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Abstract
Code comments are crucial for gaining in-depth
insights to facilitate code comprehension. The
key to obtaining these insights lies in precisely
summarizing the main purpose of the code. Re-
cent approaches on code comment generation lie
in prompting large language models (LLMs) such
as ChatGPT, instead of training/fine-tuning specific
models. Although ChatGPT demonstrates an im-
pressive performance in code comprehension, it
still suffers from robustness challenges in consis-
tently producing high-quality code comments. This
is because ChatGPT prioritizes the semantics of
code tokens, which makes it vulnerable to com-
monly encountered benign perturbations such as
variable name replacements. This study proposes
a modular prompting paradigm Perthept to effec-
tively mitigate the negative effects caused by such
minor perturbations. Perthept iteratively enhances
the reasoning depth to reach the main purpose of
the code. Perthept demonstrates robustness under
the scenario where there is stochasticity or unreli-
ability in ChatGPT’s responses. We give a com-
prehensive evaluation across four public datasets to
show the consistent robustness improvement with
our proposed methodology over other models.

1 Introduction
Code comment generation has attracted extensive attention
in recent years. High-quality code summaries provide deep
insights into code behavior, facilitating code comprehension.
Automatic code comment generation has been widely used in
program comprehension [Sridhara et al.2010], software de-
velopment [de Souza et al.2005], bug fixing [Panichella et
al.2016], and software maintenance [He2019].

Large language models (LLMs) with exceedingly large
training datasets and optimized training approaches have
shown remarkable abilities in various generation tasks includ-
ing code comment generation, showcasing extensive general-
ization and advanced semantics comprehension ability. Pro-
grammers can use a straightforward prompt like “summa-
rize the code” to interact with the LLM and receive a satis-
factory code summary. Therefore, there is a growing trend

This code takes a string as input, 
and uses its first 112 characters to 
create and return a character map 
array.

Unpacks the compressed character translation table. 

Ground Truth

This code takes a string of packed 
data, unpacks it into a character 
array, and returns the array.

char[] func(String packed)
{
  char[] m=new char[0x10000];
  int i=0;
  int j=0;
  while(i<112) {
    int c=packed.charAt(i++);
    char v=packed.charAt(i++);
    do m[j++]=v;
    while(--c>0);
  }
  return map;
}

char[] func(String p)
{
  char[] m=new char[0x10000];
  int i=0;
  int j=0;
  while(i<112) {
    int c=p.charAt(i++);
    char v=p.charAt(i++);
    do m[j++]=v;
    while(--c>0);
  }
  return map;
}

Original Code Semantics Disrupted Code

Figure 1: This figure provides a case of the decrease in the quality
of code comment generation. The original codes on the left side
represent an unpacking algorithm, and the code summary generated
by ChatGPT includes the keyword “unpack”. When argument name
packed is transformed into a commonly used name p, as shown
on the right side, ChatGPT fails to identify that it is an unpacking
algorithm. This case indicates the robustness issue of ChatGPT in
code comprehension.

of prompting LLMs (e.g., ChatGPT1, GPT-42) for generat-
ing code summaries. However, LLMs tend to generate code
summaries based on the semantic information of code to-
kens, which results in missing deep insights into code be-
havior and suffering robustness issues in consistently produc-
ing high-quality code summaries when a minor perturbation
(e.g., function/variable/argument name replacement) is intro-
duced into the source code. Take ChatGPT as an example,
as shown in Figure 1, when the semantic-rich argument name
packed is replaced with an unrelated but commonly used
argument name p, ChatGPT losses track of the main purpose
of the code, an “unpacking” algorithm, which is crucial for
programmers to accurately comprehend the code. Instead,

1https://openai.com/blog/chatgpt
2https://openai.com/research/gpt-4
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Figure 2: This figure gives an overall workflow of this study. There are four prompts included, and the key prompts are prompt 1 and prompt 3.
The orange section is Chain-of-Structure generation paradigm, and the green section represents Reasoning-Enhancement paradigm. The input
source code is initially transformed into a special-grained summarized Chain-of-Structure information (using prompt 1). This representation
of information is used for iterative reasoning (using prompt 3) to uncover the high-level main purpose of the code. Ultimately, this process
leads to the generation of a high-quality code summary.

