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ABSTRACT:

There is a great demand for studying the changes of buildings over time. The current trend for building change detection combines the 

orthophoto and DSM (Digital Surface Models). The pixel-based change detection methods are very sensitive to the quality of the images 

and DSMs, while the object-based methods are more robust towards these problems. In this paper, we propose a supervised method for 

building change detection. After a segment-based SVM (Support Vector Machine) classification with features extracted from the 

orthophoto and DSM, we focus on the detection of the building changes of different periods by measuring their height and texture 

differences, as well as their shapes. A decision tree analysis is used to assess the probability of change for each building segment and the 

traffic lighting system is used to indicate the status “change”, “non-change” and “uncertain change” for building segments. The proposed 

method is applied to scanned aerial photos of the city of Zurich in 2002 and 2007, and the results have demonstrated that our method is 

able to achieve high detection accuracy. 

1. INTRODUCTION 

Monitoring and assessing the building changes are important 

tasks. On one hand, it is a crucial step for updating the geo-

databases, on the other hand, the building change itself is of very 

much interest for urban related application such as building 

dynamic analysis, building code compliance and building material 

flow estimation.  

Change detection techniques using two-dimensional (2D) low 

resolution images are intensively studied for assessing changes at 

the landscape level (Rogan et al., 2002; Song et al., 2001). Due to 

the lack of height information, such methods confront problems 

with illumination discrepancy, and perspective distortion for high 

resolution images (Qin et al., 2013). The recent works have 

incorporated DSM (Digital Surface Model) for change detection 

on the building levels with very high resolution (VHR) remote 

sensing data (Dini et al., 2012; Rottensteiner, 2008), as well as 

works at the street level (Qin and Gruen, 2014). 

The comparison of DSMs were conducted by the subtraction of 

DSMs from two period for volumetric analysis by several studies 

(Gong et al., 2000; Martha et al., 2010). Sasagawa et al. (2013) 

applied shift-based least squares matching to examine the 

intensity differences of the ALOS-PRISM orthophotos, and the 

intensity difference computation was treated symmetrically, thus 

to reduce the effect of the illumination differences. The DSM 

difference was computed in pixel-wise. A final step of polygon 

extraction grouped the pixel-wise intensity and height differences, 

which were presented separately in the final change map. 

Dini et al. (2012) proposed pixel-based approaches by 

differentiating the derived normalized DSMs (nDSM) generated 

from IKONOS and GeoEye stereo pairs, and then height 

difference map was refined with post-filtering techniques. 

Similarly, Chaabouni-Chouayakh and Reinartz (2011) proposed a 

post-classification method by first truncating the height 

differences with a given threshold, and then applied supervised 

post-classification methods based on various shape features to 

eliminate false-positives from trees.  

Pixel-based methods are usually sensitive to the quality of images 

and DSM, while object-based methods are more robust towards 

this problem. Tian et al. (2013) proposed a region-based method 

to compare height and image intensity difference on groups of 

pixels (segments) for detecting the changes of forest and buildings 

with Cartosat-1 stereo pairs. The change vector analysis (CVA) 

was used to fuse the contribution of height and intensity 

differences. 

Rottensteiner (2008) used the combination of multi-spectral 

images to update the geo-database, where the multispectral 

images were mainly used for extracting vegetation index, and the 

resulting buildings changes were specified as “demolished”, “new” 

and “changed”.  

Among the change detection techniques using VHR images for 

building detection, most of the methods first focus on the 

interpretation of the height and textural difference, and then apply 

post-filtering techniques to eliminate unwanted changes 

(Chaabouni-Chouayakh and Reinartz, 2011; Rottensteiner, 2008). 

The performance of the change detection methods rely largely on 

the quality of the images and DSMs in the first place, meanwhile 
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it is also crucial to find a good way to distinguish the unwanted 

changes (blunders from DSMs or seasonal variation of the 

vegetation). The post-filtering strategy sometimes is limited by 

the quality or availability of vegetation index, as well as the lack 

of urban class information. Therefore, we propose to pre-classify 

the ground scene using the image and DSM, and then to apply 

object-based change detection method on the building class, 

taking into account their height and textural difference, as well as 

their shape discrepancies. The advantage of this idea lies in the 

fact that, by knowing the building classes, we are able to consider 

the shape differences of buildings. The building segments provide 

appropriate regions to robustly evaluate the height and texture 

difference. Moreover, the spectral and height information of 

buildings can be learned from the data itself, which is widely 

applicable to different kinds of data (e.g. Panchromatic, 

multispectral, scanned aerial photos).  

A complicated workflow is proposed in this paper for building 

change detection. Scanned aerial stereo images (in the year of 

2002 and 2007) of an area in the city of Zurich are used to 

evaluate the performance of the proposed method. The remainder 

of the paper is organized as follows: section 2 describes the 

general workflow and the preprocessing of the stereo pairs. 

