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ABSTRACT: 

 

High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables 

should take into account different variances for different observation types, correlations among different observables, the satellite 

elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component 

estimation (LS-VCE) is applied to GPS observables using the geometry-based observation model (GBOM). To model the satellite 

elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also 

employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important 

step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR). The fraction or percentage of 

success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables 

covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a 

nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The 

results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual 

frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also 

indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of 

about 2.6 on the data sets considered. 
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1. INTRODCTION  

GPS data processing is usually performed by the least squares 

adjustment method for which both the functional and stochastic 

models must be correctly specified. The functional model, 

describing the mathematical relation between the observations 

and the unknown parameters, is usually well known either in the 

relative positioning or in the single/precise point positioning 

(Seeber, 2003; Hofmann-Wellenhof et al., 2008; Leick, 2004; 

Teunissen and Kleusberg, 1998; Rizos, 1997). However, the 

stochastic model, expressing the statistical characteristics of the 

GPS observations by means of a covariance matrix, is still a 

challenging problem. Misspecification in the stochastic model 

leads to unreliable and suboptimal estimates. The realistic 

stochastic model should thus be utilized aiming at obtaining 

reliable least squares estimates. 

 

There are a few common stochastic models for GPS 

observables: (1) Equal-weight stochastic model in which 

identical variances for each measurement type are chosen (i.e. 

the same variance for the code and the same variance for the 

phase observations). This structure ignores the correlations 

among different observables, (2) Satellite elevation-angle 

dependent model in which the observations weighting 

procedure is performed using trigonometric or exponential 

functions. The observations at lower elevation angles have 

larger variances than those at higher elevation angles, (3) 

Signal-to-noise ratio (SNR) based model in which the 

observations weighting procedure depends on SNR values, a 

quality indicator for the GPS observations. These models are in 

fact simple and rudimentary stochastic models. Satirapod and 

Wang (2000) found that in some cases both the use of SNR and 

satellite elevation angle information failed to reflect the reality 

of data quality. Therefore, it still remains necessary to 

investigate rigorous methods for constructing a more reliable 

covariance matrix of the GPS observables. An appropriate 

stochastic model for GPS observables may include different 

variances for each observation type, the correlation among 

different observables, the satellite elevation dependence of 

observables precision, and the possible temporal correlation of 

the GPS observables (Amiri-Simkooei et al., 2009, 2013, 2015). 

Therefore, we first define a general form of the covariance 

matrix of the GPS observables, which includes the above-

mentioned variance and covariance components into the 

stochastic model. This general form of the covariance matrix is 

expressed as an unknown linear combination of known cofactor 

matrices. The estimation of the unknown (co)variance 

parameters is referred to as variance component estimation 

(VCE).  

There are many different methods for VCE among which we 

make use of the least-squares variance component estimation 

(LS-VCE), in a straightforward manner, to assess the noise 

characteristics of the GPS observables. LS-VCE was originally 

developed by Teunissen (1988). Further elaboration and 

development of the LS-VCE are provided by Teunissen and 
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Amiri-Simkooei (2008) and Amiri-Simkooei (2007). The 

geometry-based observation model (GBOM), employed as the 

functional model, is the widely used mathematical model for 

high precision GPS positioning from code and phase 

observations using a relative GPS receiver setup (Odijk, 2008). 

  

An important step in the high-precision GPS positioning is 

double difference (DD) integer ambiguity resolution (IAR). The 

fraction or percentage of success among a number of integer 

ambiguity fixing is called the success rate. A realistic estimation 

of the GNSS observables covariance matrix plays an important 

role in the IAR. When compared to a realistic stochastic model, 

a simple stochastic model results in poorer precision of the 

estimated parameters and hence a lower integer ambiguity 

success rate. In this paper, the reliability of the resolved 

ambiguities is investigated through the computation of the IAR 

success rate for two cases, namely a nominal and a realistic 

stochastic model of the GPS observables. For the nominal case, 

the same standard deviations for the phase observables on L1 

and L2 and the same standard deviations for the code 

observables on L1 and L2 is assumed as 

1 2
3 mm        and 

1 2
30 cmP P P     , 

respectively. This structure ignores the correlation among 

different observables, the satellite elevation dependence of 

observables precision, and the possible temporal correlation of 

the GPS observables. 

