearning,
transfer learning, and outlier ensembles.
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1.1 Related Work
Outlier analysis [Aggarwal, 2017; Chandola et al., 2009] has
been widely studied in the machine learning literature, and
it is used as an alternative to imbalanced classification when
labels are not available. An important challenge in outlier
detection (and other unsupervised tasks) is that of model se-
lection since labels are not available for data-driven feed-
back. In contrast, a vast array of model selection and tun-
ing methods are available for the supervised setting, including
Bayesian hyperparameter optimization [Feurer et al., 2015],
gradient-based optimization [Franceschi et al., 2017], model-
based optimization [Hutter et al., 2011], bandit methods [Li
et al., 2018], and sparse models [Liuliakov et al., 2023]. Au-
tomated machine learning methods have also been proposed
in cold-start [Lee et al., 2019; Vartak et al., 2017] and zero-
knowledge settings [Real et al., 2020]. Surveys on automated
machine learning may be found in [Bouneffouf et al., 2020;
He et al., 2021; Yao et al., 2018].

In spite of the outstanding success of automated ma-
chine learning methods in the supervised setting, the perfor-
mance of such methods in unsupervised problems has been
quite modest. for example, model selection in clustering
is typically addressed using heuristic measures [Fan et al.,
2019; Heller and Ghahramani, 2005; Mourer et al., 2023;
Vaithyanathan and Dom, 1999]. The challenges associated
with model selection in anomaly detection have been dis-
cussed in [Aggarwal and Sathe, 2017], and only a few meth-
ods exist for model selection in anomaly detection [Bahri et
al., 2022; Burnaev et al., 2015; Zhao et al., 2021]. The work
that is closest to ours (in terms of goals) is MetaOD [Zhao et
al., 2021], which is also a meta-learning framework for out-
lier detection. However, MetaOD works by evaluating the
performance of a candidate model on similar historical tasks
based on dataset-level meta-features. This is different from
our approach, which captures structural characteristics with
instance-level features. The use of outlier scores to repre-
sent data sets has been pursued in the context of supervised
learning [Micenková et al., 2014], although its use for unsu-
pervised meta-learning at the instance level is non-obvious.
This type of instance-specific metalearning is also closely re-
lated to transfer learning [Pan and Yang, 2009], and it is bet-
ter targeted to exploiting the local characteristics of data sets
compared to dataset-level metalearning.

2 Algorithmic Details of T-AutoOD
This section presents an overview of the T-AutoOD frame-
work along with specific details. The first step of T-AutoOD
is to create the transfer resource from existing classification
data sets. The data sets of the transfer resource are then con-
verted into a single large data set of a particular dimension-
ality. The goal of converting the data sets into a uniform
representation is to (i) ensure learnability across data sets,
and (ii) capture the same point-specific structural character-
istics across data sets that are indicative of anomalous be-
havior. This homogenized representation is then carried over
to the (new) unlabeled data set, where a classification algo-
rithm (trained on the transfer resource) is used to perform the
anomaly prediction on a new data set (without labels).

Algorithm 1 T-AutoOD-Train
Input: Transfer Resource of datasets DT

Output: Transfer Model:M
1: Generate pipelines P .
2: Apply each pi ∈ P to each data set Dj ∈ DT .
3: Create a single data set D with rows corresponding to

instances in all Dj ∈ DT . Each row contains anomaly
scores from all pi ∈ P on that instance and its label.

4: Create supervised classification modelM on data set D.
5: return P ,M

Algorithm 2 T-AutoOD-Test
Input: ModelM, Pipelines: P , Unlabeled Data Set U
Output: Anomaly scores of U

1: Apply pipelines in P to each instance in U to create
score-based representation U ′ of U .

2: Apply supervised modelM to each instance in U ′.
3: return classification scores generated byM

The overall process of transfer learning in the proposed T-
AutoOD algorithm is shown in Algorithms 1 and 2. A set of
(labeled) anomaly detection data sets is created as a resource
for transfer learning. These data sets are generated from exist-
ing classification data sets by subsampling the minority class
if necessary to achieve the desired contamination. The data
sets in the transfer resource are used to generate the anomaly
scores for candidate outlier detection pipelines in an unsuper-
vised manner. Each pipeline yields an anomaly score, and
these different scores are used to create features. The features
indirectly capture different structural relationships of the spe-
cific data point (indicating anomalous behavior) to the data
set at hand. Such an approach creates a homogenized fea-
ture representation across all data sets and therefore a single
large data set can be created. The basic principle underlying
this feature representation is that particular types of anomaly
score patterns recur across different data sets, and these pat-
terns can be learned for the transfer resource because anomaly
labels are available.

