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ABSTRACT: 

 

The elevation information is not considered in the traditional building change detection methods. This paper presents an algorithm of 

combining LiDAR data and ortho image for 3D building change detection. The advantages of the proposed approach lie in the fusion 

of the height and spectral information by thematic segmentation. Furthermore, the proposed method also combines the advantages of 

pixel-level and object-level change detection by image differencing and object analysis. Firstly, two periods of LiDAR data are 

filtered and interpolated to generate their corresponding DSMs. Secondly, a binary image of the changed areas is generated by means 

of differencing and filtering the two DSMs, and then thematic layer is generated and projected onto the DSMs and DOMs. Thirdly, 

geometric and spectral features of the changed area are calculated, which is followed by decision tree classification for the purpose of 

extracting the changed building areas. Finally, the statistics of the elevation and area change information as well as the change type 

of the changed buildings are done for building change analysis. Experimental results show that the completeness and correctness of 

building change detection are close to 81.8% and 85.7% respectively when the building area is larger than 80 2m  , which are 

increased about 10% when compared with using ortho image alone. 
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1. INTRODUCTION 

LULC (Land Use and Land Cover) change information can be 

achieved through the analysis of multi-temporal remote sensing 

images and geographic information data using change detection 

methodologies (Singh, 1989; Bovolo and Bruzzone, 2007; 

Nutini et al., 2013; Zhu and Woodcock,  2014; Franklin et al., 

2015). With the improvement of the resolution of remote 

sensing images, particular attention is paid on the analysis 

of special artificial objects, especially the buildings 

(Champion, 2007). Building change information is of great 

importance to disaster assessment and post-disaster 

reconstruction, urban growth monitoring and environmental 

change researches. Traditional urban change information 

can be obtained through the analysis of spectral and textual 

features of aerial or remote sensing images (Niemeyer et al., 

2007; Huo et al., 2010; Adar et al., 2014; Cao  et al., 2014; 

Wang et al., 2015). However, the above methods mainly 

consider the radiation information of images, leading to a 

large amount of omission and commission errors. Especially 

for buildings, spectral information differs greatly due to 

different roof materials and buildings share similar textual 

features with roads, which makes it difficult for extracting 

building change information by using spectral and textual 

information alone. Moreover, both shadows of high-rise 

buildings and titled buildings caused by perspective 

projection cause many problems in the building change 

detection, which also bring challenges to obtain the 

building change information using the radiation information 

alone (Knudsen and Olsen, 2003; Vu et al., 2004). Height 

variation is an important change indicator of artificial 

buildings. In addition to that, elevation information is of 

great significance in the exclusion of non-building objects 

such as trees and in the distinguishing between buildings 

and roads which share the similar spectral and textual 

features (Murakami, 1999; Gamba and Houshmand, 2002; 

Vögtle and Steinle, 2004). 

 

In recent decades, building change detection methods, which 

take elevation information into account, have made significant 

progresses. According to different elevation information 

acquisition modes, those methods can be divided into two 

categories: 

 

1. DSM is generated by stereo images and building change 

map is generated by DSM comparison and post-processing. 

Jung (2004) generated two periods of DSMs based on aerial 

stereo images, which is followed by DSM comparison and edge 

features extraction and classification.  Tian et al. (2014) carried 

out 3D building change detection using stereo images and 

DSMs generated with stereo matching technology. The 

Dempster-Shafer fusion theory was adopted to implement the 

joint use of height changes and Kullback-Leibler divergence 

similarity measure. Meanwhile, no-building indicator was 

generated by vegetation and shadow classifications and object-

based building extraction was implemented based on shape 

features, which contributed to improving the change detection 

results. Based on the supervised classification by combing 

height, spectral and shape information, Qin et al. (2015) 

presented a 3D building change detection approach using multi-

temporal stereo images. A synergic mean-shift segmentation 

method was applied on the orthophotos with the constraints of 

the DSM to derive segments with homogenous spectrum and 

height, which were then classified with a hybrid decision tree 
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and SVM approach. To identify the change status of each 

building, an initial change indicator (CI) was computed and an 

adaptive updating strategy based on segment overlapping was 

proposed. These methods need dense image matching 

technology to generate DSM or DEM which usually contains 

many noises caused by building shadow and perspective 

projection. Consequently, large amount of post-processing work 

is indispensable for removing noises to obtain reasonable 

building change map.   