 

The baseline components uncertainties expressed by the 

estimated covariance matrix of the unknowns depend on the 

choice made for the weight matrix of the observables. We thus 

assess the effect of the stochastic model on the efficiency of the 

estimated baseline uncertainties. To this end, the baseline 

uncertainties are also computed for two cases, nominal and a 

realistic stochastic model of the GPS observables.  

 

This paper is organized as follows. Section 2 provides a brief 

review on a few theoretical concepts followed in this research. 

This section reviews the functional part of the GPS GBOM, a 

realistic stochastic model of GPS observables. Section 3 

presents the theory of the LS-VCE method and its application to 

determine an appropriate stochastic model. In section 4, to 

investigate the performance of the realistic stochastic model 

obtained by the LS-VCE approach, two GPS baseline data sets 

of short baselines are employed. The reliability of the resolved 

ambiguities is then investigated through the computation of the 

IAR success rate for two cases, namely a nominal and a realistic 

stochastic model of the GPS observables. We also assess the 

effect of the stochastic model on a realistic standard deviation 

for the baseline components. We further highlight the effect of 

an optimal stochastic model in other fields of GPS applications 

such as the precise point positioning method. Finally, we make 

conclusions in section 6.   

 

2. GPS GEOMETRY-BASED OBSERVATION MODEL 

(GBOM) 

2.1 Functional model  

Consider two receivers r and j simultaneously track the same 

satellites s and k. The functional part of GBOM is based on the 

DD GPS observables. Ignoring the DD atmospheric delays, 

which is a valid assumption for zero and very short baselines, 

the observation equation for the DD GPS pseudorange (code) 

and carrier phase observations are respectively defined as 

(Teunissen and Kleusberg, 1998) 

 

 
, , ,

, , , , , ,
( ) ( ) ( )

s k s k s k

r j L i r j L i r j L i
P t t e t           (1) 

 

and 

 

 
, , , ,

, , , , , , , ,
( ) ( ) ( )

s k s k s k s k

r j L i r j L i L r j L r j L i
t t a t         (2) 

 

where (.)
sk

rj
 is an abbreviation for 

(.) (.) (.) ((.) (.) )
sk k s k s

rj j j r r
    , L corresponds to either L1 

or L2 frequency, P is the DD pseudorange  observation on the 

L1 or L2 frequency,  denotes the DD receiver-satellite range, 

e indicates the pseudorange measurement errors on the L1 or 

L2 frequency and 
i

t  refers to the measurement time instant. In 

Eq. (2),   indicates the DD carrier phase observation on the L1 

or L2 frequency,   is the corresponding wavelength, a denotes 

the DD integer ambiguities on L1 or L2, and   is the phase 

measurement errors on L1 or L2. 

 

The DD pseudorange and carrier-phase observation equations 

on the L1 or L2 frequency can be written in the following 

matrix form:  
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                             (3) 

 

relating to two satellites which were observed by two receivers. 

In Eq. (3), E stands for the mathematical expectation operator. 

The expectation of pseudorange and carrier-phase measurement 

errors is assumed to be zero. In Eq. (3), the design matrix A is 

of the form  

 

 

1

2

0 0

0 0

0

0

G

G
A

G

G







 
 
 
 
 
 

                                 (4) 

 

in which the geometry matrix G is ( )
k s T

j j
G u u   , where 

( ) /
k k k

j j j
u r r r r    is the unit direction vector between 

receiver j and satellite k (line-of-sight vector). The vectors 
k

r and 
j

r  are the geocentric vector of the satellite k and 

receiver j, respectively. In Eq. (3), vector g consists of the 

unknown baseline components between the reference and rover 

receivers, which is defined as  
T

rj rj rj
g X Y Z    .  

 

2.2 A Realistic Stochastic Model    

A realistic stochastic model for DD GPS observables is of the 

form (Amiri-Simkooei et al., 2009, 2013, 2015)  
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D

y C T E
Q                                   (5) 

 

where   indicates the Kronecker product of two matrices. For 

four observation types 
C

  includes 10 unknown variance and 

covariance components of the form 
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The diagonal and off-diagonal elements of 
C

  are the 

variances and the covariance between the GPS observables, 

respectively.  

