
Intel® Technology Journal | Volume 17, Issue 1, 2013

Publisher	 Managing Editor	 Content Architect
Richard Bowles	 Stuart Douglas 	 Shih-Lien Lu (Lead)
		 Qiong Cai
		 Patrick Stolt

Program Manager	 Technical Editor	 Technical Illustrators
Stuart Douglas	 David Clark	 MPS Limited

Technical and Strategic Reviewers
Andy Anderson
Fatih Hamzaoglu
Serkan Ozdemir
Ningde Xie
Rick Coulson
Rich Uhlig
Henry Stracovsky

Intel® Technology Journal | 1

Intel Technology Journal

Intel® Technology Journal | Volume 17, Issue 1, 2013

2 | Intel® Technology Journal

Copyright © 2013 Intel Corporation. All rights reserved.
ISBN 978-1-934053-57-7, ISSN 1535-864X

Intel Technology Journal
Volume 17, Issue 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either
the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the
Publisher, Intel Press, Intel Corporation, 2111 NE 25th Avenue, JF3-330, Hillsboro, OR 97124-5961. E-Mail: intelpress@intel.com.
This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding
that the publisher is not engaged in professional services. If professional advice or other expert assistance is required, the services of a competent
professional person should be sought.
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented
subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.
Intel may make changes to specifications, product descriptions, and plans at any time, without notice.
Fictitious names of companies, products, people, characters, and/or data mentioned herein are not intended to represent any real individual, company,
product, or event.
Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel, the
Intel logo, Intel Atom, Intel AVX, Intel Battery Life Analyzer, Intel Compiler, Intel Core i3, Intel Core i5, Intel Core i7, Intel DPST, Intel
Energy Checker, Intel Mobile Platform SDK, Intel Intelligent Power Node Manager, Intel QuickPath Interconnect, Intel Rapid Memory Power
Management (Intel RMPM), Intel VTune Amplifier, and Intel Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.
For more complete information about performance and benchmark results, visit www.intel.com/benchmarks
†Other names and brands may be claimed as the property of others.
This book is printed on acid-free paper.∞

Publisher: Richard Bowles
Managing Editor: Stuart Douglas

Library of Congress Cataloging in Publication Data:

Printed in China
10 9 8 7 6 5 4 3 2 1

First printing: May 2013

Intel® Technology Journal | Volume 17, Issue 1, 2013

Intel® Technology Journal | 3

Notices and Disclaimers

ALL INFORMATION PROVIDED WITHIN OR OTHERWISE ASSOCIATED WITH THIS PUBLICATION INCLUDING, INTER ALIA, ALL SOFTWARE
CODE, IS PROVIDED “AS IS”, AND FOR EDUCATIONAL PURPOSES ONLY. INTEL RETAINS ALL OWNERSHIP INTEREST IN ANY INTELLECTUAL
PROPERTY RIGHTS ASSOCIATED WITH THIS INFORMATION AND NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHT IS GRANTED BY THIS PUBLICATION OR AS A RESULT OF YOUR PURCHASE THEREOF. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THIS INFORMATION
INCLUDING, BY WAY OF EXAMPLE AND NOT LIMITATION, LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR THE INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT ANYWHERE IN THE WORLD.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

For more information go to http://www.intel.com/performance

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU
PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST
ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY
CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features
or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata, which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or
go to: http://www.intel.com/design/literature.htm

Intel® Technology Journal | Volume 17, Issue 1, 2013

4 | Intel® Technology Journal

Table of Contents | 5

Intel® Technology Journal | Volume 17, Issue 1, 2013

Articles

INTEL® TECHNOLOGY JOURNAL
Memory Resiliency

Foreword... 7

Overview .. 10

Scaling the Memory Reliability Wall ... 18

Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs ... 36

STTRAM Scaling and Retention Failure��� 54

ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays��� 76

Improving Error Correction in NAND with Dominant Error Pattern Detection��� 94

Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support������������������������������������� 102

Towards Proportional Memory Systems���118

Error Analysis and Retention-Aware Error Management for NAND Flash Memory�� 140

A Case for Nonuniform Fault Tolerance in Emerging Memories�� 166

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy:
Cache, DRAM, Nonvolatile Memory, and Disk�� 184

Intel® Technology Journal | Volume 17, Issue 1, 2013

6 | Intel® Technology Journal

Intel® Technology Journal | Volume 17, Issue 1, 2013

Using present-day architectural design concepts to drive forward the design of next-generation large-scale systems is an attractive
approach but is inherently misguided; today’s methods simply do not scale to tomorrow’s sizes, and no amount of forcing will
cram that square peg into a round hole. Nowhere is the mismatch more apparent than in the memory system, because the
memory system constitutes a majority of the silicon in a large-scale system. The following points illustrate just a few of the
engineering challenges facing us:

•• Power. Power per node in large-scale systems is on the order of 100 W, a conservative number, roughly half of which is
dissipated in the memory system (DIMMs dissipate roughly 20 W when in use, which means 20 W per channel; today’s
systems often have three or more DRAM channels per CPU socket). Future installations are expected to have hundreds of
thousands of nodes. Multiplying the two yields power requirements in the 10–100 MW range per installation, roughly half
of which will be dissipated by memory. With electricity costing USD 1 million per megawatt-year, following the current
design trend will cost tens of millions of dollars per year per installation, just for the electricity to compute, never mind the
cost of cooling.

