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Abstract
Deep Neural Networks (DNNs) can be represented
as graphs whose links and vertices iteratively pro-
cess data and solve tasks sub-optimally. Complex
Network Theory (CNT), merging statistical physics
with graph theory, provides a method for interpret-
ing neural networks by analysing their weights and
neuron structures. However, classic works adapt
CNT metrics that only permit a topological analy-
sis as they do not account for the effect of the input
data. In addition, CNT metrics have been applied
to a limited range of architectures, mainly including
Fully Connected neural networks. In this work, we
extend the existing CNT metrics with measures that
sample from the DNNs’ training distribution, shift-
ing from a purely topological analysis to one that
connects with the interpretability of deep learning.
For the novel metrics, in addition to the existing
ones, we provide a mathematical formalisation for
Fully Connected, AutoEncoder, Convolutional and
Recurrent neural networks, of which we vary the
activation functions and the number of hidden lay-
ers. We show that these metrics differentiate DNNs
based on the architecture, the number of hidden lay-
ers, and the activation function. Our contribution
provides a method rooted in physics for interpret-
ing DNNs that offers insights beyond the traditional
input-output relationship and the CNT topological
analysis.

1 Introduction
Deep Neural Networks (DNNs) are learning algorithms

loosely inspired by the human brain: they consist of layers
of interconnected nodes called neurons that process an in-
put to produce an output [Bishop, 1995; Schmidhuber, 2015;
Goodfellow et al., 2016]. Such models perform remarkably
on many tasks without requiring humans to engineer features
manually, as each DNN layer delegates neurons to learning
and representing specific features, the so-called hierarchical
representation of the input [Singh et al., 2018]. However,
the outstanding ability of DNNs to learn these representations
is accompanied by the challenge of interpreting both what

happens inside the neural networks and the mapping process
between a representation (data) and its label (output) [Mon-
tavon et al., 2018; Ghorbani et al., 2019]. Since the onset of
the modern era of machine learning, interpreting the learn-
ing mechanisms of neural networks has emerged as a primary
area of research, as highlighted in seminal works such as Er-
han et al., Karpathy, and Zeiler et al. [2009; 2015; 2014]. In
this work, we seek to unify, understand and represent DNNs
and their dynamics through the lens of graph models. Graph
models works include, among the others, Graph-Based Mod-
els [Kipf and Welling, 2017], Layer-wise Relevance Propa-
gation [Montavon et al., 2019], and Complex Network The-
ory [Boccaletti et al., 2006]. In particular, Complex Net-
work Theory (CNT) is a branch of mathematics that repre-
sents complex systems, from city connectivity to networks
of computers [Porta et al., 2006b], by modelling and then
simulating their dynamics through graphs where nodes repre-
sent entities and vertices relationships [Crucitti et al., 2004;
Porta et al., 2006a; Chavez et al., 2010]. CNT offers an in-
tuitive method for conceptualising DNNs, where neurons are
analogous to graph nodes and connections to weighted edges.

This paper characterises DNNs as graphs via CNT met-
rics: we develop and unify a set of metrics that describe
a network’s weights, neurons, and the hidden layers’ be-
haviour: we uncover consistent trends across various archi-
tectures, initialisations, and objective tasks across range of
network architectures, including Fully Connected (FC), Au-
toEncoders (AE), Convolutional (CNNs), and Recurrent Neu-
ral Networks (RNN). The visual representations of the CNT
metrics provide insights into a DNN’s decision process. In
synthesis, our work formally connects and grounds the ex-
isting work in the field [Testolin et al., 2019; Scabini et al.,
2022] by unifying and extending existing CNT metrics such
as Link Weigths Dynamics, Nodes Strength and Layers Fluc-
tuation [La Malfa et al., 2021] moving beyond a topological
analysis to account for the effect of the input data. Section 2
surveys the literature of CNT applied to DNNs. In Section 3,
we introduce our methodology, i.e., a unified framework to
study DNNs via CNT metrics and how to compute the var-
ious metrics for different DNN architectures. Section 4 re-
ports results for different architectures, activation functions,
and shallow and deep networks. We conclude the article with
some ideas for further development and future works in this
raising area of research.
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2 Related Works