ChatGPT formattedly generates lengthy and useless descrip-
tions of the code.

Since fine-tuning ChatGPT is costly, prompt design serves
as a practical solution to effectively address this robustness
issue. We propose Perthept (Purpose enhanced reasoning
through iterative prompting), a prompting framework to un-
cover the latent capability of large language models to gener-
ate robust and high-quality code summaries. Perthept is com-
posed of two prompting paradigms, Chain-of-Structure and
Reasoning-Enhancement. We develop Chain-of-Structure
prompting with a special-designed granularity of information
detail, that prompts ChatGPT to shift its attention from un-
reliable semantics information to reliable structure informa-
tion, facilitating purpose reasoning. Meanwhile, Chain-of-
Structure helps to ensure no information loss. In addition, we
design a novel paradigm Reasoning-Enhancement to prompt
ChatGPT to perform a self-evaluation of the extracted main
purpose of the code. Therefore, ChatGPT can further re-
fine its predictions at a higher reasoning level. The overall
workflow is shown in Figure 2. This workflow not only pre-
cisely provides deep insights for code summaries, but also
mitigates the negative influence caused by the inherent un-
reliability of ChatGPT. Finally, we evaluate Perthept on the
TL-CodeSum datasets [Hu et al.2018b], the CodeSearchNet
Java datasets [Husain et al.2019], the CodeSearchNet Python
datasets [Husain et al.2019], and the Python datasets [Wan
et al.2018] respectively. In order to exclude samples that do
not align with the focus of this study, which is reasoning the
high-level main purpose of the code, we develop a filter algo-
rithm to extract the potential reasoning-required code samples
from these well-studied datasets because most code samples
are simple and do not require high-level reasoning. We sum-
marize the contributions as follows:

• We identify and assess the purpose-reasoning ability of
ChatGPT for code comprehension. Extensive experiments

show that purpose-reasoning can be effectively utilized to
uncover ChatGPT’s inherent capacity in producing robust
and insightful code summaries.

• We introduce a modular framework, Perthept, designed to
uncover the latent robustness of ChatGPT by iteratively
enhancing the level of reasoning. Comprehensive exper-
iments suggest that Perthept demonstrates consistent per-
formance in assisting ChatGPT in producing high-quality
code summaries and maintaining robustness.

• We conduct extensive experiments and ablation studies to
evaluate the performance of Perthept on four datasets. Fur-
thermore, we build a reasoning-required code datasets for
future research by finely filtering the code samples from
these well-studied datasets.

2 Robustness Issue of ChatGPT
The decline in ChatGPT’s robustness in code comment gener-
ation can be described as the following process. When a mi-
nor adversarial perturbation σ is introduced into the original
code x, the final input code x + σ will dramatically degrade
model’s performance [Zhou et al.2022].

A high-quality code summary encompasses two critical as-
pects: the inclusion of a main purpose and information. How-
ever, minor adversarial perturbations often have a great im-
pact on the loss of the main purpose in code summaries. Take
the case in Figure 1 as an example, the term “unpack” is
the main purpose, and the sentence “the compressed char-
acter translation table” is the information. From the perspec-
tive of code comprehension during software development, the
term “decompress”, “unpack”, or “unzip” signifies the pri-
mary purpose of the code, which are the keywords for precise
code comprehension. Therefore, the key to maintaining ro-
bustness for ChatGPT in code comment generation lies in not
only accurately extracting the main purpose but also preserv-
ing sufficient information throughout the process.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6514



3 Perthept
This study proposes a modular prompting framework
Perthept to address the robustness challenges. The unique
contribution of Perthept is maintaining robustness for Chat-
GPT in code comprehension, which is highlighted by suc-
cessfully reasoning the main purpose of the code. Perthept
consists of two key prompting paradigms, Chain-of-Structure
and Reasoning-Enhancement. Chain-of-Structure preserves
robust information from code structures, thus mitigating the
potential negative effects resulting from unreliable semantics
of code tokens. Reasoning-Enhancement paradigm focuses
on improving the quality of generated code summaries by it-
eratively reasoning the main purpose of code while mitigating
the inherent unreliability of ChatGPT’s responses.

