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ABSTRACT: 

This paper presents a novel self-localization method.  The algorithm automatically establishes correspondence between the FPV 
video streamed from a UAS flying in a structured urban environment and its 3D model.  The resulting camera pose provides a 

precise navigation solution in the densely crowded environment.  Initially, Vertical Line Features are extracted from a streamed FPV 
video frame, as the camera is kept approximately leveled through a gimbal system.  The features are then matched with Vertical Line 
Features extracted from a synthetic image of the 3D model. A space resection is performed to provide the EOPs for this frame.  The 
features are tracked in the next frame, followed by an incremental triangulation. The main contribution of this paper lies in 
automating this process as an FPV video sequence typically consists of thousands of frames.  Accuracies of the position and 
orientation parameters of the video camera and the validation checks of the estimated parameters are presented.  Future work 
includes testing the method in real-time to determine latencies and reliability, and multi-directional field of view of the FPV video 
camera. 

  

1. INTRODUCTION 

 
First-person view (FPV) unmanned aerial systems (UAS) are 
equipped with a small forward-looking video camera and a 
transmitter to downlink the video signal wirelessly in real-time 
to a ground station monitor or virtual reality goggles.  FPV 
gives the pilot a perspective from the „cockpit‟ of the UAS.  

This allows the radio-controlled aircraft to be flown more 
intuitively than by visual line-of-sight and beyond the pilot‟s 
visual range – where the aircraft‟s separation from the pilot is 
limited only by the range of the remote control and video 
transmitter.   

FPV systems are commonly used solely as a visual aid in 

remotely piloting the aircraft.  This paper presents a method to 
further extend the application of this system by estimating the 
position and orientation of the UAS from the FPV video in near 
real time as it travels through a known 3D environment.  The 
obtained quantitative information on position and orientation of 
the aerial platform will support the UAS operator in navigation 
and path planning. If an autopilot is available it may also be 
used to improve the position and orientation of the navigation 

solution.  Precise navigation is required in urban missions, 
where the possibility of crashing is high, as UASs fly at low 
altitudes among buildings and need to avoid obstacles and 
perform sharp maneuvers.  This is especially useful in GPS-
denied environments, or in dense-multipath environments such 
as urban canyons. 

The developed self-localization process requires a metric 3D 
model of the environment.  The main steps, as illustrated in 
Figure 1, are: 

 

1. Extract Vertical Line Features from the online video 
frame. 

2. Match these features with those in the 3D model of 
the environment, according to certain criteria. 

3. Update the camera pose, or exterior orientation 
parameters (EOPs), as a function of the matched 
feature locations in the map. 

 

Figure 1. The self-localization process 

The main contribution of this paper lies in automating the 
localization process because an FPV video sequence typically 
consists of thousands of frames.  It is based on a simple, 
efficient, and robust feature extraction approach developed to 
find correspondence between video frames and the 3D model 

of the environment. 

The results of the paper present accuracies of the position and 
orientation parameters of the video camera and the validation 
checks of the estimated parameters.  
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2.  DATA COLLECTION 

To demonstrate the approach, video captured from the onboard 

camera of an Aeryon Scout quad-copter (Figure 2; Aeryon, 
2013) was used (GeoICT and Elder Laboratories, 2012).  The 
Scout flew over York University, up to approximately 60 
metres above the ground, while the gyro-stabilized camera 
focused on buildings, walkways, and trees.  The UAS‟s flight 
path is depicted in Figure 4, where the UAS was observing 
York University‟s Lassonde Building.  The EOPs automatically 
estimated from the video were used to augment the UAS‟s 

autopilot solution, derived from the onboard single frequency 
GPS receiver and MEMS-IMU.  

