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Abstract
In this paper, we address the challenge of ac-
curately modeling and predicting Gibbs free en-
ergy in solute-solvent interactions, a pivotal yet
complex aspect in the field of chemical model-
ing. Traditional approaches, primarily relying on
deep learning models, face limitations in captur-
ing the intricate dynamics of these interactions. To
overcome these constraints, we introduce a novel
framework, Molecular Modeling Graph Neural
Network (MMGNN), which more closely mir-
rors real-world chemical processes. Specifically,
MMGNN exquisitely models atomic interactions
such as hydrogen bonds by initially forming in-
discriminate connections between intermolecular
atoms, which are then refined using an attention-
based aggregation method, tailoring to specific
solute-solvent pairs. To address the challenges
of non-interactive or repulsive atomic interactions,
MMGNN incorporates interpreters for nodes and
edges in the merged graph, enhancing explainabil-
ity and reducing redundancy. MMGNN stands as
the first framework to exquisitely align with real
chemical processes, providing a more accurate and
scientifically sound approach to modeling solute-
solvent interactions. The infusion of explainability
allows for the extraction of key subgraphs, which
are pivotal for further research in solute-solvent
dynamics. Extensive experimental validation con-
firms the efficacy and enhanced explainability of
MMGNN.

1 Introduction
Understanding solute-solvent interactions in specific solvents
is pivotal for areas in physical chemistry, including chemical
reactions and electrochemistry [Varghese and Mushrif, 2019;
D’Souza et al., 2011]. A comprehensive grasp of these in-
teractions is vital not only for explanatory experimental out-
comes but also for guiding the design and control of reac-
tions and properties [Chung et al., 2022; Fang et al., 2024b;
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Figure 1: Comparison of different paradigms for Gibbs free energy
prediction. (a) Method by concatenation; (b) method by merging;
(c) a schematic diagram of the process where acetonitrile (solute) is
dissolved in ethanol (solvent); and (d) the illustration of our method.
Best viewed in color.

Xia et al., 2023b]. In this context, the solvation Gibbs free
energy ∆Gsolv emerges as a critical physicochemical prop-
erty, dictating a molecule’s behavior in solution [Low et al.,
2022]. This property is intricately linked to the solute’s parti-
tion coefficient between gas and solvent phases [Chung et al.,
2022]. However, empirically testing solute-solvent free ener-
gies for all combinations is impractical due to high costs and
extensive time requirements. This challenge necessitates an
increased reliance on deep learning models to predict these
energies more efficiently [Varghese and Mushrif, 2019].

The landscape of solute-solvent interaction modeling is
currently dominated by two primary approaches. The first,
termed embedding concatenation, employs two separate
Graph Neural Networks (GNNs) to represent solute and
solvent molecules. The individual embeddings from these
GNNs are then concatenated for subsequent prediction tasks,
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as depicted in Figure 1 (a). While effective, this method may
not adequately capture the intricate coupling between solute
and solvent. In contrast, the embedding merging approach,
shown in Figure 1 (b), seeks to address this limitation. It
also utilizes two Graph Encoders for initial representation
but differs in the subsequent processing of these embeddings.
Here, the embeddings are merged through advanced interac-
tion strategies, such as Transformer-based techniques or in-
teractive pruning algorithms, to better reflect the complex in-
teractions before making predictions.

Although the embedding merging approach marks an ad-
vancement, it falls short in accurately simulating the real
chemical processes involved in dissolution, as depicted in
Figure 1 (c). The dissolution process is characterized by the
substitution of intramolecular forces within solute and solvent
with intermolecular forces between them. This is exempli-
fied by the interaction of acetonitrile and ethanol, where in-
dividual acetonitrile molecules are gradually surrounded by
ethanol molecules. The formation of hydrogen bonds be-
tween atoms (nodes) of these molecules leads to a homo-
geneous solution. This natural dissolution process suggests
a need for an algorithm that explicitly models these inter-
molecular node interactions, rather than relying solely on
embedding-level interactions. Such a model, by more closely
mirroring actual chemical processes, is crucial for both scien-
tific accuracy and the effectiveness of the predictions.

