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ABSTRACT: 

 

Weather radar echo is one of the fundamental data for meteorological workers to weather systems identification and classification. 

Through the technique of weather radar echo extrapolation, the future short-term weather conditions can be predicted and severe 

convection storms can be warned. However, traditional extrapolation methods cannot offer accurate enough extrapolation results 

since their modeling capacity is limited, the recent deep learning based methods make some progress but still remains a problem of 

blurry prediction when making deeper extrapolation,  which may due to they choose the mean square error as their loss function and 

that will lead to losing echo details. To address this problem and make a more realistic and accurate extrapolation, we propose a deep 

learning model called Adversarial Extrapolation Neural Network (AENN), which is a Generative Adversarial Network (GAN) 

structure and consist of a conditional generator and two discriminators, echo-frame discriminator and echo-sequence discriminator. 

The generator and discriminators are trained alternately in an adversarial way to make the final extrapolation results be realistic and 

accurate. To evaluate the model, we conduct experiments on extrapolating 0.5h, 1h, and 1.5h imminent future echoes, the results 

show that our proposed AENN can achieve the expected effect and outperforms other models significantly, which has a powerful 

potential application value for short-term weather forecasting. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

The weather radar is one of the primary instruments for 

atmospheric remote sensing. Its detected data, as known as the 

weather radar echo, is used widely by forecasters for weather 

systems detection, diagnostic studies and short-term forecasting. 

Among the techniques based on radar data for short-term 

weather forecasting, the radar echo extrapolation, which is to 

predict the subsequent radar echoes based on the present and 

historical radar observations, is one of the most important. 

Accurate extrapolation could provide reliable early-warning for 

severe convective systems to the public and reduce the potential 

losses caused by disastrous weather, thus has long been valued 

and studied by researchers (Wilson et al., 1998). 

 

Traditional extrapolation methods, including the centroid 

tracking (Dixon and Wiener, 1993), cross-correlation (Rinehart 

and Garvey, 1978) and optical flow (Woo and Wong, 2017), 

mainly rely on extrapolating the echo linearly with the 

calculated motion vectors, where the motion vectors for 

centroid tracking are cell-wise and for the other two are region-

wise. However, their extrapolation capacity and application 

ability are both limited considering the following two issues. 

For the first, for calculating smoothing and relative effective 

motion vectors, it usually needs additional constraint conditions 

which are restricted to some specific situations or requires 

complicated parameter settings which are chosen mainly 

depends on experiences. For the second, the actual weather 

systems move and evolve in pretty complex patterns, such as 

the rotation, formation and dissipation, which is not possible to 

well modeling them only by plain linear extrapolation. 

 

Recently, the deep learning approaches for radar echo 

extrapolation and precipitation nowcasting have shown their 

significant progress. By training a sophisticated neural network 

architecture like Convolutional Neural Network (CNN) (Klein 

et al., 2015) or Recurrent Neural Network (RNN) (Shi et al., 

2015) on a large-scale real-life radar echo dataset, a prediction 

model which has a powerful modeling capacity can be obtained 

and used for end-to-end echo extrapolation.  

 

The success of the deep learning extrapolation methods is 

indeed promising for enhancing the nowcasting performance, 

but for them there still remains a problem of blurry prediction, 

that is, the predicted echo details are getting lost and the echo 

appearance is becoming fuzzy increasingly as the extrapolation 

goes further into the future, since they choose training 

objectives like Mean Square Error (MSE) or Mean Absolute 

Error (MAE) which would lead averaging all possible 

predictions and losing echo details.  

 

In this paper, considering that the meteorologists actually are 

more desirable to aware of precise specifics of weather 

conditions at particular positions, our main target is to generate 

accurate and realistic echo extrapolation results. To achieve this, 

motivated by the recent success of Generative Adversarial 

Network (GAN) (Goodfellow et al., 2014) in generating 

realistic data distribution in the computer vision field, we 

propose an Adversarial Extrapolation Neural Network (AENN), 
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which is composed of a conditional generator, an echo-frame 

discriminator and an echo-sequence discriminator. The 

conditional generator is used to generate the prediction of future 

echoes condition on input echo sequence, the echo-frame 

discriminator tries to distinguish each extrapolated echo frame 

from corresponding real echo frame, while the echo-sequence 

discriminator tries to distinguish the whole extrapolation 

sequence from the ground-truth echo sequence. The adversarial 

training is implemented between the conditional generator and 

two discriminators to prompt the extrapolation results to be 

more realistic and accurate. 

