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Abstract. Contemporary organisational processes evolve with people’s
skills and changing business environments. For instance, process docu-
ments vary with respect to their structure and occurrence in the process.
Supporting users in such settings requires sophisticated learning mech-
anisms using a range of inputs overlooked by current dynamic process
systems. We argue that analysing a document’s semantics is of utter-
most importance to identify the most appropriate activity which should
be carried out next. For a system to reliably recommend the next steps
suitable for its user, it should consider both the process structure and the
involved documents’ semantics. Here we propose a self-learning mecha-
nism which dynamically aggregates a process-based document prediction
with a semantic analysis of documents. We present a set of experiments
testing the prediction accuracy of the approaches individually then com-
pare them with the aggregated mechanism showing a better accuracy.

Keywords: document analysis, process recommendation, people-driven
ad-hoc processes, document and process evolution.

1 Introduction

Changing business requirements, dynamic customer needs, and people’s grow-
ing skills demand support for flexible business processes. Existing attempts to
support such dynamic environments can be roughly categorised into ad-hoc pro-
cesses [19], semi-structured or case-based processes [I5], and well-structured pro-
cesses [I4]. Their differences lie mostly in the flexibility at the process modelling
level. Generally they allow the user to deviate from the prescribed course of ac-
tion, adjusting the process according to the current needs. This flexibility comes
at the price of users facing more complex situations while receiving little support
on how to carry out their activities. Recent efforts partially address this issue
by recommending next steps and relevant documents [I8/4]. Yet the increase of
information exchanged as documents in disparate forms adds to the cognitive
load of the user.
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People-driven ad-hoc processes prescribe the existence of a process model,
which the user is completely free to deviate from using the presence of certain
documents and their states to determine the next action to recommend to its
user. Yet the prevailing assumption that process documents are always well struc-
tured, conveying a precise meaning and purpose is far from realistic. Achieving
such a level of process flexibility — and subsequently providing the necessary
user support — demands for an accurate recognition of imprecise documents,
allowing the purpose of process activities to remain the same but the required
input and output documents to vary.

Our approach applies the concept of process stability to determine whether
the underlying process model or a document’s semantic structure yield bet-
ter prediction results. The analysis of prediction results feeds back in turn to
automatically adjust the process stability and aggregation. To the best of our
knowledge this dynamic predication combination is the first attempt to com-
bine process information and document alignment to determine semantically the
type of a given document. We present experimental results obtained through re-
alistic simulations of changing processes and documents with varying semantic
structure. Our results support our claim that a dynamic predictor aggregation
outperforms individual predictors especially during evolving process phases.

In the remaining of this paper, Section [2] presents a reference scenario. Sec-
tion [B] describes preliminaries and our approach. We outline the individual and
aggregated predictors in Section @l Experimental setup and results are discussed
in Section Bl Related Work in Section [G] compares existing approaches to our
contribution, followed by a conclusion and outlook on future work in Section [7

2 Reference Scenario

The example in Figure [ depicts a flexible people-driven order process. The
individual work steps describe a general order of activities to successfully com-
plete a process instance. The outlined flow, however, does not enforce the exact
order of activities, which is up to the user, and covers no exceptions or pro-
cess adaptations that might arise due to a specific customer request, incomplete
information, or user specific expertise. Consequently, the listed types of docu-
ments that characterise the exchanged messages specify merely an initial set of
expected documents. In this scenario, we encounter various forms of document-
centric process evolution:
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Fig. 1. Generic order process and associated types of documents
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Missing Documents: When the Replenish step (C) is updated to make use
of an automatic restocking system, only user confirmation is required and the
Quote message (3) no longer occurs.

Delayed Documents: A company potentially decides to delay the Agreement
(5a) document until the PrepareShipment (F) activity signals the completion
of the production and packaging sub process.

Premature Documents: For premium customers, shipping becomes indepen-
dent of billing thus the DeliveryNote (8) potentially occurs before Invoice (7).