3.1 Chain-of-Structure
The function of Chain-of-Structure is two-fold. First, de-
compose the complex programming language into natural
language-based information to facilitate main purpose rea-
soning. Second, preserving reliable information by shifting
the attention of ChatGPT from unreliable semantics of code
tokens into reliable code structure information.

Accurately producing Chain-of-Structure with necessary
information is crucial. The limited context space imposes
two primary concerns in Chain-of-Structure prompting de-
sign: the length of outputs and the level of information detail.
The prompting paradigm can be categorized into three differ-
ent granularities, fine-grain, middle-grain, and coarse-grain,
based on the level of detailed information that is incorporated.

Figure 3 shows how different granularities affect the in-
formation quality generated by ChatGPT. The fine-grained
Chain-of-Structure focuses on the smallest units of the code,
such as statements, expressions, variables, etc. This level of
analysis provides detailed insights and precise understand-
ing. However, it can also increase complexity and make the
code analysis more intricate due to its lengthy generated text.
The middle-grained Chain-of-Structure analyzes the code at
a higher level of abstraction, considering functions, classes,
modules, or components. This level provides a balance be-
tween fine-grain details and overall structure. The coarse-
grained Chain-of-Structure analyzes the code at a high-level
overview, such as architectural patterns, code design, or the
overall flow of the program. This level of analysis focuses on
understanding the large-scale structure and interactions be-
tween major components.

The ideal Chain-of-Structure should provide a clear de-
scription of code patterns and architectures since they form
the foundation of code and represent its primary focus. It
has been observed that both fine-grained and middle-grained
Chain-of-Structure tend to prioritize detailed components
such as expressions and variables while overlooking higher-
level design patterns and architectural considerations. On
the other hand, the coarse-grained Chain-of-Structure places
more emphasis on these broader aspects. In this study, we
adopt the few-shots learning approach and include several
coarse-grained examples in the prompting pattern to gener-
ate Chain-of-Structure. Implementation details are included
in the Appendix A.1.1.

private static char[] func(String p){
    char[] map=new char[0x10000];
    int i=0;
    int j=0;
    while (i <112) {
        int count=p.charAt(i++);
        char value=p.charAt(i++);
        do map[j++]=value;
        while (–count >0);
    }
    return map;
}

Source Code

Here's the chain of structure for the given code:
  1. Initialize an empty character array map with a size of 0x10000.
  2. Initialize variables i and j to 0.
  3. Start a while loop that continues until i is less than 112.
  4. Within the loop, extract the count value from the p string at index i 
      and assign it to the variable count.
  5. Increment i to move to the next position in the string.
  6. Extract the value from the p string at index i and assign it to the 
      variable value.
  7. Increment i to move to the next position in the string.
  8. Enter a do-while loop that iterates count number of times.
  9. Assign the value to the j-th index of the map array.
10. Increment j to move to the next position in the array.
11. Decrement count by 1.
12. Repeat steps 8-11 until count becomes 0.
13. Continue the outer while loop until i is no longer less than 112.
14. Return the populated map array.

       Fine Grained

This code describes the implementation of a function called func, which 
expects a string p as input and returns a character array map. The 
function follows a specific structure to populate the map array based on 
the values and counts provided in the input string. It initializes an empty 
array, iterates through p, extracting counts and values in pairs, and 
uses them to populate map by repeating each value a specified 
number of times. The function ensures that all values and counts in p 
are processed and the resulting map array is returned as the final 
output.

       Middle Grained

This code snippet represents a function that takes a string p as input 
and returns a character array map. It follows a specific structure to 
populate the map array based on the values and counts provided in the 
input string.

       Coarse Grained

Figure 3: This figure provides an overview of how different granu-
larity affects the context space and information details. We finally
choose to use coarse grain as it not only saves much context space
but also provides a high-level overview of the code structure.