In response to the limitations of existing models, we
propose the Molecular Modeling Graph Neural Network
(MMGNN), a novel framework designed to closely align
with the actual chemical processes in solute-solvent interac-
tions. This framework significantly improves the prediction
accuracy of Gibbs free energy. Illustrated in Figure 1 (d),
MMGNN begins by indiscriminately connecting intermolec-
ular atoms to enhance interactions, such as hydrogen bonds,
between molecules. After that, MMGNN assigns variable
weights to these connections, reflecting the different con-
straints of various chemical bonds. An attention-based ag-
gregation method is then employed, enabling the framework
to adaptively learn from diverse solute-solvent combinations.
The result is a merged graph representation for each pair,
highlighting the most significant atomic interactions.

Meanwhile, this framework also addresses potential chal-
lenges: (1) the presence of non-existent or repulsive atomic
interactions, and (2) increased complexity and convergence
difficulties in merged complete graphs for large molecular
pairs. Inspired by graph explainability algorithms, MMGNN
incorporates interpreters for both nodes and solute-solvent
edges in the merged graph. This approach effectively reduces
redundancy, focusing only on relevant interactions. The ex-
planatory subgraph is then encoded and utilized in regression
models, such as Fully Connected Neural Networks (FCNN),
to predict Gibbs free energy with greater precision.

In conclusion, the main contributions of this paper can be
summarized as follows:

• Introduction of MMGNN: We present the Molecular
Modeling Graph Neural Network (MMGNN), a pioneering
framework designed to explicitly align with actual chemi-
cal processes, enabling more accurate modeling of solute-

solvent interactions.
• Advancement in Explainability: Our approach integrates

explainability into the model, allowing for the extraction of
key subgraphs. This feature not only enhances the under-
standing of MMGNN’s predictions but also aids in further
research into solute-solvent dynamics.

• Validation through Extensive Experiments: We con-
ducted comprehensive experiments to validate MMGNN’s
performance. The results demonstrate both the accuracy
and explainability of our model’s predictions, underscoring
its effectiveness in the field of physical chemistry.

2 Related Work
2.1 Molecular Relational Learning
Generally, message passing in GNNs or graph convolutional
networks (GCNs) refers to the utilization of trainable inter-
action layers to facilitate the exchange of information among
atoms within a local neighborhood [Xia et al., 2023a; Wang
et al., 2024; Wang et al., 2023]. Behler and Parrinello are
pioneers in modelling interatomic properties [Behler, 2015;
Behler, 2016] by summing per-atom contributions in neu-
ral network predictions. Tensormol [Yao et al., 2018] em-
ploys Behler and Parrinello’s approximation to accurately
compute the dipole moment in water dimers as one water
molecule rotates about the O-H bond, resulting in reasonable
outcomes. This method is subsequently refined by integrat-
ing the atomic-pairwise into the neural network [Glick et al.,
2020] which led to a reduction in the binding energy error by
a factor of five. [Lee et al., 2023] provide a molecular rela-
tional learning framework that predicts the interaction behav-
ior based on graph information bottleneck theory. In brief, the
original method is summing overall the atoms, or fusing in-
formation after message passing process but a more rigorous
way should consider the atoms or fragments and introducing
atom-pair symmetry message passing functions.

2.2 Gibbs Free Energies Prediction Methods
Solvation free energies have been of great interest for many
years and have spurred the development of numerous pre-
dictive methods [Hildebrand, 1981]. These methods encom-
pass a range of techniques, including molecular dynamics and
quantum chemistry methods, as well as empirical or data-
driven approaches. While quantum chemistry methods such
as the SMx and COSMO(-RS) models [Klamt and Eckert,
2000; Marenich et al., 2007] are based on first-principles cal-
culations of all promising relevant conformers of the solute
and solvent molecules, they are often computationally expen-
sive and labor-intensive. In contrast, empirical or data-driven
methods could provide a faster alternative for predicting sol-
vation properties. Recent studies have aimed at improving
these models for predicting ∆Gsolv. [Vermeire and Green,
2021] utilized a transfer learning method to achieve a mean
absolute error of 0.21 kcal/mol when predicting experimental
results from a standard quantum computing dataset. simi-
larly, [Zhang et al., 2022] calculated water solvation Gibbs
free energies of more than 100,000 organic compounds, and
utilized a graph neural network (GNN) to predict these values
achieving an error of 0.4 kcal/mol.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