Shifted Documents: For regular customers, the company might decide to
merge the DeliveryNote (8) into the Invoice (7) thereby having the invoice
after the PriorityDispatch (H) and dropping the delivery note altogether.

3 Preliminaries

Our approach relies on following fundamental concepts: (i) there is a set of valid
specifications for any document type (Sec[B]), (ii) the user can deviate from the
process model anytime (SecB.2), (iii) user feedback corrects predictions (Sec[3.3),
(iv) document-task dependencies are malleable and change over time (Sec E1]),
and (v) document structures change over time (Sec E.2).

3.1 Document Alignment

The alignment of documents consists of determining the best match between a
document and a set of internal document representations [7], which include the
expected document structure but also knowledge regarding what to do with this
document. Therefore, this differs from the related activity of classifying docu-
ments. We call a business’ internal representation of a document a document type.
It is possible that more than one document type represents the same document,
though with different degrees of similarity. However, the document alignment
process provides the most appropriate one. In order to align a document to a
document type, we need to define how documents are represented.

Representing and standardising the structural information of documents have
been addressed by a number of efforts, cf.[I3J20]. In this paper we simply re-
use the one explained in [I2], where the hierarchical structure of the semantic
concepts is represented by the path from the root concept to each of the leaf
concepts. For example, consider the structure of the document in Listing [[T] (up-
per part) and the representation of the concepts Name and City (lower part).
Notice that the two concepts Name belong to different entities and thus convey
a different meaning. Also notice that even though the two concepts City possess
the same meaning, they actually represent different concepts because of their
position in the structure. We use this document representation for our experi-
ments and leave the conversion of actual documents into XML out of the scope
of this paper. We simply assume that others, cf.[I0], have done it already.
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1 <Document>

2 <ClientOrganisation>

3 <Name>TUVUM Solutions</Name>
4 <PhysicalAddress>

5 <Street>Baker St</Street>
6 <City>London</City>

7 </PhysicalAddress>

8 <PostalAddress>

9 <P0Box>1234</P0Box>

10 <City>London</City>

11 </PostalAddress>

12 <ContactPerson>

13 <Name>Christoph Dorn</Name>
14 </ContactPerson>

15 </ClientOrganisation>

16 </Document >

17 Document->ClientOrganisation->Name

18 Document->ClientOrganisation->ContactPerson->Name
19 Document->ClientOrganisation->PhysicalAddress ->City
20 Document->ClientOrganisation->PostalAddress ->City

Listing 1.1. Document representation and semantic concepts

3.2 People-Driven Ad-Hoc Processes

In [4] we introduced a modelling language for describing people-driven ad-hoc
processes. Individual process steps are linked to connectors by means of transi-
tion arcs thereby creating a directed, a-cyclical graph. The main difference to
previous works on flexible workflow support systems (e.g., [I4J2118]) is a sup-
plementing sequence graph that describes the preferred order in which a user
progresses through the activities in the various branches. An incoming transi-
tion details all document types that are required as inputs to an activity. An
outgoing arc lists all document types that are produced by that activity. See
Figure[2 for a process model excerpt describing part of the scenario. The process
engine observes all messages as well as user actions to determine which process
activities have been successfully completed, have been skipped, or are currently
processed. Doing so, it keeps track of upcoming activities and expected incoming
and outgoing documents. For each incoming document, the process recommen-
dation algorithm then identifies which activity the user should carry out next,
and what follow-up activities are suitable. This approach however, assumes that
incoming documents are well-formed and thus are always mapped (i.e. aligned)
to the correct document type.