 

Figure 2. The Aeryon Scout UAS in York University (GEOICT 

and Elder Laboratory, 2012) 

The 3D virtual building model of York University‟s Keele 
campus (Armenakis and Sohn, 2009) was used as the known 
environment. The model consists of photorealistic 
reconstructions of buildings, trees, and terrain, generated from 

building footprint vector data, DSM with 0.75m ground 
spacing, corresponding orthophotos at 0.15 m spatial resolution 
and terrestrial images.  The 3D building model was further 
refined with airborne lidar data having a point density of 1.9 
points per square metre (Corral-Soto et al, 2012). This 3D CAD 
model serves two purposes in our proposed approach. Firstly, it 
provides the necessary level of detail of linear features (vertical 

and horizontal lines) for feature matching, where initial tests 
indicate that at least 5 linear features are required to be 

available per video frame. Secondly, it provides control points 

to achieve photogrammetrically sub-meter accuracies of the 
positional elements of the exterior orientation.  The results of 
this paper demonstrate that sub-meter accuracies in the UAS' 
XYZ components are achieved at 40 m AGL using a single 

image (640 x 480 pixels).  The geometric accuracy of the 

model used is in the order of 10-20 cm. Ongoing testing, 

through UAS simulation and experimental flights, are resolving 
the minimum level-of-detail and accuracy required for the 
model to achieve sub-meter positional accuracy at various 
altitudes, and with various cameras.   
 
Figure 3 shows the virtual campus in Google Earth, along with 
the UAS flight path.  One frame was captured from the video to 
demonstrate the self-localization methodology presented in this 

work.  The camera symbol signifies the GPS position collected 
by the UAS‟ autopilot when this frame was captured. 
 
The strategy to facilitate finding correspondence between the 
3D building model and the UAS‟ video imagery is to generate, 
in real time, a synthetic image of the model captured from a 
vantage point and perspective approximate to the UAS‟ current 

pose, then extract features from the current video frame and 
match them with the model features that are visible in the 
synthetic image. 

 

Figure 3.  3D York University Campus Model 

 

Figure 4. UAS flight path around the Lassonde Building 

3.  THE SYNTHETIC IMAGE OF THE 3D MODEL 

To obtain the synthetic image of the 3D model, a simulator, 
such as Gazebo, or Google SketchUp in this case, may be used.  

The 3D model was loaded in the simulator‟s environment.  At 
each video frame, an approximate position is used to set the 
simulator‟s camera position. In this case, the autopilot‟s GPS 
position was available. Alternatively, a prediction from the 
previous epoch‟s camera position may be used.  The autopilot‟s 
attitude solution could not be used to approximate the 
simulated camera‟s orientation, as the camera was stabilized by 
a gimbal and rotated independently from the UAS‟ body frame.  

Several solutions were considered to obtain an approximate 
camera orientation. Firstly, the Google SketchUp Ruby API 
defines the camera orientation via a Target vector and an Up 
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vector.  The Target, a point in space that the camera is pointing 
to, is used to define the pitch and yaw of the camera, the Up 
vector, the direction that the top of the camera is facing, is used 
to define the roll of the camera.  The Target was set to the 
average of the 50 closest vertices belonging to the building 

model, and the Up vector was parallel to the vertical axis 
(signifying a zero degree roll angle).  Alternatively, vanishing 
points extracted from the video image could be used to 
approximate the orientation of the simulated camera with 
respect to the building; however, this option is more 
computationally demanding.  Finally, in order for the synthetic 
image and video image to have similar scales, the video camera 
was calibrated, and the obtained values were used to define the 

interior orientation parameters of the simulated camera.  Figure 
5 shows the video frame for a selected epoch and Figure 6 
shows the synthetic image. 

 

Figure 5. Sample video frame (640 x 480 pixels) 

4. RELATED WORK 

Comparing the two images in Figures 5 and 6, the texture of the 
building model had little correlation with the UAS‟s imagery 
because of changes in illumination and weather conditions, and 
the presence of shadows.  Further, the colours of buildings 

change with time, for example when roofs are repaired or walls 
are painted.  This is especially true for the Lassonde building, 
as the vegetation on the roof changes seasonally.  However, the 
shape of the building remains constant in time and is more 
suitable for matching. Thus, this work focuses towards 
matching geometric features (points, lines, polygons, etc.), as 
opposed to intensity-based features such as SIFT (Lowe, 1999) 
and SURF (Bay et al., 2008).  This is convenient as 3D models 

generally provide a database of georeferenced vertices (points), 
edges (lines), and faces (polygons). 