5809



Graph1

Graph2

H
C

O
N

Topology

Graph
Encoder

Topology

Solvent
Explainer

Solute
Explainer

…
…

Graph
Encoder

Gibs Energy

Solvent

Solute

Solution

Step1: Molecule Merging Step2: Merged Molecular Representation

atoms 
attention

aggregation

Step3: Merged Molecular Explainability Injection

∆𝐺solv

Figure 2: The overall paradigm of our method, which adheres to the realistic chemical processes. Note that the legends in the gray dotted
boxes represent the realistic chemical processes.

3 Method
3.1 Overview of the Framework
In this study, we introduce a novel merged molecular graph
model, wherein the weighted connection edges adhere to the
principles of similarity and compatibility in chemistry. To
process an input solute-solvent pair, we initially convert it
into a machine-readable topological graph and incorporate
relevant weighted edges to enhance molecular information
interaction, constructing a merged graph as detailed in Sec-
tion 3.2 and illustrated in Figure 2. Within this merged graph,
we facilitate both inter- and intra-molecular message passing
processes. In the initial layer of message passing, each atomic
feature of the solute molecule is updated independently and
subsequently acquires all corresponding atomic information
of the solvent molecule, and vice versa. In the second stage
of message passing, each atom of the solute molecule re-
ceives information beyond the atomic details in the solvent,
including bond and node information with one hop. The fi-
nal realization of the merged molecular representation is pro-
vided in Section 3.3. Additionally, we consider three dis-
tinct molecular explainability injection methods, as outlined
in Section 3.4, to highlight the most significant atomic in-
teractions. This augmentation aims to enhance the model’s
generalization capability and align it more closely with bio-
chemical realities.

3.2 Molecule Merging
The molecular structure can be naturally depicted as a topol-
ogy graph, wherein atoms serve as the nodes and bonds act as
the edges [Wen et al., 2021; Zhou et al., 2023b]. The molec-
ular graph can be formally denoted by:

G = {E ,V,U}, (1)

where E is the set of edges (bonds), and V is the set of nodes
(atoms). U is the global feature vector which is extracted
from each molecule. The detailed features used in molecular
representation are recorded in the appendix.

E = (ek, pk, qk)
Ne

k=1. (2)

Specifically, all of bonds are enumerated in a molecule. The
composition of E comprises ek, pk and qk, where ek repre-
sents the edge feature, and pk and qk, is the two atoms con-
nected by ek.

V = {vi}N
v

i=1. (3)
Similarly, V enumerates all of atoms in a molecule. vi is
atomic features vector for atom i (e.g., atomic species, va-
lence, etc.) and Nv is the total number of atoms in the
molecule. So far, the single molecular graph has been fully
defined. Next, a merged graph G̃ could be generated by es-
tablishing a weighted edge between two molecules (solute-
solvent) which connects every atom of each molecule to all
atoms in the other molecule.

G̃ = {R, E ,V,U}. (4)

The set of relation edges are R :

R = {(rk, ai, bj)}N
a×Nb

k=1 , (5)

where i ∈ {1, 2, 3, . . . , Na}, j ∈ {1, 2, 3, . . . , N b}. Na and
N b is the total number of atoms in each of the two molecules,
use rk to represent this new type of edge.