This idea motivates the design of a supervised model, in
which the relationship between the generated features and the
true anomaly labels (from the knowledge transfer resource)
can be learned using a classification model. This paper uses
a light gradient boosted machine (LGBM) classifier because
of its combination of accuracy and efficiency. For a new (un-
labeled) data set, the features are generated using the same
approach and passed through this supervised model for pre-
diction.

We assume that a total of p labeled data sets are available
as the transfer resource. Each point is tagged with a binary
label depending on whether it is an anomaly. The ith data set
is assumed to contain ni data points. In some cases, these
data sets are prepared from existing classification data sets by
sparsifying one or more classes. The details of the preparation
of the transfer resource will be provided in a later section.
After preparing the transfer resource, the following steps are
used:
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1. Unsupervised pipeline training on transfer resource:
A number of unsupervised pipelines are devised from
known outlier detection algorithms, such as the k-
nearest neighbor method, LOF, isolation forest, and ran-
domized hashing [Sathe and Aggarwal, 2016]. Each
pipeline consists of a specific set of feature imputa-
tion/scaling steps, feature engineering step, algorithm
selection and hyper-parameter setting. It is assumed that
a total of m pipelines are available, and therefore m
anomaly scores are output for each data point (one for
each pipeline). Although this step is time consuming
(since each pipeline needs to be run on each data set), it
needs to be done only once up front during the transfer
learning process.

2. Creating an anomaly score-based representation of
the transfer resource: The aforementioned step creates
a feature representation of m anomaly scores from each
of the N =

∑p
i=1 ni data points across the p differ-

ent data sets in the transfer resource. This homogenized
representation across different data sets in the transfer
resource can be used to create a single N ×m data set
of anomaly scores. This representation can be enriched
with additional features and we discuss one such feature
later in this paper.

3. Learning a transfer model from the score-based rep-
resentation: The aforementioned N × M data set is
then trained with a classifier by using the anomaly labels
available with the points in the transfer resource. In prin-
ciple, any off-the-shelf classifier could be used, although
the light gradient boosting machine (LGBM) classifier
was found to be a good choice because of its combi-
nation of accuracy and efficiency. The resulting binary
classification model captures how different patterns of
anomaly scores relate to the probability of a point being
a true anomaly across different data sets in the transfer
resource. This learned model indirectly captures the re-
lationship between the different anomaly-specific struc-
tural patterns of data points in the transfer resource and
anomaly labels.

4. Applying learned transfer model to anomaly detec-
tion on a new data set: The learned model can easily be
used for prediction on a new data set. For each point in
the new data set, the features are constructed in the same
manner as is the case for the data points in the transfer
resource. The learned LGBM model is then used to pre-
dict the binary class label (i.e., the label of whether or
not the point is anomalous) of the new data point. Such
an approach effectively learns the patterns of anomaly
scores that are most indicative of anomalous behavior
across different data sets.

The above description provides an overview of the T-
AutoOD framework. In the following, the details of indi-
vidual steps will be provided. Furthermore, since the transfer
resource is an important part of the learning process, its cre-
ation will be discussed first.

2.1 Creation of Transfer Resource from Labeled
Data Sets

Existing data sets for classification can be used for transfer
learning in anomaly detection as long as the underlying data
sets have imbalanced class distributions. This is because the
rare class can be treated as anomalous, whereas the remaining
data set can be treated as the normal class. In fact, the main
difference between rare class detection and outlier detection
is that observed labels are not present in the latter case. Even
when the underlying data sets are not balanced, one of the
classes can be downsampled to artificially create an anoma-
lous class. Such an approach of creates multiple derived data
sets from a single resource, which greatly augments the train-
ing data for transfer learning.

The base data sets used for creating the transfer resource
were drawn from classification data sets in OpenML1. In or-
der to create each derived data set, we assigned the outlier la-
bel to the minority class and the inlier label to the remaining
classes. We adjusted derived data set class imbalance (one-
versus-rest) as necessary to achieve target outlier frequency
of 1% by down-sampling. Derived data sets with fewer than
10 outliers were excluded. A maximum of 50 columns was
used, and multiple derived data sets (with non-overlapping
columns) were created for base data sets with greater than 50
columns. To avoid label leakage, data sets originating from a
given base data set appeared exclusively either in the labeled
transfer resource or in the unlabeled testing set but never in
both.