Testolin et al. [2019] first used CNT to interpret deep learn-
ing models on classification tasks. Their work leverages CNT
to retrieve information from Deep Belief Networks, a gener-
ative model whose unsupervised learning phase differs from
feed-forward neural networks. They conducted experiments
on MNIST and discovered a tension between elicited and sup-
pressed neurons when classifying digits and that suppression
is correlated with the efficiency of a network on the classifi-
cation task. Zambra et al. [2020] moved beyond neuron acti-
vations and studied DNNs connected components, or ‘motifs’
as connectivity patterns between neurons or layers. ‘Motifs’
shed light on how a DNN learns and generalises. They dis-
covered that initialising a neural network weights is key to the
emergence of such ‘motifs’ and connects to accurate learning.
In their study, Petri et al. [2021] show the inherent trade-offs
between the capacity of a DNN to learn, generalise and exe-
cute multiple tasks simultaneously. This finding underscores
a critical challenge in developing versatile and efficient AI
systems unveiled through the analysis of neural networks us-
ing topological representations, an approach akin to CNT that
examines a network structure and connectivity. In continuity
with Petri et al., Saxe et al. [2022] introduce the Gated Deep
Linear Network model. Through this model, they reveal that
the learning process in structured networks is a ‘neural race’
in which different components compete to learn and repre-
sent information. This process is biased towards forming
structured representations of knowledge, which determine a
DNN’s ability to generalise, transfer knowledge and handle
multiple tasks simultaneously. La Malfa et al. [2021] study
the DNNs training dynamics through the lens of CNT. Their
approach is local and global in that it studies single networks
and populations of evenly initialised DNNs. They formalise
metrics for weights, neurons and hidden layers, yet their mea-
sures do not account for the value of the input. Scabini et
al. [2022] unveil the topological properties of a broad range
of FCs and the benefits of random weight initialisation. They
introduce Bag-Of-Neurons, a technique designed to identify
topological signatures to group similar neurons (i.e., those
dedicated to solving a specific sub-problem of a task such as
edge detection).

3 Methodology

First, we provide background notation to describe a DNN via
CNT metrics [Testolin et al., 2019; La Malfa et al., 2021]:
the reference architecture is an FC network that solves a
classification task. We then introduce CNT metrics that ac-
count for the input data via sampling from the training dis-
tribution. Finally, we show how to compute these metrics
for a broad range of neural network architectures, including
CNNs and RNNs. We also briefly discuss how attention net-
works [Vaswani et al., 2017] can be studied as Complex Net-
works, though we do not cover Transformers as we believe,
given their complex architecture, they constitute a separate
work.

3.1 Background
DNNs as graphs have three main components: the input
layer, which is the ‘receptor’ of the input data (e.g., pixels
of an image, audio samples, textual data, etc.), the hidden
layers, which are stacked layers of neurons that transform the
input via affine transformation followed by non-linear func-
tion activations, and the output, e.g., the network’s classifica-
tion. Formally, we consider an FC network that solves a su-
pervised classification task, i.e., the network learns an input-
output mapping f : Rd −→ Rm that minimises a generic loss
function L(f(x), y), between each input-output pair (x, y).
An input x is a d-dimensional vector x ∈ Rd drawn from a
distribution, while each corresponding output is either from a
discrete set in case of classification, i.e., c ∈ C . |C| = m,
or it is continuous in case of regression, i.e., y ∈ Rm. An FC
architecture consists of L > 0 dense layers stacked together,
each of a variable number of neurons: within each hidden
layer ℓ, a neuron n