[F]
Prepare
[E] (3b) Job Shipment
Send Description
—] | Acceptance
1b) Credit
( ’2‘0{: I (3a) (3b) Job B'II['G] .
Agreement | | Description | iling
(3b) Job | [ (6b) AuthOf nvoicing
Description Invoice

Fig. 2. Process model excerpt detailing document types on transition arcs between
activities
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3.3 A Framework for Self-learning Document Predictors

Our approach to self-learning predictor aggregation is visualised in Figure[3l The
Document-based Predictor analyses the structure of every document occurring in
the process (1) and provides a ranking of likely types to the Dynamic Predictor
Aggregation component (2a). Likewise, the Process-based Predictor provides ex-
pected document types (2b). The Dynamic Predictor Aggregation combines both
rankings and provides the Process Engine (3) with the most likely document
type, triggering (4) the Activity Recommender to suggest the next actions to
the user (5). The Prediction Feedback component receives explicit user feedback
in the form of document re-alignment, or implicit feedback by recommendation
acceptance (6). This updates all three predictors to consider the prediction error
and improve their individual performance (7). In the case of the dynamic aggre-
gation, this includes an update of the process stability. Details on the process
engine and activity recommender are out of scope of this paper as we focus on
improving document type predictions, which consequently increase the precision
of recommendations.

\ ()
([ We— 6-;
2
! 3 3 v
Document- Process-based Dynamic Predictor | : .
based Predictor Predictor Aggregation 5 PrEd"(:gZE Zeg)dback
(Sec. 4.2) (Sec. 4.1) (Sec. 4.3) ° s
i T e
Document ‘ Process " Activity
Types i Engine Recommender

Fig. 3. Self-learning predictor aggregation through feedback analysis. Components
point to their respective sections; remaining components are out of scope of the paper.

4 Document Predictors

A predictor P provides (for a particular process instance and given time) a
probability measurement prob(dt) in the interval [0, 1] for each document type
dt € DT. The resulting prediction set R is normalised so that max(prob(dt) €
R) = 1. Note that multiple document types within a set R can yield the maxi-
mum probability of 1. For example, upon completion of activity (E) producing
two documents (3a, 3b), the process-based predictor would potentially give them
equal probability of 1.

4.1 Predictor Based on Process Progress

Process-based prediction relies on a combination of the previously introduced
process model with document type annotations (see Section B:2)) and a proba-
bilistic document state model. A detailed discussion of the state model including
the mechanisms for ageing and co-evolution with process changes is provided in
[5]. We include a brief description of the state model here for completeness.
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Super-State: Waiting

0 0-
Missing

Fig. 4. State transition model for a document type. Each model instance provides
the transition probabilities for particular combinations of document type and process
model.
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The document state model (Figure ) describes the likelihood for transitions
between various document states (such as scheduled, expected, arrived) during
the process. We track only documents that are defined in the process model,
each in a separate state model instance that is valid only for that particular pair
of process type and document type. Based on incoming and outgoing documents
as well as completed process steps, the process engine triggers the transition
events in one or more message state models. In the scenario, for example, the
Agreement and JobDescription documents remain in state Scheduled until a
CreditNote triggers the activation of the SendAcceptance activity and thus
sets both documents to Fxpected. In case the PrepareShipment activity is
completed without a detected JobDescription, that document is set to Missing.

Ultimately, the process-based prediction leverages the transition labels be-
tween document states. In any of the Waiting super-states the probability is
determined based on the transition to the respective received state. From any of
the Arrived super-states the probability is determined by the transition weight
to the Repeated state. For prediction, all documents are ranked according to
their probability to occur in their current state. The top ranked documents con-
stitute the prediction of newly intercepted documents.

The process-based predictor’s main disadvantage is the lack of knowledge
about the document’s internal structure. Thus the predictor cannot discriminate
between multiple types whenever a process step requires more than one input or
output documents, or when the process has arrived at a split where the branches
are triggered by different document types.

4.2 Predictor Based on Document Alignment

As mentioned in Section B documents are represented by the concepts con-
tained within which indicate the semantic structure by representing the paths
from the root concept to each of the leaf concepts. Therefore the meaning of
the document consists of the set of concepts contained within it. Yet because
in reality documents vary, aligning a document to a document type requires an
approximation of one to the other. We perform this by calculating the observed
“average” document type. We call this calculation the Centre of Mass.