•• Reliability. Memory chips comprise the largest number of chips in a typical system. For instance, in a typical drawer one will
find on the order of 10 CPU chips, 100 supporting chips (I/O, administrative and monitoring, and other glue), and 1000
DRAM chips. For a medium- to large-scale system (10–100 racks of 10–100 drawers each), this would imply something on
the order of 1 million DRAM chips system-wide. Reliability in such a system becomes a significant issue: even with DRAM
hard-error FIT rates better than 10, this yields a statistically guaranteed hard-error device failure somewhere in the memory
system every few days. Soft errors are generally one to two orders of magnitude more frequent than hard errors, meaning that
transient errors will occur at the rate of once every few hours.

•• Volume. One of the more significant costs of a computing installation is the physical plant, which scales with the physical
volume of the computing circuitry needed (that is, how much space it takes up). Simply put: more computing performance
requires more computing circuitry, which requires a larger building. Figure out a way to reduce the volume of the circuitry
required—in particular, the volume of the memory system required (see previous point)—and you can reduce the size of the
physical plant needed. Note that there are a handful of obvious ways to reduce the volume of the memory system, including
reducing the total number of bits (not particularly appealing while the number of cores is increasing), reducing feature
size (the present approach), or changing to another memory technology with significantly different density characteristics.
Note also that, besides reducing the cost of construction, reducing the physical size can also reduce the cost of cooling
the computing circuitry (for example, by reducing the number of chillers and air handlers needed), a cost that typically
represents half the overall power budget.

It should be clear from this brief look at the challenges facing us that moving forward in large-scale system design will require
significant work at the memory-system level. Because the memory system imposes such significant limitations (including
performance, power, reliability, and space), we cannot move forward without understanding these limitations and fixing them,
which is likely to require a redesign of memory systems in general.

These are challenges of efficiency and reliability. One way to look at large-scale installations (supercomputers, and most
enterprise-computing systems as well) is that they are the world’s highest-performance embedded systems. Most embedded
systems are only valuable if they are efficient (for example, when they run on a battery charge all day long) and reliable (work
correctly and require little system maintenance). Like embedded systems and unlike typical general-purpose systems, large-scale

Professor Bruce Jacob
University of Maryland

Foreword | 7

Forward ... A Foreword

Intel® Technology Journal | Volume 17, Issue 1, 2013

installations tend to run the same software 24x7. Like embedded systems and unlike typical general-purpose systems, users
of these installations will go to great lengths to optimize their software and often write their own operating systems for the
hardware. And, most importantly considering the focus of the special issue you are reading, like embedded systems, efficiency
and reliability in large-scale systems is now (or now has become) the key point. In the design of tomorrow’s large-scale systems,
people care more about efficient and reliable solutions than high-performance solutions—not because they want to, mind you,
but because they have to. Whereas in the past, performance or capacity sometimes came at a high price in power or reliability,
today that is no longer an acceptable tradeoff. The best solutions for tomorrow’s systems will be the ones that promise reliability
and efficiency, even if at a modest cost in performance or capacity.

The articles in this special issue of ITJ address precisely these problems and from precisely this perspective. The articles in the
Low Power Cache/Memory section trade off cache/memory capacity for reliability and lower power. The articles in the Error-
Correcting Codes section provide advanced reliability techniques wherein reliability is ensured through redundancy. The Invited
Academic articles address reliability and lifetime concerns of flash memory. Last, the Evaluation and Infrastructure article describes
a new simulation framework for accurately evaluating memory-system designs that integrate nonvolatile technologies directly
into the memory hierarchy.

8 | Foreword

Intel® Technology Journal | Volume 17, Issue 1, 2013

Foreword | 9

10 | Overview

Intel® Technology Journal | Volume 17, Issue 1, 2013

Contributor

Introduction
Resiliency is an important attribute of a system. It enables a system to continue
to function correctly, sometimes in a degraded fashion, in the presence of
faults, errors, or other variation. There are many ways to increase the resiliency
of a system. A simple way to increase resiliency is by over-designing. That
is, we include additional margins in the design specification to account for
variations, and cover all possible variations or failure scenarios a system may
encounter in its expected lifetime. The added margin enables the system to
remain robust and fault-free. Obviously, over-design is not the most efficient
way to make a system resilient because not all variations or scenarios will
occur at the same time. In order to ensure the correct operation, we must
design the system for the worst-case combination of all variations while it
may be very rare that all these variations happen at the same time. Moreover,
it may also be very difficult to anticipate all possible scenarios or variations a
system may encounter in its lifetime at the design phase. Resiliency is a design
methodology to manage risks through design tradeoffs and is more efficient
than over-design.