 

Also, a Toeplitz matrix 
T

  represents temporal correlation of 

the GPS observables. It is a K K  matrix, where K denotes 

the number of the observation epochs. 
T

  may consists of K  

number of unknown parameters as follows  

 

 

(0) (1) ( 1)

(1) (0) ( 2)

( 1) ( 2) (0)

K

K

T
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  
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   (7) 

 

Finally, 
E

  is a k k  matrix representing the dependence of 

GPS observables precision on satellite elevation, where k  is 

the number of satellites. The satellite number [1] is assumed as 

the reference satellite. 
E

  is of the form  

 
2 2 2 2

[1] [ 2] [1] [1]

2 2 2 2

[1] [1] [3] [1]

2 2 2 2

[1] [1] [1] [ ]

2
E

k

   

   

   




 



 
 
 
 
 
 

   (8) 

 

The stochastic model presented in Eq. (5) considers all items of 

a realistic covariance matrix of GPS observables pointed out in 

the introduction. In this paper, we estimate the unknown 

(co)variance components using LS-VCE which is briefly 

presented in the next section. 

 

3. STOCHASTIC MODEL ESTIMATION 

 

3.1 Least-Squares Variance Component Estimation (LS-

VCE) 

The LS-VCE was originally developed by Teunissen (1988). 

Further elaboration and development of the method is provided 

by Teunissen and Amiri-Simkooei (2008) and Amiri-Simkooei 

(2007). 

 

Assume the linear model of observation equations as 

 

1

( ) ; ( )

p

y k k

k

E y Ax D y Q Q


      (9) 

where D denotes the mathematical dispersion operator, y  is the 

observation vector of order m, x  is the n-vector of unknown 

parameters, A is the m n  design matrix describing the 

functional relation between the observations vector and the 

unknown parameters and ,  1,...,
k

k p   are the unknown 

(co)variance components. Also, 
y

Q  is the covariance matrix of 

the observables expressed as an unknown linear combination of 

known cofactor matrices ( ,  1,...,
k

Q k p ). 

 

Based on Eq. (9), the covariance matrix of the observables is 

partly unknown as it is expressed as an unknown linear 

combination of known cofactor matrices. To estimate the 

unknown (co)variance components, different VCE methods 

have been invented. Among them the LS-VCE method is 

employed in the present contribution. 

 

The unknown (co)variance components can be estimated using 

LS-VCE as 
1

ˆ N l


 , where the p p  matrix N  and the 

p -vector l  are respectively obtained as 

  

 
1 11

tr( )
2

ij i y A j y A
n Q Q P Q Q P

   
                           (10) 

 

and 

 

 
1 11

ˆ ˆ
2

T

i y i y
l e Q Q Q e

 
                                         (11) 

 

where ˆ
A

e P y


  is the m-vector of the least squares residuals, 

in which 
11 1

( )
T T

A m y yP I A A Q A A Q
  
  is an orthogonal 

projector, and tr denotes the trace of a matrix. 

 

To compute the matrix N , the vector l  and the residuals 

vector ê  the covariance matrix of the observables is required. 

LS-VCE is thus an iterative method that needs the approximate 

values of the (co)variance components. The iteration proceed 

until the converge criterion of 
1

ˆ ˆ
j j

  


   is met, i.e., the 

difference of two consecutive solutions is less than the tolerance 

 . The covariance matrix of the estimated (co)variance 

components can automatically be obtained as 
1

ˆQ N


 .  

 

When the number of observations is large, we can divide the 

entire observations into a few (r) groups. One can show that the 

unknown (co)variance parameters ( ; 1 : )
k

k p   can be 

separately estimated for each group and the final estimates are 

obtained by averaging the groupwise estimates over all (r) 

groups, i.e., 
( )

1

1
ˆ ˆ , 1, ...,

r

i

k k

i

k p
r

 


   where 
( )
ˆ

i

k
  is the 
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kth co(variance) components of the ith group (Amiri-Simkooei et 

al., 2009). 

 

3.2 Determination of a realistic stochastic model of GPS 

observables 

We now investigate the noise characteristics of GPS 

observables pointed out in the introduction. For this purpose, 

we apply LS-VCE to the GPS observables. The LS-VCE 

method may be applied to GPS GBOM as the functional model 

in three ways, namely Float ambiguities, Fixed ambiguities and 

Fixed ambiguities and fixed baseline (Amiri-Simkooei et al. 