Section 3 and section 4 introduce the detailed methodology and 

section 6 demonstrates the experiment results. Section 6 

concludes the paper. 

2. GENERAL WORKFLOW AND DATA 

PREPROCESSING 

The overall workflow of our proposed method is shown in Figure 

1. The scanned aerial stereo pairs are provided by SWISSTOPO 

(Swisstopo, 2014), together with their orientation parameters, 

with an average GSD (ground sample distance) of 0.38 meters. 

The DSMs are generated with hierarchical semi-global matching 

(H-SGM) (Hirschmuller, 2008; Rothermel et al., 2012). Since the 

scanned aerial photo usually contains noise during the digitization 

process, we adopted a bilateral filter (Tomasi and Manduchi, 1998) 

with a small radius (3 × 3) to de-noise the image before perform 

H-SGM on the stereo pairs. The generated point clouds are 

sampled in a regular grid with a GSD of 0.4 m. To eliminate the 

possible registration errors between the DSMs from two dates, we 

employ a least squares 3D matching (LS3D) method (Gruen and 

Akca, 2005), with only shift parameters considered, since the 

rotation differences are usually not significant. The quality of the 

co-registered DSM can be assessed by evaluating the height 

differences of the unchanged area. We have evaluated an area 

with no visible changes. The RMSE (root mean square error) and 

standard deviation (STD) of the height are 2.43m and 2.37m, 

respectively. The profile comparison in Figure 2 also shows that 

the errors usually happen at the building borders. There are also 

large discrepancies in the vegetation area, which are mainly 

because that the trees canopies in winter become much sparser, 

causing incorrect matching results. In the next two subsequent 

sections, the proposed change detection method will be 

introduced into detail. 
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                        Figure 1. The workflow of the proposed method. 

 
Figure 2.  The profile analysis of height differences of DSM. 

Upper left: an unchanged area, and the red line denotes the 

analyzed profile; Bottom left: height difference; Right: DSM 

comparison of the profile. 

3. SUPERVISED CLASSIFICATION AND 

BUILDING DETECTION  

As discussed in section 1, our goal is to first perform the 

supervised classification to derive the building classes. Since the 

pixel-based classification is sensitive to noise and potentially 

requires a large amount of computation for VHR images with 

large dimension. Therefore, we apply an object-based 

classification method by segmenting the orthophoto first, and then 

apply the feature extraction and classification on the resulting 

segments.   

3.1 Image Segmentation 

The synergic mean-shift (MS) method (Christoudias et al., 2002) 

is applied to perform the segmentation, which explicitly employs 

the weight of the image boundary to constrain the classic mean-

shift segmentation, leading to more meaningful segments. Instead 

of imposing constraints the MS segmentation with the image 

gradient, we constrain it with the height discontinuity: the Canny 

gradient magnitude (Canny, 1986) of the DSM is computed as the 

boundary probability to weight each pixel during the 

segmentation process. This is particular useful in area with large 

height jumps but insignificant spectral differences.  

3.2 Feature Extraction and Classification  
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The Support Vector Machine (SVM) classifier is widely used in 

many machine learning applications. It is originally designed for 

binary classification problems, which finds a hyper plane that 

maximizes the distance between the training samples of each class. 

We adopt the “one-against-all” (OAA) approach for multi-

classification problem and the “Radial Basis Function” (RBF) is 

used as the kernel function.  

Since we focus on the building class and other classes are used to 

eliminate possible disturbances from the vegetation and roads. We 

only define three classes “building”, “road”, “vegetation”, and 

select more training samples for the building classes. The input 

features are extracted with each resulting segment from section 

3.1, and the following features are computed for each segment: 

1) Mean color/spectral (in CIELAB color space for RGB 

images); 

2) Variance of luminance; 

3) Mean value of the morphological top-hat reconstruction of 

DSM; 

4) Variance of the DSM; 

5) Elongation of each segment (the ratio between the minor 

axis and the major axis of the ellipse fitting). 

These features are concatenated into a five dimensional vector, 

and each element in the vector are normalized into [0, 1] in order 

to contribute equally to the process of classification. The mean 

color of each segment is effective to distinguish house roofs and 

vegetation. The top-hat reconstruction of DSM is effective to 

separate the ground with off-terrain objects. The variances of 

luminance and DSM are used to separate the vegetation and 

impervious surfaces, especially for images with poor spectral 

signature for the urban classes. The elongation measure senses the 

shape of the segment, which is effective to distinguish road and 

building roofs with similar spectral signature as the ground.  