Memory is a necessary part of any computing system as it is used to store data
as well as programs. The amount of memory used has been increasing for all
segments of computing devices to accommodate ever-increasing application
usages and data. Memory is not only used at the instruction set architecture
level; the amount of memory circuits at the microarchitectural level to
enhance performance or power has been increasing as well. For example,
the amount of cache on a microprocessor chip has been increasing steadily
in the last few decades. With the increased amount of memory circuits in a
computing system, the chance of a memory-related failure for a system will
also increase. Thus, making the memory subsystem resilient will contribute
directly to the overall resiliency of any computing system. The computing
community possesses a great wealth of knowledge on techniques for designing
resilient memory. With continued scaling and new memory technologies
emerging, it is timely to examine recent challenges and research results on
memory resiliency.

To provide context for the articles in this issue, in this overview we first discuss
different abstract error types and general mitigation strategies for them. When
then discuss the memory subsystem and review the different types of memory
technologies used in a memory subsystem along with the types of errors
specific to each memory technology as it is scaled. Some discussion of how to
mitigate these errors is also provided. Finally we introduce articles in this issue

James P. Held
Intel Fellow, Intel Labs,
Director, Microprocessor
and Programming Research

Overview

Intel® Technology Journal | Volume 17, Issue 1, 2013

Overview | 11

of the Intel Technology Journal (ITJ) and explain the related memory errors each
of them is addressing.

Types of Memory Errors
It is essential to understand the types of errors that may occur in memory
in order to come up with efficient management techniques. We can classify
memory bit failures into two broad categories: persistent and non-persistent
failures. Persistent failures, such as stuck bits caused by manufacturing defects,
remain at fault once they occur. Persistent bit failures can be detected through
testing and they contribute to the majority of bit failures. Persistent failures
reduce yield and increase cost.

Non-persistent bit failures are bits that exhibit sporadic failing behavior
(soft errors). Many times these bits are marginally functional to begin with
and failure can be triggered by environmental changes. Failures resulting from
radiation particle strikes are a classic example of this category of failures. Since
these failures are non-persistent and occur randomly, they cannot be effectively
identified with testing. As a result, these failures do not directly contribute to
yield loss and instead they affect a unit’s failure-in-time (FIT) rate.

Failure Mitigation Techniques
As mentioned, persistent failures can usually be reliably identified using
standard memory testing methods. Testing can be done statically or
dynamically. Static testing halts the system’s normal operation and puts the
memory in a separate testing mode. Dynamic testing allows the system to
operate normally but is able to isolate faults at the same time. Failures that
cannot be discovered through testing require a mechanism to detect the error.
Once failures are detected, mitigation techniques can be employed to correct
the faults.

All failure mitigation techniques will incur overhead. In general, the more
information we know about the failures, the easier we can mitigate the
problem.

Resilient techniques fall into two categories. The first category is effective
with testable failures. Methods in this category include sparing and disabling.
Sparing is a well-known technique for increasing the yield of memory.
It consists of designing with spare rows, columns, and blocks that are switched
to replace faulty bits. Disabling is another way to increase the yield. Instead
of switching the spares to cover the faulty elements, disabling removes the
elements from the active list to allow the system to operate at the
degraded mode.

The second category utilizes information redundancy to detect random errors
and correct them. This category includes all kinds of error correcting codes
(ECCs), and they have been shown to be effective in recovering from
non-persistent failures.

Intel® Technology Journal | Volume 17, Issue 1, 2013

12 | Overview

The Memory Subsystem and Research Issues
Computing systems have evolved rapidly both in their capability and
complexity due to the advancement of semiconductor technology in the last
few decades. Every component of a system must advance relatively to each
other to keep the system balanced including the memory subsystem.

In the recent decades, the CPU performance has increased at the rate of
roughly 50 percent per year, while the speed of main memory has improved
at a rate of only 7 percent per year. Several architectural techniques were
employed to mitigate the gap between memory and processors, including
caching.

Additionally, increasing complexity of applications is putting pressure on the
amount of memory needed for a system. We must ensure we can continue to
scale memory process technology for greater capacity just as we continue to
improve processors through CMOS scaling.

There are many challenges in continuing the scaling of memory. First, as we
scale memory cells, the storage node becomes smaller and it is more and more
difficult to detect what information is stored. As cells become smaller the
distance between cells is shortened as well. Cells tend to disturb each other due
to the close proximity. All these lead to the need for better resiliency techniques
for memory.

In the next section we will briefly introduce types of memory and then discuss
some of the issues facing each type. Finally, we will then discuss tradeoffs must
be made among several parameters to meet the requirements for the memory
subsystem.