2013, 2015). In this paper, we carried out the Fixed ambiguities 

method. After fixing the DD integer ambiguities via the least-

squares ambiguity decorrelation adjustment (LAMBDA) 

method (Teunissen, 1993, 1995) or the lattice theory (Jazaeri et 

al., 2012), the fixed DD integer ambiguities were moved to the 

left hand side of Eq. (3). In this case, A simplifies 

to [ ].
T T T T T

A G G G G   

 

Equation (5) presents a realistic stochastic model of GPS 

observables. Estimation of the (co)variance components of this 

model may be performed in there steps (1) Estimation of the 

(co)variance components 
C

 , (2) Estimation of the  

components of 
E

 , and (3) Estimation of the components of 

T
 . 

 

For more details on the application of LS-VCE to noise 

assessment of the GPS observables, the reader is referred to 

Amiri-Simkooei et al. (2009, 2013, 2015). 

 

3.2.1 Estimation of (co)variance components of 
C

 : In the 

first stage, the (co)variance components 
C

  including the 

different variances of observation types and the possible 

correlation among the GPS observables are estimated. For this 

purpose, the temporal correlation and the satellites elevation 

dependence of GPS observables precision are ignored. On the 

other hand,  
T

  is assumed as an identity matrix of size K, i.e., 

T K
I  , and 

E
  simplifies to 

 

 

4 2 2

2 4 2

2 2 4

E
 

 
 
 
 
 
 

                                    (15)  

 

meaning that all satellites with different elevation angles have 

equal variance factors (i.e., 
2 2 2

[1] [ 2] [ ]k
     ).  

By using the structure introduced in Eq. (15) for 
E

  and 

T K
I  , the (co)variance components of 

C
  can be estimated 

by LS-VCE. The approximate values for the covariance 

components was assumed to be zero, un-correlated observables, 

and the approximate values for the standard deviation of GPS 

code (C1 and P2) and phase observations (L1 and L2) were 

taken as 30 cm and 3 mm, respectively. Also, the tolerance for 

the convergence of the LS-VCE solution is set to  = 10-6.  

 

3.2.2   Estimation of components of  
E

 : After estimating the 

(co)variance components of 
C

 , we may consider the satellites 

elevation dependence of GPS observables precision by 

estimating the components of  
E

  using LS-VCE. To this end, 

matrix 
C

 , which is already estimated, is introduced into the 

stochastic model of Eq. (5). The temporal correlation is still 

assumed to be absent at this stage, i.e., 
T K

I  .  The 

components of 
E

  can then be estimated using LS-VCE. Also, 

the approximate values for the variance factors of 
E

  are 

assumed identical for all satellites as 
2 2 2

[1] [ 2] [ ]
1

k
      .     

 

To consider the dependence of GPS observables precision on 

the satellites elevation, an exponential elevation-dependent 

model may also be used. This model is similar to the Euler and 

Goad elevation-dependent model (Euler and Goad, 1991), and 

is expressed as follows  

 

 0
2

1 2
a a e







                                  (16) 

 

where 
2

  is the variance of the observables, 
1

a  and 
2

a  are 

two unknown parameters to be estimated,   denotes the 

elevation angle of the satellites and 
0

  is an unknown reference 

elevation angle. The unknown parameters of the nonlinear 

model given in (16) can be obtained by a nonlinear least squares 

fit to the estimated variance components of 
E

  using LS-VCE. 

Therefore, the exponential elevation-dependent model was 

implemented to express the dependence of the GPS observable 

precision on the satellite elevation angle (Amiri-Simkooei et al., 

2015). 

3.2.3 Estimation of components of  
T

 : In the last step, 

time correlation of the GPS observables is investigated. At this 

stage, the components of  
T

  are to be estimated. For this 

purpose, 
T

  and 
T

  matrices, which were estimated in the 

two previous steps, are assumed known and hence introduced 

into Eq. (5). The components of 
T

  can then be estimated by 

using the empirical autocovariance function (ACF), which is 

shown to be a by product of the LS-VCE method, if the weight 

matrix is chosen as the identity matrix. The unbiased sample 

autocovariance function of a zero-mean stationary time-series 

can be obtained as (Amiri-Simkooei 2007, p. 42) 

 

 
1

ˆ ˆ

ˆ 0,1, ..., 1

K

i i

i

e e

K
K






 








  




                     (17) 

 

where   is the time lag (the time interval between two samples) 

in seconds, 


  is the covariance among the observables with 
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lag   and K  is the number of epochs. The coefficient at lag 

0   equals the diagonal elements (variance factors) of 
T

 . 