3.3 Building Segment Merging 

Each segment reveals similar color and height, and it is possible 

that one actual building segment may be divided into several 

segments during the segmentation process, thus we merge the 

detected building segments with their neighboring building 

segments that have similar height. For our experiment, the 

neighboring segments whose height differences are less than 1 

meter height will be merged as one building segment. 

It should be noted that we tolerate false positives from the 

ground/road segments, as the main purpose of the supervised 

classification is to eliminate the vegetation. Moreover, the ground 

segments usually have large size and are less probable to produce 

false positives. Therefore, under our context, the samples of the 

building roof spectra should be sufficient to cover most of the 

roofs, and the number of vegetation and road samples can be very 

small. 

4. OBJECT-BASED CHANGE DETECTION 

The change detection method is based on the building segments 

detected from each date. The region-based change detection 

methods compare the height and textural differences within 

segments that have homogenous color, while building segments 

provide more information: the shape of each building segment 

from each date is meaningful, and the unchanged buildings should 

have similar segments in both dates. 

To better utilize the property of building segments, our proposed 

change detection method is divided into two steps: 1) initial 

change indicator computation for each date; 2) change indicator 

updating based on segment overlap.  

4.1. Initial Change Indicator Computation 

A first step is to assess the change information from the 

orthophotos and the corresponding DSMs. As mentioned before, 

the initial change indicator will be computed for each segment on 

each date, and it should be designed to maximally exploit the 

textural and height information while maintaining the robustness. 

Since the color information of the aerial photos may be affected 

strongly due to the differences of the atmospheric condition, 

illumination, etc., simple Euclidean distance between the color 

information from two dates will result in many false positives. 

Therefore, for each segment, we compute the normalized 

correlation coefficient (NCC) of its out-fitting box, and take the 

maximum of the NCCs by shifting the rectangular box within a 5 

X 5 window to reduce misalignment of the orthophotos. The NCC 

is robust for radiometric difference and useful for highlighting the 

textural differences. 

The height difference is computed within each building segments. 

As discussed in section 2, most of the matching errors occur at the 

border of the buildings. Therefore, we first compute the histogram 

of the height difference for each building segment, and then 

calculate the mean height of pixels that are larger than 10% of the 

total pixels in the histogram. To represent the height difference in 

a robust way and further fuse with the NCC value, we divide the 

height difference      of each building segment with a fixed 

basic height    as the normalized height difference       of the 

segment: 

                                                                     (1) 

Thus the change indicator   can be written as a weighted form: 

                                                           (2) 

In our experiment, we take         , and these parameters 

can be adjusted due to the quality and resolution of the data. 

4.2 Change Indicator Updating based on Segment 

Matching 

The initial change indicator reveals the probability of change 

based on their height and textural differences, and this indicator 

might contain errors, which lead to false positives for most of the 

cases. To enhance the separability of the change and unchanged 

segments, we check the overlap of the building segments from 

both dates, and a decision process is adopted to re-compute the 

value of the change indicator according to their overlaps.  

The basic idea is to suppress the probability of change when there 

are highly overlapped buildings and to promote the change 

probability when building segment in one date could not find 

correspondence on the other date. And this process is done by 
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updating the value of the change indicators based on the overlap 

of the building segments from both dates. 

For a segment   in one date and segment   in the other date, we 

denote the following notations: 

                                 
                    

       
                      (3) 

                                                                (4) 

                                                                (5) 

 

We reduce the change indicators value by 40% for building 

segments that find highly overlapped building segments 

(high       ), and increase the value by 20% if they do not find 

any segments with overlaps (low       ). For buildings partly 

overlapped, their change indicators will be assigned as the change 

indicator of the joint segments. Figure 3 shows the process. 

For each 

segment A

If exist B that M(A,B) > 0.7, Promote them as non-change,

C(A) = C(B) = (C(A)+C(B))/2 ×  0.6

For all B that intersect with A, if G(A,B) < 0.2, Promote A 

as change, C(A) = C(A) × 1.2

For {B} = {B|G(A,B) ≥0.2 and M(A,B) < 0.7}, C(A) = 
C(Union(A,{B}))

C(A) < Tlow, non-change;

C(A)>Thigh, change;

Tlow<C(A)>Thigh, uncertain

 Figure 3. The workflow of the decision tree analysis. 

The updating process is done for all the building segments, and 

then we define a dual threshold (          ) after repetitive test to 

classify each segment as “changed” (       ),”non-change” 

(       ) and “uncertain” (             ). Building 

segments with “change” status from the earlier date are 

demolished buildings, and those from the later dates are new 

buildings. Overlapping building segments with different status are 

promoted as “change” buildings if one of them has “change” 

status. In our experiment, the thresholds are:                 

   , which are selected by empirical tests. 

