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Abstract—Modern tactical missile systems are required to 

achieve high maneuverability and sufficient stability. As a result, 

the flight control design of a missile system is a creative process 

as it considers both performance requirements and performance 

limitations, which are inherently conflicting. Different modern 

control techniques handle such conflicting demands through the 

adjustment of cost weighting parameters between system 

internal states and control signals. The adjustment processes 

might need trials to tune the system performance to certain level 

at different operating conditions. This paper involves in the 

formulation of an optimal design approach that achieves the 

required level of robustness related to open-loop design 

requirements and system dynamic limits while minimizing the 

tracking error between the reference input and the system 

output. The proposed approach is based on a constrained 

optimization technique where the design parameters are 

automatically adjusted to the optimum tradeoff between the 

overall system performance and robustness. The effectiveness 

and feasibility of the proposed approach are demonstrated 

through a numerical example for the three-loop autopilot 

design. 

 
Index Terms—Optimal-robust state feedback, constraint 

optimization, frequency domain constraint, control effort 

constraint.  

 

I. INTRODUCTION 

The modern techniques such as H∞, μ-synthesis [1], 

optimal LQG [2] and dynamic inversion [3] are the most 

popular in the design of autopilot systems for several decades. 

While these techniques offering powerful design tools, they 

also suffer from certain shortcomings when put to practice. 

For example, these methods solve the tradeoff between design 

performance and robustness requirements indirectly by using 

weighting parameters on the internal states and the control 

signal of the system. Since the relation between these 

weightings and the resultant performance is not so clear, the 

selection and adjustment of these weightings and some other 

design parameters might be repeated at different operating 

conditions to meet the design requirements. Moreover, the 

autopilots obtained with these techniques are mostly of high 

order, which is may be difficult to implement. 

In general, the system achieves better in terms of time 

performance criteria as more as the tracking error minimized. 

However, the free minimization of tracking error may cause 

too high autopilot gain with an undesired frequency response. 

Consequently, the optimal control method should provide the 
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optimum of the tracking performance combined with a direct 

incorporation of the frequency-domain criteria values and 

actuator limits to achieve a satisfactory robustness level. In 

the same sense, the minimum error between the desired and 

the actual open-loop crossover frequency is formed as an 

objective of LQR technique while adjusting its weightings [4], 

[5]. However, this method is based on initial guessing of the 

weightings which might need to be carried out and repeated to 

adjust the required initial performance. Besides, this scheme 

will not essentially guarantee an optimal autopilot as it is 

possible to get the same crossover frequency for different gain 

designs. Moreover, [6] introduces the multi-objectives 

optimization technique where both time and frequency 

performance are combined into one objective function 

through multi-weight technique. However, it is yet facing the 

burden of objective's weightings adjustment. The autopilot 

design using constraint optimization methods is introduced in 

[7], [8]. These methods are considered for specified controller 

structure with totally numerical procedure.  

The main objective of this work is the formulation of an 

optimal control technique that achieves the optimum of the 

performance objective within direct constraints upon the 

robustness requirements and system limits in such a way that 

the design solution is automatically obtained without the 

requirement for weighting parameters [9]. In addition, this 

formulation allows a direct incorporation of the design 

requirements that cannot be handled easily using the quadratic 

performance index such as shaping of loop frequency 

responses. These requirements are provided through the 

constraints or the bounds on the design parameters. This 

paper is organized as follows; Section II discusses the system 

modeling and transforms the design problem into the 

parameters of the desired closed-loop diagonal form. Besides, 

this section derives a formula between these parameters and 

the corresponding feedback gain. In Section III, the optimal 

autopilot design objective is formed analytically for the 

tracking performance based on the integral square error (ISE) 

index [10], [11]. Moreover, the performance constraints on 

the open-loop performance and the actuator limits are derived 

in the form of inequality functions. Furthermore, the method 

of solving the design problem within the frame of the 

constrained optimization technique is highlighted. Finally, 

Section IV shows a numerical autopilot design of a typical 

missile system using the proposed technique. 

