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ABSTRACT: 
 
Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density 
topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multi-
wavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use 
classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test 
study, three laser reflectance intensity images (orthogonalized point cloud) acquired in green, near-infrared and short-wave infrared 
bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: 
water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for 
classification were applied: spectral (based only on laser reflectance intensity images), spectral with elevation data as additional 
input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral 
images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference 
data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have 
shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land 
cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser 
intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, 
helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very 
helpful, and using intensity rasters with both first and last return numbers slightly improved the results. 
 

                                                             
*  Corresponding author 
 

1. INTRODUCTION 

Remote sensing images have been an important source of 
information of land cover and land use for few decades. Soon 
after the appearance of this type of images, methods for 
automatic and semi-automatic classification of their content 
were developed. The first such proposal based on pixel 
classification was presented by Robertson (1973). It took into 
account the spectral characteristics of pixels in multispectral 
images derived mostly from passive remote sensing optical 
systems. Hence, this type of classification is sometimes called 
the spectral classification (Campbell, 2008; Kupidura, 2015). 
In subsequent years, methods for classification have been 
developed: enriching the results by texture analysis (Darling, 
Joseph, 1968; Haralick, 1973; Lam, 1990; Kupidura, 2015), 
using Artificial Neural Networks (Benediktsson et al., 1990; 
Bosch, 1999), the contextual approach (Gurney, Townshead, 
1983; Jackson, Landgrebe, 2002) and object-based (Beucher, 
Lantejoul, 1979; Blaschke et al., 2000) or knowledge-based 
approaches (expert classification) with use of other geospatial 
data (Chmiel, 2002; Pluto-Kossakowska, 2003; Campbell, 
2008). The appearance of high-resolution elevation data from 
airborne laser scanning made possible the integration of optical 
image data, usually obtained on the basis of the classic passive 
photogrammetric cameras and, as a result, they have 
significantly increased the accuracy of the classification of land 
cover. 

Modern airborne laser scanners have recently been able to scan 
in two or more wavelengths of the laser. This method allows 
the obtaining of diverse information about an area, with the 
different spectral properties of objects. A further direction of 
LiDAR technology is the diversification toward more than one 
laser wavelength, by selection of the best-suited wavelength or 
finding additional information owing to registration in a few 
wavelengths (Pfennigbauer and Ullrich, 2011). Such an 
application can be achieved by parallel registration using at 
least two scanners collecting data in three wavelengths, or by 
using a sensor that collects laser data in multispectral channels. 
The example of such a scanner is Titan by Optech (van Rees, 
2015). This latest trend in the development of LiDAR 
technology considers a different approach to ALS point clouds, 
one that can create land cover maps more effectively than 
typical topographic ALS, providing a tool for high-density 
topographic surveying which can be useful for land cover/use 
classification. Such a data source can even be an alternative or 
a supplement to photogrammetric data collection. The potential 
of multispectral airborne laser scanning in land cover mapping 
was presented in a few publications (Bakuła, 2015; Wichmann 
et al., 2015) 
 

2. DESCRIPTION OF EXPERIMENT  

The experiment was carried out to analyse the capacity of 
multispectral airborne laser scanning in land cover/use 
mapping. The potential of these data may differ from the 
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potential of traditional multispectral data collected using 
passive remote sensing sensors, primarily due to the different 
geometry of lighting the imaged area (point), but also the 
opportunity to register more than one return of the laser beam, 
and thus penetration though vegetation is possible via this 
active technique. As the possibilities of classical multispectral 
imagery are quite well known in this area, data from 
multispectral airborne laser scanning requires experimental 
confirmation. Besides spectral data, digital elevation models 
derived from the LiDAR system were used to improve the 
results of land cover/use classification. Additionally, different 
methods for the generation of reflection intensity rasters were 
tested, besides the application of morphological and 
granulometric processing in order to investigate the full 
potential of the analysed data in the presented experiment.  
 