5. EXPERIMENT AND RESULT ANALYSIS  

Two pairs of scanned stereo aerial photos are used to valid the 

proposed methods. For computational convenience, a sub-area of 

2000 × 2000 pixels is used for our experiment, which covers 

residential and commercial buildings. Overviews of the data are 

shown in Figure 4.  

It can be seen that there is a clear seasonal difference between the 

two datasets. Since there is no near-infrared band for the scanned 

photos, the vegetation can only be detected via their color 

information and DSM. The relative weak spectral signature of the 

objects in date 2 may not be sufficient to identify the vegetation 

area by mere greenness. Therefore, the supervised classification is 

needed to find the vegetation area by learning the characteristics 

of the scene. 

5.1 Classification 

Three classes (“building”, “road” and “vegetation”) are used for 

classification.  The statistics of the classification are shown in 

Table 1. 

Date    #AS       # BSS     #RSS      #TSS       #TB         OA          BA 

1        22902        20            9             16           221        0.98        0.97    

2        11358        30           6              12           231         0.94        0.92 

                     Table 1. Classification Results 

(AS: all segments; BSS: building sample segments for training; RSS: road 

sample segments for training; TSS: tree sample segments for training; TB: test 

samples for building; OA: overall accuracy; BA: Building class accuracy) 

Due to the weak spectral variability of the image in date 2, the 

resulting number of segments is much less than that from date 1, 

where the segmentation is performed with the same set of 

parameters. The OA and BA are also lower than those of date 1. 

Based on the test samples, we obtained acceptable classification 

accuracy for building. 

5.2 Change Detection 

The change detection result was evaluated using the reference 

data, which was manually marked by careful inspection. Since our 

proposed method yields “uncertain changes” which should be 

determined by the operator, therefore we only evaluate the 

“changed buildings” and “unchanged buildings” for our validation. 

TPR (true positive rate), FPR (false positive rate), FNR (false 

negatives rate), and KC (kappa coefficient) are computed based 

on the detected changes and the reference data. 

    
  

  
     

  

  
     

  

  
                    (6) 

                                 
     

 
  

   
                                             (7) 

                 
                               

   
              (8) 

where       and   indicate ground truth positives; positives 

detected and total number of pixels/ objects.     denotes the 

completeness of detected changes; and     describes the 

proportion of wrongly detected changes.    measures the total 

agreement between detected results and the ground truth.  

Table 2 shows that the proposed method has obtained a TPR of 

85.65 percent in pixel-wise evaluation, which shows an 

acceptable agreement between the detected results and the 

reference data.  In the object-based evaluation, 25 out of 27 

changed segments are detected, and the other two are marked as 

“uncertain” changes for evaluation. The proposed method has 

detected 44 segments in total (including “uncertain change” and 

“change”), and 18 segments are marked as “uncertain changes” 

for operators to check, which demonstrate its potential to reduce 

the labor cost for urban monitoring. 

 

Figure 3 shows the change detection results of our method. It can 

be observed that almost all the significant changes are detected, 

and false positives mainly occur at places that vegetation are 

wrongly identified as buildings. Figure 4 shows that the proposed 

method not only detects the changed place, but also separates the 

changes between “demolished buildings” and “new buildings”, 

which is able to provide more information to assess the building 

dynamics overtime.  

 
     

Pixel-based Object-based 

TPR FPR FNR KC NCD NMD TD US 

0.8563 0.3011 0.1437 0.9355 25 2 44 18 

        Table 2. Evaluation of the change detection results 

(NCD: number of correctly detected change segments; NMD: number of missing 

detection; TD: total number of detected changes; US: number of uncertain segments) 
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Figure 4 demonstrates the results of a larger area (5000 × 5000). 

The same set of parameters/ thresholds are applied on this dataset. 

By visual inspection, most the significant changes are detected, 

and there are some non-change segments, which are mainly 

induced by the matching artifacts, and classification errors. 

6. CONCLUSION  

In this paper, we have proposed a supervised method for building 

change detection, and scanned aerial stereo pairs are used for 

validating our method. The proposed method first detects the 

building segments in both dates, and then integrates the height 

difference, spectral difference, and the segments overlap for 

change detection. The results have demonstrated the proposed 

method has achieved satisfactory results. However, the 

classification result is one of the decisive factors for the change 

detection, and missing buildings might not be detected as changes. 

The future work will focus on automating the proposed method; 

in the meantime reduce the change detection errors. 

  

 

Figure 3. The experiment result. Left: orthophoto in the year 2002; middle: orthophoto in the year 2007; right: change detection results 

(red: demolished: green: new building; orange: uncertain changes). 

  

Figure 4. The result of a large area: Left: orthophoto in the year 2002; middle: orthophoto in the year 2007; (red: demolished: green: new 

building; orange: uncertain changes). 
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