 

II. MODELING AND TRANSFORMATION 

Consider a linear time invariant system described by  
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     

   

x t Ax t Bu t

y t Cx t

 


                         (1) 

where ( ) nx t   is the state vector, ( )u t   is the 

controlled input signal, ( )y t   is the system output and the 

A , B  and C  are n n , 1n  and 1n  constant matrices 

respectively. The feedback control law for controllable 

( , )A B  with available full state, shown in Fig. 1, is in the form 

of 

     DCu t Kx t K v t                        (2) 

where ( )v t   is the reference input, K  is a 1 n  constant 

feedback gain and DCK   is an pre-adjustment gain for zero 

steady state error between the input command ( )v t  and the 

output ( )y t . 

∫ 

K

v yxuû

+-
K'DC

A

B
x˙

Open loop 

point

 
Fig. 1. State feedback system. 

The closed-loop dynamics of the system is given as  

       

   

x t A BK x t Bv t

y t Cx t

  


                  (3) 

The gain K  should be chosen properly such that the matrix 

 clA A BK   is asymptotically stable with a satisfactory 

transient response. Stable closed-loop systems for different 

K  could be described by a given  , E  in the 

eigenvalue-eigenvector spectrum, i.e., 

 A BK E E                                  (4) 

where   is a diagonal matrix of distinct left hand side 

eigenvalues and E  is the corresponding full linear 

independent eigenvector matrix. The system closed-loop 

stability and performance are specified by these eigenvalues 

[12]. However, direct adjustment of the gain K  to satisfy 

system stability and performance may be not an easy task. 

Instead, the approach in this paper will start from a desired 

matrix  . Then the gain K  is calculated based on Eq. (4). 

The desired   consists of n  poles in the terms of positive 

parameters  , i  and j  such that 

1 2 *
1 /2 /2 /2 /2 1,  1 ,  i i i i i i ij        

        

In case of n  is odd integer and 2,4, ( 1)i n  , or  

2 *
( 1)/2 ( 1)/2 ( 1)/2 ( 1)/2 11 ,  i i i i i i ij                

for even integer n  and 1,3, ( 1)i n  . The total number of 

the positive parameters  , i  and j  is always equal to n . 

The configuration of matrix   guarantees a stable 

closed-loop. Moreover, the values of these parameters reflect 

the performance behavior of the system. At this point, it is 

required to solve matrix E ; this task could be accomplished 

either in term of the parameters of matrix clA  or matrix  . In 

the following, the design will be handled in the space of the 

positive parameters  , i  and j . Moreover, a method to 

find the matrix E  in the term of these design parameters is 

introduced. 

Let the diagonal form of a linear dynamic system with 

distinct roots is given by [13] 

     

   

DCx t x t BK v t

y t Cx t

  


                   (5) 

This form is an equivalent state-space description of the 

closed-loop dynamics in Eq. (3) under a linear state 

transformation such that  

     1,   1, 1, 1 ,   
T

x t Ex t B E B C CE    . 

In order to find the matrix E , a further insight into the 

system behavior is provided by the transfer function between 

( )x t  and ( )v t  which is given as 

   
1

DCT s K sI B


                                 (6) 

where ( )T s  is an 1n  transfer-matrix. Using the linear 

transformation E , the transfer function between ( )x t  and 

( )v t  is written as 

   
1

1
( )

DC

DC

T s K E sI B

K Eq s B
sI


 




                      (7) 

where ( )T s  is an 1n  transfer-matrix, sI   is the 

closed-loop characteristic polynomial of n  degree, 

( ) adj( )q s sI   is an n n  polynomial matrix, its entries 

are polynomials of 1n  degree or smaller, both ( )q s  and 

sI   are expressed respectively as 

1 2

1 2 1 0

1

1 1 0

( ) n n

n n

n n

n

q s q s q s q s q

sI s p s p s p

 

 





    

     
           (8) 

where 0 1, , np p   are constant coefficients and 0 1, , nq q    

are n n  constant matrices; both are defined by  , i  and 

j . Leverrier-Fadeev method is used to evaluate these 

matrices as [13] 

1

1

(1 ( )) tr( )

n n

i i

i i i n

q I

p n i q

q q p I







   

  

                          (9) 

where 1, 2, ,1i n n    . By performing Eq. (9), it is found 

that 0 1, , nq q   are diagonal matrices and are equal to 
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1

2

1

( )

( )

( )

,

0 0

0 0

0 0
n

n n

n i

n i

n i

n i

q I

q

q
q

q













 
 
 

  
 
  