2.1 Test area and data used 

In the presented experiment, testing data were acquired with 
the Titan scanning system by Optech. The data were collected 
in 2014 for the area of West Rouge, Toronto, Ontario, Canada. 
The data were measured in three independent scanning 
channels for the wavelengths of 532 nm, 1064 nm and 
1550 nm. Such multi-wavelength registration allowed us to 
distinguish different land cove/use areas and, due to the 
registration of green channels, it is an effective tool for coastal 
zone mapping (van Rees, 2015). The tested data were collected 
at 400 m with a pulse repetition frequency (PRF) of 600 kHz 
for the whole system (200 kHz for each scanning channel). The 
analysed data were scanned with a maximum angle of 30°. The 
area is a suburban one along the shoreline of Lake Ontario, 
with mixed buildings and vegetation. The data were also 
collected over an area of shallow water and characteristic 
harbours. Figure 1 presents the described test area showing 
spectral information, shown as a colour composite overlaying 
the shaded digital surface model created from three intensities 
of laser reflectance rasters, registered with over-mentioned 
wavelengths. The scanning data were saved in separated files 
for three strips. Each strip consisted of three different .las files 
for three channels saved according to the ASPRS standard. The 
density of the whole point cloud was over 60 points per square 
metre – over 20 points for each channel and about six points as 
the average density of one scanning strip for one channel. 
During pre-processing, data from multispectral airborne laser 
scanning digital elevation models were generated: digital 
terrain model (DTM) and digital surface model (DSM). The 
DTM was generated from points classified as ground points in 
three different laser wavelengths channels. The DSM was 
created based on all three channels, filtering only the first 
return from the point cloud. Elevation data were additional 
data in the presented research, which provide information 

about land cover by using the normalized digital surface model 
(nDSM) created as the difference between the above 
mentioned models, as follows (Formula 1): 
  

nDSM = DSM - DTM    (1) 
  
The impact of the elevation models on a positive result of 
classification was tested in the experiment. The last elevation 
product was the raster of the DTM, taking into account the 
lakebed’s surface. Such a digital terrain model was used to 
improve the distinction of water’s surface in classification by 
calculating the water depth from minus values of difference, of 
elevation models: model from the last echo of near-infrared 
channel, and the last echo from the green channel. 
 

 
 

 
Figure 2. Reflection intensity rasters of the first (a) and last (b) 

return of a multispectral ALS laser beam. 

Figure 1. Test area: colour composition of multispectral laser scanning intensity (R-NIR, G-SWIR, B-G) overlaying the shaded 
digital surface model 

a 

b 
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Another decision to be made was selection of the method for 
intensity raster preparation. Various options for the generation 
of an intensity reflectance raster were considered, using 
filtering the ALS data by return number and selecting a 
different interpolation method (i.e., nearest neighbour, average, 
maximum) for intensity value determination in a process of 
resampling. The image intensity of the first return shows the 
spectral properties of objects relevant to the classification of 
land cover/use. Further rasters of reflection intensity can be 
generated from subsequent returns (second, third, fourth, etc.). 
Nevertheless, the successive return for the intensity raster 
creation will be selected; the areas where no pulse was 
recorded would be wider. Successive returns are in the 
minority. It was decided, therefore, to generate reflection 
intensity rasters of last returns and to check their usefulness, 
which can offer information about areas covered by vegetation. 
Finally, it was decided that the first return will be used for 
basic experiments and, additionally, the influence of the 
intensity raster of the last return will be evaluated during tests. 
Multispectral ALS data, then, provide three intensity rasters 
for the first, and three for the last return. As an interpolation, 
the nearest neighbour method was selected to avoid using the 
spectral values of laser beam responses other than the original 
ones, as a basic option. The influence of the other interpolation 
method was checked during the experiment. In occluded areas 
in which no data were noted, the linear void fill method was 
used. 
 
2.2 Class number definition 

In analysing the colour composition of a laser beam intensity 
image, few objects can be distinguished visually (Figure 1). 
Buildings with roofs made of various materials and of different 
colours can be clearly seen. In visual interpretation, pools of 
water are much better distinguished than water in a lake, 
which is characterized by diverse spectral information. Many 
kinds of impervious surfaces, and also uncovered ground, are 
presented in this composition. Airborne laser scanning datasets 
are usually the subject of geometric classification including 
multispectral ALS data (Witchamnn et al., 2015). Classified 
point clouds, with distinguished surfaces, i.e., ground, low, 
medium and high vegetation, buildings and water surfaces, do 
not fully comply with the requirements of mapping land/use 
cover. To take up the challenge of spectral classification of 
information provided by multispectral laser scanning 
technology and the potential of these data indicated by Bakuła 
(2015), it was decided to take a closer look at skater plots 
showing the intensity values of reflections achieved from 
objects vectorized as training fields (Figure 3). On analysing 
the graphs, a large variety of reflections for “water”, “trees” 
and uncovered areas were noted. “Buildings” are aggregated in 
a visible groups of objects, some of which represent quite 
similar spectral characteristics as the road. These findings 
coincide with the visual interpretation of the composition 
prepared from multispectral ALS data.  
After the analysis of scatter plots, visual interpretation and 
additional pre-processed supervised classification, it was 
decided that six land cover/use classes could be distinguished: 
(1) “water”, (2) non-vegetation permeable area (“sand/gravel”, 
etc.), (3) non-vegetation impermeable area (“asphalt/concrete”, 
etc.), (4) “low vegetation”, (5) “trees” and (6) “buildings”. 
 