3.2 Reasoning-Enhancement
Although Chain-of-Structure provides decomposes com-
plex programming language information into simple natu-
ral language information, ChatGPT still struggles to effec-
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Predicted Code Summary

The main purpose of the code is to generate a character 
array based on the input string by populating it with values 
and counts provided in a specific format within the string.

Apologies for the oversight. Upon closer inspection, the 
main purpose of the code is to decompress a compressed 
string representation. The input string p is expected to be in 
a specific compressed format where each pair of 
characters represents a count followed by a value. The 
code iterates through the input string, extracts the count 
and value pairs, and expands them by repeating the value 
character the specified number of times. The expanded 
characters are stored in the map array, which is then 
returned as the result of the function.

In summary, the code is responsible for decompressing a 
compressed string by expanding the count-value pairs into 
a character array.

Do you think this main purpose represent code’s 
intent? If not, go beyond this main purpose.

×K

Figure 4: This figure provides an overview of the Reasoning-
Enhancement process. Through multiple iterations of reasoning en-
hancement, Perthept is able to correct the main purpose from “gen-
erate a character array” to “decompressing a compressed string”.

tively summarize the main purpose of code from Chain-of-
Structure. As depicted in Predicted Code Summary in Fig-
ure 4, ChatGPT summarizes the main purpose of code as
“generating a character array”, which is incorrect and at a
low level of comprehension, indicating the importance of
Reasoning-Enhancement in improving code summary qual-
ity.

Reasoning-Enhancement aims at leveraging the ability of
ChatGPT to evaluate and refine its predictions to effectively
enhance the depth of code comprehension, thus generating
insightful and reliable code summaries. It is important to
note that even with the same input, the predictions produced
by ChatGPT cannot be guaranteed to remain consistent at
all times, mainly due to the inherent unreliability of Chat-
GPT, which means ChatGPT is not guaranteed to catch the
code’s main purpose all the time. To address this issue, we
design the Reasoning-Enhancement prompting to be iterative
for continuously enhancing the reasoning level. As a result,
this approach effectively mitigates the potential negative im-
pact caused by such unreliability.

Reasoning-Enhancement is a self-refinement prompting
that prompts ChatGPT to improve its outputs, and it consists
of two prompting components: self-evaluation and further-
enhancement. For self-evaluation, we use the trigger sen-
tence “Do you think this main purpose represents code’s in-
tent?” that enables ChatGPT to evaluate its reasoning re-
sults. For further-enhancement, we adopt “if not, go beyond
this main purpose for a higher-level abstraction” to ensure
that each subsequent prediction during iteration is at a higher

level of reasoning. These two prompting components are in-
tegrated together and iteratively prompting ChatGPT to per-
form higher-level reasoning, resulting in the production of re-
liable code summaries and effectively mitigating the negative
impact of the inherent unreliability of ChatGPT’s responses.
As observed in the final code summary in Figure 4, ChatGPT
successfully corrects the main purpose from “generate a char-
acter array” to “decompressing a compressed string”. More
implementation details are included in the Appendix.