Matching two sets of points using ICP (Besl et al., 1992) is 
commonly used in real-time and can handle outliers, 
occlusions, appearances and disappearances. However, the 
method requires an accurate initial approximation.  Extracting 

feature points with a corner detector, such as Harris corners 
(Harris and Stephens, 1988), would yield many unwanted 
points from objects surrounding the building that are not 
included in the model, i.e. trees for instance.  To consider 
matching polygons, a robust solution is required that could 
handle a variety of noise, occlusions, and incomplete or 
unclosed figures.  Such a method would increase the 
complexity and run-time of the system.  

Matching silhouettes has been proposed (Latecki et al., 2000), 
but are limited as they ignore internal contours and are difficult 
to extract from real images.  More promising approaches match 
edges based on, for example, the Hausdorff distance 
(Huttenlocker et al., 1993; Valtkamp and Hagedoorn, 1999) or 

Distance Transform (Gavrilla et al., 1999).  A drawback for this 
application is that the method does not return correspondence.  
Geometric hashing (Lamdan et al. 1990) performs matching 
based on spatial configurations of keypoints without explicitly 
solving for correspondence and the method is robust for 
missing points and occlusion. A hashing data structure is built 
prior to matching, which makes finding correspondence time 
efficient. However, the data structure can become very large, 

depending on the size of the data and the class of 
transformation (Belongie et al., 2002). 

 

Figure 6. Sample synthetic image 

Line matching approaches divide into algorithms that match 

individual line segments, and algorithms that match groups of 
line segments.  Matching single lines is based on geometric 
properties, such as orientation, length, and extent of overlap.  
Matching groups of lines takes away the ambiguity involved by 
providing more geometric information.  Graph-matching is a 
common approach, as graphs capture relationships such as left 
of and right of, and topological connectedness (Baillard et al., 
1999). 

5. FEATURE EXTRACTION 

The feature chosen to correspond between the model and the 
image consists of two corners joined by an image line.  This 

feature was chosen because it commonly appears in structured 
environments and it is simple and computationally efficient to 
extract from an image. A method was developed to reliably 
identify corresponding features. 

Firstly, Harris corners are extracted, and then classified 

according to their orientation into one of the following types:  
1) Top Left, 2) Bottom Left, 3) Top Right, or 4) Bottom Right.  
The Corner Templates in Figure 7 are used to classify each 
corner based on 2D cross-correlation.  To account for scale and 
small rotations, the 2D cross-correlation is repeated with 
differently sized and slightly rotated Corner Templates, 
respectively.  Figure 8 shows the corners extracted from the 
video frame‟s edge image.  Red points correspond to Top Left 

Corners, green points correspond to Bottom Left Corners, blue 
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points correspond to Top Right Corners, and yellow points 
correspond to Bottom Right Corners.   

      
          Top Left                Top Right  

   

      
                          Bottom Left          Bottom Right 

 
Figure 7. Corner templates 

 

Figure 8.  The extracted corners and Vertical Line Features 

from the edge image of the video frame 

Many „false corners‟ were detected in the video image. These 
points often correspond to objects surrounding the building and 
are not present in the 3D model, such as trees and signs.  To 
narrow the search space for correspondence, detected corners 

are rejected if they do not meet a condition that forms a 
Vertical Line Feature.  That is, all of the following conditions 
should be met:  

1. A Left/Right Vertical Line Feature is a continuous 
line of pixels that connect a Top Left/Right Corner to 

a Bottom Left/Right Corner.   
2. Given the camera is kept level by the gimbal system, 

the slope of the line should be within a tolerable 
range of the vertical defined by the image‟s vertical 
axes.   

3. The Top Left/Right Corner should be higher in the 
image than the Bottom Left/Right Corner.   

All the combinations of Top Left/Right Corners and Bottom 
Left/Right Corners are sequentially tested against the various 
conditions.  If a Top Left/Right Corner and Bottom Left/Right 
Corner do not meet a condition, the pair of points is discarded 
and the next combination of points is tested. Tests are 

performed in increasing order according to computational 
complexity to increase efficiency.   

Correspondence is based solely on Left and Right Vertical 
lines.  Top and Bottom Horizontal Lines Features are extracted 
in a similar fashion only if an insufficient number of 
corresponding Vertical Line Features is found, as this will 
increase the processing time.  