3.3 Merged Molecular Representation
Generally, in this merged molecular graph G̃ , the message
passing process is firstly run in single molecule (i.e. solute
and solvent molecules). During the message passing phase,
ek is updated to the new vector e′ij by aggregating the initially
bond features, as well as the features of the two atoms, vi and
vj , and the global features u. In addition, the atomic feature
vector, vi, for each atom i is updated into v′i:

e′ij = eij + τ [FC(vi + vj) + FC(eij) + FC(u)], (6)

êij =
σ(e

′

ij)∑
j′∈Ni

σ(e
′
ij′) + ϵ

, (7)

v′i = vi + τ [FC(vi +
∑
j∈Ni

êij ⊙ FC(vj)) + FC(u)], (8)
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where v′i and e′ij are the updated node vectors and edge
vectors. τ is the LeakyReLU activation function [Maas et al.,
2013]. FC is fully connected layer. ⊙ denotes the Hadamard
product. Then, the intramolecular atomic features could be
updated. σ(·) is the sigmoid activation function, and ϵ is a
fixed constant (0.0001) added for numerical stability. The
next atomic update step would achieve intermolecular infor-
mation passing process. In a molecule a,the atomic feature
vector vaifor each atom i is further updated as follows:

v′′ai = (1− β)v′ai + β
∑
j∈Nb

FC(δ(v′ai, v
′
bj), v

′
bj), (9)

where β are the hyperparameter that control the update rate of
information, which makes information differentiated to avoid
information decay or overwrite the original information. δ
is an additional function that measures the feature similarity
between two atoms, which is defined as follows:

δ(v′ai, v
′
bj) =

1

|v′ai − v′bj |+ ϵ
. (10)

Finally, the global feature vector u and relation bond vector
r′i is updated:

u′ = u+ τ [FC(
1

Nv

Nv∑
i=1

v′i +
1

Ne

Ne∑
k=1

e′k + u)] (11)

r′i = FC(δ(v′ai, v
′
bj)), (12)

where Nv and Ne are the number of atoms and bonds in the
molecule, respectively. vai and vbi are two atoms connected
by the relation, u is the global feature.

3.4 Merged Molecular Explainability Injection
In this part, we elaborate the process of injecting explainabil-
ity into the model. The input for the explanation module is
the representation of the merged graph. Specifically, for a
node, it receives the embedding of the node to output an im-
portance score, and for an edge, it processes the concatenated
embeddings of the two nodes connected by the edge to out-
put the importance of the edge. Specifically, we get inspi-
ration from the significant success of the post-hoc explana-
tion methods of the graph neural networks [Ying et al., 2019;
Fang et al., 2023b; Fang et al., 2024a] and design our ex-
plainers from three perspectives as follows. Note that Figure
2 illustrates the workflow of the explainer designed from the
second approach, namely the global mask-based perspective.
• The first one is the local mask-based perspective. Specif-

ically, local mask-based methods endeavour to multiply
the features v′ai and v′bi with the corresponding masks (all
are initialized to 1) pai and pbi to get v′′ai = v′aipai and
v′′bi = v′bipbi. Then, v′′ai and v′′bi is sent into the model to ob-
tain the updated output ∆Gsolv. Then they attempt to find
the optimal score pi by minimizing the difference between
this processed output ∆Gsolv and the label Y . To limit the
size of explanatory subgraphs, they apply l1 regularization
to the value of mask. In this case, the loss function is:

L = D (∆Gsolv;Y ) +
∑
i

λ(pai + pbi) · 1T, (13)

where D denotes the distance function; λ is the trade-off
parameter.

• The second one is the global mask-based perspective,
and its only difference from the first approach lies in the
method of mask generation. Here, during the process of
the adding the mask, the trainable mask pai and pbi in lo-
cal mask-based methods is replaced with a trainable MLPψ
(i.e., pai = MLPψ(v′ai), pbi = MLPψ(v′bi)). Meanwhile,
following the theory of graph information bottleneck (GIB)
[Wu et al., 2020; Yu et al., 2021], these methods instanti-
ates the information constraint (ℓp) proposed by [Miao et
al., 2022], where ℓp is defined as:

ℓpa =
∑
i

pai log
pai
k

+ (1− pai) log
1− pai
1− k

ℓpb =
∑
i

pbi log
pbi
k

+ (1− pbi) log
1− pbi
1− k

,

(14)

where k is the pre-defined hyperparameter. After applying
ℓp regularization to the value of mask, the expression of the
final loss function is:

L = D (∆Gsolv;Y ) + λ(ℓpa + ℓpb), (15)

where D denotes the distance function; λ is the trade-off
parameter.