4 Experiments
4.1 Setups

Datasets. We evaluate our workflow on four publicly avail-
able datasets and one filtered datasets collected on our own,
respectively. The statistics of each datasets are shown in
Table 2 in Appendix B.1, and the algorithm of reasoning-
required code samples collection is included in Appendix
B.2.
Adversarial Transformations. We follow [Sontakke et
al.2022] to use javalang3 and ast4 packages to programmat-
ically transform the codes, which includes: (a) Replacing
meaningful user-defined function names with more generic
function names (e.g., func). (b) Replacing meaningful
user-defined local variable names with more generic variable
names (e.g., var1, var2, et al) such that data dependen-
cies are preserved.
Ground Truth Refine. To ensure a fair comparison be-
tween NLP and prompting baselines, we refine the ground
truth by combining high-level abstraction summaries and
brief descriptions. More information is provided in Appendix
A.1.2.
Baselines. We consider the following prompting paradigms
and NLP models: (a) Direct Prompt: a standard zero-shot
paradigm that prompts an LLM to directly solve tasks or an-
swer questions. (b) Chain-of-Thought [Kojima et al.2022]:
a prompting paradigm that engages LLMs into “think step by
step” reasoning. (c) SELF-REFINE [Madaan et al.2023]:
a prompting paradigm that improves initial outputs from
LLMs through iterative feedback and refinement. (d) Code-
BERT [Feng et al.2020]: it is pre-trained on vast bimodal
corpora with the masked language model and replaced token
detection. (e) UniXcoder [Guo et al.2022]: it is a pre-trained
model that utilizes multi-modal data for better code fragment
representation through contrastive learning.
Evaluation Metrics. Common performance metrics such
as character-level Precision and F1 score are employed in
our experiments. Moreover, a ChatGPT-based scorer is used
to measure the semantic Accuracy of answers (e.g., “Get”
and “Retrieve” are semantically close but cannot be identi-
fied by Precision and F1). More information is provided in
Appendix A.4.

4.2 Results and Discussions

3https://github.com/c2nes/javalang
4https://docs.python.org/3/library/ast.html#
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Dataset Paradigm AccO PreO F1O AccT PreT F1T DropAcc DropPre DropF1

CodeBERT — 46.98 39.87 — 18.89 13.33 — 28.09(↓) 26.54(↓)
UniXcoder — 56.58 46.62 — 27.73 20.18 — 28.85(↓) 26.44(↓)

Python Direct 81.03 46.93 38.73 72.89 40.33 34.13 8.14(↓) 6.60(↓) 4.60(↓)
CoT 79.69 45.74 40.47 73.77 39.45 35.73 5.92(↓) 5.27(↓) 4.74(↓)

SELF-REFINE 78.88 44.39 39.58 71.65 38.98 34.22 7.23(↓) 5.41(↓) 5.36(↓)
Perthept 82.29 47.72 42.59 77.55 45.31 39.26 4.74(↓) 2.41(↓) 3.33(↓)

CodeBERT — 50.26 41.99 — 42.37 36.48 — 7.89(↓) 5.51(↓)
UniXcoder — 57.88 47.42 — 40.89 38.14 — 16.99(↓) 9.28(↓)

TL-CodeSum Direct 79.90 57.22 45.18 72.50 53.05 41.63 7.40(↓) 4.17(↓) 3.55(↓)
CoT 79.55 56.09 45.75 72.99 52.86 42.03 6.56(↓) 3.23(↓) 3.72(↓)

SELF-REFINE 76.36 54.11 44.76 70.29 49.88 39.85 6.07(↓) 4.23(↓) 4.91(↓)
Perthept 82.61 55.74 46.00 78.44 53.67 43.80 3.17(↓) 2.07(↓) 2.20(↓)

CodeBERT — 50.41 37.61 — 28.34 21.31 — 22.07(↓) 16.3(↓)
UniXcoder — 49.40 37.36 — 30.18 24.45 — 19.22(↓) 12.91(↓)

CSN-Python Direct 69.69 47.66 35.93 64.28 42.99 31.76 5.41(↓) 4.67(↓) 4.17(↓)
CoT 70.65 47.74 37.71 66.49 44.21 33.28 4.16(↓) 3.53(↓) 4.43(↓)

SELF-REFINE 67.29 46.88 38.19 61.39 43.36 36.01 5.90(↓) 3.52(↓) 2.18(↓)
Perthept 72.69 46.67 37.03 68.95 45.74 34.99 3.74(↓) 0.93(↓) 2.04(↓)

CodeBERT — 51.16 43.71 — 40.66 36.42 — 10.5(↓) 7.29(↓)
UniXcoder — 54.83 43.90 — 42.46 35.60 — 12.37(↓) 8.30(↓)

CSN-Java Direct 82.33 56.18 47.99 77.17 52.36 43.66 5.16(↓) 3.82(↓) 4.33(↓)
CoT 85.30 57.05 48.42 79.10 53.08 44.74 6.20(↓) 3.97(↓) 3.68(↓)