 

2. DSM is generated by LiDAR data and building map is 

obtained by the comparison between DSM and existing 

building database or between DSM and building models. 

Matikainen et al. (2004) performed building change 

detection using LiDAR data, aerial images and building 

database. DSM generated by LiDAR data was firstly 

segmented, then DSM was classified using height, spectral 

and textual information to obtain building areas, finally 

building change map was achieved by the comparison 

between extracted building areas and building database. 

Vosselman et al. (2005) carried out building change 

detection using LiDAR data and existing building database. 

In the paper, DSM generated by LiDAR data was firstly 

segmented and classified to obtain building areas, then 

building map was achieved by the boundary comparison 

between extracted buildings and buildings in the database. 

Rottensteiner (2008) presented a building change detection 

method using LiDAR data and high resolution satellite 

images. D-S theory fusion, topological clarification and 

change areas classification were performed on DSM 

generated by LiDAR data for obtaining building areas, after 

which building map was generated by the comparison 

between building areas and building database. Chen et al. 

(2010) proposed a method of comparing LiDAR data and 

existing building models by double-thresholds strategy, and 

building change detection accuracy was further improved 

using spectral information from aerial images.  Liu et al. 

(2014) proposed an automated building change detection 

method using UltraCamD images and existing CAD data. 

Edge features of buildings were extracted from images and 

silhouettes of buildings were extracted from CAD models. 

Then Hausdorff matching methodology was employed to 

calculate the similarity, which was used to detect the 

collapsed and removed buildings. Qin (2014) conducted a 

building change detection study with 3D city models and 

Very High-resolution(VHR) images.  Firstly, 3D building 

models were projected onto a raster grid, and DSM was 

extracted by stereo imagery with SGM method. Secondly, a 

multi-channel change indicator was extracted between the 

3D models and stereo images, which was then clustered and 

analyzed with Self-organizing Maps(SOM) and Markov 

Random Field(MRF). Finally, buildings were extracted by 

combining multi-spectral images and DSM, then building 

change types were determined. However, all of the above 

methods involve the assistance of building database or 

building models, resulting in the complex operations of 

converting vector map into grid map and the co-registration 

between grid map and DSM. These operations influence the 

accuracy, speed and automation of building change 

detection to a certain degree. In addition to that, building 

database or building models are hard to be achieved in most 

cases, especially in rural areas, which reduces the generality 

of the methods.  

 

Based on the analysis above, we propose a building change 

detection method combining LiDAR data and ortho images, 

which well combines the advantages of different sources of data 

for the purpose of quantitative analysis of 3D building change 

detection. Height change information is achieved from DSM 

generated by LiDAR data. DSM change areas are then projected 

onto the ortho images through thematic segmentation. False 

building change areas are excluded by geometric information 

from DSM and spectral and textual information from ortho 

images. Finally, the correctness and completeness are 

computed using manually digitized reference building map 

to evaluate the accuracy of the proposed method. The 

correctness and feasibility of the proposed method is 

verified by the 3D building change detection experiment of 

the test areas. 

 

This paper is organized as follows. In Section 2, we 

describe the study areas and data sources. The proposed 

methodology is illustrated in detail in Section 3. The result 

of the experiment is discussed in Section 4. Finally, Section 

5 draws the conclusion. 