• The third one is the gradient-based perspective. For the
v′ai and v′bi, these methods first calculate the absolute values
of the features in the derivative of ∆Gsolv w.r.t v′ai and v′bi.
After that, their importance score pai and pbi are defined
as the normalized sum of these values. Then, at the end
of each training phase, we mask some nodes and edges ac-
cording to the above derivatives, and input the remain part
to the next training phase. More formally:

pai =

(
|∂∆Gsolv

∂v′ai
| · 1T

)
, pbi =

(
|∂∆Gsolv

∂v′bi
| · 1T

)
.

(16)

After that, we conduct another merged molecular message
passing process as introduced in Section 3.3 to conduct the
final interactive prediction. Specifically, the readout phase
occurs after the desired number of message-passing layers
has taken place (as determined via hyperparameter optimiza-
tion). To aggregate the set of final feature vectors of v′solute
and v′solvent into a single vector suitable for input into a set-to-
set (set2set) module, where the solute and solvent molecular
vectors are input separately rather than incorporating them as
a whole vector that could result in a substantial loss of infor-
mation during the pooling process. The global feature vector,
being a single feature vector, is appended after the set2set
steps. This produces a final feature vector which is invariant
to permutation of atom, relation and bond indices:


v′solute = F({v′′ai}) ⇔ v′solvent = F({v′′bi})
ginteract map = v′solute ∥ v′solvent
∆Gsolv = FC(ginteract map),

(17)

where F is a set2set layer and ∥ denotes vector concatenation.
ginteract map is then input into a FCNN to obtain the result.
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MAE (↓) RMSE (↓)
FreeSolv CompSol Abraham CompSolv-Exp FreeSolv CompSol Abraham CompSolv-Exp

D-MPNN 0.684(0.052) 0.179(0.013) 0.454(0.036) 0.442(0.022) 1.164(0.055) 0.343(0.017) 0.624(0.024) 0.672(0.051)
Explainable GNN 0.724(0.031) 0.184(0.012) 0.486(0.042) 0.221(0.013) 1.276(0.045) 0.367(0.012) 0.776(0.035) 0.404(0.054)
SolvBERT 0.588(0.034) 0.167(0.014) 0.467(0.034) 0.382(0.023) 1.021(0.043) 0.328(0.020) 0.652(0.022) 0.472(0.041)
GAT 0.675(0.033) 0.187(0.011) 0.457(0.043) 0.970(0.031) 1.185(0.075) 0.390(0.012) 0.726(0.040) 0.810(0.101)
GROVER 0.623(0.054) 0.155(0.022)† 0.307(0.035) 0.382(0.023) 1.015(0.022) 0.332(0.016) 0.475(0.044) 0.491(0.053)
SMD 0.574(0.036) 0.162(0.014) 0.374(0.024) 0.633(0.044) 1.113(0.015) 0.317(0.011) 0.516(0.065) 1.023(0.152)
Uni-Mol 0.565(0.038) 0.164(0.027) 0.322(0.071) 0.214(0.022) 1.002(0.064) 0.303(0.020) 0.602(0.035) 0.373(0.043)
Gem 0.584(0.041) 0.174(0.011) 0.201(0.065) 0.253(0.023) 1.131(0.059) 0.290(0.019) 0.641(0.031) 0.551(0.023)
CIGIN 0.564(0.057) 0.164(0.016) 0.254(0.010) 0.241(0.023) 0.910(0.015) 0.318(0.020) 0.404(0.007) 0.411(0.032)
CGIB 0.531(0.034)† 0.156(0.014) 0.195(0.005)† 0.203(0.033)† 0.892(0.022)† 0.278(0.018)† 0.391(0.006)† 0.351(0.031)†
MMGNN 0.536(0.030) 0.146(0.010) 0.187(0.008) 0.171(0.013) 0.902(0.026) 0.267(0.012) 0.385(0.008) 0.303(0.033)

Table 1: Result of different methods under eight runs on FreeSolv, CompSol and Abraham datasets. (Underlined are the best results while the
top-performing baseline is highlighted with a superscript cross. Mean values are reported in the table, with standard deviations in parentheses.)