 

As a predefined model, the temporal correlation of the GPS 

observables is approximated by an exponential auto covariance 

function (first-order auto regressive, AR(1)) as 

 

 
2

, 0,1, ..., 1e K



  


                          (18) 

 

where 
2

  and   are the unknown parameters of the model. 

The unknown parameters of the nonlinear model given in (18) 

can be obtained by a nonlinear least squares fit to the estimated 

ˆ


  obtained by Eq. (17). Therefore, the exponential auto 

covariance function was implemented to express the temporal 

correlation of the GPS observables. 

 

4. NUMERICAL RESULTS AND DISCUSSIONS  

To investigate the effect of the realistic stochastic model of the 

GPS observables on the IAR success rate and on the estimated 

baseline uncertainties, two real GPS data sets collected by a 

geodetic GPS receiver, namely Trimble R8, are employed. The 

receiver used is a geodetic dual frequency receiver which 

provides the code and phase observations on both the L1 and 

L2 frequencies (namely, C1-P2-L1-L2). The first GPS data 

experiment was collected on November 28, 2010 with one 

second interval over a short baseline of 2.5892 m from 13:11:19 

to 13:15:28 UTC consisting of 250 epochs. The second data set 

was also measured over a short baseline of 20.526 m with one 

second interval on November 28th, 2010, from 13:17:18 to 

13:21:27 UTC consisting of 200 epochs. 

 

This geodetic GPS receiver has been recently used in Amiri-

Simkooei et al. (2015) for two different GPS data sets. We now 

use other datasets using the same receiver under a different 

situation, for example different days and different satellite 

configuration. However, we use the standard deviation of the 

phase and code observations as well as the correlation 

coefficient among different observations as those estimated by 

Amiri-Simkooei et al. (2015). 

 

According to Amiri-Simkooei et al. (2015), the estimated 

standard deviation of the four GPS observation types are 

C1
ˆ 392.1 mm  , 

P2
ˆ 625.4 mm  , 

L1
ˆ 5.2 mm   and 

L2
ˆ 4.94 mm  . Table 1 provides the covariances and 

correlation coefficients between the GPS observables. The 

results indicate a significant correlation between observations. 

A positive correlation of 0.42 is observed between the phase 

observations on L1 and L2 for Trimble R8, which is considered 

to be significant (see Amiri-Simkooei et al., 2013). The 

estimated values of the parameters given in (16) are 
1

0.26a  , 

2
18.90a   and the reference angle is estimated as 

0
7.6  , 

for the Trimble R8 receiver.  

 

Table 1. Estimated covariance 
2

,
ˆ ( )

i j
mm  and correlation 

coefficient 
,

ˆ
i j

  among different observations for Trimble R8  

Between 2

,
ˆ ( )

i j
mm  ,

ˆ
i j

  

C1-P2 45010.39 0.18 

C1-L1 385.59 0.19 

C1-L2 263.99 0.14 

P2-L1 199.83 0.06 

P2-L2 250.35 0.08 

L1-L2 10.69 0.42 

 

After introducing the estimated components of 
C

  and 
E

  to 

the mathematical model of the GPS baseline (ignoring time 

correlation of GPS observables in this stage), the integer 

ambiguity success rate (SR) is then computed and compared 

with its nominal counterpart for each of the GPS data sets for 

three following cases: Case (1): L1 only; Case (2): L2 only and 

Case (3): L1 + L2.  The empirical success rate computed for 

three cases are given in Table (2). The results indicate that 

applying the estimated components of 
C

  and 
E

  to the 

mathematical model of the GPS baselines can significantly 

improve the success rate; an improvement of 20% is clear when 

using only L1 or L2. 

 

Table 2. Estimated empirical success rate (SR) for each of GPS 

data sets in three cases. 