This approach was used to first create 1200 data sets. We
then used Isolation Forest and Average KNN, outlier detec-
tion algorithms in scikit-learn open-source package2 to train
and score these 1200 data sets. For each data set, we then cal-
culated two AUC ROC scores by Isolation Forest and Average
KNN, using the ground-truth labels in the original OpenML
classification data sets. If both AUC ROC scores were greater
than 0.5, indicating that the data set was indeed an outlier de-
tection data set, the data set was kept. Otherwise, it was dis-
carded. Finally, there were 520 data sets that passed the AUC
ROC score check and were used in the transfer resource for
our method. Note that only a subset of these 520 data sets
were used in the transfer resource, because some of the data
sets were reserved for testing (as discussed in the evaluation
section).

2.2 Running Pipelines on Transfer Resource
After the transfer resource was created, unsupervised
pipelines were run on the data sets. A pipeline includes steps
to preprocess the data set (including imputing for missing val-
ues and scaling) as well as steps for feature engineering and
final outlier scoring. Data imputation was necessary because
many of the base data sets used for creating the transfer re-
source were missing entries. The sequence of steps in a par-
ticular pipeline can be summarized as follows:

Impute⇒ Scale⇒ Feature-Engineer⇒ Score

1https://www.openml.org
2https://scikit-learn.org
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Note that each choice affects outlier scores of individual
points in the data set, and the goal of metalearning is to iden-
tify the relationship between pipelines and anomaly scores.
What are the choices for each of the aforementioned steps?
The implementation derived these choices from the base API
sklearn.pipeline.Pipeline of (scikit-learn). For
example, the choices for imputation and scaling are available
as off-the-shelf APIs in scikit-learn. The imputation step uses
either a simple imputer or an iterative imputer. This pipeline
step is not needed for fully specified data sets in which no
values are missing.

The scaling step also allows several choices. It could (i)
standardize the data to zero mean and unit variance, (ii) divide
an attribute by its maximum absolute value in the data set, (iii)
map an attribute to the [0, 1] interval with min-max scaling,
or (iv) perform robust standardization that normalizes to zero
mean and unit variance after softening the effect of extreme
values in modeling. The details of these choices are also de-
scribed within the pipeline API of scikit-learn. The scaling
of the different attributes directly affects the outlier scores
in most detectors (e.g., k-nearest neighbor detector) because
it regulates the relative importance of the different attributes
while calculating aggregate measures such as distances. The
feature engineering step adds polynomial features as well as
PCA features. The goal of the feature engineering step is
to enrich the base representation with transformations of the
original attributes.

Finally, the estimation step selects one of a set of robust
outlier detection algorithms, which are described in [Aggar-
wal, 2017]. These outlier detection algorithms have been ex-
tensively tested by other researchers and a subset was identi-
fied based on available performance comparisons [Aggarwal,
2017; Aggarwal and Sathe, 2017]. The subset of outlier de-
tection algorithms used were the Isolation Forest, Average
KNN, ElipticEnvelope3, LOF, randomized hashing [Sathe
and Aggarwal, 2016], one-class-SVM, Copula-based outlier
detection [Li et al., 2020], PCA, and PCA-based outlier de-
tection. All these algorithms are described in detail in [Ag-
garwal, 2017]. The hyper-parameters for the pipelines were
chosen at random from a recommended range as suggested
in the scikit-learn implementations of these algorithms. A
specific combination of each of the aforementioned steps (in-
cluding hyper-parameter choice) defines a pipeline. The ap-
plication of the pipeline to each data record of the transfer
resource generates a numerical outlier score. A total of 400
pipelines were selected up front, which resulted in a total of
m = 400 outlier scores.

2.3 Transfer Resource to Uniform Representation
As discussed above, a total of m outlier scores are created for
each of the ni points in the ith data set. This process trans-
forms each data point of each data set in the transfer resource
to the same m-dimensional representation of outlier scores.
Since a total of N =

∑p
i=1 ni points exist over all the p data

sets, a single master data matrix of size N × m containing
the feature representations of the N points (in the rows of the
matrix) can be created. An N × 1 vector of ground-truth bi-

3API from sklearn: sklearn.covariance. EllipticEnvelope

nary labels (indicating anomalousness) of the N points is also
available. This integrated data set from the transfer resource
can be rather large, since each point in each data set of the
transfer resource has its own distinct m-dimensional entry in
the data set. For example, a total of about 6.4 × 106 records
were generated across the different data sets in the transfer
resource used in this paper.