4 Experimental Results
In this section, we conduct extensive experiments to answer
the following questions:

• RQ1: Can MMGNN improve the prediction accuracy of
∆Gsolv?

• RQ2: How does the MMGNN perform when explaining
the importance of intramolecular and intermolecular fea-
tures simultaneously?

• RQ3: How effective is MMGNN in terms of generalization
capabilities?

4.1 Experimental Setup
Datasets. The data set utilized in this study is the CombiSolv-
Exp database, which is compiled by Vermeire and Green [Ver-
meire and Green, 2021], and combined the experimental data
from multiple sources. And the FreeSolv database is pub-
lished by Mobley and Guthrie [Mobley and Guthrie, 2014],
the CompSol database from Moine et al. [Moine et al., 2017],
and remaining dataset is Abraham collected by the Abraham
group [Grubbs et al., 2010].

Baselines. We compared MMGNN with some advanced
methods, such as D-MPNN [Vermeire and Green, 2021],
SolvBert [Yu et al., 2023], SMD [Meng et al., 2023], Ex-
plainable GNN [Low et al., 2022], GAT [Velickovic et al.,
2017], GROVER [Rong et al., 2020], Uni-Mol [Zhou et al.,
2023a], Gem [Fang et al., 2022], these baselines solely con-
catenate the molecular representations of solute and solvent,
but ignore the information interaction process between them.
CIGIN [Pathak et al., 2020] and CGIB [Lee et al., 2023] im-
plicitly considered the inter-molecular interactions.

Experimental settings. MMGNN is trained using the Adam
optimizer [Kingma and Ba, 2014] (1 × 10−4 → 0.5) via batch
size 50. We employ mean squared error (MSE) as our train-
ing loss. The training process was halted if the validation er-
ror failed to reduce in 150 epochs, or if the maximum training
limit of 1000 epochs was reached. MMGNN is implemented
in PyTorch framework via Tesla A100 40GB. Experiment re-
sults are presented in following metrics: the mean absolute
error (MAE) and root mean squared error (RMSE). The mean
and standard deviation are recorded in the table.

∆ & Backbones MAE (↓) RMSE (↓)

Intermolecular

β = 1.0 0.190(0.022) 0.350(0.041)

β = 0.5 0.185(0.012) 0.343(0.034)

β = 0.2 0.177(0.015) 0.340(0.022)

β = 0.1 0.180(0.014) 0.360(0.036)

β = 0.0 0.200(0.027) 0.380(0.054)

GAT 0.197(0.011) 0.382(0.044)

GIN 0.212(0.018) 0.440(0.034)

GCN 0.265(0.025) 0.453(0.047)

Intramolecular
GAT 0.203(0.024) 0.414(0.035)

GCN 0.177(0.015) 0.340(0.022)

GIN 0.181(0.017) 0.351(0.028)

Table 2: Different information interaction update rates and test re-
sults of the molecular graph network framework. Interaction coeffi-
cient denotes as ∆.

4.2 The Prediction Performance (RQ1)

Similar to previous studies, the random split is a widely used
method for evaluating model performance. In each itera-
tion, all methods were trained, validated, and tested on iden-
tical datasets in an 8:1:1 ratio. For the three explainability
methods: local mask-based, global mask-based, and gradient-
based, we conducted separate tests on various datasets and
documented the optimal results by MMGNN (this can be
found in the appendix). The experimental results are recorded
in Table 1. The sensitivity experiment analysis is presented in
Table 2. Based on these outcomes, we can delineate three key
observations:

Obs.1: MMGNN exhibits the optimal predictive perfor-
mance. The performance of MMGNN surpasses that of other
baselines across three test datasets. In terms of the MAE in-
dicator, MMGNN exhibited an average reduction of 0.025,
0.16, and 0.57 on the CompSol, Abraham, and CompSol-
Exp datasets, respectively. Although on the FreeSolv dataset,
MMGNN ranks second, slightly behind the CGIB model, this
still underscores its notable capability in accurately capturing
the characteristics of solute-solvent molecular combinations.
Overall, MMGNN consistently demonstrates leading scores
across the majority of evaluated datasets, highlighting its ef-
fectiveness in precisely characterizing intricate interactions
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within solute-solvent molecular combination.