We consider DT to be a set of document types already defined and which
we want to align a document to. A document type dt € DT is composed by
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a set of concept paths cpgy € C'P where C'P represents the universe of known
concept paths. Likewise, a document d is composed by a set of concept paths
cpg € CP. We say a document d is aligned to a document type dt if the condition
cpa N cpgr # O is valid. Normally, the greater the concept paths shared between
d and dt the more similar the two are. A document is considered aligned to a
document type when the two share most of their concept paths. We use the
Centre of Mass cm as the approximate representative of a document type dt and
is defined as follows

_ |cp|
o= 1 e ey W

where e¢m is a vector where each element contains the proportion [3] of each
concept path ¢p with respect to all the concept paths included in the union of
all documents d already aligned to a document type dt. Such a proportion can
be also seen as the concept path weight to represent a document type. Once the
Centre of Mass is calculated, we simply add up the weights of all the concept
paths contained in the document we want to align. Obviously, concept paths in
the document but not contained in the Centre of Mass do not convey any weight.
The result is a value within the range [0, 1], the higher the value the most similar
it is to the approximation of that document type. This differs from the Centroid
document classifier [6] where the cosine between two vectors (documents) is
calculated to determine their similarity.

The Centre of Mass learns by aligning a document to a document type.
Whether the algorithm is supervised or not, the Centre of Mass re-calculates
the approximation of a document type and considers the newly aligned docu-
ment. In order to accommodate evolving document structures, a learning window
is implemented by including only the X most recent documents per document
type to compose its Centre of Mass. That is, we limit the number of documents
to include only the most recently aligned documents, thus converging to the new
“average” document type more quickly.

UVd»—»dt

4.3 Self-adjusting Predictor Aggregation

The self-adjusting aggregation of multiple predictors consists of two phases.
Through-out the process lifetime, the individual document-based and process-
based document type ranks are aggregated and subsequently applied in user rec-
ommendation on which process step to execute next. Upon process termination,
the second phase utilizes explicit user feedback (i.e., correction of misclassified
documents) and implicit ranking analysis to improve the classification mecha-
nism. Our mechanism dynamically adjusts the weight of process-based rankings
(i.e., when messages occur according to the process model) and correspondingly
the weight of the structural similarity (i.e., when the documents no longer follow
the process) according to the underlying Process Stability (stability = [0, 1]).



222 C. Dorn et al.

Dynamic Aggregation. The first step in the predictor aggregation algorithm
(Algorithm [I]) is the intersection of process-based (Rp) and document-based
(Rgs) prediction sets (line 2). The algorithm deals with strongly conflicting pre-
dictions in lines 3 to 8, and otherwise focuses on optimal aggregation in lines 9
to 20. Note that prior to aggregation, we remove any document type dt from Rp
and Rg that is not expected, i.e. prob(dt) = 0.

An empty intersection (Rqqq-) indicates a strong disagreement and hints at
a deviation from the process or a very distorted document. Hence, we derive
all document types that are still expected to occur — or that are likely to
occur again — and intersect them with the document-based prediction result.
If this yields an empty set again, we apply the stability value to decide whether
classification Rp or Rg is a more viable predictor.

An intersection Rggqr with two or more elements needs closer analysis to
decide upon the most suitable aggregation preference pref = [0, 1]. Here, process
stability is not the sole factor for determining the significance of process-based
and document-based predictors. Both predictors potentially encounter situations
when they cannot clearly distinguish between multiple document types and thus
have to give roughly equal probability to most of them. We apply the widely-
known Shannon’s entropy to determine whether a ranking result yields crisp or
indecisive probability values. The normalized entropy h(R) for a document type
ranking set is calculated as:

|R|  score(type;) score(type;)
h(R) _ Zi:l > score?(nype) * log( > score?fype)) (2)
log(|R|)

The normalized entropy yields values close to 1 for rankings of (almost) equal
score, and values close to 0 for crisp scores regardless of ranking size. Subse-
quently we apply the following rules to determine the impact of process-based
and document-based rankings: If both are indecisive, we completely rely on the
prediction that the process stability currently tends towards. That is, for process
stability > 0.5, we apply only process-based rankings, otherwise we apply only
document-based rankings. If both are decisive, stability serves directly as the
trade-off factor. Otherwise — when only one predictor is decisive — we apply
no preference at all (pref = 0.5).