The N × M data matrix along with an N × 1 vector of
ground-truth values represents a traditional classification data
set. The training process over this data set is described in the
next section.

2.4 Training the LGBM on Transfer Resource
Once the transfer resource has been converted to a homoge-
nized score-based representation, it is used for constructing
a trained model. There are several choices available for se-
lecting the classifier. It is important to use a classifier that is
both accurate and efficient because of the large sizes of the
data involved. The LGBM classifier was used because of its
combination of accuracy and efficiency. We used an out-of-
the-box LGBM classifier4 with its default hyperparameters in
this paper.

However, the classification training was preceded by a
phase of feature selection. The first step was to select d�M
most discriminative features using the XGB model [Chen and
Guestrin, 2016]. The value of d used was 20. In order to learn
the LGBM model, a holdout method is used for splitting the
integrated N×d data set to learn its parameters. Here, an im-
portant observation is that one cannot use the type of random-
split as is common in hold-out strategies for classification in
which data points are split between the two partitions. The
integrated data set constructed from the transfer resource is
generated from multiple base data sets — splitting the points
from a single base data set into the training data set and val-
idation data set (or for creating the test data set) is likely
to lead to label leakage between training and test/validation
data. Therefore, the splitting strategy always makes sure that
points from a single base data set always lie in one part of
the split (e.g., training or test). Furthermore, when multiple
sparsified data sets are derived from the same data set, all
such derived data sets are included in the same partition of
the holdout set. The LGBM model was then trained using the
training/validation data of the holdout partitions. This trained
model is then used for prediction of anomalies on a new data
set.

2.5 Prediction on New Unlabeled Data Set
Given a new unlabeled data set, the goal is to find its outliers
by using both existing outlier detection algorithm pipelines
on the current data set as well as by leveraging the learned
model from the transfer resource. To apply the trained LGBM
model to predict outliers in a new, unlabeled data set, the data
set needs to be transformed to have the same d features used
by the LGBM model. The first step is to convert this data
set to the same d-dimensional representation on which the
LGBM was trained (after feature selection by XGB), which
requires the same unsupervised outlier detection algorithms.

4https://lightgbm.readthedocs.io
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# DS # Samples Mean Size Mean Dim.
520 6.4M 12097 29

Table 1: Characteristics of transfer resource

The small (feature selected) value of d ensures that the only
a small number of pipelines need to be executed during pre-
diction. This process results in an d-dimensional score-based
representation of the data set that is identical to that of the
training data both in terms of dimensionality and interpreta-
tion of attributes.

The trained LGBM model was used for binary classifica-
tion of each data point in the unlabeled data set to the nor-
mal/anomalous class. The LGBM model is capable of pro-
ducing a real-valued output indicating propensity to belong to
the anomalous class. This real-valued output can be treated
as the outlier score of the point, and it is useful for evaluating
the algorithm using the ROC AUC measure.

3 Experimental Evaluation
This section presents the experimental evaluation5 of T-
AutoOD on a variety of data sets. All data sets were derived
from OpenML 6, and were generated from classification data
sets (after possible sparsification). The datasets for testing
were generated in the same manner as that used for generating
the transfer resource. The data sets were divided into training
and testing portions while accounting for the fact that multi-
ple derived data sets could be constructed from the same base
data set by sparsifying different classes. In order to prevent
leakage of labels from training to test data, (i) all data sets that
were derived from the same base data set were either placed
in the training/validation data or placed in the test data, and
(ii) data sets were placed in their entirety in either the training
or test data (without splitting a base data set across training
and test data).

The overall effect of this approach was that a particular
base data set could contribute either to the transfer resource
or to the testing data set but not both. This restriction was im-
portant because multiple data sets derived from the same base
data set were related, which could result in overly optimistic
performance results from label leakage. An overview of the
characteristics of the derived data sets is given in Table 1.
There was also a wide variation in data size and dimension-
ality across derived data sets, which ensured that the transfer
learning process was able to capture the importance of data-
specific structural characteristics across diverse resources.