 

Figure 9. Left (red) and Right (green) Vertical Line Features 

overlayed on the synthetic image 

Using the same method, the Vertical Line Features were 
extracted from the 3D model offline.  The model‟s vertices 
were classified according to corner type, and vertical edges 
were classified as either Left or Right Vertical Lines.  Figure 9 
shows the Left Vertical Line Features (red) and Right Vertical 

Line Features (green) that are visible in the synthetic image.              

6.  FEATURE MATCHING 

Given that the scales of the synthetic image and the video 

frame are similar, the horizontal spacing between the vertical 
lines should be similar as well.  Thus, a horizontal shift should 
align both sets of vertical lines.  This shift is evident in Figure 
10, where for each Vertical Line Feature the column value of 
the line‟s centroid is plotted against the length of the same line.  
The red series signifies the lines extracted from the video 
frame, and the green series corresponds to the lines from the 
synthetic image.  The triangles symbolize Left Vertical Line 

Features, and squares symbolize Right Vertical Line Features.    

The maximum value of the cross correlation of the red (video) 
series and green (model) series provides the numerical value of 
the horizontal shift.  The Vertical Line Features from the 
synthetic image are shifted and matched with the Vertical Line 
Features from the video frame based on proximity and line 

length.  Figure 11 shows the lines from the video images with 
the shifted lines from the synthetic image.  Potential Vertical 
Line Feature matches are circled. 

7.  TRAJECTORY DETERMINATION 

Once correspondence between the video frame and synthetic 
image is established, RANSAC (RANdom SAmple Consensus) 
(Fischler and Bolles, 1981) is used to eliminate mismatches and 
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estimate the geometry robustly. Figure 13 shows the resulting 
correspondence between the video frame and synthetic image.  
A space resection is then performed to determine the video 
camera EOPs.     

 

Figure 10. Horizontal shift between the Vertical Line Feature 

 

Figure 11. Corresponding Vertical Line Features between the 
video frame (red) and synthetic image (green) are circled 

 

To identify 3D control points in the synthetic image, each 
georeferenced vertex of the 3D model is assigned an RGB 
colour.  By extracting the colour of a vertex in the synthetic 
image, the 3D georeferenced coordinates are obtained.  As an 
initial approximation for the camera‟s position and orientation 

was available, space resection via collinearity was performed 
for both the video frame and synthetic image, the results are 
provided in Table 1.   

Feature matching via correlation between the video image and 
synthetic image was shown to be successful with the 
orientation angles differing by as much as 11 degrees.  Further 

testing is required to determine the maximum allowable pose 
separation between the video camera and the simulated camera. 

The resection yielded sub-metre positional accuracy, which is 
an improvement from the 2 to 3 metre accuracy obtainable by a 
WAAS-enabled GPS receiver, especially in the vertical 

component.  The features for which correspondence was found 
are then tracked in the next video frame through the KLT 

feature tracking followed by an incremental triangulation for 
each successive key frame.  

 

Figure 12. Colour-coded Ground Control Points visible in the 

synthetic image 

 

8.  CONCLUSIONS AND FUTURE WORK 

 
Future work will involve further development of the algorithm 
to determine correspondence between the video image and the 

model without the need of an initial approximate position from 
the GPS sensor.  The camera pose can be estimated through 
space resection via DLT as opposed to the nonlinear 
collinearity equations where  initial values for position and 
orientation are required..  The DLT method is proposed for the 
incremental photogrammetric triangulation for computational 
efficiency due to the time critical operations.  Testing of the 
method‟s robustness against occlusions, and testing in real-time 

to determine latencies and reliability will be also conducted. 

ACKNOWLEDGEMENTS 

Special thanks are given to the members of York University‟s 

GeoICT Lab who contributed to generating the York 
University 3D Virtual Campus Model, namely, Damir 
Gumerov, Yoonseok Jwa, Brian Kim, and Yu Gao. 

We also thank Professor James Elder‟s Human & Computer 
Vision Lab in York University‟s Centre for Vision Research for 

providing the UAS video data. 

REFERENCES 

Armenakis C., Sohn, G., 2009. iCampus: 3D modeling of York 

University Campus, CD-ROM Proceedings 2009 Annual 
Conference of the American Society for Photogrammetry and 
Remote Sensing, Baltimore, MA, USA. 