Figure 3. Scatter plots for laser intensity reflections at different 
wavelengths of multispectral ALS for training fields 

 
2.3 Approaches in classification  

The usefulness of the analysed data to create land cover/use 
maps has been examined in several variants, to evaluate the 
influence of the type of data and the method of their processing 
on the classification results. The following approaches leading 
to the final method were investigated: 
Approach 1. Spectral classification of the ALS intensity raster: 
supervised classification using the maximum likelihood rule. 
Performed in the following variants: 
based on the intensity of the first return – variant 1a; 
based on the intensity of the last return – variant 1b; 
based on the intensities of the first and last return – variant 
1ab. 

N 

N
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The purpose of this part of the study was to evaluate the 
efficacy of using only ALS spectral data, and to examine the 
effects of the use of data from rasters containing a reflection 
intensity from a return other than the first. 
Approach 2. Spectral classification with the additional use of 
elevation data: in this variant, the results of the first approach 
and elevation data – nDSM – were used. The classification 
model consists of the following steps: (1) extraction of high 
and low classes of objects based on the nDSM; (2) extraction 
of target classes based on training fields developed for 
Approach 1, according to the following rules: 

 high objects (greater than 2m): buildings and trees, 
 low objects: other classes. 

Just as in Approach 1, the rating was made in three versions 
depending on the intensity of the various intensity rasters using 
information from various returns (variant 2a – for the first 
return, variant 2b – for the last return, variant 2ab – for the 
use of both the first and last returns). In both approaches, 
various interpolation methods for the creation of intensity 
rasters were also tested using the nearest neighbour, average 
and maximum options. 

 
Figure 4. a) Elevation model built using the last return; the 

specific high-textured form of trees can be seen; b) 
granulometric map – the result of the granulometric analysis of 

the image “a” – bright pixels mark the high texture in the 
image; c) binary mask of the granulometric map, indicating 

areas with a high texture, used to remove pixels misclassified 
as buildings from the class of trees 

Approach 3. Classification with the use of additional 
information on water depth: typically, in the case of using 
classic multispectral images, generated using optical remote 
sensing systems, water is one of the easiest land cover classes 
to extract, especially because of the strong absorption of 
infrared. In the tested case, the situation is different; hence the 
need for the mask of water, based on elevation data. In our 
experiment, we used a model based on the information 
regarding the bathymetric information received using green 
band ALS data. The water depth has been determined on the 
basis of the following formula (2): 

water depth = DTM (G) - DTM (NIR)    (2) 

where:  
DTM (G) is the DTM generated from points acquired with a 
green laser wavelength from the classes: ground and lakebed, 
last return 
DTM (NIR) is the DTM generated from points acquired with 
an near-infrared laser wavelength from the classes: ground and 
water, last return 
Areas in which the water depth reached a value of less than -
1 m were assigned to the mask water, to increase the detection 
of a class of “water”. The mask replaced the “water” class 
extracted in Approach 2. In this way, the best classification 
variant from Approach 2 was improved, resulting in variant 3 
ab. 

Approach 4. The classification approach using additional 
morphological and granulometric transformations: the use of 
additional processing based on, among other things, the 
specific characteristics of elevation data, may allow an 
additional increase in classification accuracy. Due to the 
relatively high similarity of the registered intensity, there were 
problems with the distinction between two classes: trees and 
buildings. Use of the elevation data could not be a solution, 
because of the similar height of objects belonging to both 
classes. In order to improve the misclassification, the elevation 
model built using the last return was used. In such a model, the 
trees, due to their structure, are imaged with a great diversity, 
causing the high texture of the image of the elevation model 
(Figure 4a). This image was processed using granulometric 
analysis (Mering, et al., 1996; Mering, Chopin, 2002; 
Kupidura et al., 2010; Kupidura, 2010, 2015), allowing the 
effective localization of areas with a high texture. The result of 
the analysis – a granulometric map (Figure 4b) – was binarized 
to obtain the mask of areas with a strong structure (Figure 4c): 
variant 4 ab m. In the following step, an alternate filtration by 
reconstruction (Serra, 1982; Soille, 1999) increased the 
classification accuracy by removing the single misclassified 
pixels in other classes of land – variant 4 ab m + f. This is a 
morphological filtering, which consists of alternating use of the 
opening and closing operations by the reconstitution. These 
operations allow us to remove small objects from the image, 
while not changing the shape of the objects that are not 
deleted. 
 