 

For model evaluation, we conduct extrapolation experiments 

using the AENN to predict future echoes at 0.5, 1 and 1.5 hours 

based on the last half hour of echo observations. The qualitative 

and quantitative evaluation results both demonstrate the 

effectiveness of the AENN, indicates that it can be used to 

promote the operation of accurate short-term weather 

forecasting. 

 

2. DATASET AND METHOD 

2.1 Dataset 

For model training and test, a real-life doppler weather radar 

echo dataset has been constructed in this paper. The radar echo 

base data we pre-processing is provided by the National 

Meteorological Information Center of China, which contains 

data collected by five CINRAD/SA doppler weather radars 

deployed in Hangzhou, Nanjing, Xiamen, Changsha and 

Fuzhou from 2016-2017. From the two years’ data, we further 

select 175 rainy days’ data to build our final dataset, for the 

reason that the rainy days’ precipitation echo is our main 

extrapolation target. 

 

For raw data pre-processing, firstly, it has been interpolated into 

the cartesian coordinate from the polar coordinate. The 

horizontal resolution of the interpolation grid is 1km while the 

vertical resolution is 0.5km. The interpolated Constant Altitude 

Plan Position Indicator (CAPPI) echo images on 2.5km altitude 

are chosen in our work and the central 480x480 area is cropped 

and remained. Then, to be suitable for deep learning neural 

network model as input, the final resolution of the echo images 

has been resized to 256x256 by bilinear interpolation. In 

addition, for data normalization, the value of the echo 

reflectivity is clipped to be between 0 and 75dBZ firstly and 

then converted into gray-level which is between 0 and 1. 

 

In this paper, we conduct experiments on extrapolating 3 echo 

images (0.5, 1 and 1.5 hours) based on the last half hours’ 

consecutive echo images as input, since the detection interval of 

the CINRAD/SA radar is 6 minutes, which means that the 

length of the input echo sequence is 5 and the total length of 

both the input and prediction is 8. Therefore, each rainy day’s 

echo images are divided into sequences of length 8 in a sliding 

way with a stride of 5. Totally, 3640 sequences are acquired 

and randomly split into a training set of 2552 sequences, a 

validation set of 360 sequences and a test set of 728 sequences. 

 

2.2 Model 

Our model AENN is a GAN structure and composed of a 

conditional generator, an echo-frame discriminator and an echo-

sequence discriminator, as illustrated in Figure 1. 

 

The conditional generator generates the extrapolation results 

0.5̂ , 
1̂  and 

1.5̂  condition on the input echo sequence 
4:t t 

, 

where 0.5, 1 and 1.5 denote the extrapolation time step and 

4 :t t  denote the input time step, 256 256  . It is consist 

of an encoder, Convolution Long Short-Term Memory Network  

 

 

 

Figure 1. The architecture of the AENN. 

(ConvLSTM) (Shi et al., 2015) and a decoder, the structure 

details will be described in Section 2.3. 

 

The echo-frame discriminator is used to distinguish each 

generated extrapolation echo frame 
0.5̂ , 

1̂  and 
1.5̂  from the 

real ground-truth ones 
0.5 , 

1  and 
1.5 , and is trained to try 

to judge the generated echo frame as the fake while the ground-

truth as real. It is implemented with successive convolutional 

layers and one fully-connected layer to calculate a single scalar 

indicates the probability of the input would be real (1) or fake 

(0), see structure details in Section 2.3. 

 

For the echo-sequence discriminator, it is trained to judge the 

authenticity of the whole extrapolation echo sequence 
0.5 1,1.5̂ ，

 

or the whole ground-truth echo sequence 
0.5 1,1.5 ，

, trying to 

determine the former as fake while the latter as real. It could 

assure the temporal consistency of the whole extrapolation 

sequence, which is complementary to the role of the echo-frame 

discriminator. We implement the echo-sequence discriminator 

using the same neural network structure as the echo-frame 

discriminator, except that they are different in the input 

(sequence to frame). 

 

The conditional generator, echo-frame discriminator and echo-

sequence discriminator are trained competitively and alternately. 

The ideal nash equilibrium between them is that the generator 

could generate real enough extrapolation echo so that the 

discriminator could not distinguish them from reality. To 

achieve this desired target, we give our adversarial training 

details including the training objectives and strategies in 

Section 2.4. 

 

2.3 Neural Network Structure 

The conditional generator is consist of an encoder, ConvLSTM 

and a decoder, as shown in Figure 2. 
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Figure 2. The structure of the conditional generator. 