An intersection R,gq» with a single element represents a good agreement of
both predictors and does not need any further processing. Before returning the
aggregated set of document type probabilities, the probability values are normal-
ized such that ), prob(d;) = 1Vd; € R. This allows us to calculate the prediction
error if the top ranked document type is incorrect.

Prediction Feedback for Stability Adjustment. Upon each successful pro-
cess termination, the corresponding stability measure is adjusted. The amount
and direction of adjustment depends on explicit user feedback (i.e., the over-
all prediction was incorrect) and implicit feedback (i.e., only one predictor was
wrong). Algorithm R retrieves the process-based and document-based document
type set for each document in the given process (lines 5 and 6) and calculates
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Algorithm 1. Predictor Aggregation Algorithm A(Rp, Rg, stability).

1: function AGGREGATE(Rp, Rg, stability)
2 Raggr — Rp N Rs

3: if |Raggr| = 0 then
4: E — getAllExpectedM sgT'ypes(Rp)
5: Raggr — Rc UE > retain only expected message types
6: if |[Rc| =0 then
7 if stability > 0.5 then Rag4r — Rp
8: else Rog9r <— Rs
9: else
10: if |Raggr| > 1 then
11: RIP — RpnN Raggr
12: procEntr = caleNormalized Entropy(Rp)
13: ' — Rs N Raggr
14: content Entr = calcNormalized Entropy(RY)
15: pref «— 0.5
16: if procEntr > indecT hreshold N contentEntr > indecT hreshold then
17: pref «— round(stability)
18: if procEntr < indecT hreshold N\ contentEntr < indecT hreshold then
19: pref «— stability
20: Roggr < aggregate(Rp, Ry, pref)
21: normalize(Raggr) Teturn Ragg,

prediction error rates for overall and individual predictors (lines 7 to 14). The
prediction error function (lines 25 to 31) checks whether the true document type
resides on the first position of the sorted document type set (i.e., no error). Oth-
erwise, the function retrieves the position of the right type and calculates the
error as the difference between probability and 1. For two or more document
types that yield probabilities prob(dt) = 1 (i.e., the predictor was indifferent),
the error rate hence will be zero. Note that for the normalized overall prediction
result, any misclassification will result in an error rate greater than zero.

Next, we determine the process wide stability change (lines 15 to 20). We
increase the change for every document-based error and process-based correct
classification and vice versa — independent of overall prediction success. There
is no impact when both predictors are wrong. Any prediction error, however,
weighs in heavier when the user corrects the combined prediction result (i.e.,
error > 0). Thus, as long as the overall prediction is correct, an individual
error’s impact is proportional to the error amount. Thus the effect on stability
change remains potentially small.

Once we determine the overall stability change we apply the exponentially
weighted moving average (EWMA) as the ageing function to update the previous
process stability factor (lines 21 to 23). When the stability change is greater than
zero, the new stability value will move towards 1. For a stability change value
below zero, the new stability is closer to 0.

The bootstrapping of the process stability value is straight forward. Empty
process models that have no document information (yet) — respectively only a
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Algorithm 2. Stability Adjustment Algorithm A(W F, oldStability).