2.4 Evaluation methods  

In order to estimate the accuracy of the results for individual 
variants of classification, the reference map was vectorized for 
the whole test area with the separation of all required classes 
(Figure 5b). Subsequently, by comparing analysed results of 
the classification with the reference map, a matrix of errors 
was formed to calculate the following parameters: overall 
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accuracy (Congalton, 1991) and kappa index (Cohen, 1960; 
Congalton, 1991), allowing us to estimate the efficiency of the 
classification as well as Producer's Accuracy - PA 
(completeness) and User's Accuracy - UA (correctness). 
 

3. RESULTS 

The results of the introduced approaches of multispectral ALS 
data classification are presented in Appendix. The visual effect 
of the classification is presented in Figure 8. 
 
3.1. Results of Approach 1: spectral classification of 
reflectance intensity rasters  
 
Spectral classification results are of a very low accuracy. 
Depending on the variant resampling method of intensity 
raster, the kappa varied from 0.244 to 0.312. This was caused 
by a large spectral similarity between three classes: 

"sand/gravel", "asphalt/concrete" and "buildings", which is also 
a typical problem with land cover classification using optical, 
multispectral images. In addition, the accuracy of “water” 
determination is very low in this approach. In classical 
(passive) spectral classification – using images obtained with 
an optical system – water is usually easy to distinguish, 
particularly with using near-infrared or mid-infrared images. In 
this case, even though infrared channels were used, the 
diversity of the reflection intensity of the laser beam for 
“water” was very high, which resulted in a huge problem with 
the distinction of this class. The second of the observed 
differences between the outcomes and the results of a typical 
(optical) spectral classification is a relatively high error of 
classification of “trees” as “buildings”, which was caused by 
the similarity of the intensity of the reflection “trees”, even in 
the infrared wavelength, and consequently a texture in the 
raster resulting in a geometric structure of the “trees”. 

 
Figure 5. a) colour composition R-IR, G-SWIR, B-G, b) reference mask, c) Approach 1ab, d) Approach 2ab, e) Approach 3ab, f) 
Approach 4ab m+f; “water” – blue, “sand/gravel” – yellow, “low vegetation” – green, “asphalt/concrete” – grey, “buildings” – 

brown, “trees” – dark green 
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Figure 6. Producer’s and User’s accuracy of land cover/use classification for the different interpolation methods of multispectral 
ALS intensity rasters, in approaches using spectral classification (variants of Approach 1) supported by the nDSM (variants of 

Approach 2)  

 

 
Figure 7.  Producer’s and User’s accuracy of land cover/use classification for approaches using first (a), last (b) and both: first and 
last (ab) echo number of laser beams from multispectral ALS data, during intensity raster creation approaches using spectral 
classification of ALS intensity rasters (variants of Approach 1) supported by the nDSM (variants of Approach 2) 

 

3.2. Results of Approach 2: using the nDSM 
 
Use of additional elevation data significantly improved (by 
more than two and even three times) the accuracy of 
classification in all tested scenarios. The improvement is 
mainly due to a much better distinction between buildings and 
sand/gravel or asphalt/concrete, but also due to the better 
distinguishing of trees from low vegetation. Accuracy of the 
extraction of the water class (very low completeness in 
Approach 1) also improved significantly. The problem of 
misclassification of areas of the classes "sand/gravel" and 
"asphalt/concrete" remained largely unresolved, because of the 

lack of distinctive features allowing us to clearly distinguish 
these two classes from each other; these areas are very similar 
in the context of both spectral and elevation data. The accuracy 
of these classes improved, however, as a result of the higher 
accuracy of other classes (mainly "buildings"). 
 