SELF-REFINE 80.08 56.66 47.35 73.18 53.02 43.91 6.90(↓) 3.64(↓) 3.44(↓)
Perthept 83.22 58.04 48.57 81.30 55.80 46.28 1.92(↓) 2.66(↓) 2.29(↓)
Direct 83.04 59.57 48.02 73.10 45.71 36.62 9.94(↓) 17.85(↓) 11.40(↓)

Reasoning-required CoT 80.70 60.51 46.57 74.27 44.54 36.20 6.43(↓) 15.97(↓) 10.37(↓)
Ours SELF-REFINE 81.87 57.90 47.09 75.38 46.67 36.94 6.49(↓) 11.23(↓) 10.15(↓)

Perthept 83.04 62.36 47.51 77.78 54.03 38.56 5.26(↓) 8.33(↓) 8.95(↓)

Table 1: Evaluation results. O represents tested on original codes, and T represents tested on transformed codes. Chain-of-Structure is
provided to each baseline prompting paradigm to ensure a fair comparison because we have used Chain-of-Structure to refine the ground truth
summary. We omit the Accuracy score for NLP baselines since their scores are significantly low and do not make a substantial difference
(e.g., AccO is 33.0 while AccT is 31.0). The lower score drop and the higher score on each evaluation metric represent a better robustness
maintenance performance. Underline: Best performing paradigm. Bold: The most robust paradigm.

Perthept excels over all baselines consistently. Table 1
shows the main evaluation results on public datasets based on
two popular encoder-decoder models and gpt-3.5-turbo. For
the prompting paradigm, we test each code sample twice on
each paradigm and retain the samples where there is no sig-
nificant difference (< 5%) in evaluation scores between two
testing results. The drop in Accuracy scores demonstrates
the main purpose reasoning performance for each prompting
paradigm. A lower Accuracy drop signifies a more robust per-
formance of the prompting paradigm on ChatGPT. The drop
in Precision and F1 scores reflects the loss of essential infor-
mation. A lower drop in Precision and F1 scores indicates the
code summary retains a higher amount of information.

Under the same setups, we observe that the prompting
paradigms both demonstrate significantly higher levels of ro-
bustness compared to NLP baselines. This is due to the less
robust training approach for NLP models, as well as the rel-

atively small size of both the models and datasets involved.
On the contrary, ChatGPT is less susceptible to benign per-
turbations and can maintain consistent performance. Among
prompting paradigms, we observe the sheer win of Perthept.
The baseline prompting approaches manage to maintain rela-
tively low drops in Precision and F1 scores compared to NLP
baselines due to ChatGPT’s proficiency in generation tasks.
However, their Accuracy drops are comparatively higher, in-
dicating a higher incidence of incorrect purpose reasoning,
particularly when dealing with complex code scenarios that
require main purpose reasoning.