[ℓ]
i is connected through a weighted link

to all the neurons of the successive layer ℓ + 1. The output
z[ℓ] of a layer ℓ is the product of an affine transformation be-
tween a matrix of weights Ω[ℓ], plus eventually a bias term
β[ℓ], namely z[ℓ] = z[ℓ−1]Ω[ℓ] + β[ℓ], followed by a non-
linear activation function f [ℓ](z[ℓ]). For an FC network, Ω[ℓ]

is a matrix of size N [ℓ] × N [ℓ+1] and β[ℓ] is a vector of size
N [ℓ+1]. We denote the input and output vectors as x = z[0]

and y = z[L], while Ω[ℓ] and β[ℓ] refer to the parameters of
a neural network layer ℓ. The output of the neural network
is defined as y = f [L](z[L]) = z[L−1]Ω[L] + β[L]. For
a classification task, the output is a vector of real numbers
y ∈ Rm, from which the argmax operator extracts the pre-
dicted class. We refer to the input-output relation of a neural
network at layer ℓ as z[ℓ] = f(x, Ω[:ℓ], β[:ℓ]).

3.2 Complex Networks Metrics for DNNs
A DNN can be represented as a set of nodes (neurons) con-
nected by weighted edges. This intuition is sufficient to de-
scribe a DNNs via CNT. Formally, a DNN is a directed bi-
partite graph G = ⟨N,E⟩, where each node n

[ℓ]
i ∈ N

corresponds to a neuron in the ℓ-th hidden layer. The inten-
sity of a connection is a real number ω[ℓ]

i,j assigned to an edge
(e

n
[ℓ]
i ,n

[ℓ+1]
j

∈ E) that connects two neurons.

Link Weights. The Link Weights provide insight into how
weights and biases adapt during training. Standard measure-
ments of such metrics are the weights mean and variance at
each layer during training. For DNN at layer ℓ they are de-
fined as:

µ[ℓ] =
1

N [ℓ]N [ℓ+1]

N [ℓ]∑
i=1

N [ℓ+1]∑
j=1

ω
[ℓ]
i,j + β

[ℓ]
i (1)

δ[ℓ] =
1

N [ℓ]N [ℓ+1]

N [ℓ]∑
i=1

N [ℓ+1]∑
j=1

((ω
[ℓ]
i,j + β

[ℓ]
i )− µ[ℓ])2 (2)

Monitoring weights mean and variance throughout training
provides insights into the learning process’s effectiveness and
stability. If the norm of the weights does not increase, it could
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indicate over-regularisation in the model. Conversely, exces-
sively large weight values might lead to overfitting.

Nodes Strength. Formally, the strength s
[ℓ]
k of a neuron

n
[ℓ]
k is the sum of the weights of the edges incident in n

[ℓ]
k .

Since neural network graphs are directed, two components
contribute to the Node Strength: the sum of the weights of
outgoing edges s[ℓ]out,k, and the sum of the weights of in-going

links s[ℓ]in,k.

s
[ℓ]
k = s

[ℓ]
in,k + s

[ℓ]
out,k =

N [ℓ]∑
i=1

(ω
[ℓ]
i,k + β

[ℓ]
k )+

N [ℓ+1]∑
j=1

ω
[ℓ+1]
k,j (3)

Node strength reflects how strong a connection is for a spe-
cific feature. In literature, the Node Strength account for both
in- and out-coming edges [La Malfa et al., 2021]; we will
consider them separately.
Layers Fluctuation. Layers Fluctuation extends the idea
of Nodes Fluctuation [Porta et al., 2006b] to measure the
variability of metrics at the level of a network’s hidden lay-
ers. CNT classically defines Nodes Disparity as Y [ℓ] =∑N [ℓ]

i=1 [ω
[ℓ]
i /s

[ℓ]
i ]2. However, weights generally have positive

and negative values that could cancel each other out. To ad-
dress this issue, we propose a metric designed for DNNs that
captures the strength fluctuations within each layer, reflecting
the interactions among nodes at the same depth. The Layers
Fluctuation is defined as:

Y [ℓ] =

√∑N [ℓ]

i=1 (s
[ℓ]
i − ŝ[ℓ])2

I
(4)

where ŝ[ℓ] is computed as the average value of Nodes Strength

at layer ℓ, namely ŝ[ℓ] =
1

N [ℓ]

∑m
i=1 s

[ℓ]
i , being N [ℓ] the num-

ber of nodes/neurons at layer ℓ. This metric identifies asym-
metries and disparities in the network at the layer level rather
than focusing on individual nodes. Unlike the standard Nodes
Fluctuation, Layers Fluctuation characterises the dynamics of
an entire layer and accounts for bottlenecks within the net-
work architecture.