3.3 Impact of the interpolation method and different 
returns of the laser beam in the generation of reflection 
intensity rasters  
 
It was observed that the interpolation method in resampling 
has had an influence on the results. In the case of using a 
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single return of the laser beam, the best result was obtained for 
the maximum method (MAX), due in large part to the highest 
accuracy of “water” extraction. It should be noted, however, 
that despite the noticeable improvement as compared to the 
interpolation with the nearest neighbour method (NN), the 
results are still fairly low in the approach using only spectral 
information (Approach 1). Similarly, in Approach 2, using 
additional elevation information, differences in the 
classification accuracy were observed (the best resampling 
interpolation method was MAX; the worst was NN). In this 
approach, these differences were less than in Approach 1. This 
was caused by the much more accurate extraction of water in 
all variants.  
Figure 6 presents the results of classification with different 
interpolation methods for distinguished land cover/use class. 
For the maximum value interpolation method, better results of 
completeness for “water” can be noted, besides an increase in 
the accuracy for “asphalt/concrete” as well as the decrease in 
correctness for low vegetation. The influence is much higher 
for the approach using only spectral information (Approach 1). 
For Approach 2 where elevation information was included, 
large differences between the results for various interpolation 
methods for intensity rasters were not noticed. 
Analysis of the influence of alternative uses of the last return 
intensity raster, or both first and last return intensity raster, is 
presented in Figure 7. The slight increase in classification 
accuracy has also been observed in both the intensity of the 
first and last return of laser beam (Figure 5c), wherein the 
improvement is even less significant in Approach 1 (kappa 
increased from 0.248 to only 0.254 in Approach 1, and from 
0.808 to 0.831 in Approach 2). Analysing the impact of the use 
of first and last return to specific classes of land cover/use 
uncovered a significant improvement in PA for "trees" and 
slightly better results for "sand/gravel" in both approaches. 
Improvement of the UA for buildings was also noticed for 
Approach 2, where elevation information was included. Among 
the variants tested in this analysis, the best results were 
achieved with a combination of both intensity rasters: the first 
and last of all three laser wavelengths (variant of ab; Figure 
5d). Therefore, this variant was selected for further work on 
the model of classification.  
 
3.4. Result of Approach 3: using an additional water depth 
mask  
 
The solution proposed in this approach was studied only on the 
best variant obtained in Approach 2: ab. The difference 
consisted in the approach to the water class extraction. Instead 
of a spectral approach using elevation data, we generated mask 
water, based only on the elevation data, i.e., the raster water 
depth model (Formula 2). As a result, we observed the 
improvement in accuracy of extraction of this class and also of 
other classes, partly mistaken for “water” (Figure 5e). 
A noteworthy result is the very high accuracy of the separation 
of water quality on the basis of the proposed approach: with a 
Producer's Accuracy of 98.6% and a User's Accuracy of 99.8%. 
This approach also managed to extract most of the pools, which 
were very problematic in the previous approaches. Overall 
accuracy increased from 87.3% to 88.5%, a kappa of 0.831 to 
0.846. 
 
 

3.5. Result of Approach 4: using additional morphological 
and granulometric transformation 
 
In the first step of this approach, we applied a granulometric 
analysis on the image of the elevation model generated from 
the last return. This allowed us to improve the accuracy of the 
separation of both "high" classes, buildings and trees, by 
eliminating pixels misclassified as buildings in the class of 
trees. This resulted in the improvement of classification 
accuracy. The improvement is not very large, but it is 
unambiguous (with kappa = 0.846 for kappa = 0.854). 
The second step of Approach 4 was morphological alternate 
filtration by reconstruction. It allowed further improvement of 
the classification accuracy: from kappa = 0.854 to  
kappa = 0.878 (the resulting image is presented in Figure 5f). 
The improvement in results occurred in virtually all classes, 
apart from the class of water. 
 