The following baselines were used for our comparison:
• Oracle: The oracle approach automatically selects the

best pipeline out of m = 400 pipelines, for each test
data set as if it were known a priori. It is noteworthy that
it is not possible to implement such an approach, since
the test data sets are unlabeled (and the optimal pipeline
cannot be known a priori with unlabeled data). However,
the oracle approach is important because it provides an
upper bound on the performance.

5https://github.com/t-autood/t-autood
6https://www.openml.org

• Single-best: The single-best pipeline uses a similar
principle as the oracle approach in selecting the best
pipeline, except that it does so on the training data set
(i.e., transfer resource) as a validation procedure. Note
that it is actually possible to find the single best pipeline
(unlike in the case of the oracle), since the labels of the
test data are not used for selection. Furthermore, since
the single best pipeline is selected on the training data, it
is fixed across the different test data sets. However, the
performance of the single-best approach is significantly
inferior to the oracle method. Nevertheless, it provides a
reasonable baseline for comparison.

• MetaOD [Zhao et al., 2021]: This method builds a rec-
ommendation system that predicts a ML outlier detec-
tion model for an unseen data set. We used their open-
source code7 to find their predicted model and then used
the model to find outliers in unseen data sets.

The ROC scores were used as the evaluation measure for
the algorithm, as is common in outlier detection. The ROC
scores were constructed using the real-valued output of the
classifier in combination with the ground-truth values. In par-
ticular, we used two benchmarks to evaluate and compare our
methods against the aforementioned baselines:

• Internal benchmark: We first created 520 outlier de-
tection (i.e., derived) data sets. We then split these 520
derived data sets into a training set of 416 derived data
sets and testing set of 104 derived data sets. The split en-
sured that all derived data sets from the same base data
set were put into either training or testing set, but not
both. This is done to avoid data leakage from training
to test data. Then, our model was trained on the training
set and tested on the testing set.

• External benchmark: In outlier detection research,
ODDS8 and DAMI9 data sets have been used extensively
for performance evaluation. However, we notice that the
outlier ratio in these data sets varies widely from less
than 1% to more than 43%. In fact, a large portion of
these data sets have an outlier ratio of greater than 10%,
which we believe is inappropriately high either in terms
of how outliers are naturally defined or in terms of how
they are detected in an unsupervised manner. We de-
cided to take these original data sets without modifica-
tion if it had fewer than 1000 samples. If the data set had
more than 1000 samples, we downsampled the outlier
ratio to 0.5% and use the derived version of the data set
in our evaluation. As a result, we collected 45 derived
outlier detection data sets for our performance evalua-
tion and comparison.

We used the median AUC ROC as the performance metric
to compare our methods against baselines as follows:

1. Median AUC ROC: For Oracle and Single-best base-
lines, we calculated AUC ROC scores using ground-
truth labels for each data set. For each of these two base-

7https://pypi.org/project/metaod/
8http://odds.cs.stonybrook.edu/
9https://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/
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Metric Single-best Oracle MetaOD T-AutoOD
Median AUC ROC 0.637 0.785 0.559 0.669

Table 2: Summary performance on 104 internal benchmarks (at most 1% of samples are in minority class).

Metric Single-best Oracle MetaOD T-AutoOD
Median AUC ROC 0.829 0.976 0.785 0.900

Table 3: Summary performance on 45 external benchmarks (at most 0.5% of samples are in minority class).

lines, we obtained 104 AUC ROC scores for the inter-
nal benchmark and 45 AUC ROC scores for the external
benchmark. Then, we took the median AUC ROC score
from these scores. Therefore, Single-best and Oracle
had two median AUC ROC scores, one for each bench-
mark.

2. Average Median AUC ROC: For MetaOD and T-
AutoOD, we executed each algorithm for 10 runs, each
with a different random seed. For each run, we ob-
tained the median AUC ROC score across all data sets
in each benchmark. This gave us 10 median AUC ROC
scores. Finally, we took the average score across these
10 median AUC ROC scores and used it as the perfor-
mance score of MetaOD and the T-AutoOD variations
as shown in Table 2 and Table 3.

The following specific implementation of T-AutoOD was
tested. The 20 most discriminative features were selected
using the XGB approach [Chen and Guestrin, 2016]. Fur-
thermore, we calculated the Mahalanobis distance of data in-
stances in the data sets and added this distance as an addi-
tional feature. This was done in the data sets of both the
transfer resource and the test collection. Therefore, the final
representation contained a total of 21 features.