3.3 Data-dependent CNT Metrics
We now introduce and formalise CNT metrics that account
for the value of the input data, namely the Neurons Strength
and Neurons Activation. Specifically, the training data distri-
bution informs the computation of Neurons Strength and Neu-
rons Activation so that for two different datasets, the results
would vary accordingly (while it is not the case for the previ-
ous metrics). We then discuss how to compute all the above
CNT metrics, including Nodes Strength and Layer Fluctua-
tion to CNNs and RNNs.
Neurons Strength. The mathematical formulation of Neu-
rons Strength for a neuron n

[ℓ]
k in layer ℓ is given by:

ζ
[ℓ]
k =

N [ℓ]∑
i=1

z
[ℓ−1]
i ω

[ℓ]
i,k + β

[ℓ]
k ,

z[ℓ−1] = f(x,Ω[:ℓ], β[:ℓ]) . x ∼ X (5)

Figure 1: For CNNs, CNT metrics are computed by isolating each
input patch and the kernel responsible for a dot-product in a layer
(left), while for RNNs, metrics can be computed by unfolding each
input feature through time (right).

Here, ζ [ℓ]k represents the strength of neuron k in layer ℓ, con-
sidering the effects of both the activation functions of previ-
ous layers and the input values drawn from a distribution X .
This approach provides a more comprehensive understanding
of the neuron’s role and influence within the network, factor-
ing in the data being processed.
Neurons Activation. In Deep Neural Networks (DNNs),
each neuron’s activation level is determined by both the in-
put values and the specific activation functions used in the
network. The activation of a neuron in layer ℓ can be mathe-
matically expressed as:

a
[ℓ]
k = f [ℓ](

N [ℓ]∑
i=1

z
[ℓ−1]
i ω

[ℓ]
i,k + β

[ℓ]
k ),

z[ℓ−1] = f(x,Ω[:ℓ], β[:ℓ]) . x ∼ X . (6)

This equation highlights how the activation value a
[ℓ]
k of a

neuron depends on the weighted sum of activations from the
previous layer, adjusted by the neuron’s weights and bias, and
then transformed by the activation function f [ℓ]. A neuron ex-
hibiting an unusually high Node Strength transmits a stronger
signal than others. In such a scenario, an input does not elicit
all the neurons uniformly, i.e., a neuron conveys more sig-
nificant information for the classification task. Conversely, a
neuron that transmits a weak signal might be a candidate for
pruning, which can help reduce the overall complexity of the
network without significantly impacting the layer’s output.

3.4 CNT Metrics: Beyond Fully Connected Layers
The role of architectural inductive biases in enhancing the
performance of deep learning models is well-established and
supported by decades of extensive research. These biases,
integrated into a model architecture, have significantly influ-
enced the field of artificial intelligence. For instance, CNNs
were designed with biases towards local connectivity, in-
spired by the human visual system [Lecun and Bengio, 1995].
Similarly, the development of recurrent networks, particularly
the introduction of gates and memory cells in Long Short-
Term Memory (LSTM) networks [Hochreiter and Schmidhu-
ber, 1997], exemplifies how these biases enable the retention
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and accessibility of information over extended time steps. In
this section, we adapt CNT metrics to CNN and RNN ar-
chitectures, thus moving beyond the model of reference in
most works on CNT applied to DNNs. We also discuss self-
attention, the building block of Transformers [Vaswani et al.,
2017], and how its architecture can be reconciled with one
amenable to be studied with CNT. However, we leave the
formalisation and the experiments for Transformers as future
work.