1: function ADJUST(W F, oldStability)

2: 00 > Stability change §
3 for Message m € WF do

4: Raggr < getPrediction(W F,m)

5: Rp — getProcPrediction(W F,m)

6: Rs «— getStructPrediction(W F,m)

7 if hasUserCorrection(W F,m) then

8 MessageType trueType «— getTrueType(W F,m)

9: error «— calcPredictionError(Raggr, trueType)
10: else
11: MessageType trueType «— get MessageType(Raggr[0])
12: error «— 0
13: procError «— calcPredictionError(Rp, trueType)
14: structError «— calcPredictionError(Rs, trueType)
15: if error > 0 then
16: if procError > 0 A structError =0 then § — § — 1
17: if procError = 0 A structError > 0 then § — § + 1
18: else
19: if procError > 0 A structError = 0 then § «— § — procError
20: if procError = 0 A structError > 0 then § «— § + structError

21: if 6 < 0 then delta < maxz(0, oldStability + 9)
22: if 6 > 0 then delta « min(1, oldStability + J)
23: newStability «— v * delta + (1 — v) * oldStability
24: return newStability

25: function CALCPREDICTIONERROR(R, trueType)
26: PredictionResult cr «— RI0]

27: if cr == trueType then return 0

28: else

29: for PredictionResult cr € R do

30: if getMessageType(cr) == trueType then return 1 — getProb(cr)
31: return 1

list of associated types but no mapping to transitions — start with stability =
0.3. We rely on the document-based predictor in the beginning as the process-
based predictor still needs to learn the correct mappings. For new process models
with detailed document information, we initiate stability = 0.7 as we assume
that a new process is stable and not subject to immediate evolution.

5 Evaluation

We evaluate our approach based on the reference scenario in Section 2 Specifi-
cally, we are interested in (i) the prediction error rate and how well the dynam-
ically aggregated predictor performs against the individual predictors as well as
a naive fixed aggregation; (ii) how robust the dynamically aggregated predic-
tor is in the present of increasingly noisy (varying) documents; and (iii) how
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accurately the process stability metric reflects the actual process evolution. Fur-
thermore, we distinguish between two cases: the evolution of a stable process
and the evolution of an empty process.

5.1 Experimental Setup

We simulate user behaviour by playing prefabricated log sequences against the
prediction system. Each log sequence represents one process execution and is de-
noted a round. Multiple, sequential rounds make up one experiment run. Within
a run, any changes to the process model at the end of a round are made avail-
able to the subsequent round — thereby enabling process evolution. Process
evolution itself is simulated by gradually switching from process-coherent log se-
quences to log sequences that follow a different process model. Note that we keep
the structure of process steps stable as we focus on evaluating the document pre-
diction aspect only. Consequently, the evolution affects only the type, location,
and timing of documents within a process but not the sequence of activities.

Two log sequences (L1, L2) are sufficient to cover all independent paths in
the scenario process model. Two additional log sequences (L3, L4) describe an
evolved model. Here, the Quote (3) document is no longer used, the Agreement
(5a) is delayed until completion of the PrepareShipment (F) activity which also
triggers the Authorization Of Invoice document (6). The Invoice (7) is produced
when executing Priority Dispatch (J). The Delivery Note (8) only applies to
Regular Dispatch (H). In all experiments the EWMA coefficient (for process sta-
bility aging) « is set to 0.3 which corresponds to a trade-off between rapid uptake
of evolving process patterns and robustness against one-time process deviations.
The used logs contain following sequences of process steps and documents:

L1:1,A,2 B, C 3,D, 4 E, 53 5b, F, 6G, 77,8
L2:1,A,2,D,4,B,C, 3, E, 51 5b,F, 6 G, 7 H,8
L3:1,A,2,B,C, D, 4,E,5b,F, 6 5aG,J, 7
L4:1,A,2,D,4,B,C,E, 5b, F, 6, 5a, G, H, 8

) ) )