Table 2 shows the results for the internal benchmark. The
main competitor MetaOD had an AUC of 0.559, which was
significantly outperformed by T-AutoOD (AUC= 0.669) for
a performance difference of 11%. The T-AutoOD also out-
performed the Single-best approach. Surprisingly, Single-
best also outperformed MetaOD, which is indicative of the
fact that dataset-level features used by MetaOD might not
have captured enough information in order to result in well-
optimized performance. These results seem to resound-
ingly support the principle of using instance-level features.
While the Oracle method performed the best, it is not imple-
mentable in a real-world setting where labels for the test data
set are unavailable. Table 3 showed the performance compar-
ison for the external benchmark. T-AutoOD outperformed
Single-best by about 7% and MetaOD by 12%. Since the
ROC AUC scores of the internal benchmarks were lower, it
implies that these data sets were “more difficult” for outlier
detection.

Since the total number of test data sets is too large to allow
exhaustive presentation in detail, only the performance of T-
AutoOD on external benchmarks will be provided in Table 4.
These 45 data sets were chosen by varying size and dimen-
sionality to show the robustness of T-AutoOD across data
sets of different characteristics. The AUC performance of
both variations of T-AutoOD as well as those of the baselines

are shown for each data set in a row of the table. Amazingly,
our methods outperformed the Oracle baseline for several
data sets, such as aloi (dami), pima (dami), stamps (dami),
spambase (dami), and waveform (dami). This is possible
since the performance scores of the Oracle baseline was se-
lected using the best pipeline out of 400 pipelines while our
methods combined the precomputed anomalous scores for its
predictions. It needs to be pointed out that MetaOD did out-
perform T-AutoOD on some data sets, although this is to be
expected for an unsupervised problem like outlier detection
in which the results are evidentiary in nature.

Table 4 also includes the running time of MetaOD and T-
AutoOD. For smaller data sets, T-AutoOD was faster than
MetaOD, since MetaOD returns a string with estimator
name and pairs of (name, value) of hyperparameters. String
parsing is required to create an instance of the estimator
before training and inference, which takes longer than us-
ing the T-AutoOD’s already instantiated pipelines to gener-
ate anomalous scores and perform inference with the meta-
learner. However, the instance-specific nature of T-AutoOD
can make it somewhat more expensive for larger data sets.
For data sets with more than 5000 rows or more than 50
columns, MetaOD runs somewhat faster. However, since the
running time is in seconds, the difference is not significant in
practice and is worth the improvements in ROC AUC scores.