Convolutional Neural Networks. Convolution is the
building block operator in CNNs. An input matrix of size
w × h (e..g, an image represented as a grid of pixels) is split
into (possibly overlapping) patches of size k×k. A point-wise
multiplication between each patch and the kernel, which has
the same size as each patch, shrinks the input and produces an
output that is then activated and fed to the next DNN’s layer.
In mathematical terms, for an input matrix zℓ of dimensions
w×h and a kernel Ω of size m×m (with m ≤ w and m ≤ h),
the convolution operation can be represented as z′ = z ∗ Ω.
We now report the formula to compute the Neurons Strength
for a CNN layer to highlight the differences with the Fully
Connected case. For the Neurons Activation, the operations
are analogous.

ζ
[ℓ]
k = z

[ℓ−1]
k ∗ Ω[ℓ] + β

[ℓ]
k ,

z[ℓ−1] = f(x,Ω[:ℓ], β[:ℓ]) . x ∼ X . (7)

In the previous equation, z[ℓ−1]
k ∗ Ω[ℓ] represents the convo-

lution between the input patch z
[ℓ−1]
k and the entire kernel of

weights at layer ℓ. One straightforward method to apply CNT
metrics to this convolution operation is to transform the con-
volution into a dot product operation using a Toeplitz matrix.
However, while this method is conceptually simple, it sig-
nificantly increases both the time and space complexity from
linear to quadratic, and it is thus expensive for large networks.
Our approach, therefore, is to tackle this challenge efficiently.
We isolate each input portion that is element-wise multiplied
by the kernel. By linking each input neuron to its corre-
sponding output neuron (as illustrated in Figure 1, left), we
can efficiently compute the CNT metrics for any layer. This
method allows to apply complex network analysis to convo-
lution operations without the prohibitive computational cost
of the Toeplitz matrix approach.

Recurrent Neural Networks. RNNs are designed to pro-
cess sequential input, where the output of the previous step
influences the output at each step in the sequence. Recur-
sion makes RNNs ideal for tasks involving temporal data, like
speech recognition or language modelling. The output of a
single-layer recurrent RNN for the t > 0 temporal dimension
of x is the following:

h(t+1) = f(z(t)Ω+ h(t)U). (8)

In the previous equation, where the bias term is omitted for
clarity, U represents a matrix of trainable parameters used
to process the hidden unit h(t). Usually the value of h(1)

is initialised to zero. To adapt CNT metrics for RNNs, we
‘unfold’ each input feature along its temporal dimension and

treat each recurrent step as a layer-wise multiplication in an
FC topology. This transformation is computationally less ef-
ficient than relying on symbolic loops, yet it is necessary to
compute the CNT metrics for each input feature. The closed
form formula to compute the Neurons Activation for an RNN
Cell with one hidden layer, at time t > 0, and with parameters
Ω and U (as sketched in Figure 1, right) is the following:

ζ(t) = x(t−1)Ω+ f(. . . f(x(1)Ω+ h(1)U) . . . )U

. x ∼ X . (9)

In the previous equation, the value of the Neuron Strength
is computed by first sampling an input x from the input data
distribution X , then by recursively unrolling the RNN and
processing each temporal feature x(j) to compute the value
of the hidden unit h(j) at times j < t. In the experiments,
we show how the Neuron Strength can enhance a model’s
interpretability of which input features elicit the most neurons
in an RNN recursive layer.

Self-attention. We conclude the section with a concise dis-
cussion of how self-attention can be expressed in a form
amenable to study with CNT metrics. Self-attention (the
building block of Transformers) is mathematically expressed
as z = softmax(⟨xWK , xWQ⟩)xWV , where ⟨xWK , xWQ⟩
is the dot-product between a key and a query.1 Being the key-
query a dot-product between two tensors, it can be expressed
as an operation between nodes in a Complex Network and
thus studied via CNT. The same argument is valid for multi-
plying the attention scores with xWV . We leave the formal-
isation of Transformers, the building block of modern Large
Language Models, and the experiments to interpret their in-
ternal to future works.