It is worth noting that the majority of code samples in pub-
lic datasets are relatively simple, and intricate main-purpose
reasoning is not often required. However, the extensive vol-
ume of data can still provide a rough assessment of the perfor-
mance of each prompting paradigm, even though the differ-
ences may not be substantial. In contrast to baseline prompt-
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ing paradigms, Perthept achieves higher scores for less ro-
bust transformed codes while experiencing lower score drops,
indicating that it not only maintains a high level of robust-
ness by successfully abstracting the main purpose of com-
plex code samples but also ensures a high quality of code
summaries at the same time. During the evaluation on our
Reasoning-required datasets, Perthept demonstrates superior
performance compared to baseline approaches. It achieves
high scores while maintaining low score drops, indicating
the effectiveness of main purpose reasoning in robustness im-
provement for code comprehension.
Why Perthept outperforms all prompting baselines in
preserving robustness. It is observed that the baseline
prompting paradigm lacks clear guidance for reasoning.
When utilizing the same baseline approach to prompt Chat-
GPT multiple times, ChatGPT tends to modify the way it de-
scribes the same concept at the same reasoning depth in each
response, instead of offering higher-level insights. In con-
trast, with the guidance of main purpose reasoning, Perthept
systematically enhances the depth of reasoning to provide
deeper insights, which is the key approach to outperforming
all other prompting baselines. We conduct a side experiment
where we remove the guidance keywords “with code’s main
purpose” from Perthept prompting. We observed a substan-
tial drop in the performance of Perthept, and the reasoning
level in each iteration remained unchanged. This experiment
highlights the significance of guidance keywords in the task
of code comment generation.
Perthept is relatively robust upon ChatGPT’s unrelia-
bility. Given the crucial semantic information provided by
function and variable names, ChatGPT does not consistently
generate correct code summaries due to its unreliability. The
unreliability of ChatGPT can be characterized by the fact that
it generates different code summaries for the same input code
and prompts on each iteration. This explains the score dis-
crepancy among the prompting paradigms when evaluating
Accuracy scores on original codes. Take direct prompt as
an example, ChatGPT occasionally generates incorrect code
summaries by providing verbose and redundant descriptions
instead of accurately extracting the main purpose of the code.
This behavior could be attributed to the lack of clear guid-
ance in the prompting paradigm, which results in ChatGPT
not consistently prioritizing the main purpose. This issue
also affects Chain of Thought and SELF-REFINE prompting
paradigms. On the contrary, the design of Perthept is based
on purpose-reasoning which effectively mitigates the impact
of unreliability by progressively enhancing the code’s main
purpose at a higher-level abstraction during each iteration.
Through observation, ChatGPT maintains the same response
when it is unable to provide a higher-level abstraction, rather
than producing incorrect code summaries, thus preserving the
robustness. A more specific case study is provided in Ap-
pendix A.3.

4.3 Ablation Study

Without Reasoning-Enhancement prompting. The
Reasoning-Enhancement module plays a crucial role in
accurately abstracting the main purpose of the code. As

depicted by the orange bar in Figure 5a, the removal of the
Reasoning-Enhancement module results in an Accuracy
drop on all benchmarks, indicating that the Reasoning-
Enhancement module effectively improves the robustness of
complex code comprehension for ChatGPT.

Without Chain-of-Structure prompting. For accuracy
scores, although Chain-of-Structure may not preserve the
higher-level reasoning capabilities, it plays a crucial role in
preserving important information, which is vital for gener-
ating high-quality code comments. Additionally, the archi-
tectural design of Chain-of-Structure follows the chain-of-
thought prompting paradigm, breaking down complex pro-
gramming language constructs into the step-by-step analysis.
Therefore, this approach inherently incorporates some degree
of reasoning, which helps explain why Perthept with only
Chain-of-Structure can achieve higher performance com-
pared to Perthept with only the direct summary paradigm
of “summarize the code with code’s main purpose”. Fur-
thermore, based on our observations, if we do not enhance
the code’s main purpose during the prompting process, there
is a risk of generating incorrect summarized main purposes,
which does not provide insights into code summary but makes
code summary much longer. This can have a detrimental ef-
fect on the overall quality of the code summary when test-
ing on a large number of code samples. For precision and
F1 scores, the removal of Chain-of-Structure leads to a sub-
stantial drop in the scores, indicating that the function of
Chain-of-Structure is more focused on information preserva-
tion rather than reasoning.

K value for Reasoning-Enhancement paradigm. An-
other input of Perthept is a user-defined value K, representing
the number of Reasoning-Enhancement paradigm included
in Perthept. For instance, 0 represents no such paradigm,
and 2 illustrates that we repeat the Reasoning-Enhancement
paradigm once. As depicted by Figure 6, the performance
is primarily influenced by the presence or absence of the
Reasoning-Enhancement paradigm, while the number of rep-
etitions has a limited impact on accuracy improvement. How-
ever, to mitigate the unreliability of ChatGPT generations,
we finally choose 3 as the K value in this study (i.e., repeat
twice).