Types of Memory
There are many types of memory available for use in a computing system.
These memory types can be classified based on their characteristics and
functionality. From the functionality point of view, memory can be classified
in two broad categories: RAM (random access memory) and ROM (read
only memory). These names are somewhat misleading and we will discuss the
differences later. We can also characterize memory types according to their
characteristics both physically and logically. A memory type with the physical
property of retaining its content without power supply is called nonvolatile
memory. Memory that loses its content without a power supply is called volatile
memory. Volatility is really not precisely defined and is commonly used quite
loosely. Many nonvolatile memory types are volatile as well. They just have a
very long retention time, for example in the range of years.

A memory type that should retain its content indefinitely is called persistent
memory. For example, in a computing system we assume files will retain their
contents indefinitely. Memory that is not intended to retain its content in a
system is called non-persistent memory. For example, main memory in a current
computing system is non-persistent.

Intel® Technology Journal | Volume 17, Issue 1, 2013

Overview | 13

We now come back to the functionality of memory and how various types of
memory are implemented physically. RAM stands for random access memory,
which can be read and written by users. There are two common types of RAM:
static RAM (SRAM) and dynamic RAM (DRAM). They are different in that
DRAM loses its content if it is not periodically “refreshed” by rewriting the bits
(thus the name dynamic) while SRAM retains its contents as long as the power
supply is on.

A typical SRAM cell is formed by two cross-coupled inverters, each with two
transistors locked together and two access transistors. It is usually referred to
as the 6-T SRAM because of the six transistors used. There are other memory
types built with cross-coupled inverters but with different access port circuit
structures. These are usually called register file memory. Conversely, a typical
DRAM cell is constructed from a capacitor along with a single access transistor.
The capacitor is used to store an electrical charge that determines the data
content. We call this type of memory more specifically 1T-1C DRAM.

Figure 1(a) and (b) depict the circuit structure of an SRAM and DRAM cell,
respectively. These are single ported memory cells. A port is an access point
into the memory content. Ports for SRAM and DRAM cells in Figure 1 are
both readable and writeable. As we scale SRAM and lower the supply voltage,
the inherent conflict for read and write will surface and cause either write
instability or read instability, for example.

As we scale DRAM, the capacitor used to store information becomes smaller
as well. It is harder to detect the charge when it becomes too small. Also, when
DRAM cell capacitance is small, even a small amount of charge lost due to
leakage may cause the data stored to be lost.

(a)

Bit Line

W
or

d
Li

ne

(b)

BLB

WLWL

BL

Figure 1: (a) SRAM and (b) DRAM circuits
(Source: Intel Corporation, 2013)

There are other types of RAM with various numbers of transistors and circuit
elements depending on how the access ports are constructed and what circuit
element is used to store the data. For example, a general type of RAM based
on resistance switching is called resistive RAM or R-RAM. R-RAM uses a
variable resistance circuit element instead of a capacitor to store the data
content. Figure 2 illustrates the circuit structure of a resistive memory or
R-RAM cell. There are different types of R-RAM depending on how the
circuit element R is implemented. The article titled “STTRAM Scaling and

Intel® Technology Journal | Volume 17, Issue 1, 2013

14 | Overview

Retention Failure” in this issue will discuss one type of R-RAM that readers
can learn more from. STTRAM stands for Spin Transfer Torque Random
Access Memory (STTRAM) and it belongs to the “magnetic tunnel junction”
family of R-RAM. Another popular type of R-RAM that has attracted much
attention is phase change memory (PCM). PCM relies on the fact that some
materials have different resistivity when they are in crystalline or amorphous
forms (phases). There are other types of R-RAM. They fall into a few families
depending on the way their storage elements are built. There is also the
R-RAM based on interfacial switching caused by oxygen vacancy drift. All
R-RAM memory types are memristors, a type of general circuit element
proposed by Chua.[1][2]

ROM stands for read-only-memory. It can also be accessed randomly with an
address but it is set once, usually at design or manufacturing time, and can
only be read thereafter. There is also programmable ROM (PROM), which
can be programmed in the field but sometimes with limited programmability
frequency. For example fuses can be considered as a one-time programmable
ROM. A large group of PROMs is erasable and can be reprogrammed multiple
times. Depending on how they are erased they are called EPROM (erased
with ultraviolet light) and EEPROM (erased electrically). Since erasing takes
a long time for EEPROM, it is inefficient to erase a small chunk first and
then program it with new data. A novel design was made to erase a large
block of cells at the same time in a “flash” and later program the erased part
in smaller chunks thus aggregating the erase time by operating on many bits
in parallel. This type of EEPROM is called flash memory. Depending on the
way circuits for the storage nodes are organized, flash memory can be divided
in two types: NOR and NAND flash. NAND flash memory is very popular
now due to its density and has wide usage in many consumer products. It
has also revolutionized the storage industry with solid-state drives (SSDs).
The number of times a memory cell can be programmed and erased is usually
called endurance in the community. Flash has limited endurance, and when it is
used to build SSDs, wear-leveling algorithms are used to distribute the number
of reprogramming operations to satisfy the endurance limit requirement.
The articles “Improving Error Correction in NAND with Dominant
Error Pattern Detection” and “Error Analysis and Retention-Aware Error
Management for NAND Flash Memory” in this issue discuss different ways to
mitigate possible endurance failures.