4 Experiments
In this section, we conduct experiments to assess to which

extent CNT identifies patterns in DNNs: we define three com-
plementary levels of analysis. The first level (I) aims to dis-
tinguish dominating CNT patterns for architecturally simi-
lar networks: we train on MNIST and CIFAR10 three-layer
depth FCs, CNNs, RNNs and AEs equipped with the same
activation functions and a comparable number of parameters.
While we test FCs, CNNs, and RNNs on image classification,
AEs are trained to compress and reconstruct the input. As we
keep the architectures as simple as possible, MNIST results
in a relatively simple task where all the models perform well,
while on CIFAR10, CNNs have better performances aided by
their inductive bias towards image classification. The second
level (II) studies the incidence of different activation func-
tions (i.e., linear, ReLU, sigmoid) on CNT metrics for FCs,
CNNs, RNNs and AEs. Similarly to the previous setting, the
networks are architecturally similar in terms of hidden layers
and number of trainable parameters, yet differ in their activa-
tion functions. The third level of analysis (III) explores the
impact of depth (i.e., the number of hidden layers) on CNT
metrics. Deeper neural networks learn more complex features

1The normalisation factor inside the softmax can be, without loss
of generality ignored.
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Figure 2: Analysis of CNT metrics across the second and third layers (hidden and output layers) for three-layer depth FCs, CNNs, RNNs
and AEs on the MNIST dataset. Each column corresponds to an architecture, and the figures illustrate the distribution functions computed on
a pool of 30 neural networks trained on the task.

Figure 3: Neurons Strength metric for 30 RNNs on MNIST (top) and CIFAR10 (bottom) classification tasks, distinguishing between
networks that have been trained and those that remain untrained. The left side of the figure quantifies the Neurons Strength, while the right
side visualises a global heatmap of neurons that are most elicited by MNIST/CIFAR10 inputs.

from data and positively correlate with a DNN’s performance
on the task. Also, deeper layers can learn increasingly ab-
stract representations of the data. In image processing, initial
layers might detect edges and textures, while deeper layers
might identify more complex patterns or objects. We inves-

tigate and report the impact of depth by varying the number
of hidden layers of FCs and AEs from three to seven (while
further analyses are reported in the code repository).

We conduct all the experiments on two standard datasets in
pattern recognition and computer vision, namely MNIST and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4365



Figure 4: Analysis of CNT metrics for three-layer depth FCs, CNNs, RNNs and AEs on the CIFAR10 dataset and different activation
functions (linear, ReLU and sigmoid). Each column corresponds to an architecture, and the figures illustrate the distribution functions
computed on a pool of 30 neural networks trained on the task.

CIFAR10 [Lecun and Bengio, 1995; Krizhevsky et al., 2010].
While relatively simple, these two benchmarks set a baseline
for future analyses on more complex tasks; we stress that our
framework can be applied to any dataset a DNN can tackle.
Generally, we compute all the CNT metrics on a 30 trained
neural network pool. We initialise the weights of each DNN
via sampling from a Gaussian distribution of known variance
between 0.05 (MNIST) and 0.5 (CIFAR10).2

I. CNT Metrics of different architectures. MNIST im-
ages consist of white-scaled digits on a dark background. As
reported in the literature, FC networks tend to present ‘dead
units’, i.e. an abundance of negative or close to zero weights,
a hint of an over-parametrised network [Testolin et al., 2019].
Our results confirm this trend for FCs and extend it to all the
other architectures (CNNs, RNNs and AEs), as we show in
Figure 2; yet, for AEs, the phenomenon is more remarked,
with a probability distribution of Neurons Strength and Acti-
vation peaked respectively around negative values and at the
extremes of the distribution. We further notice that AEs com-
press information by design, i.e., a ‘bottleneck’, as shown in
the third layer of Figure 2. On the other hand, CNNs’ Nodes
Strength and Neurons Strength are multimodal, with spikes
corresponding to the patterns a network learns to perform lo-
cal edge detection. We hypothesise that CNNs specialise neu-
rons within the same layer to activate them for different input
values. For example, the spikes may represent the informa-
tion relative to the number of edges in a digit, as that is one
of the sub-tasks that requires more information to be encoded.
Globally, the influence of positive and negative weights in FC,
AEs and RNNs seems balanced, while CNNs exhibit a profu-
sion of negative weights. This suggests that, during the train-