                  (10) 

where 

1 2 3
( ) 1 2 ( 1)

2
1

( 1 )

0

j

i i i
n i j j n j n n i

i
i l
j j n i l

l

q p p p

p

  

 

  
    




  



    

 
, 

2,3, ,i n  and 1,2, ,j n . The transfer function matrix 

( )T s  could be reformed as 

 
 

 

1

1

1

1
( )

1

DC sn n

i

i

DC n

i

i

T s K E Q s

s

K EQS

s











    










                (11) 

where ( ) ( )sQ s q s B  is an 1n  polynomial matrix, Q  is 

an n n  constant matrix and 
1 2[ 1]n n TS s s  . The 

elements of Q  are function of  , i  and j  such that Q  

equals 

1 1 1

2 2 2

( 2) ( 3) (0)

( 2) ( 3) (0)

( 2) ( 3) (0)

1

1

1
n n n

n n

n n

n n

q q q

q q q
Q

q q q

 

 

 

 
 
 

  
 
  

              (12) 

It can be seen that the Q  is a nonsingular and invertible 

matrix for positive selections of  , i  and j , which lead to 

linearly independent columns and rows. 

In the same way, the transfer matrix ( )T s  could be 

reproduced using the system description in Eq. (3) as 

 
1

( )

1
( )

DC cl

DC

cl

T s K sI A B

K q s B
sI A


 




                           (13) 

where  ( ) adj clq s sI A   is an n n  polynomial matrix, 

which is evaluated in the same way as ( )q s , and it is 

expressed as 
1

1 1 0( ) n
nq s q s q s q
    . 

Theorem 1 The linear time invariant system that is 

described by Eq. (1) and is controlled by the state feedback 

control in Eq. (2), has the following property 

   adj sI A BK B adj sI A B    . 

Proof is given in the Appendix. 

Consequently, the matrixes 0 1, , nq q   are calculated by 

Leverrier-Fadeev algorithm using the system original matrix 

A . Eq. (13) is reintroduced as 

 
1

1
( ) ( )

1

DC s n
cl

DC

cl

T s K Q s
sI A

K QS
sI A









                       (14) 

where ( ) ( )sQ s q s B  is an 1n  polynomial matrix that is 

treated similarly as in Eq. (11) such that Q  is an n n  

constant matrix, and its elements are function in the original 

system parameters and are given by 

( )

1

il

n

ij l n j

l

Q B q 



 . 

In fact, the two equations (11) and (14) are identical as the 

transfer ( )T s  is invariant under a linear transformation. 

Similarly, the characteristic polynomial is also invariant, 

which results with EQ Q . In Common, for any chosen 

value of the positive design parameters  , i  and j  the 

corresponding E  matrix is found as 

1( , , ) ( , , )i j i jE QQ                        (15) 

where Q  is a nonsingular matrix. After evaluating the matrix 

E , the autopilot gain could be expressed in terms of the 

design parameters as 

† ˆ( , , ) ( , , )i i i iK B A                    (16) 

where 
1ˆ ( )A A E E   , 

1( )TB B 
 is nonsingular square 

matrix and 
? ( )T TB B B B   is the pseudo-inverse of matrix 

B .  

As noted above, the DCK   gain is provided to achieve zero 

steady state error between the input ( )v t  and the output ( )y t . 

To this end, the corresponding transfer function is given as 

 
1( )ˆ( )

( )

1
( )

DC cl

DC

cl

y t
T s K C sI A B

v t

K Cq s B
sI A


  




                   (17) 

Referring to Eq. (11) and (14), the transfer function ˆ( )T s  

is reformed as 

 
1

1ˆ( ) DC n

i

i

T s K CQS

s 





                  (18) 

The steady state error tends to zero when  

0 1

0
0

1

ˆlim ( ) 1,  . .,  

n

i

i

DC ns

i in

i

p
T s i e K

Q
C Q








  



            (19) 

where 0p  is the free parameter in sI   calculated by 

Vieta's formulas [14], iC  are elements of matrix C  and 0Q  
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is assumed to be nonzero for practical system parameters. 

 

III. AUTOPILOT DESIGN 

One important problem is concerned with the performance 

level that can be achieved by the controlled system. 

Obviously, the feedback design requirements are inherently 

competitive, so a tradeoff must be performed among different 

design requirements [15]. Such tradeoff could be fairly 

handled by discriminating these requirements into 

performance objective requirements and performance limits. 