Tradeoffs of Memory Parameters
As mentioned briefly previously, another way to classify memory is by its
device characteristics. One particular characteristic is the ability to retain
memory content when power is removed from the circuit element. We
call these memory types nonvolatile memory (NVM). For examples, flash
memory, EEPROM, and STTRAM are all nonvolatile memory types. DRAM
and SRAM are volatile memory types. It turns out the volatility is not a
binary parameter. We really cannot say a memory is absolutely nonvolatile
because all memory has a limited retention time. Moreover, retention time
can be adversely affected by how often a cell is erased and programmed, or

PLBL

WL

R

Figure 2: An R-RAM memory cell
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 1, 2013

Overview | 15

cycled. For example a typical NAND flash memory cell can be erased and
reprogrammed in tens of thousands of times only. Cells that are infrequently
cycled have longer retention time while frequently cycled cells have shorter
retention time on average. Similarly, STTRAM cells can trade off physical size
for better retention ability. A larger STTRAM cell will have more magnetic
energy stored, which will reduce the probability of having the cell flipped.

Of course each memory type will differ in other characteristics such as
access time, density, and power. Some even have different read and write
access times. These characteristics are all interrelated. Usually a less dense
memory technology will have better access time. For example SRAM is faster
than DRAM in general. System architects take advantage of these different
characteristics to optimize for performance, power, and cost by using a
memory hierarchy. Some levels of the hierarchy may be on the same chip as
the processing units. We call these levels embedded memory. There is a trend to
include more and more levels of memory on the same chip or the same package
of the processing unit to improve efficiency because going out of a chip tends
to increase power and cost with a corresponding impact on performance.
In general, smaller amounts of a faster memory are used as caches for larger
amounts of a slower storage; for example, solid state disks (SSDs) based on
NAND flash are often used as a cache for rotating disks.

The speed of a memory cell can also be traded off with size for the same
memory. An SRAM cell with larger transistors tends to be faster than another
SRAM cell that is implemented with smaller transistors, but the larger
transistors will lead to a larger array area. The larger physical size also enhances
reliability. For example an SRAM cell with larger transistors will have less
sensitivity to variations and thus give better tolerance to supply noise. In
general we need to address two issues with memory: retention of data content
and endurance due to repeated access. There are many parameters that can vary
and we must consider the tradeoffs.

The Articles in This Issue
This issue of the Intel Technology Journal is grouped into four sections. The first
section covers embedded memory. It starts with an interesting article titled
“Scaling the Memory Reliability Wall,” which begins with a general review of
the causes of memory failures and then argues that any resiliency mechanism
adopted by a system must be adaptive to minimize overhead. It then presents
two example techniques used to gain power efficiency without sacrificing
much performance for designs where reduced power is the main objective.
The second article in this section presents an innovation using non-uniform
cells to improve reliability, power, and performance. It is based on the fact
that larger cells have better reliability but shows that we don’t need to make all
cells large; we only need to make sure large cells are used to store information
that must be more reliable. The third article presents the opportunities and
challenges of using STTRAM, an emerging memory technology, for embedded
memory. It describes this relatively new technology, which utilizes spin-transfer

Intel® Technology Journal | Volume 17, Issue 1, 2013

16 | Overview

torque (STT) to store information. Since this technology is compatible with a
standard CMOS process[3], it has the potential to be the technology to replace
SRAM as the future embedded memory technology. However, the retention
stability of a STTRAM cell is proportion to the magnetic energy stored. The
energy is a function of the material as well as the volume. If the height of the
junction also scales with the length and width, then the volume is reduced as
well, causing it to be less stable. This article presents a detailed model of the
scaling impact on reliability and examines many approaches to address the
issues resulting from scaling.

The second section of this issue also contains three articles on the topic of
error correction codes (ECCs). Due to access latency differences of different
types of memory, different types of ECC can be employed that are tailored
to the memory. The number of check bits required for ECC is related to the
correction ability and the information length. Theoretically, for binary coded
information the number of checks bits is proportional to t × ceiling[log(n)+1]
where t is the number of bits the code can correct and n is the number
of information bits. It is more efficient, in terms of number of check-bits
required, to protect a larger information word with higher number of
correctable bits coverage. For example, it only needs 104 extra bits to protect
512 bytes of data with 8-bit correction capability. It will need 576 extra bits
(more than 5 times) to protect 16 segments of data each with 32 bytes of
data with 4-bit correction capability. These two schemes satisfy certain error
coverage given a fixed bit error rate. However, more correction capability
with longer data length means more complex decoding logic. One can trade
off logic complexity with multiple cycle decoding. Multiple cycle decoding
means greater latency overhead due to ECC. Certain memory has longer
access latency and adding some extra latency for ECC may not cause any
performance issue. The first article in this section provides some new error
correcting codes for short latency memories. The main insight of this article
is to arrange the generation and decoding matrix in a certain way to cover
adjacent errors. The second article of this section is trying to take advantage of
the error characteristics and try to tailor the ECC in a way to cover dominate
error patterns. In general the more we know about the error behavior and
probability the better we can cover the error with more efficient codes. The
third article of this section describes needed modifications for a memory
controller to provide Chipkill*[4] support for memory technologies that
inherently have no RAS support for memory contents protection. Chipkill is an
ECC technique to cover DRAM memory device failures. Modern systems use
DRAM DIMMs to implement their main memory. Each DIMM is made out
of several individual DRAM chips. Chipkill can recover a single device failure
on a DIMM. Specifically, this article focuses on how to provide single device
Chipkill support for GDDR5 memories.