4 Conclusions and Summary

This paper presents a metalearning method for outlier detec-
tion with the use of a labeled transfer resource. All data sets in
the transfer resource are converted into a uniform representa-
tion of anomaly scores. These scores are then combined using
a meta-model that can be learned from the transfer resource
because of the availability of ground-truth labels. Given a
new data set (without labels), it can be transformed to the
same score-based representation, and the learned model on
the transfer resource can be used to classify points as anoma-
lies. The use of a combination function of different pipelines
makes this work a form of metalearning ensemble. There-
fore, the work combines ideas from metalearning, transfer
learning, and outlier ensembles. Experimental results with
T-AutoOD show impressive performance on a wide variety
of data sets. In future work, we will examine how to speed
up T-AutoOD by leveraging the intuition that some outliers
are much easier to identify than others — in such cases, the
pipelines may need to executed only on the “difficult” in-
stances of the data set.
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Data set Oracle SB MOD TOD # rows # cols % OUT MOD RT TOD RT
aloi (dami) 0.73 0.55 0.76 0.85* 48267 27 3.04 26.82 309.94
annthyroid (odds) 0.99 0.92 0.91 0.96 6699 6 7.42 5.86 8.64
annthyroid (dami) 0.99 0.76 0.68 0.90 6628 21 5.0 4.31 16.28
arrhythmia (odds) 0.86 0.66 0.73 0.69 391 274 14.6 9.41 274.1
arrhythmia (dami) 0.86 0.65 0.68 0.6 249 259 20.0 8.14 231.8
breastw (odds) 1.0 0.99 0.99 0.99 449 9 34.99 3.29 0.88
cardio (odds) 0.98 0.86 0.87 0.92 1663 21 9.61 3.85 8.14
cardiotocogr. (dami) 0.96 0.79 0.83 0.96* 1656 21 20.0 3.79 7.99
glass (odds) 0.92 0.83 0.47 0.73 210 9 4.21 3.34 0.79
glass norm (dami) 0.93 0.89 0.87 0.75 210 7 4.21 3.5 0.71
heartdisease (dami) 0.97 0.8 0.9 0.69 155 13 19.79 3.62 0.84
hepatitis (dami) 0.87 0.62 0.67 0.63 72 19 9.46 3.81 0.88
ionosphere (odds) 1.0 0.95 0.91 0.62 230 33 35.9 3.48 1.2
ionosphere (dami) 0.98 0.95 0.89 0.63 230 32 35.9 3.42 1.17
letter (odds) 0.98 0.78 0.88 0.95 1507 32 6.25 6.53 9.87
lympho (odds) 1.0 0.95 0.97 1.0* 147 18 4.05 3.41 0.92
lymphography (dami) 1.0 1.0 0.94 0.93 147 47 4.05 3.63 3.63
mammography (odds) 0.88 0.82 0.83 0.79 10977 6 2.33 4.57 18.42
mnist (odds) 0.98 0.93 0.92 0.78 6937 100 9.21 27.01 94.03
musk (odds) 1.0 1.0 1.0 0.94 2979 166 3.17 6.56 145.46
optdigits (odds) 0.99 0.84 0.81 0.89 5091 64 2.88 11.05 37.26
outlier ecoli norm 0.94 0.81 0.86 0.93 332 7 2.68 3.27 0.78
outlier yeast 0.83 0.76 0.76 0.82 1305 8 4.76 3.71 3.82
ozone onehr outlier 0.71 0.38 0.4 0.48 2475 72 2.88 4.5 26.55
pageblocks (dami) 0.98 0.95 0.71 0.93 4907 10 4.98 3.9 10.45
parkinson (dami) 1.0 0.99 0.77 0.87 53 22 20.0 3.33 0.88
pendigits (odds) 1.0 0.98 0.76 0.81 6747 16 2.27 6.58 15.89
pima (odds) 0.82 0.65 0.57 0.52 505 8 34.9 3.82 2.08
pima (dami) 0.85 0.79 0.72 0.89* 505 8 20.0 4.11 2.03
satellite (odds) 0.82 0.81 0.66 0.66 4421 36 31.46 5.45 13.56
satimage-2 (odds) 1.0 1.0 0.97 0.94 5760 36 1.22 4.28 15.35
shuttle (dami) 1.0 0.71 0.63 0.98 1005 9 1.28 3.48 1.72
smtp (odds) 0.97 0.93 0.72 0.91 6030 3 0.03 4.26 4.8
spambase (dami) 0.86 0.73 0.7 0.88* 2540 57 20.0 4.32 26.73
stamps (dami) 0.96 0.94 0.92 0.98* 314 9 4.92 3.64 0.83
thyroid (odds) 1.0 0.99 0.99 0.99 3697 6 2.47 4.87 5.37
vertebral (odds) 0.91 0.45 0.5 0.65 215 6 12.5 3.33 0.69
vowels (odds) 1.0 0.95 0.5 0.97 1413 12 3.43 3.7 4.84
waveform (dami) 0.9 0.61 0.59 0.98* 3359 21 2.9 5.09 13.16
wbc (odds) 0.98 0.94 0.95 0.97 362 30 5.56 3.93 4.41
wbc (dami) 1.0 0.99 1.0 1.0* 218 9 4.48 3.35 0.84
wdbc (dami) 1.0 0.98 0.5 0.98 362 30 2.72 3.64 5.19
wilt (dami) 0.95 0.42 0.85 0.78 4584 5 2.0 5.46 8.25
wine (odds) 1.0 0.72 0.5 0.97 124 13 7.75 3.27 0.86
wpbc (dami) 0.87 0.5 0.49 0.53 156 33 23.74 3.61 1.14

Table 4: This Table shows the performance on 45 data sets taken from ODDS and DAMI with different methods. The best performance in
terms of the AUC score among SL (or Single-best), MOD (or MetaOD), and TOD (or T-AutoOD) is shown in bold. % OUT stands for
“percentage of outliers” in the data set. The use of an asterisk demarcates when T-AutoOD outperforms or matches Oracle. For MetaOD and
T-AutoOD, the numbers are Average AUC ROC across 10 runs with different random seeds. T-AutoOD wins 27 data sets while MetaOD
wins 14 data sets, they tie for four data sets. MOD RT stands for MetaOD Run time and TOD RT stands for T-AutoOD Run time, both in
seconds.
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