Obs.2: β = 0.2 yielded the best results to control the ex-
tent of information exchange. Our experiments revealed
that setting β = 0.2 achieved the best results in controlling
the extent of information exchange in Table 2. Various β val-
ues were tested to assess the impact on the degree of infor-
mation exchange. The β value of 0 implies exclusive con-
sideration of intramolecular aspects, resulting in the highest
prediction error, as indicated by both MAE and RMSE met-
rics. Incrementally increasing the interaction level (β ranging
from 0 to 0.2) significantly enhanced predictive performance,
leading to an 11.5% reduction in MAE. However, further es-
calation of β resulted in increased MAE, potentially due to
information redundancy and repetition causing interference
with the model’s ability to capture crucial details. Our find-
ings underscore the importance of maintaining a balance be-
tween intrinsic and interactive information.

Obs.3: MMGNN is a versatile framework that can be em-
ployed with various GNN backbones. We conducted addi-
tional tests using GAT, GCN, and GIN to extract intermolec-
ular information. In this scenario, the intramolecular infor-
mation interaction method utilized the optimal β value of 0.2
from the aforementioned experiments. It is evident that the
GCN framework outperformed GAT and GIN, resulting in a
reduction of approximately 2.2% and 14.7 % in MAE indica-
tors, respectively. Therefore, we executed the experiments
with GCN framework for intramolecular message passing
process and hyperparameter β = 0.2 for intermolecular mes-
sage passing process.

4.3 Qualitative Evaluation (RQ2)
Due to the current lack of consensus on the key functional
groups involved in the energy release process of solution sol-
vents, we have collected some potentially important groups
from relevant literature to serve as ground truth for the
validation of algorithm explainability [Fang et al., 2023c;
Fang et al., 2023a]. The intensity of the color corresponds

to the strength of the enhancing (green) or decreasing (pink)
effect on ∆Gsolv prediction.

Obs.4: The significant substructures identified by MMGNN
closely align with the ground-truth of their graphs, likely
stemming from the class-specific patterns captured by the
explanatory subnetwork. However, the baseline explainers
could select certain edges that do not belong to the ground-
truth. This validates MMGNN’s ability to capture substruc-
ture interactions aligned with chemistry principles, showcas-
ing its capacity to extract implicit scientific knowledge in
solute-solvent molecular interactions.

Obs.5: In contrast to the substructures chosen by baseline
explainers, the subgraphs generated by MMGNN exhibit en-
hanced connectivity. We attribute these distinctions to the
alternating and iterative selection processes, a capability not
present in baseline explainers.

Obs.6: For specific nodes in molecules (e.g., N, O), certain
connected nodes can introduce interference during explana-
tion generation. MMGNN is designed to circumvent these
challenges, ensuring explanations are free from interference.
In contrast, subgraphs generated by baseline methods may in-
clude these disruptive nodes, highlighting the robustness and
reliability of MMGNN.

4.4 Generalization Test (RQ3)
To evaluate the model’s generalizability on unseen solvents
or solute category, a solvent holdout and solute scaffold split
cross-validation test are conducted, and the result are present
in Figure 4 and Table 3. Here, the four datasets are merged
into a single dataset.
Obs.7: MMGNN has superior results on a variety of ex-
cluded solvents such as benzene (0.17 kcal mol−1), ethanol
(0.23 kcal mol−1), hexane (0.115 kcal mol−1), acetone (0.23
kcal mol−1) (in Figure 4 (a)), etc. Nevertheless, it is notewor-
thy that the water solvent exhibits a higher error compared to
the other solvents. This difference is intricately connected to
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(a) (b)

Figure 4: (a) Violin plots of the total error (∆Gpred −∆Gtrue) for various solvents including acetone, acetonitrile, benzene, DMSO, ethanol,
hexane, octanol, THF and water. (b) the scaffold-holdout test.