The third and fourth sections of the issue contain four articles from academia.
The university authors are recipients of either Intel sponsored research funding
or Intel Young Faculty Awards. All of them are doing active research on
memory architecture and memory resiliency. They bring different perspectives

Intel® Technology Journal | Volume 17, Issue 1, 2013

Overview | 17

on how to address issues related to memory resiliency. The first three articles
propose error management techniques for different types of memory.
We appreciate their participation in this special issue and look forward to
continued collaboration on this research topic. Finally, we conclude with
an important article on simulation infrastructure. Any proposed solution
to this critical topic must be validated through simulations. The University
of Maryland has taken an existing full system simulation infrastructure and
extended it to include memory simulation models from cache to disk. It allows
researchers to evaluate tradeoffs with good accuracy.

References
[1]	 L. O. Chua, “Memristor—The Missing Circuit Element,” IEEE

Transactions on Circuit Theory, CT-18 (5): 507–519, 1971.

[2]	 L. O. Chau, “Resistance Switching Memories are Memristors,”
Applied Physics A 102 (4): 765–783, 2011.

[3]	 M. Hosomi et al., “A Novel Nonvolatile Memory with Spin
Torque Transfer Magnetization Switching: SPIN-RAM,” IEEE
International Electron Devices Meeting, Dec. 2005.

[4]	 Timothy J. Dell, A White Paper on the Benefits of
Chipkill-Correct ECC for PC Server Main Memory, IBM
Microelectronics Division, 1997.

Author Biography
As director of Microprocessor and Programming Research, Jim Held leads a team
conducting research in microarchitecture, parallel computing and programming
systems to develop key technologies for future microprocessors and platforms.

Since joining Intel in 1990, Held has served in a variety of positions working
on computer supported collaboration technology and Intel Native Signal
Processing (NSP) infrastructure. He served as staff principal architect in the
Media and Interconnect Technology Lab in IAL and as the Lab Director in
CTG, managing the Volume Platforms Lab. As a Senior Principal Engineer
in the Microprocessor Technology Lab, he conducted research on extensible
processor architecture, multi-core processor architecture and helped develop
Intel’s virtualization technology strategy. From 2005–2011 he led a virtual team
of senior architects conducting Intel Lab’s Tera-Scale Computing Research.

Before coming to Intel, Held worked in research and teaching capacities in
the Medical School and Department of Computer Science at the University
of Minnesota. He is a member of the IEEE Computer Society and the
Association for Computer Machinery (ACM).

Held earned a BS in Chemical Engineering in 1972 and an MS (1984) and
PhD (1988) in Computer and Information Science, all from the University of
Minnesota.

18 | Scaling the Memory Reliability Wall

Contributors

Intel® Technology Journal | Volume 17, Issue 1, 2013

Technology scaling reduces the size of memory cells, continuing to deliver
dramatic improvements in memory density. Increasing memory density, however,
also increases susceptibility to known failure types. Furthermore, each new
process technology introduces the potential for new, unanticipated failures. In
this article, we highlight some of the common failure modes in today’s memory
technologies as well as uncommon failure modes that may grow in significance
on future technology nodes. We describe a number of approaches to efficiently
compensate for failure-prone memory, and argue that a key ingredient in resilient
systems is the ability to compensate for unanticipated memory failures.

Introduction
Technology continues to scale, driving dramatic improvements in memory
density. With decreasing geometries and increasing capacities, ensuring reliable
operation of the memory system becomes a greater challenge. The industry’s
prescription for reliable memory has three components:

●● Predicting the locations of failing bits, typically through testing.
●● Removing failing bits, typically through the application of some type of

redundancy.
●● Compensating for unpredictable bit failures.

Memory testing is typically the first step after manufacture of most high
volume memory technologies, such as NAND flash, DRAM, and SRAM.
Many of the tested memories include small numbers of bad bits. These failures
may be clustered due to a marginality in a shared structure such as a sense
amp (column failures), or a row. Or these bits may be randomly scattered
throughout the array due to random defects in the bit cell. To maximize yield,
memory is designed with redundant rows and columns, allowing the repair
of clustered bit failures along a row or a column, or even the repair of a few
isolated bit cell failures. Finally, after the memory is shipped and assembled in
the system, additional unanticipated failures may emerge. These failures may
have escaped tests for a number of reasons:

●● Pattern sensitivity: the bit failures may be due to cell to cell coupling
activated only the in context of very specific data patterns not exercised
during memory testing.