2Higher variance in the parameter initialisation can sometimes
help the network to escape poor local minima early in training,
which are more prevalent in datasets like CIFAR10.

ing phase, CNNs may prioritise different input features than
FCs, RNNs and AEs. RNNs’ Neuron Strength distribution
exhibits a pronounced Kurtosis, a feature that isn’t observed
when analysing Node Input Strength alone and is thus im-
putable to the data distribution. Additionally, the Neuron Ac-
tivation displays a unique pattern: unlike other architectures,
the density is distributed not just at the extremes of the sig-
moid function, but also significantly in the middle (between
0.4 and 0.6), a sign that recurrent architectures are less likely
to settle at the extremes, resulting in more varied activation
patterns. Regarding interpretability, we further investigate
the dynamics of the Neurons Strength in an RNNs’ autore-
gressive loop. This approach involves an RNN sequentially
processing a segment of the input, updating its hidden states,
and ultimately classifying the image. In Figures 3, we com-
pare the Neurons Strength of trained and untrained RNNs on
the MNIST and CIFAR10 datasets. In both cases, the Neu-
rons Strength of trained RNNs localises a specific image re-
gion that elicits the neurons the most, while that doesn’t occur
for untrained networks. This suggests that the training phase
calibrates a model to activate mostly on specific patterns lo-
cated in the central part of the input. We compare our results
with that of Layer-Wise Relevance Propagation (LRP) [Bach
et al., 2015] on a sample of inputs of the same class as those
in Figure 3 (top), a standard interpretability framework that
identifies the most activated neurons at inference time and
maps them to specific pixels in the input region. We report
the interpretability heatmaps for different LRP implementa-
tions in Figure 6 on the MNIST dataset. Unlike CNT metrics,
LRP is local (i.e., it allows determining the salient features
of a single input point), works backwards (from the output
to the input), and covers only neurons. Our techniques are
global and local (they allow us to analyse single and multiple
data points), work forward (neural networks are not invert-
ible, which causes a loss of information in LRP), and extend
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Figure 5: Neurons Strength and Activation, and scatter-plot of the correlation between Nodes Strength and Neurons Strength and Activation,
for seven-layer depth FCs and AEs. The figures illustrate the distribution functions computed on a pool of 30 neural networks trained on the
task.

to weights, neurons, and layers. Interestingly, LRP and CNT
metrics identify different activation patterns in the input. For
the MNIST dataset, LRP usually identifies the receptive field
of the input numbers. At the same time, CNT discriminates
based on the upper region of each image, a result that requires
further investigation in future works.

Figure 6: Activation patterns of variations of LRP implementations
on inputs from the MNIST that belong to class nine (as per Figure 3,
top). Credits for the implementation to TorchLRP.

II. Incidence of the activation function. Non-linear ac-
tivation functions allow models to learn complex patterns

in data. We compare the effects of linear, ReLU, and sig-
moid activation functions for FCs, CNNs, RNNs and AEs on
CIFAR10. Linear activations, lacking the ability to model
non-convex optimisation landscapes, typically lead to Neu-
rons Strength and Neurons Activation distributions centred
around zero. In contrast, ReLU and sigmoid activations result
in asymmetric distributions, favouring negative values, often
correlating with enhanced accuracy. Notably, ReLU’s inher-
ent asymmetry results in distributions skewed more signifi-
cantly towards extreme negative values than those observed
with sigmoid, as we report in Figure 4 (first column). AEs
with linear and ReLU activations show similar behaviours to
FCs. However, models equipped with sigmoid exhibit Neu-
ron Activation distributed evenly around its support. This
phenomenon suggests the AEs correctly reconstruct the input
data with dynamics that diverge from FCs, CNNs and RNNs,
which solve a different task (classification). For linear mod-
els, CNNs’ Neurons Activation centres around zero, with low
variance compared to other architectures. Conversely, non-
linear activations skew the distribution of the metrics toward
zero. Both ReLU- and sigmoid-activated networks leverage
negatively activated neurons to discriminate between differ-
ent classes. This phenomenon is remarkably different from
what happens with FCs and RNNs where the Neurons Activa-
tion accumulates around the extreme values of the activation
(zero and one), suggesting that the decision rules encoded in-
ternally by CNNs may diverge from that of other architec-
tures.