 

2. STUDY AREAS AND DATA SOURCES 

2.1 Aerial Ortho Images and LiDAR Data 

In order to demonstrate the capability of the proposed building 

change detection method, two periods of aerial ortho images 

and corresponding LiDAR data, acquired on different occasions 

over suburb areas of Guangzhou City China, are used for the 

experiments. The test site covers an area of 1
2km , including 

water areas, large industrial areas, dense residential areas, 

network of main and local roads, open land and grass areas 

as well as trees. Moreover, LiDAR data was collected by 

Trimble H68 system in September 2011 and August 2012 

with the point density of 4 pts/
2m to 6 pts/

2m , the size of 

aerial ortho images is 5000 pixel 5000 pixel with ground 

sample distance (GSD) of 0.2m. The DSMs generated by 

LiDAR data and aerial ortho images are shown in figure 1. 

 

2.2 Reference Data 

In order to accurately evaluate the performance of the proposed 

change detection method, building changes were manually 

interpreted and digitized. The reference data is a three-class 

thematic image, typically divided into the following three 

categories: ‘Newly-built’, ‘Heightened’ and ‘Demolished’. 

 

 
Figure 1. Two periods of DSMs and DOMs 
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3. METHODOLOGY 

Height change reflects the main change of buildings and 

elevation information is an important index for extracting 

building change information (Stal et al., 2013). High precision 

DSM can be generated by LiDAR data and building height 

change can be obtained through DSM differencing, then new or 

demolished buildings can be detected (Alobeid et at., 2011). 

However, the lack of textual information and uneven 

distribution of LiDAR point density make it hard to remove 

false changes caused by trees and terrain. On the contrary, aerial 

ortho images are rich in spectral and textual information. 

Specifically, green band ratio and Normalized Difference 

Vegetation Index (NDVI) are of great significance for 

distinguishing trees against buildings (Rottensteiner et al., 

2007). Therefore, the combining of LiDAR data and aerial 

ortho images could achieve the supplementary advantages of 

different data sources and thus improve the building change 

detection accuracy. In this paper, a novel method of building 

change detection by combining LiDAR data and aerial ortho 

images is proposed as illustrated in figure 2. 

 

 LiDAR Data1 

DSM1

Filtering

LiDAR Data2

DSM2

DSM Change Area

DOM1 DOM2

Thematic Layer

Thematic Segmentation

Feature Extraction

Decision Tree 

Classifying

Change Information 

Extraction

Accuracy 

Assessment

Figure 2. The flow chart of 3D building change detection 

 

The proposed approach consists of the following steps: 

1. DSM change area extraction. Two periods of DSMs are 

generated after the operation of filtering and interpolating of 

two periods of LiDAR data. Then DSM change areas are 

obtained by DSM differencing, height filtering, height textual 

filtering, morphological filtering and area filtering. 

 

2. Feature Extraction of DSM Change Areas. Shape file of 

DSM change areas is generated through eCognition software 

(Li et al., 2014), which is used for thematic segmentation of the 

two periods of DSMs and DOMs. Then height features, spectral 

features and textual features are extracted from the segmented 

DSMs and DOMs. 

 

3. Building change segments identification and regularization. 

The optimal classification feature combination is determined by 

the optimal classification distance, after which decision tree 

method is applied to classify the DSM change areas for 

obtaining building change areas. Building contours are then 

regularized for accurate change information extraction. 

 

4. Change information extraction and accuracy assessment. 

Elevation and area change information of building change areas 

are calculated and the corresponding change types are 

categorized. Moreover, the completeness and correctness are 

calculated to evaluate the accuracy of the proposed building 

change detection method. 

 

3.1 DSM Change Areas Extraction 

Building corner features are extracted using two periods of 

LiDAR data followed by 3D similarity transformation to 

implement the co-registration of two periods of LiDAR data 

(Zhang et al., 2012). Then DSMs with 16 bits grey quantization 

and 0.2m sample intervals are generated through interpolation, 

after which DSM differencing is implemented to obtain the 

differential DSM (dDSM). However, due to the noises caused 

by terrain and non-building areas such as trees, height filtering 

is necessary to remove the noises out. Considering the fact that 

building areas are usually higher than the noisy areas and the 

average height of one-story building is about 2.5m, we set the 

threshold to 2.5m for height filtering with the Equation (1) 

shown as follows. 