●● Aging: over time, reliable structures (bit cells, sense amps, and so on) may
have degraded to the point that previously reliable bits begin to fail.

●● Change in conditions: conditions may have changed relative to those
anticipated during test.

“With decreasing geometries and

increasing capacities, ensuring reliable

operation of the memory system

becomes a greater challenge.”

“These failures may have escaped tests

for a number of reasons.”

Scaling the Memory Reliability Wall

Chris Wilkerson
Intel Labs

Alaa Alameldeen
Intel Labs

Zeshan Chishti
Intel Labs

Intel® Technology Journal | Volume 17, Issue 1, 2013

Scaling the Memory Reliability Wall | 19

●● Erraticism/variability: the physical mechanism that results in cell failure
may only manifest from time to time. As a result, identical testing
conditions may vary in their ability to expose failures.

Resiliency
In this article, we examine some of the challenges that occur in embedded
CPU memory. Although the bulk of the discussion focuses on CPU caches
implemented using SRAM, the techniques we described are broadly applicable
to a variety of different memory types. We begin with a discussion of low
voltage and its impact on SRAM error rate in CPU caches. Next, we introduce
the concept of adaptivity and how it can be exploited to reduce overhead in the
context of two different test-based repair mechanisms, bit-fix and word-disable.
In the section “Reducing the Need for Tests,” we describe MS-ECC, a third
technique that exploits adaptivity and reduces the need to rely on memory
tests to identify bit errors. The section “Optimizing for the Common Case”
introduces this concept and shows this approach can be used to minimize
overhead in two different mechanisms, VS-ECC and Hi-ECC. The first of
these mechanisms, VS-ECC, is noteworthy for the additional flexibility it
allows the system in performing tests. The second, Hi-ECC, minimizes the
reliance on testing by constructing an ECC safety net that continuously checks
for bit errors during use. The final section summarizes our conclusions.

SRAMs and Vmin
Small signal arrays (SSAs), such as static RAM (SRAM), are probably the most
common embedded memory type, due to their compatibility with typical logic
manufacturing process. SSAs typically suffer from variations induced during
the manufacturing process, making them unreliable at low voltages. Intra-die
random dopant fluctuations (or RDFs) play a primary role in cell failure by
arbitrarily impacting the number and location of dopant atoms in transistors,
resulting in different voltage thresholds (Vths) for matched SRAM devices.[1][2]
These variations can cause adjacent devices in a single SRAM cell to have different
strengths, reducing the stability of the cell. These defective cells, randomly
distributed throughout large memory structures may prevent caches from
operating below a minimum voltage often called Vmin (or Vccmin).

Voltage scaling is one of the most effective ways to reduce the power consumed
by a microprocessor since dynamic power is a quadratic function of voltage.
Voltage scaling can also effectively reduce static power due to leakage since leakage
is an exponential function of voltage. As a result, Vmin is a critical parameter
that constrains our ability to reduce a particular design’s power consumption.
Overcoming Vmin allows designs to operate at lower voltages, improving energy
consumption and battery life for handheld and laptop products. Figure 1 shows
the probability of failure (Pfail) of an SRAM cell (pfail bit) and a number of
multi-bit structures as a function of voltage. As one expects, as the probability of
failure for a single bit increases (X-axis), the probability of failure for structures
that consist of these bits (Y-axis) also increases. Each line depicts a single structure
such as a single byte (8-bit), or a single cache line (512-bit). As the number of bits
in a structure increases, so does the probability of at least one of those bits failing.

“SSAs typically suffer from variations

induced during the manufacturing

process, making them unreliable at low

voltages.”

“…Defective cells, randomly distributed

throughout large memory structures may

prevent caches from operating below a

minimum voltage…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

20 | Scaling the Memory Reliability Wall

Bit Probability of Failure

S
tr

u
ct

u
re

 P
ro

b
ab

ili
ty

 o
f

Fa
ilu

re

1.E215 1.E212 1.E209 1.E206 1.E203
1.E100

1.E203

1.E206

1.E209

1.E212

1.E215

32MB

1MB

32KB

512-Bit

64-Bit

8-Bit

Bit

Figure 1: Probability of a failure for different structures as a function of
single bit failure probability.
(Source: Intel Corporation 2013)

A number of circuit techniques have been proposed to improve SRAM
reliability at low voltages.[3][4][5] These typically involve upsizing devices or
employing multiple voltages. Recent work has also identified a number of
promising architectural approaches. These typically attack the Vmin problem by
augmenting memory with the ability to adapt in the presence of bad bits. One
of the key advantages of architectural approaches is that they can be adaptive,
incurring additional overhead only when operating conditions demand it.