MAE (↓) RMSE (↓)
GAT Explainable GNN CGIB MMGNN GAT Explainable GNN CGIB MMGNN

Acetone 0.301(0.032) 0.284(0.023) 0.252(0.024) 0.231(0.012) 0.372(0.022) 0.355(0.021) 0.342(0.024) 0.331(0.022)
Acetonitrile 0.592(0.051) 0.482(0.023) 0.454(0.023) 0.425(0.030) 0.532(0.051) 0.484(0.041) 0.477(0.04) 0.462(0.041)
Benzene 0.233(0.013) 0.241(0.024) 0.202(0.014) 0.174(0.013) 0.455(0.040) 0.531(0.104) 0.278(0.01) 0.181(0.017)
DMSO 1.217(0.164) 0.977(0.074) 0.955(0.483) 0.432(0.184) 1.121(0.151) 1.050(0.071) 1.074(0.091) 1.053(0.071)
Ethanol 0.291(0.024) 0.262(0.021) 0.253(0.022) 0.231(0.018) 0.532(0.034) 0.513(0.052) 0.435(0.051) 0.371(0.023)
Octanol 0.452(0.023) 0.461(0.045) 0.374(0.028) 0.321(0.024) 0.842(0.034) 0.854(0.042) 0.827(0.031) 0.825(0.031)
THF 0.491(0.032) 0.453(0.024) 0.443(0.032) 0.432(0.024) 0.512(0.041) 0.494(0.042) 0.476(0.034) 0.462(0.032)
Water 2.584(0.045) 2.324(0.037) 2.117(0.043) 2.105(0.052) 3.804(0.119) 3.204(0.12) 3.197(0.104) 3.162(0.107)
Hexane 0.232(0.014) 0.498(0.015) 0.143(0.015) 0.124(0.015) 0.217(0.012) 0.472(0.031) 0.203(0.011) 0.174(0.012)

Table 3: Cross-test results between MMGNN and other methods on solvents holdout test. (Underlined numbers are the best results)

factors such as the molecule’s molar mass and element type.
A comprehensive breakdown of results and in-depth analysis
can be found in the appendix.

Obs.8: MMGNN model demonstrates effective general-
ization performance across various types of molecular
scaffolds as shown in Figure 4 (b). Heterocyclic and poly-
cyclic molecules exhibit better predictive performance than
monocyclic molecules. For instance, phenanthrene and mor-
pholine have predictivity values of 0.57 and 0.56, respec-
tively, while cyclopentene has a predictivity result of 1.31.
We hypothesize that monocyclic molecules tend to display
nonpolar characteristics, whereas polycyclic and heterocyclic
molecules often exhibit polar properties, which makes them
easier to differentiate and learn for model. 1-yne and nitrate
is significate polar molecular groups which has the relatively
low prediction error.

Obs.9: MMGNN outperforms other baselines in general-
ization test. We selected three representative baseline models
for the same generalization testing experiments (in Table 3).
MMGNN showed significant superiority over other baseline
models. This is mainly attributed to (1) its more fitting mod-
eling of molecular combinations through the use of molecular
merge graphs, which aligns better with the underlying physic-

ochemical processes. The explicit enhancement of molecular
interaction processes is achieved. (2) The molecular explain-
ability module injection retains core substructures, removes
redundant information, and further enhances generalization
performance. Constrained by space limitations, additional so-
lute test results are presented in the appendix.

5 Conclusion
In this study, we present MMGNN, a molecular graph neu-
ral network designed for predicting solvation free energy.
MMGNN exploits the complete connectivity among atoms in
solute and solvent molecules to facilitate information transfer
and improve model explainability. Demonstrating superior
performance on various datasets compared to existing meth-
ods, MMGNN highlights the significance of balancing intrin-
sic and interactive information through our experiments. The
model excels in generalization tasks, including solvent hold-
out and solute scaffold split, superior than other baselines. Its
transparent explanations align with well-established chemi-
cal insights, which instills confidence among experimental
chemists. Furthermore, understanding the interactions be-
tween molecules could provide valuable perspectives for un-
derstanding drug compound stability and guiding the devel-
opment of new synthetic routes and catalytic processes.
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