 

2 1

2 1

1 2 2 1

65535 ( , ) ( , )

( , ) 0 | ( , ) ( , ) |           

( , ) ( , ) ( , ) ( , )

h

h

h

if x i j x i j T

Diff i j if x i j x i j T

x i j x i j if x i j x i j T

 


  
    

     (1) 

 

 Where ( , )Diff i j  is the grey value after differencing, 1( , )x i j  is 

the grey value of epoch 1T , 2( , )x i j  is the grey value of epoch 

2T , hT  is the height threshold, we set hT =2.5m. 

 

DSM after height filtering is shown in figure 3(a), where the 

white areas represent the positive change areas while the grey 

areas correspond to the negative change areas. We can see that 

the non-building noises have been removed to a certain degree 

after height filtering. However, a large amount of non-building 

change areas still exist as shown in figure 3(a), where Label 1 

area represents trees while Label 2 area represents building 

edges, either of which is impossible to be removed through 

height filtering. Height texture, which represents local height 

change of target objects, is of great significance to the 

distinguishing between buildings and non-buildings such as 

trees and roads (Tiwari and Pande，2008). Generally, local 

height change of buildings is small, while local height change of 

trees and building edges is large, which is an important 

indicator in distinguishing buildings against non-buildings. In 

this paper height texture entropy is selected as the textual 

feature value as shown in Equation (2). 

 

   
0 0

( , ) , ,                   
x y

E i j p x y In x y
 

    (2) 

 

Where ( , )E i j  is the textual entropy,  ,p x y  is the probability 

of grey level pairs  ,x y . 
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The height texture filtering formula is defined in Equation (3) 

and the filtering result is shown in figure 3(b). 

 

 
   

      

, , ,
,             

0 , ,

e

e

Diff i j E i j T
Diff i j

E i j T

 
 



(3) 

 

Where ( , )Diff i j is the grey value after height filtering, eT  is the 

threshold of height texture entropy. 

 

As shown in figure 3(b), most areas with large local height 

changes such as trees and building edges are removed. 

Meanwhile, large areas with large local height changes will be 

broken into small areas, which is very useful for further filtering 

process. However, non-building change noises caused by 

random reflection of building edges and different flight 

parameters when collecting LiDAR data still exist widely (Vu et 

al., 2004). Morphological opening operation has the ability of 

smoothing the image contours and disconnecting the narrow 

connections. Hence, morphological opening operation is 

implemented to remove the noises above. In our test the 

window size of the morphological filtering is set to be 21 21 . 

The filtering result is shown in figure 3(c). As shown in figure 

3(c), most narrow edge areas and broken areas are removed. 

Nevertheless, many small isolated change areas still exist, which 

is mainly caused by small objects on the roof, low-rise buildings 

and building accessory structures such as chimneys and 

balconies. In general, building change detection focuses on 

large buildings, therefore it’s necessary to remove small 

building change areas using area threshold. In our test we set 

the area threshold to 80 2m  and obtain the final binary dDSM 

as shown in figure 3(d). We can see that most non-building 

noises are removed and DSM change areas with clear 

background are generated after height filtering, height 

texture filtering, morphological filtering and area filtering.  

 

 
Figure 3. Filtering result of dDSM.  (a) dDSM after height 

filtering,  (b) dDSM after height texture  filtering, (c) dDSM 

after morphological filtering,  (d) dDSM after area filtering 

 

3.2 Feature Extraction of DSM Change Areas 

Firstly, shape file of DSM change areas is generated by 

eCognition software, which is used as the thematic layer for the 

segmentation of DSM and DOM. Secondly, DSM change areas 

are classified into ground areas and non-ground areas based on 

the inherent classification of the LiDAR data. Finally, object 

features of DSM and DOM are extracted. In object-based 

classification, object features include spectrum, shape, texture 

and context semantics, each of which contains several specific 

descriptors that have significant contribution to the 

classification (Zhang et al., 2009). A certain number of 

representative samples distributing evenly are selected for the 

selection of the best description features. In feature space, the 

best description features are determined by the best 

classification distance between the samples of two classes, and 

the formula is shown as follows (Wang et al., 2009): 