Additional Observations Upon analyzing the self-
feedback generated by ChatGPT, we discover that the
suggestions provided by SELF-REFINE prompting rarely
focus on providing deeper insights or higher-level reasoning
in each self-refine process. Due to the influence of unrelated
self-refine suggestions, the refined code summary not only
suffers from information loss but also deviates from the
main purpose of the code. As a result, the overall generation
quality becomes worse.

5 Related Work
Prior to the emergence of extremely large language models
(e.g., ChatGPT, GPT4, et al), the most widely adopted ap-
proach for code comment generation involves training [Hu et
al.2018a, Wei et al.2019] and fine-tuning [Feng et al.2020,
Ahmad et al.2021, Guo et al.2022] specific encoder-decoder
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(a) Accuracy on Transformed Codes (b) Precision on Transformed Codes (c) F1 on Transformed Codes

Figure 5: Ablation study. While each prompting paradigm can easily provide correct summaries for simple code samples, the evaluation
score can exhibit significant differences across these code samples. We select 3500 samples for each dataset where each prompting paradigm
demonstrates similar performance to conduct the ablation study for Perthept. We do not set ablation studies on our reasoning-required datasets
due to the limited code samples.

Figure 6: Accuracy scores on different value of K.

models. Among these works, several advancements, includ-
ing incorporating various attention mechanisms, have demon-
strated state-of-the-art performance in generating accurate
code comments [Ahmad et al.2020,Wu et al.2020]. However,
these state-of-the-art models both face robustness challenges,
as they exhibit poor performance when subjected to even mi-
nor perturbations in the input code [Sontakke et al.2022].
To mitigate the negative impact of minor perturbations, ad-
versarial training [Goodfellow et al.2014] has been widely
adopted to enhance model performance [Zhou et al.2022, Jha
and Reddy2022]. However, due to the limited generaliza-
tion of the model itself due to small training datasets, these
improved models still encounter robustness challenges when
presented with new code patterns.

With the rapid development of LLMs, the code comment
generation approach is evolving to prompt LLMs. ChatGPT
is a recent chatbot service released by OpenAI [Wang et
al.2023] and has shown great potential in generating coher-
ent text, which can be leveraged for assisting code compre-
hension during development. However, ChatGPT still faces
robustness challenges in consistently producing high-quality

code summaries because it relies heavily on the unreliable
semantics of code tokens, which can be easily altered by in-
troducing even minor perturbations, resulting in generating
useless and lengthy descriptions of code.

As fine-tuning ChatGPT is costly, prompting design
emerges as a practical solution to address the robustness chal-
lenges. A thoughtfully designed prompt can significantly im-
pact ChatGPT’s predictions. Recent studies have shown that
the utilization of reasoning prompts can significantly enhance
the accuracy of predictions. Recent popular prompting ap-
proaches are optimized to allow a single large language model
to better perform a variety of tasks [Li and Liang2021,Lester
et al.2021, Reif et al.2021]. Among these works, [Wei et
al.2022] proposes to apply chain-of-thought prompts to im-
prove the ability of large language models to perform com-
plex reasoning to solve complex tasks. Nevertheless, neither
of these works demonstrates a direct impact on addressing the
robustness issues for LLMs to improve code comprehension.

In contrast to previous studies, our research specifically
aims to activate ChatGPT’s purpose-reasoning capability to
enhance code comprehension while mitigating the adverse
impact caused by robustness perturbations.

6 Conclusion
We present Perthept, a modular prompting framework to
solve robustness issues efficiently in code comprehension
for ChatGPT by leveraging main-purpose reasoning guidance
and iterative reasoning enhancement. With clear reasoning
guidance and iterative higher-level reasoning enhancement,
Perthept effectively maintains high levels of robustness in
complex code comprehension tasks. Comprehensive experi-
ments reveal superior performance of Perthept in achieving a
high level of robustness while simultaneously ensuring high-
quality code comment generation. A side study also shows
that Perthept has relatively robust performance under the un-
reliability of ChatGPT generations. Future improvements be-
yond Perthept involve prompting optimization (e.g., token re-
duction), robustness improvement for dynamic code compre-
hension, modular LLM fine-tuning, and augmentation with
tools.
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