Data set SR L1 only L2 only L1+L2 

 

First 

data set 

Nominal 

SR 

72.8 % 62.0 % 100 % 

Realistic 

SR 

81.6 % 86.4 % 100 % 

 

Second  

data set 

Nominal 

SR 

82.0 % 76.4 % 100 % 

Realistic 

SR 

83.6 % 87.6 % 100 % 

Using different GPS data sets, Amiri-Simkooei et al. (2015) 

also showed that applying a more realistic stochastic model can 

significantly improve the IAR success rate on individual 

frequencies, either on L1 or on L2. This work can be considered 

as a follow-up to the work carried out by Amiri-Simkooei et al. 

(2015) in which some supplementary results, for example 

considering the effect of introducing the realistic stochastic 

model on the estimation of the two baseline components 

uncertainties, are also presented in this contribution.  

 

We now aim to consider the effect of introducing the realistic 

stochastic model on the estimation of the baseline components 

uncertainties. The baseline uncertainties can be regarded as the 

square root of the diagonal components of the unknowns 

covariance matrix approximated by 
1 1

ˆ
( )

T

x y
Q A Q A

 
  in which 

yQ  can be considered in three different cases:  

 

 Case I: Nominal stochastic model of the GPS 

observables,  

 Case II: A realistic stochastic model of the GPS 

observables by introducing the 
C

  and 
E

  matrices 

estimated by the LS-VCE method,  
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 Case III: Considers the 
C

  and 
E

 as estimated in 

Case II. In addition, the realistic stochastic model of 

the GPS observables considers time correlation of 

GPS observables based on the empirical ACF and 

fitting an exponential auto covariance function to the 

ACF.  

 

Table (3) provides the estimated baseline uncertainties in the 

three cases for each of the GPS data sets. The results indicate 

that the estimated baseline uncertainties in the case of the 

nominal stochastic model lead to the optimistic uncertainties of 

the estimated baseline components when compared to a realistic 

stochastic model (cases II and III). In other words, introducing 

the realistic stochastic model results in a larger standard 

deviation for the baseline components by a factor of about 2.6 

on the data sets considered. 

 

Table 3. Estimated baseline uncertainties in three cases for two 

data sets: Case I: Nominal, Case II: considering 
C

  and 
E

  

and Case III: considering 
C

  ,
E

  and 
T

 . 

Data set Case  
X

  (mm) 
Y

  (mm) 
Z

  (mm) 

First 

data set 

I 0.27 0.34 0.36 

II 0.35 0.50 0.43 

III 0.66 0.85 0.90 

Second  

data set 

I 0.27 0.36 0.38 

II 0.34 0.49 0.45 

III 0.76 1.03 1.09 

 

In this paper, we investigated the effect of an optimal stochastic 

model in the case of relative positioning. The choice of a 

realistic stochastic model of the GPS observables is also 

important in other fields of GPS applications such as the precise 

point positioning (PPP) technique.  

 

5. CONCLUSIONS 

A realistic stochastic model for the GPS observables should 

include a few important issues like different variances for each 

GPS observation type, the correlation between different 

observations, the satellite elevation dependence of the GPS 

observables weights, and the temporal correlation of the GPS 

observables. The use of a proper (correct) stochastic model of 

the GPS observables leads to the best linear unbiased estimators 

(BLUE) in the high precision GNSS positioning. The LS-VCE 

method was applied to GPS observables using the GBOM as the 

functional model. 

 

The impact of a realistic GPS stochastic model on IAR success 

rate was discussed using two GPS short baseline data sets. The 

empirical success rate was computed for two cases: (1) using 

the nominal covariance matrix, and (2) using the estimated 

covariance matrix by LS-VCE. For the latter case, the success 

rate is determined by taking into consideration the variances of 

the GPS observables, the covariance/correlations of GPS 

observables, and the satellites elevation dependence of the GPS 

observable precision. The results showed that applying a more 

realistic stochastic model can significantly improve the IAR 

success rate on individual frequencies, either on L1 or on L2. 

An improvement of 20% was achieved to the success rate 

results. This idea can thus be implemented in attitude 

determination using single-frequency single-epoch of GPS 

observations in order to improve and/or speed up the ambiguity 

fixing procedure.  

 

Finally, the effect of the realistic stochastic model on the 

estimated baseline uncertainties was investigated. The results 

indicated that introducing the realistic stochastic model leads to 

a larger standard deviation for the baseline components by a 

factor of about 2.6 on the data sets considered. 
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