Meanwhile, a group of stable acceptable systems in terms of 

various constraints on the design and system performance 

limitations are optimized to achieve the optimum of a 

performance objective cost [16], [17]. 

A. Performance Requirements 

Commonly, the tracking performance is the main objective 

of the control system. For this purpose, we assume that a 

reference unit step is applied at the input of the system in Fig.1 

with an initial condition (0) 0x  . The closed-loop system is 

asymptotically stable so that ( )y t  will reach to ( )v t , i.e., 

( ) ( ) 1y v t   , and ( )u t  will approach zero as ( )t   

[18]. The steady state of the system is described by 

( ) ( ) ( )

( ) ( )

DCx x BK v

y Cx

     

  
                 (20) 

By subtracting Eq. (20) from Eq. (5), one get  

( ) ( )

( ) ( ) ( ) e (0)t
y

e t e t

e t y t y CE e

 

   
 

where ( ) ( ) ( ) e (0)te t x t x e    , ( )ye t  is the tracking 

error, and e  is the exponential expression. The value of (0)e  

is computed from Eq. (20) where at the steady state ( ) 0x   ,  

1( ) DCx BK    , 

and 
1(0) ( ) DCe x BK      , 

which yields 

( )y te t EE                               (21) 

where 
1

DCE K CE    is an 1 n  matrix and 

1 2e [e e e ]nt t t t T
tE B     . Indeed, the quantitative 

measurement of the system tracking performance is the 

integral of square error (ISE) between reference input and 

corresponding output which is given as [11] 

 

11 1 2

22 1 2

1 2

2

( , , )
0 0

( )2( ) ( )

( )( ) 2( )

0
( ) ( ) 2( )

1 1

e e e

e e e

e e e

1

i i

n

n

n n n

T T

y t t n n

tt t

tt t
T

t t t

n n
i jT

i ji j i jn n

J e t dt E E E E dt

E dt E

E E
E E

  

   

   

    

   

 





 

 

 


    

  
  
  
  
    

 
    

 





 (22) 

The optimal system performance is achieved at the 

minimum of ( , , )i iJ    . However, the minimization of the 

performance objective ( , , )i iJ     should be carried out 

under system performance limitations. These limitations will 

be highlighted as design constraints. 

B. Performance Constraints 

Practically, the autopilot must be designed in concert with 

the required frequency response and within the system 

capabilities. In the following, these performance constraints 

are manipulated in the form of inequalities and in terms of the 

design parameters. 

1) Frequency domain constraints 

Several design specifications and performance limitations 

can be converted into constraints on the shape of the 

open-loop gain ( )sL j . The open-loop transfer function is 

from the process input u  to the controller's output û  with 

zero reference input (Fig. 1). The state-space model from u  

to û  is given by ( ) ( ) ( )x t Ax t Bu t   and û Kx   which 

corresponds to the following open-loop negative feedback 

transfer function 

   
1 1

( )
L s K sI A B KQS

a s


                     (23) 

where ( )a s sI A  , Q  and S  are defined as in Eq. (14). 

Substituting by ss j , the open loop magnitude ratio is 

written as 

2 *

*

† †

( ) ( ) ( )

( )( )

( ) ( )

ˆ ˆ( )( )

( )

s

s s s

T T

s s

T T

s

L j L j L j

K QS QS K

a j a j

B A QS Q B A

a



  

 










                (24) 

where * 1 2[( ) ( ) 1]n T
s s sS j j j      , *

s

TS S S   is 

an n n  matrix defined by the frequency s , and 

( ) ( ) ( )s s sa a j a j     is a polynomial in s . Eq. (24) 

provides an exact value of the open-loop gain corresponding 

to certain gain design † ˆ( , , )i jK B A     at any specific 

frequency s . 