III. Incidence of neural network depth. We conclude
with an analysis of the effect of depth on the dynamics of
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Figure 7: Neurons Strength and Activation, and scatter-plot of the
correlation between Nodes Strength and Neurons Strength and Ac-
tivation, for three-layer depth FCs and AEs. The figures illustrate
the distribution functions computed on a pool of 30 neural networks
trained on the task.

CNT metrics on CIFAR10. We compare FCs and AEs with
three and seven layers, respectively. While FCs perform clas-
sification, AEs are trained to reconstruct the input with min-
imal data loss.3 In Figure 7, we report the Neurons Strength
and Activation, which we further correlate with the Nodes
Strength. Shallow FC architectures operate with similar dy-
namics as deeper networks, with the second and third layers
of Figure 7 (top) that overlap with respectively the fourth and
seventh of Figure 5 (top): in conclusion, deeper networks ex-
hibit more complex patterns in their hidden layers, that shal-
low lack. For this task, deeper networks leverage the same
‘building block’ of shallow networks to build increasingly
complex input representations and solve the task more accu-
rately. Conversely, the dynamics of shallow and deep AEs
diverge sensibly: seven-layer AEs seem not to leverage exist-
ing ‘building blocks’ of shallow architectures, suggesting that
data compression is a dynamic process heavily influenced by
the number of layers in a network. We also notice that the
Nodes Strength does not correlate with the Neurons Strength
or Activation, supporting the development of CNT metrics
that incorporate the effect of data in their dynamics.

5 Conclusions and Future Works
This paper introduces a unified framework for representing
neural networks via CNT, incorporating new metrics influ-
enced by input data and enhancing traditional topological
CNT analysis. Our extensive experiments on FCs, CNNs,

3Results for the other architectures on MNIST and CIFAR10, for
five and nine layers, are reported in the code repository.

RNNs, and AEs reveal distinct dynamics and training patterns
across architectures, activation functions, and depths. our key
findings include over-parametrisation in most architectures,
especially with the MNIST task, and CNNs demonstrating
localised learning through multimodal Nodes and Neurons
Strength. Non-linear activations in models lead to asym-
metric distributions, causing complex pattern learning. AEs’
Neurons Activation distribution in deeper models suggests
their learning dynamics do not leverage the same dynamics
as shallow architectures. Unlike FCs and RNNs, CNNs with
non-linear activations learn discriminative patterns for clas-
sification, mostly in negative regions of the activation func-
tion. In future works, we will extend this framework to ad-
vanced architectures, both theoretically and empirically. In
particular, we believe that CNT can contribute to interpret-
ing self-attention [Vaswani et al., 2017], an architecture that
powers language and computer vision models. This work is
also meant to encourage other researchers with expertise in
both machine learning and physics to contribute to the for-
malisation of learning systems as graphs to unveil their train-
ing dynamics as the current state-of-the-art approaches do not
study the evolution of untrained networks during the learning
phase.
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[Montavon et al., 2019] Grégoire Montavon, Alexander
Binder, Sebastian Lapuschkin, Wojciech Samek, and
Klaus-Robert Müller. Layer-Wise Relevance Propagation:
An Overview, pages 193–209. Springer International
Publishing, Cham, 2019.

[Petri et al., 2021] Giovanni Petri, Sebastian Musslick,
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