Firstly, the encoder maps the input echo sequence 
4:t t 

 from 

image space into feature space 
4:t tx 

, which encoding the 

spatial feature of echo components. Thus we implement it with 

the CNN specialized in spatial feature extracting. Specifically, 

it is consist of 3 convolutional layers with 32, 64 and 128 

feature maps respectively. The first convolutional layer uses 

5x5 size convolution kernel while the other two use 3x3 kernel, 

all of them uses 2x2 convolution stride. The activation function 

followed by each layer is the Rectified Linear Unit (ReLU) 

(Nair and Hinton, 2010). 

 

Then, in the feature space, the ConvLSTM is used to modeling 

the temporal dynamics of the input echo sequence and 

extrapolate the future based on the dynamics. It works by 

recurrently updating its internal memory cell c  and hidden 

state h  according to the input x  and historical information and 

controlled by three sigmoid gates 
ti , 

tf  and 
to . The updating 

equations are given as follows:  

 

               
1( )t xi t hi t ii W x W h b                 (1) 

                      
1( )t xf t hf t ff W x W h b                         (2) 

        
1 1tanh( )t t t t xc t hc t cc f c i W x W h b           (3) 

                      
1( )t xo t ho t oo W x W h b                          (4) 

                                 tanh( )t t th o c                                    (5) 

 

where   is sigmoid activation function,   and  denote the 

convolutional operator and the Hadamard product respectively. 

Input 
tx , memory cell 

tc , hidden state 
th , input gate 

ti , forget 

gate 
tf  and output gate 

to  are both 3D tensors, where 
ti  

controls the addition of the new information, 
tf  decides what 

previous memory will be forgotten and 
to  regulates what 

information will be output. Weights W  and biases b  are both 

learning parameters of the ConvLSTM. 

 

In this paper, we choose stack 2 ConvLSTM layers to increase 

the recurrence depth and modeling capability. Both of them 

have 128 feature maps and use 3x3 size kernel with 1x1 stride. 

 

For the decoder, it transforms the state outs of the ConvLSTM 

0.5 1,1.5h ，
 from feature space back to the image space 

0.5,1,1.5̂ . 

We implement it with a reversed structure compared to the 

encoder, consist of 3 deconvolutional layers with 3x3 size 

deconvolution kernel and 64, 32, 1 feature maps. The stride of 

the deconvolution is 2x2 to upsampling the feature map. All 

deconvolutional layers are also activated by the ReLU. 

 

The echo-frame and echo-sequence discriminator share the 

same network structure, the only difference is that the echo-

frame discriminator receives the echo frame ( ˆ
n  or 

n , 

 0.5,1,1.5n ) as input and the echo-sequence discriminator 

takes the real-echo sequence (
4: 0.5,1,1.5,t t 

  
) or fake-echo 

sequence as input (
4: 0.5,1,1.5

ˆ,t t 
  

), where  .  denotes the 

concatenation in the feature dimension. They both output a 

single probability scalar. The network structure is shown in 

Figure 3. 

 

The discriminator structure is comprised of five convolutional 

layers and one fully-connected layer. The five convolutional 

layers have 32, 64, 128, 256 and 512 feature maps respectively, 

where the first layer uses 5x5 size kernel with 2x2 stride and the 

others adopt 3x3 kernel with 2x2 stride. The average pooling is 

applied to the feature maps of the fifth convolutional layer and 

 

 

Figure 3. The structure of the discriminator. 

the sigmoid is applied at last to convert the outputs of the fully-

connected layer to the probability scalar. The activation 

function used in the discriminator is the Leaky ReLU (Maas et 

al., 2013) with a leaky rate of 0.2. 

 

2.4 Adversarial Training 

We carry out the adversarial training between the conditional 

generator and two discriminators, which is alternately training 

one of them one step while keeping the parameters of the other 

one fixed. For training the conditional generator, our first 

objective is to make the extrapolation results close to the 

ground-truth and minimize the reconstruction loss, and the 

second goal is to fool the two discriminators judging the 

generated extrapolation results as real (1). Therefore, the loss 

function of the conditional generator 
g

 can be defined as: 

 
_ _

1 2 3

adv g adv g

g rec seq fra                         (6) 

 

where 
1 , 

2  and 
3  are weights corresponding to the 

reconstruction loss 
rec

, echo-sequence adversarial loss _adv g

seq
 

and echo-frame adversarial loss _adv g

fra
 respectively, they are 

set as hyper-parameter. For reconstruction loss 
rec

, we adopt 

the sum of the MSE and MAE. For the two adversarial losses 
_adv g

seq
 and _adv g

fra
, they are formulated by: 