Control effort constraint

ωCR constraint

High frequency  

constraint

ωs

Low frequency  

constraint

ωl

ωh

|L|

Objective minimization 

direction  

 
Fig. 2. System open-loop performance. 
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As noted above, the shape of the open-loop gain could 

provide important aspects of the closed-loop control system 

performance. Commonly, this shape is defined by three 

specifications which are the minimum level of the low 

frequencies gain, the crossover frequency value, and the high 

frequencies attenuation [15]. The open-loop performance is 

illustrated in Fig. 2. In general, the tracking performance and 

disturbance rejection properties require a wide closed-loop 

bandwidth, while robustness to un-modeled dynamics 

requires smaller bandwidth. Namely, this challenge is 

addressed by limiting the crossover frequency value to make 

sure that the open-loop gain is below some desired level at 

high frequencies [19]. The open loop magnitude ratio at the 

crossover frequency is equal to one, i.e., 
2

( ) 1CRL j  . 

Therefore, the first constraint is on the crossover frequency 

value which is defined by the following inequality 

† †ˆ ˆ( )( )
1

( )

s

CRd

T T

s
s

B A QS Q B A

a




 

             (25) 

where CRd  is a prescribed limitation on CR , i.e., for any 

gain design † ˆK B A  that satisfies the inequality in Eq. (25) 

then the corresponding CR  will be CR CRd  . For the 

purpose of missile autopilot design, a “classical rule of 

thumb” limits this value to be less than or equal one third of 

the actuating natural frequency [20]. The crossover frequency 

constraint is equivalently expressed as 

† †ˆ ˆ( , , ) ( )( ) ( ) 0
CRd

T T

CR i j CRdg B A QS Q B A a         (26) 

Moreover, at high frequencies it is desirable that the ( )L s  to 

be small so that ( ) (1 ( ) )L s L s  is small; this ensures that 

the system output will be relatively insensitive to the 

measurement noise. The required attenuation level for a 

specified frequency point at the high frequency hi CRd   is 

constrained by 

† †ˆ ˆ( )( )
( ) 1

( )

hi

hi

T T

hi

hi

B A QS Q B A
L j r

a



 



    

where hir  is a positive fraction corresponding to the dB  

attenuation level. The high frequency attenuation level is 

decided either depending on specified design requirements or 

based classical design roles. The high frequency constraint is 

given as 

† † 2ˆ ˆ( , , ) ( )( ) ( ) 0
hi

T T

hi i j hi hig B A QS Q B A r a         (27) 

Similarly, the open loop gain at low frequencies li CRd   

is required to be larger than certain level to ensure good 

command tracking and low sensitivity to plant variations. 

This level could be specified with positive value 1lir   as 

2† †

1 1
( , , ) 0

ˆ ˆ ( )( )( )
li

li i j T T
li li

g
r aB A QS Q B A

  


        (28) 

2) Control effort constraints 

The hardware limits of the actuating system should be 

considered; otherwise, the performance of the closed-loop 

system may be significantly degraded or may even become 

unstable in the saturation situation [21]. Generally, the 

saturation problem could be safely ignored, if the autopilot 

does not command the actuator to exceed its limits. 

Consequently, the physical limitations of the actuating system 

should consider as a constraint on the performance of the 

designed autopilot. To this end, the transfer function between 

input demand acceleration and autopilot command, Fig. 1, is 

given by 

0

0

( ) 1 1

( ) 1 ( ) 1 ( )
DC

pu s
K

v s L s Q L s

 
   

  
              (29) 

The maximum demanded control effort maxu  

corresponding to a specified maximum input demand maxv  is 

defined by 

0

max max

0

1

1 ( )

p
u v

L s Q


  
     

                (30) 

where    denotes the maximum singular value. The 

maximum control effort should be limited referring to the 

physical limitation of the actuating system limu , i.e., 

max limu u  . Then Eq. (30) could be reformed as 

0

max lim

0

1

1 ( )

p
v u

L s Q


  
    

 

Equivalent, it could be rearranged as 

 lim

0 0

max

1 ( ) 0
u

Q L s p
v


 

   
 

 

where  1 ( )L s  is the minimum singular value of 

 1 ( )L s . This value reaches to one where ( ) 0L   . In the 

same meaning, the design parameters in 0p  are constrained 

by 

 1 2 lim

( , ) 0

max

( )/2

1

0
i

l

i

n l

i

u
Q

v
   





   
      

   
         (31) 

where 1l   for odd n  and 0l   for even n . Since the 

characteristic polynomial of the closed-loop could be defined 

by 1 ( ) 0L s  , the limit on the 0p  value is in turn limiting 

the open-loop gain at 0s   where  

0
0

lim
s

sI p


  . 