 

i i

i i

2
(s) (o)

f f

f f

v v
D  

σ

 
  

 
 

                         (4) 

 

Where if represents the ith feature in the feature space, D 

represents the distance between training samples object s 

and classification image object o, 
i

(s)

fv  represents the 

feature value of training sample s, 
i

(o)

fv  is the feature value 

of classification object o , 
ifσ  represents the standard 

deviation of all the image objects in the feature space. The 

features used are listed in Table 1.  

 

Feature class 

(Data Source) 

Attributes of segments 

Geometry 

(DSM) 

Mean Height, Standard deviation of Height 

Spectrum 

(DOM) 

Ratio of Green Band, Mean , Standard 

deviation 

Texture 

(DOM) 

GLCM Homogeneity, GLCM Contrast, 

GLCM Dissimilarity, GLCM Entropy 

Shape 

(DOM) 

Asymmetry, Compactness, Density, Main 

direction, Rectangular Fit, Roundness, 

Shape Index 

Table 1. Features used in the DSM and DOM segments 

 

Through calculation we come to the fact that the best geometric 

description feature of DSM is Mean Height (MH), and the best 

spectral, textual and shape description features are Ratio of 

Green Band (RG), GLCM (Grey-Level Co-occurrence Matrix) 

Homogeneity (GH), Asymmetry (AS) respectively. Moreover, 

the classification distances of two dimensional features from the 

four features are calculated to select the best feature 

combination as shown in figure 4. We can see that RG+MH are 

the optimal feature combination. 

 
Figure 4. Class distance of different feature combination 
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3.3 Decision Tree Classification 

Decision tree classification is a non-parametric classification 

method, which relies on no prior statistical hypothesis and 

possesses good applicability to new data. Moreover, it’s simple, 

accurate and fast, enjoying wide use in classifying remote 

sensing images. Within decision tree, each bifurcation point 

represents a decision condition, and the two leaf nodes at each 

bifurcation point represent the type of meeting the condition or 

not. In this paper, Gini index, which is the measure of nodes’ 

impurity, is chosen as the splitting criterion for each node. It’s 

defined as follow (Friedl, Brodley et al., 1997): 

 

     | j|
i j

impurity t p i t p t


                     (5) 

 

Where t represents a node,  |p i t  and  j|  p t are the 

probabilities that feature vector nx  belongs to class i and 

class j respectively. In decision tree classification, each 

node will search the split that reduces the node impurity the 

most. A node has to contain at least 10 training segments to 

be split. In our test, a certain number of sample areas 

representing different object classes and distributing evenly 

are selected, followed by the calculation of RG and MH of 

each sample areas. Then decision tree is constructed by the 

training samples and tree pruning is implemented for 

reducing the fluctuation caused by training dataset noise and the 

overfitting due to the over-complication of the decision tree. 

Training data and 10-fold cross-validation are used to estimate 

the best level of pruning by computing the costs of subtrees. 

The costs are based on the misclassifications produced by the 

trees. Finally DSM change areas are classified by the decision 

tree and the classification result is shown in figure 5. In order to 

describe each DSM change areas more clearly, a series of 

numerical symbols are assigned respectively. Moreover, 

different colours are used for labelling classification result 

of each DSM change areas. As seen from figure 5, DSM 

change areas are classified into four categories of ‘Ground’, 

‘Building’, ‘Tree’ and ‘Water’. Building change consists of 

‘from Ground to Building’ (corresponding labels are 

1,2,3,4,5,6,11,14,15,16,17,19), ‘from Building to 

Building’(corresponding labels are 8,12,13,18,21), and 

‘from Building to Ground’(corresponding label is 20), while 

false change involves ‘from Water to 

Ground’(corresponding label is 7) and ‘from Ground to 

Tree’(corresponding labels are 9,10). 