 

     _

4: 0.5,1,1.5
ˆ, ,1adv g

seq bce seq t td  
   

    (7) 

                
 0.5,1,1.5

_ ˆ ,1adv g

fra bce fra n

n

d                    (8) 
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where 
seqd  denotes the echo-sequence discriminator and 

frad  

denotes the echo-frame discriminator. 
bce

 is the binary cross-

entropy loss function formulated by: 

 

        ˆ ˆ ˆ, log 1 log 1bce p p p p p p         (9) 

 

where p  is the label (0 or 1) and p̂  is the logit (between 0 and 

1). 

 

When training the two discriminators, the only objective is to 

make them correctly judge the groud-truth label as real (1) and 

the extrapolation echoes generated by the generator as fake (0). 

Thus the loss function of the echo-frame discriminator _adv d

fra
 

and echo-sequence discriminator _adv d

seq
 are defined as follows: 

 

         
 0.5,1,1.5

_ ˆ,1 ,0adv d

fra bce fra n bce fra n

n

d d    (10) 

      _

4: 0.5,1,1.5, ,1adv d

seq bce seq t td  
   

                  

              4: 0.5,1,1.5
ˆ, ,0bce seq t td  

   
              (11) 

 

In addition to the training objectives, considering that the 

number of parameters and model complexity for the generator 

and discriminator are different, and thus their convergence rate 

is also inconsistent, in our adversarial training strategy, we 

training the generator and discriminator with different updating 

rates. To be specific, in this paper, the updating ratio of the 

conditional generator to the discriminators is 3:1, which means 

that the generator will be updated 3 times every updating step 

of the discriminators. 

 

3. EXPERIMENTS 

3.1 Experimental Settings 

We implement our model using Python and Tensorflow and 

conduct the experiments on 4 RTX 2018Ti GPUS. For model 

parameters initialization, we initialize all the kernel weights 

using Xavier initializer (Glorot and Bengio, 2010) and all the 

biases to 0. During the model training stage, the weights 

corresponding to the reconstruction loss 
1 , echo-sequence 

adversarial loss 
2  and echo-frame adversarial loss 

3  are set 

to 1, 0.003 and 0.003 respectively, which assures both of the 

sub-loss poses the balanced effect on the training process. Both 

of the conditional generator and two discriminators are trained 

by Adam optimizer (Kingma and Ba, 2014) with a learning rate 

of 0.0001. 

 

We compare our model AENN with two traditional 

extrapolation methods, Tracking Radar Echoes by Correlation 

(TREC) and Optical flow, and one state-of-the-art deep learning 

extrapolation model, ConvLSTM. We first give several 

extrapolation samples predicted by these models to qualitatively 

evaluate the performance of the models, which will be 

described in Section 3.2. Then the quantitate evaluation 

experiment is carried out on four commonly used precipitation 

nowcasting skill metrics, Probability of Detection (POD), False 

Alarm Rate (FAR), Critical Success Index (CSI) and Heidke 

Skill Score (HSS), the evaluation results are given in Section 

3.3. 

  

3.2 Extrapolation Samples 

To qualitative analyze the effectiveness of our model, we let the 

AENN and other three comparison models to extrapolate three 

echo evolution examples including the evolutionary process of 

a cell echo, a layered echo and a typhoon echo, the 

extrapolation results are shown in Figure 4. 

 

In the ground-truth of Figure 4 (a), the cell echo at Nanjing, 

China 6 Sep 2016 09:56 UTC is appearing and moving from 

west to the east. It can be seen that our model AENN 

successfully models the echo motion and predicts a basically 

correct echo shape. The ConvLSTM does not well predict the 

echo motion and even amplifies the central clutter. The TREC 

and Optical flow perform worst, their extrapolated echo is much 

disheveled than others since it’s hard for them to obtain a 

motion vector field with high spatial consistency. 

 

As illustrated in Figure 4 (b), the ground-truth is that a layered 

echo at Hangzhou, China 14 Sep 2016 13:56 UTC is gradually 

developing and moving towards the north. The TREC and 

Optical flow are unable to effectively maintain the integral echo 

shape and not to mention predicting the echo evolution. For the  

 

 
 

 
(a) 
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(b) 

 

 
 

 
(c) 

Figure 4. Three extrapolation samples by the AENN, 

ConvLSTM, TREC and Optical flow. (a) A cell echo at Nanjing, 

China 6 Sep 2016 09:56 UTC; (b) A layered echo at Hangzhou, 

China 14 Sep 2016 13:56 UTC; (c) The “Meranti” echo at 

Xiamen, China 14 Sep 2016 15:16 UTC. 