Aeryon, 2013. Aeryon Scout Brochure.  Available online at:  
http://www.aeryon.com/products/avs/aeryon-scout.html 

Baillard, C., Schmid, C., Zisserman, A., Fitzgibbon, A., 1999.  
Automatic line matching and 3D reconstruction of buildings 
from multiple views. In:  ISPRS Conference on Automatic 
Extraction of GIS Objects from Digital Imagery, IAPRS, Vol. 
32, pp.69-80. 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W2, 2013
UAV-g2013, 4 – 6 September 2013, Rostock, Germany

This contribution has been peer-reviewed. 251



Bay, H., Ess, A., Tuytelaars, T., Van Gool, L., 2008. SURF: 
Speeded Up Robust Features, Computer Vision and Image 
Understanding (CVIU), Vol. 110, No. 3, pp. 346-359. 

 
Belongie, S., Malik, J., and Puzicha, J., 2002. Shape matching 
and object recognition using shape contexts, IEEE Trans. 
PAMI, Vol. 24, no. 4, pp. 509–522. 
 
Besl, P., McKay, N.D., 1992. A Method for Registration of 3-D 
Shapes. IEEE Trans. on Pattern Analysis and Machine 
Intelligence (Los Alamitos, CA, USA: IEEE Computer 

Society) 14 (2), 239–256. 
 
Corral-Soto, E.R., Tal, R., Wang, L., Persad, R., Chao, L., 
Chan, S., Hou, B., Sohn G., Elder, J.H., 2012. 3D Town: The 
Automatic Urban Awareness Project,  Proc. CRV, 2012, 
pp.433-440. 

Fischler, M., Bolles R., 1981. Random sample consensus: a 
paradigm for model fitting with application to image analysis 
and automated cartography. Commun. Assoc. Comp. Mach., 
Vol. 24, pp 381-395. 

Gavrilla D., Philomin, V., 1999. Real-Time Object Detection 

for Smart Vehicles, Proc. Seventh Int’l. Conf. Computer Vision, 
pp. 87-93. 

GeoICT and Elder Laboratory, 2012. “GEOIDE Project PIV-
17: The Automatic Urban Awareness Project” York University, 
Toronto, Canada http://icampus.apps01.yorku.ca/demo/ (30 

April, 2012). 
 

Hagedoorn, M., 2000. Pattern Matching Using Similarity 
Measures,  PhD thesis, Universiteit Utrcht. 
 

Harris, C., and Stephens, M.J., 1988. A combined corner and 
edge detector. In Alvey Vision Conference, pp. 147–152. 
 
Huttenlocher, D., Klanderman, G., and Rucklidge, W., 1993. 
Comparing Images Using the Hausdorff Distance, IEEE Trans. 
Pattern Analysis and Machine Intelligence, Vol. 15, no. 9, pp. 
805-863.  
 

Lamdan, Y., Schwartz, J., Wolfson, H., 1990. Affine Invariant 
Model-Based Object Recognition, IEEE Trans. Robotics and 
Automation, Vol. 6, pp. 578-589. 

Latecki, L.J., Lakamper, R., Eckhardt, U., 2000. Shape 
Descriptors for Non-Rigid Shapes with a Single Closed 

Contour,  Proc. IEEE Conf. Computer Vision and Pattern 
Recgonition, pp. 424-429. 

Lowe, D.G., 1999. Object Recognition from Local Scale-
Invariant Features, Proc. Seventh Int’l. Conf. Computer vision, 
pp. 1150-1157. 

Valtkamp, R.C., Hagedoorn, M., 1999. State of the Art in 
Shape Matching, Technical Report UU-CS-1999-27, Utrecht.  

 

Image ω [◦] φ [◦] κ [◦] X  [m] Y [m] Z [m] σω [◦] σφ [◦] σκ [◦] σX [m] σY [m] σZ [m] 

Synthetic -31.742 -25.770 -145.517 -36.167 45.438 39.671 0.506 0.503 0.266 0.309 0.372 0.262 

Video -28.447 -27.466 -134.171 -36.498 46.454 40.890 1.096 1.047 0.635 0.688 0.800 0.565 

Table 1.  Camera EOPs from space resection 

 

Figure 13.  Corresponding Left (green) and Right (red) Vertical Line Features 
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