 

 
Figure 5. Decision tree classification result of two periods of 

datasets 

3.4 Regularization of Building Change Areas  

After four filtering operations during the process of obtaining 

DSM change areas, building edges become distorted and 

unsharp, which are quite different from the true contours of the 

buildings. In addition to that, the statistics of 3D building 

change information which includes area change information and 

height change information is significantly influenced. Hence, 

it’s important to regularize the contours of building change 

areas. To the end, contour tracking of building change areas is 

implemented, followed by the calculation of the minimum 

enclosing rectangle and the computation of the ratio between 

the area of the minimum enclosing rectangle and the area of the 

building contour. If the ratio exceeds the defined threshold, we  

consider that the building is not a regular rectangle area and the 

Douglas-Peucker method is applied for building contour 

approximation, otherwise the minimum enclosing rectangle is 

chosen as the building contour. Two different types of building 

contour regularization results are shown in Figure 6. We can see 

that both rectangular building contour and non-rectangular 

building contour are more closer to true building contour after 

regularization, which compensates the unsharping effect caused 

by filtering. 

 

 
Figure 6. Building contour regularization result. (a) and (b) are 

rectangle building areas before and after regularization, (c) and 

(d) are non-rectangular building areas before and after 

regularization 

 

4. RESULTS AND DISCUSSIONS 

Building change areas are obtained using the proposed 

approach, meanwhile, 3D building change information are 

calculated. In this paper, height change information is obtained 

by computing the difference of average height value between 

pre-change areas and post-change areas, while footprint area 

change information is obtained by the statistic of building 

change area pixels after regularization.  

 

The 3D building change detection result is shown in Table 2, 

where ‘Change area ID’ refers to the labels of DSM change 

areas as shown in figure 5, ‘Change content’ represents the 

classification results of two periods of DSM change areas, 

‘Height change’ refers to the elevation difference of two periods 

of building change areas, ‘Area change’ indicates the area 

difference of two periods of building change areas, ‘Change 

type’ refers to the change category of two periods of DSM 

change areas. 

 

As can be seen from Table 2, within the 21 DSM change areas, 

18 DSM change areas are building change areas while the rest 

are false change areas. And the 18 building change areas are 

composed of 12 newly-built buildings and 6 heightened 
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buildings. The range of building elevation change is from 5m to 

30m, while the range of building area change is between 

160 2m and 1000 2m . What’s more, newly-built buildings 

are buildings changed from ground to building which 

contain both height change and footprint area change,  

while heightened buildings are buildings changed from 

lower buildings to higher buildings caused by height change 

alone and can only be detected by height information. The 

3D building change information and change type provided 

by Table 2 is quite important to the accurate and 

comprehensive analysis of building change, especially for 

urban invalid building monitoring and post-disaster 

building demolishment assessment. For the purpose of the 

vivid description of the building change and the storing of 

building change detection result in the vector format, 

building change map is generated as shown in Figure 7. 

 

 

Change area ID Change content  Height change 

(m) 

Area change 
2( )m  

Change type 

1 GroundBuilding 5.67 293.24 Newly-built 

2 GroundBuilding 5.42 191.28 Newly-built 

3 GroundBuilding 5.71 241.84 Newly-built 

4 GroundBuilding 5.75 165.08 Newly-built 

5 GroundBuilding 6.67 155.92 Newly-built 

6 GroundBuilding 12.71 920.08 Newly-built 

7 WaterGround --- --- False change 

8 BuildingBuilding 30.45 0 Heighted 

9 GroundTree --- --- False change 

10 GroundTree --- --- False change 

11 GroundBuilding 7.70 690.28 Newly-built 

12 BuildingBuilding 6.78 0 Heighted 

13 BuildingBuilding 5.38 0 Heighted 

14 GroundBuilding 20.03 564.68 Newly-built 

15 GroundBuilding 19.28 1342.32 Newly-built 

16 GroundBuilding 10.62 281.52 Newly-built 

17 GroundBuilding 10.62 183.08 Newly-built 

18 BuildingBuilding 6.59 0 Heighted 

19 GroundBuilding 10.58 285.6 Newly-built 

20 BuildingGround -16.57 0 Demolished 

21 BuildingBuilding 5.43 0 Heighted 

Table 2. Statistic of 3D building change detection 

 