We use a pool of valid documents to generate documents for our experi-
ments. Initially we gathered the documents mentioned in the scenario (Section
B) from companies in our project consortium: 6 Orders, 4 Offers, 5 Quotes, 5
Credit Notes, 5 Agreement, 7 Job Descriptions, 5 Authorisation of Invoicing, 8
Invoices, and 3 Delivery Notes. Even when they represent the same document
type, they contain slightly different information from each other. Then we man-
ually extracted the concepts paths using the Core Components standard [20] as
a reference for matching concepts. We randomly selected one document from
each type to be considered as the document type specification throughout the
experimentation. The rest of the documents then formed the pool of valid doc-
uments to choose from. Additionally, we developed a document generator which
took a document of a specified type from the pool and introduced noise to it in
order to take our experiments closer to practical reality. Such noise consists of
randomly introducing, deleting, or replacing concept paths.
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We conduct each experiment with 5%, 10%, 15%, and 20% noise in each gener-
ated document. In addition, every combination of experiment run and document
noise is carried out 10x with differently initialised random number generators.
In total every experiment run is thus executed 40x. Within these 40 instances
we obtain the prediction error for individual predictors, fixed aggregation, and
dynamic aggregation, as well as the process stability metric in each round.

We evaluate the responsiveness and adaptivity of our aggregation mechanism
to process evolution. As success criteria, we measure the absolute prediction
error of a predictor each round by simply counting how often it wrongly predicts
a document. Thus an average absolute prediction error of 1 signifies that the
predictor makes one prediction error per process instance. We compare process-
based, document-based, fixed aggregation, and dynamic aggregation predictors.
The fixed aggregation predictor simply merges process- and document-based
ranks (Rfixed — RpU Rs).

5.2 Experiments and Results

In experiment 1, we first run 16 process instances (determined by alternating L1
and L2) which represent normal process behaviour (Phase 1). Then we evolve
the process by having an interleaving of L1 to L4 for 12 rounds (Phase 2), and
then continue for another 16 rounds of stable evolved behaviour — alternating
L3 and L4 (Phase 3). The initial stability value is 0.7 as we assume a stable
process. Figure Bh displays the average absolute prediction error for each of the
four predictors with document noise level 20%. The three phases are clearly
visible — with low(er) error rates during stable periods (round 1 to 16 and
29 to 44). In experiment 2, we evaluate the learning behaviour for an initially
empty process (i.e., the process model is unaware of any document types). A run
consists of 30x alternating sequences of L3 and L4. The initial stability value is
set to 0.3. Here we split the 30 rounds into two phases — learning (1) during
round 1 to 6 (Figure Bk) and stabilized (2) during rounds 7 to 30 (Figure ().

In general, we find the dynamic aggregation predictor outperforming the
document-based predictor considerably in all situations (absolute error reduction
between 0.57 and 2.19). In experiment 1 (Figure[Bc+d), the dynamic aggregation
predictors fares as good as the fixed aggregation predictor as well as against the pro-
cess based predictor for stable process phases (fixed: [-0.10, 0.10] and proc: [-0.08,
0.28]). However, it outperforms both predictors during process evolution (fixed:
[0.12,0.23] and proc: [0.48, 0.52]). In experiment 2 (Figure[Be+f), the dynamic ag-
gregation predictor always outperforms all other predictors — the absolute error
difference for fixed: [0.07, 0.33], doc: [0.17, 1.31], and proc: [0.63, 2.0]. Document
noise has little effect on the dynamic aggregation in experiment 1. The increase in
document-based predictor error is between 0.67 and 1.15 when moving form 5%
to 20%. At the same time, the increase in dynamic predictor error is only between
0.06 and 0.26. In experiment 2, the effect of noise is more visible as the dynamic
predictor relies more on the document-based predictor during the initial learning
phase (doc error diff: 1.37, dynamic error diff: 0.93). Once stabilized, the noise has
little impact (doc error diff: 0.87, dynamic error diff: 0.15).
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Fig. 5. Experiment 1: Comparison of document predictors (a), process stability /change
(b) across 44 rounds, and error rates for 5% (c) and 20% noise (d) averaged for stable
(1), evolving (2), and evolved (3) process phases. Experiment 2: Learning documents
in an empty process model: comparison of predictor error rates for 5% (e) and 20%
noise (f) averaged for learning (1) and stabilized (2) process phases.