4. CONCLUSION 

The presented research proved the usefulness of multispectral 
airborne laser scanning in land cover and land use mapping. 
Additional use of elevation data (nDSM) was a key factor in 
increasing the accuracy of the classification, especially to 
distinguish objects for which height is a distinctive feature. 
Use of the nDSM allowed us to separate the buildings from the 
other two similar classes (“sand/gravel” and 
“asphalt/concrete”), increasing the accuracy of the separation 
of “trees”, but also for the “water” surface. All this contributed 
to the significant, almost three-fold, improvement of the 
classification accuracy. 
Selecting different interpolation methods during the creation of 
a reflection intensity raster has an impact on the results, 
particularly when only spectral information (only intensity 
rasters) is considered. For the method of raster intensity pixel 
interpolation, the methods of average and maximum appeared 
to be slightly better (by approximately a few hundredths of 
kappa) than nearest neighbour. In the case of the classification 
also using elevation data, this factor did not have a significant 
influence on the evaluated accuracy of the results. Separation 
of the intensity, particularly the use of data from both the first 
and last reflection, helped to increase the classification 
accuracy. This is due to the different characteristics of the 
different returns, especially in the case of high vegetation 
(trees) that enhanced the ability to distinguish that class from 
the others. However, the spectral classification accuracy in the 
test scenario was very low. The most important cause of this 
was the selection of classes, partly very similar to each other, 
spectrally (“sand/gravel”, “asphalt/concrete” and “buildings”), 
but also problems with the separation of “water”. The first 
problem is typical for spectral classification, whereas in the 
case of conventional optical spectral images, the extraction of 
water is usually very easy, due to the strong absorption of 
radiation in the infrared. In the present case, images of the 
ALS intensity absorbing effect do not occur to an extent that 
would allow for efficient separation of this class. 
Using information about the depth of the water supplied by the 
green ALS allowed for high precision (approximately 99%), 
clearly better than the water separation based on the spectral 
approach combined with the use of the nDSM. It was observed 
that trees, due to their diverse geometrical structures, were 
characterized by a large variety of DNs on the intensity of 
reflection images, which resulted in the difficulty of 
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distinguishing them from other classes, particularly the class of 
buildings. However, the same phenomenon is the cause of high 
texture of trees in the image of elevation data that are built 
based on the last return. Texture analysis, using granulometric 
operations, conducted on this image provided promising 
results. The technique helped to improve this distinction 
significantly. Additionally, morphological filtering enabled the 
further increase of classification accuracy. 
In comparing the characteristics of ALS intensity to classic 
optical multispectral images, we noticed some important 
differences – mainly disadvantages when only spectral 
information is considered – potentially affecting the use of ALS 
intensity data in a classification of land use/cover. However, 
the additional use of elevation data, primarily the nDSM but 
also other characteristics of selected objects in images of 
various reflections, can compensate for the deficiencies 
observed, which makes the multispectral ALS data useful for 
the classification of land use/cover. 
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APPENDIX 

The results of all approaches within the experiment, assessed by Producer’s and User’s accuracy,  
the kappa index and the overall accuracy index. 

 

approach 

Classes 

kappa overall 
accuracy 

water sand/gravel low vegetation asphalt/ 
concrete buildings trees 

PA 
[%] 

UA [%] PA 
[%] 

UA 
[%] 

PA 
[%] 

UA 
[%] 

PA 
[%] 

UA 
[%] 

PA 
[%] 

UA 
[%] 

PA 
[%] 

UA 
[%] 

1a NN 2.9 78.7 27.6 40.2 52.7 81.3 50.5 24.8 46.9 29.2 79.8 34.4 0.248 37.2 
1a AV 12.3 77.0 23.4 47.3 52.2 79.5 50.7 38.4 61.8 30.1 80.1 35.2 0.297 42.3 

1a MAX 16.7 83.5 28.9 44.8 55.0 69.6 49.3 44.3 51.4 25.7 81.7 36.9 0.312 43.8 
1b NN 8.4 64.8 25.8 43.3 57.3 91.0 53.3 23.2 46.5 30.1 65.4 31.8 0.244 37.4 
1ab NN 2.9 79.2 24.7 49.8 50.1 91.9 44.9 28.1 38.6 20.8 92.6 36.5 0.254 38.0 
2a NN 95.8 99.6 27.5 44.3 78.9 80.5 74.0 69.2 90.0 66.8 81.3 86.8 0.808 85.5 
2a AV 96.0 99.2 23.3 51.7 78.6 82.7 78.0 69.7 91.3 67.6 82.8 88.4 0.819 86.4 

2a MAX 96.2 98.8 28.8 50.3 77.2 83.0 76.6 69.1 89.6 73.1 87.0 87.8 0.826 86.9 
2b NN 96.0 99.6 25.7 47.0 79.0 81.7 76.2 69.8 89.8 57.7 72.4 85.7 0.788 84.0 
2ab NN 95.7 99.7 24.7 52.8 82.3 78.2 71.4 71.7 85.0 83.7 91.2 84.0 0.831 87.3 

3ab 98.6 99.8 24.7 53.0 82.2 82.0 71.8 73.9 85.0 83.7 91.2 84.0 0.846 88.5 
4ab  m 98.6 99.8 24.7 53.0 82.2 82.0 71.8 73.9 84.5 90.2 94.3 84.2 0.854 89.1 

4ab m+f 98.6 99.8 17.4 95.6 86.1 81.9 72.8 76.7 95.1 84.8 95.3 91.4 0.878 90.9 
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