 

 
Figure 7. Building change map 

 

In order to evaluate the accuracy of the proposed building 

change detection method, the completeness and correctness of 

building change detection are introduced as the evaluation 

criteria, which are defined as follows: 

 

TP
Completeness

TP FN



                       (6) 

TP
Correctness

TP FP



                          (7) 

 

Where TP is the number of true positives which represent the 

new buildings that have been detected correctly, FP is the 

number of false positives which represent the buildings that the 

proposed method detects as changed but are actually unchanged, 

and FN is the number of false negatives which represent the 

buildings that the proposed method detects as unchanged, but 

that nevertheless have changed.  

 

The threshold of building size is an important factor in 

obtaining the final building change map, in order to discuss the 

influence of the threshold of building size on building change 

detection accuracy, a series of area thresholds are selected and 

the corresponding completeness and correctness of building 

change detection are calculated and shown in Figure 8. 

 
Figure 8. The influence of area threshold on building change 

detection accuracy. 

 

As can be seen from figure 8, the completeness of building 

change detection approaches to 95% and the correctness 

approaches to 61% when the area threshold is set to be 20 2m , 
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in which case the correctness of building change detection 

is mainly decreased by small size building appendages. 

Along with the increase of area threshold, small size 

building appendages are removed, leading to the decrease of 

the completeness of building change detection and the 

increase of the correctness of building change detection.  

When the area threshold is set to be 80 2m , the 

completeness of building change detection is about 85%, 

while the correctness of building change detection reaches 

the highest value of 81%, which shows that the building 

size in the test area is mainly larger than 80 2m . When the 

area threshold is larger, the completeness of building 

change detection decrease sharply while there is a small 

decrease of the correctness of building change detection, 

reflecting the fact that only a small number of large non-

building change areas exist which cannot be removed by 

area filtering.  

 

To evaluate the advantages of the proposed method, the 

completeness and correctness of building change detection are 

compared between the proposed approach and the other two 

building change detection methods using DOM or LiDAR data 

only. The result is shown in Table 3. As can be seen, both the 

completeness and correctness of the proposed approach increase 

about 10% when compared with results using only DOM, which 

verifies the importance of combing LiDAR data and DOM for 

building change detection. Moreover, we can see that when 

using LiDAR data only, both the completeness and correctness 

are about 6% higher than that using DOM only, which indicates 

the importance of height information in building change 

detection.  

 

Method Completeness 

(%) 

Correctness 

(%) 

DOM 71.2 76.3 

LiDAR data 77.5 82.4 

DOM & 

LiDAR data 

81.8 85.7 

Table 3. Completeness and correctness of the three methods 

 

   

5. CONCLUSIONS 

Building change detection is an important issue in urban 

planning and disaster assessment. In this paper, a novel building 

change detection method by combining LiDAR data and DOM 

is proposed, which relies on no building databases and 

possesses the complementary advantages of pixel-level and 

object-level change detection. The advantages of pixel-level 

change detection is presented by DSM differencing to obtain 

candidate building change areas while the advantages of object-

level change detection is reflected by thematic segmentation 

which implements the projection of DSM change areas onto 

original DSMs and DOMs followed by decision tree 

classification using object features extracted from both DSMs 

and DOMs. The experiment results demonstrate the validness 

and feasibility of the proposed approach. Compared with the 

traditional building change detection methods, the proposed 

method can determine the building change type and 

quantitatively extract 3D building change information which is 

of great significance for the comprehensive and accurate 

analysis of building change. It’s worth to point out that the 

presented building change detection approach is characterized 

by LiDAR data with DOMs for auxiliary analysis, how to 

implement a deeper level of fusion of the two sources of data 

for more accurate building change detection is our further work. 
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