Finally, as shown in Figure Bb, the feedback mechanism successfully deter-
mines stability values that accurately reflect the process dynamics. Process sta-
bility drops precisely whenever evolution begins (start of phase 2 in expl and
start of phase 1 in exp2) and stabilizes once evolution terminates. Stability val-
ues for experiment 2 and additional analysis is available as supporting online
material (SOM).

! http://www.infosys.tuwien.ac.at/staff/dorn/bpm2011S0M. pdf
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6 Discussion and Related Work

Multiple research efforts have focused on supporting ad-hoc workflows (e.g., [19]),
semi-structured processes/case-based systems (e.g., [I52]), and well-structured
processes (e.g., [I4I211T]) over the past decade. The increase in flexibility, how-
ever, comes at the cost of lacking user guidance. Recently this shortcoming
has been addressed by introducing recommender systems [I845]. All these ap-
proaches are focused on user activities and assume that the process documents
are either rigorously defined (explicitly or implicitly) or that the documents have
no impact on adaptation and thus recommendation.

This contrasts with existing work in the area of document-driven processes,
where, for example, [9] presents an approach for dynamic workflows supported
by software agents. Documents trigger events in the system such as document
arrival, document updating, or document rejection. A set of rules represent the
business logic (workflow process). Agents then exchange documents between
each other according to the business logic thus managing the document life cy-
cle. However, even when this approach considers documents within the processes,
it does not semantically analyse the contents thus rendering this approach differ-
ent from ours. Orthogonal to our approach, the framework for document-driven
workflows by [22] models document meta-information rather than the internal
semantic structure. Our document type state transition model (see Figure [),
however, can be seen as an additional document meta-model. Yet with our ap-
proach processes are allowed to evolve due to the probabilities the transition
model manages whereas the approach by [22] does not prove how their docu-
ment meta-model is better supported. Object-aware process management is the
focus in [§]. Here document dependencies are explicitly modelled and drive the
process execution. The object structure as well as task-object relations how-
ever are statically defined at designtime and cannot be changed during runtime.
Neither do the authors envision user support through recommendations. Ad-
ditionally, [TI] aims at detecting which document content has an effect on the
process outcome, ultimately to provide user recommendations. The process itself
however remains rigid and the document structure is pre-defined.

An E-mail can be seen as a form of document being exchanged especially
between small companies. [16] presents Semanta, an speech act theory approach
to analyse E-mails in terms of the verbs contained, mapping between collections
of verbs and activities in ad-hoc workflows. In [I7] Semanta is presented as an
E-mail based system for workflow support, yet the E-mail (document) analysis
is exclusively based on the verbs found in contrast to our semantic analysis.

The main conceptual differences of our approach are (i) the relaxation of both
a rigid document structure and a predetermined document-task dependency and
(ii) the automatic learning of evolving documents and document occurrence in
the process. This results in a radically different approach to building a process
support system. Rather than executing every step automatically, the process
engine needs to propose suitable steps to the user and determine from user ac-
tions and subsequently observed documents how the process actually continued.
Techniques for document alignment [I2] and a recommendation-centric process



Self-learning Predictor Aggregation 229

engine [4/5] were developed in the scope of the EU project Commiudd which
applies email as the main messaging infrastructure [10].

7 Conclusions

In this paper we presented a self-learning mechanism for determining document
types in people-driven ad-hoc processes. The mechanism dynamically decides
whether the prediction needs to rely more on process structure information or
rather more on document semantics. We introduce a process stability metric
which describes whether a process is currently evolving. Implicit and explicit user
feedback keep the metric always up-to-date. Simulations derived from real-world
documents and processes demonstrate that our mechanism yields the lowest
prediction error rates during evolving and stable process phases.

In the future we plan to refine the dynamic aggregation mechanism by cap-
turing process stability on a more fine-grained level through detection of activity
hot spots. Additional analysis of the prediction success rates for individual doc-
ument types and the similarity in-between document types seems promising to
reduce error rates even further.
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