ConvLSTM, its extrapolation result shows an obvious blurry 

problem and inconspicuous motion. While for our AENN, it not 

only predicts the echoes which contain more internal texture 

details but also modeling the echo evolution accurately.  

 

Figure 4 (c) shows a typhoon echo called “Meranti” at Xiamen, 

China 14 Sep 2016 15:16 UTC. It has a more complicated 

structure and temporal dynamic than the cell echo and layered 

echo in Figure (a) and (b). Compared to the TREC and Optical 

flow, the two deep learning models ConLSTM and AENN have 

the ability to roughly generate the future shape of the “Meranti”. 

But for ConvLSTM, its modeling capability is limited that the 

echo dynamics have not been well modeled. For our AENN, 

although its prediction performance is also getting worse as 

forecasting timing increasing, it has considered and predicted 

both the echo shape and temporal dynamics. 

 

Overall, our AENN achieves the best performance among the 

four models. The blurry problem has been alleviated and the 

extrapolated echoes are more accurate and realistic, which 

would attribute to the adversarial training. In addition, the 

AENN also displays the merit that it can model the echo motion 

and evolution, shows that it can automatically learn a valuable 

representation of echo dynamics which will contribute to the 

advances of research in radar meteorology. 

 

3.3 Evaluation Results 

In this section, we evaluate the performance of the models 

quantitatively on four evaluation metrics, POD, FAR, CSI and 

HSS. To calculate them, we first convert the pixel-level values 

of the extrapolated echo back into reflectivity factor values and 

then obtain the rainfall rate using Z-R relationship as: 

 

 10log 10 logZ a b R                    (12) 

 

where Z  is the reflectivity factor value and R  is the rainfall 

rate, a  and b  are two constants set as 58.53 and 1.56. 

 

The POD, FAR, CSI and HSS are finally calculated at a 

threshold 0f 0.5 (mm/h) rainfall rate by the following equations: 

 

 = h

h m

n
POD

n n
                                 (13) 

 =
f

h f

n
FAR

n n
                                  (14) 
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 = h

h m f

n
CSI

n n n 
                        (15) 

         

     
=2

h c m f

h m m c h f f c

n n n n
HSS

n n n n n n n n



    

 (16) 

 

where 
hn  denotes the hits (ground-truth=1, prediction=1), 

mn  

denotes the misses (ground-truth=1, prediction=0), 
fn  denotes 

the false alarms (ground-truth=0, prediction=1) and 
cn  denotes 

the correct rejections (ground-truth=0, prediction=0). The 

higher value of the POD, CSI and HSS and a lower value of 

FAR indicates the precipitation nowcasting quality if better. 

 

The evaluation results of the four models on the whole test set 

are given in Table 1. From the table we can see, the AENN 

achieves the almost best scores, its POD, CSI and HSS are the 

highest while the FAR close to the lowest, which outperforms 

other models significantly. Thus the effectiveness of our AENN 

is demonstrated both qualitatively and quantitatively. 

 

Models Evaluation metrics 

 POD FAR CSI HSS 

AENN 0.636 0.363 0.482 0.574 

ConvLSTM 0.502 0.335 0.416 0.502 

TREC 0.434 0.466 0.322 0.390 

Optical flow 0.410 0.493 0.304 0.364 

Table 1. Evaluation results of the four models on four metrics. 

The averaging score of all extrapolation steps is given. The bold 

figures indicate the best score. 

 

4. CONCLUSIONS 

In this paper, we study the weather radar echo extrapolation for 

accurate short-term weather forecasting. To offer accurate 

extrapolation results which are hard for traditional extrapolation 

methods to obtain, we propose a deep learning model called 

Adversarial Extrapolation Neural Network (AENN). It is a 

Generative Adversarial Network (GAN) structure and utilizing 

the adversarial training to avoid the blurry prediction problem. 

The experimental results show that the AENN can generate 

accurate and realistic extrapolation echoes and the echo motion 

and evolution have been also modeled, indicates that the AENN 

can be used for effectively assist the actual weather forecasting 

practice. In our future work, we will further investigate how to 

extrapolate future echoes that have a more accurate shape 

which can match the ground-truth perfectly. We believe that 

maybe utilizing some of the morphometric losses would be 

useful. 
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