C. Constrained Optimization 

It is reasonable now, based on the previous discussion, to 

state the optimal autopilot design problem in the form of 

inequality constrained optimization problem as 
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, ,

( , , )
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min : ( , , )
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 :
0

0, 0,
:

1

i j

i j

j

i j

CR hi li

i

i

J

g g g

Subject to

Bounds

  

  

 

  

 

 



 

 

 

                      (32) 

The target of the optimization problem (32) is to minimize 

the objective function while satisfying the performance 

constraints within applicable bounds of the design parameters. 

Moreover, the constraints divide the optimization space into 

two domains, the feasible domain where the constraints are 

satisfied, and the infeasible domain where at least one of the 

constraints is violated. Mostly, the optimum design is found 

on the boundary between the feasible and infeasible domains, 

that is at a point where at least one of the constraints equal 

zero. The method of Lagrange Multipliers could apply to 

solve the optimization problem. Particularly, this problem is a 

nonlinear constrained multi-variable optimization problem. 

As expected, the function fmincon of the MATLAB 

Optimization Toolbox can solve such kind of smooth 

objective optimization problem well effectively with feasible 

initial design parameters. Moreover, it converges to the same 

minimum point even starting from different initial guesses [9]. 

In this line of thought, the optimal autopilot gain K  is easily 

calculated by substituting the optimum parameters  , i  and 

j  into Eq. (16). 

 

IV. NUMERICAL SIMULATION 

The proposed method is applied to design a three-loop 

longitudinal missile autopilot. The system model is describe 

as in Eq. (1) where 

 

0

0 0 1 ,   0 ,   1 0 0 ,

/ 0

Z VZ VZ

A B C

M V M M

  

  

   
   

  
   
       

 

 ( )
T

yx t a q q , q  is the pitch angular rate, ya  is the 

missile acceleration, V  is the missile velocity and M , M , 

qM , Z  and Z  are the aerodynamics coefficients. The 

system parameters are given in Table I for two different flight 

conditions with same speed 914 m/s V   and different 

attitude H  [22]. Moreover, the actuator is considered to be a 

second-order dynamic system with natural frequency 

220 rad/sACT  , damping factor 0.65ACT  , maximum fin 

deflection rate lim 300 deg/s u  and maximum fin deflection 

10 deg . 

 

TABLE I: TYPICAL MISSILE AERODYNAMIC DATA 

Z  

s-1 

Z  

s-1 

M  

s-2 

M  

s-2 

H  

m 

Point 

no. 

0.239 1.17 204 240 9150 (1) 

0.0957 0.533 81.7 99.1 15250 (2) 

The proposed approach is used in to provide the optimal 

autopilot gain K  where the control signal ( )u t  is referring to 

the demanded fin deflection rate. The autopilot system is 

required to track maximum commanded acceleration 

max 5yc ga  , with a steady state error of no more than one 

percent and a time constant of less than 0.25sec . The 

open-loop crossover frequency is limited by 50 rad/s , the 

system open loop gain required to be greater than 3dB  at 

35Hz  and less than 15dB  at 300Hz . Moreover, the 

designed system should satisfy these requirements at the two 

operating and avoid the actuator saturation problems. The 

design performance is tested for an acceleration command of 

5g. The corresponding tracking performances, fin deflection 

and fin deflection rate are exhibited in Fig. 3 and the 

open-loop gain is shown in Fig. 4. The numerical results are 

stated in Table II for theses two operating conditions. 

 

  
(a) Response of 5g acceleration (b) Fin-defection response 

 
(c) Fin-defection rate response 

Fig. 3. Design performance against 5g input command. 

 
Fig. 4. Open-loop frequency response. 

 

As stated in Table I, there is a large difference between the 

dynamic parameters of the system at the two operating 

conditions. Consequently, the design process using available 

optimal technique such as linear quadratic regulator may 
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requires several trials of weights tuning in order to provide the 

system with the required performance. In contrast, the 

proposed approach handles the design based on explicit forms 

of the objective function and performance constraints, which 

are same at any operating point. The only change between 

certain point and another is the values of the system 

parameters. In other words, the designer is no longer need to 

adjust design parameters or weightings at each operating 

condition to reach the desired performance. In this case, the 

optimal design at any operating point is achieved by solving 

the optimization problem in Eq. (32). Moreover, the 

simulation results show that the proposed method exhibits 

good tracking performance within the design requirements 

and system limits for the two operating points. Moreover, as 

stated in Table II, these performances are achieved with phase 

margin greater than 70  which indicates a high robustness 

level. In other word, the performance, the stability and the 

robustness of the autopilot system are provided with this 

control technique. Moreover, these results are achieved 

without the burden of weightings adjustment. 
 

TABLE II: SIMULATION RESULTS 

Point (2) Point (1) Specifications 

0.06   0.058   
Optimal Design 

Parameters 
0.76   0.7   

16   21.4   

1 0.13K   1 0.044K   

Optimal Gain 2 6.68K   2 3.347K   

 
3 0.638K   3 0.272K   

0.15 0.126 Rise Time (s) 

0.265 0.2175 Settling Time (s) 

2.19 1.4 Over Shoot % 

71.75 72.6 Phase Margin (°) 

43 50  CR
 
(rad/s) 

 

V. CONCLUSIONS 

An optimal state feedback design technique is proposed 

and applied successfully to design a three-loop missile 

autopilot system. The design practicality and robustness are 

provided by considering both the system frequency response 

and the actuating system limits. Moreover, this method allows 

the designer to apply classical loop-shaping concepts to 

obtain good performance while optimizing the response near 

the system bandwidth to achieve robust stabilization. The 

optimal design is achieved using constrained optimization 

technique for the optimum of the tracking performance. The 

whole design is established in terms of the stable parameters 

of the desired closed-loop diagonal form and in such way that 

the tradeoff between system performance and robustness is 

brought directly into the design process without required for 

weightings parameters.  

APPENDIX 

Proof of Theorem 1. 

Let A , B  are two matrices that are defined as described in 

Eq. (1) where 

1
1 1 0( ) adj( - ) n

nq s B sI A B q Bs q Bs q B
      

1
1 1 0( ) adj( - ) n

nq s B sI A BK B q Bs q Bs q B
     

0 1, , nq q   and 0 1, , nq q   are constant n n  matrices. The 

two terms 
( )q s B

 and 
( )q s B

 are equivalent if i iq q
 where 

0,1 , 1i n  . For 1i n  , using Leverrier-Faddeev 

method, it is found that 1 1  n nq q I  
 then 1 1  n nq B q B 

.  

Similarly, for 2i n  , it can be shown that 

2 1 2 1

2 2

2 2

tr( ) ( ) tr( )

tr( ) tr( ) tr( )

tr( ) tr( ) tr( )

n n n n n n

n n n n

n n

q Aq A I q A BK q A BK I

q A A q A BK A I BK I

q B AB A B q B AB BKB A B BK B

   

 

 

     

     

     
 

As tr( )BKB BK B , then the term 2nq B  is reduced to 

2 tr( )nq B AB A B  
, i.e., 2 2n nq B q B 

. For 3i n  , in the 

same way, one can obtain 

 

 

2 2

3

2 2

3

1
tr( ) tr( ) tr(tr( ) )

2
1

tr( ) tr( ) tr(tr( ) )
2

n n

n

q A A A A A A I

q B A B A AB A A A B





   

   

 

 

2

3

2

tr( ) tr( )

1
         tr( ) tr( ) tr( ) tr(tr( ) )

2
1

         [tr( ) tr( ) tr( ) tr(tr( ) )
2

         tr(tr( ) ) tr(tr( ) )]

nq B A B BKAB ABKB BKBKB A AB A BKB

BK AB BK BKB A A A B

BKA ABK BKBK A BK

BK A BK BK B

      

   

   

 

 

As can be seen the term 3 3n nq B q B 
 where 

 

tr( ) tr( )BKAB BKA B ABK B  , 

tr( )ABKB BK AB , tr( )BKBKB BK BKB , 

tr(A) tr(tr( ) ) tr(tr( ) )BKB BK A B A BK B  , 

 

and tr( ) tr(tr( ) )BKBK B BK BK B . It also can be notice that all 

terms content K  are vanished; this is hold for i iq q . 

Moreover, this result is consistent with the fact that the 

closed-loop and the original plant of the system described in 

Fig. 1 share the same nominator. Finally, it can be concluded 

that ( - ) ( - )adj sI A B adj sI A BK B  .  
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