Adaptivity
Adaptivity minimizes the overhead of resiliency when conditions preclude the
possibility of bit errors. The system can customize the strength of the repair
mechanism to its operating conditions, incurring the highest overhead during
the worst-case operating conditions. In previous work[6], we attacked the Vmin
problem in SSAs using an adaptive approach, reconfiguring cache resources
depending on operating conditions.

We observed that operating modes that require the minimal voltage (and power)
may be willing to reduce cache capacity in exchange for reduced voltage. In light
of this, we proposed two ways to design a cache to operate at both high and
low voltage. These schemes exploit this by incurring the overhead of repairing
defects only at low voltage. With minimal overhead, both schemes significantly
reduce the Vmin of a cache in low-voltage mode while reducing performance
marginally in high-voltage mode. Both schemes achieve a significantly lower
overhead compared to ECC-based defect tolerance schemes at low voltage.
Both mechanisms trade off cache capacity at low voltages, where performance
(and cache capacity) may be less important, to gain the improved reliability

“Adaptivity minimizes the overhead of

resiliency when conditions preclude the

possibility of bit errors.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Scaling the Memory Reliability Wall | 21

required for low voltage operation. At high voltages where performance is critical,
both mechanisms have minimal overhead maximizing the availability of cache
resources. We observed a 10-percent performance loss when operating at low
voltage when compared to an ideal cache that achieves the same voltage with
no overhead. The adaptivity of these techniques avoids the overhead and the
performance penalty it applies when operating at high voltage.

To support different operating modes, our adaptive approach repurposed cache
resources depending on the operating mode. The mechanisms described in
this work rely on memory tests to identify defective portions of the cache and
reconfigure the cache to ensure running programs avoid those portions.

After using memory tests to identify defective portions of the cache, two
schemes identify and disable defective portions of the cache at different
granularities: individual words or pairs of bits. One scheme, called word-
disable, disables 32-bit words that contain defective bits.

Disabling Words
In the word disable scheme, defective words are simply disabled and physical
lines in two consecutive cache ways combine to form one logical line where
only non-failing words are used. This cuts both the cache size and associativity
in half in low-voltage mode. Each line’s tag includes a defect map (one bit
per word, or 16 bits per 64-byte cache line) that represents which words are
defective (0) or valid (1).

The word-disable mechanism isolates defects on a word-level granularity and
then disables words containing defective bits. Each cache line’s tag keeps a defect
map with one bit per word that represents whether the word is defective (1) or
valid (0). For each cache set, physical lines in two consecutive ways combine
to form one logical line. After disabling defective words, the two physical lines
together store the contents of one logical line. This cuts both the cache size and
associativity in half. Figure 2 illustrates how this works in more detail.

Word0 – Word7 Word8 – Word15

Words (0–3)

Stage 0 shifter (7wds/3def)

Stage 1 shifter (6wds/2def)

Stage 2 shifter (5wds/1def)

Stage 3 shifter (4wds/0def)

Words (4–7)

Stage 0 shifter (7wds/3def)

Stage 1 shifter (6wds/2def)

Stage 2 shifter (5wds/1def)

Stage 3 shifter (4wds/0def)

32 byte (8-word) aligned data

Each shifting
stage removes
a defective
word.

Figure 2: Word disable combines working words from two lines
(Source: Chris Wilkerson, et al., 2008[6])

“To support different operating modes,

our adaptive approach repurposed

cache resources depending on the

operating mode.”

“The word-disable mechanism isolates

defects on a word-level granularity and

then disables words containing defective

bits.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

22 | Scaling the Memory Reliability Wall

Assume you have an 8-way cache containing 32-byte lines. For each cache
set, eight physical lines correspond to four logical lines. We use a fixed
mapping from physical lines to logical lines: Lines in physical ways 0 and 1
combine to form logical line 0, lines in physical ways 2 and 3 combine to
form logical line 1, and so on. A single logic cache line is divided into two
halves, split between the two physical lines each with a maximum of four
defective words. The first physical line in a pair stores the first four valid
words, and the second stores the next four valid words of the logical line for a
total of eight 32-bit words.

To obtain the 32-byte data in aligned form, we use two four-stage shifters to
remove the defective words and aggregate working words as shown in Figure 3.
As a result, in low-voltage mode, the capacity of each set is effectively halved to
4-ways.

Figure 3 illustrates the logic used to disable and remove a single defective
word from a group of words. Starting with the defect map, we extract a
1-hot repair vector identifying the position of a single defective word.
In the figure, the vector “0010” identifies the third word from the left as
defective. The decoder converts the 1-hot vector into a Mux-control vector
containing a string of 0s up to (but not including) the defective position
followed by a string of 1s. This has no effect on the words to left of the
defect, but each of the words to the right of the defective word shifts to
left, thereby “shifting-out” the defective word. Since each level of muxes
eliminates a single defective word, we require four levels to eliminate four
defective words.

0… 0… X 1… 1.

0

0

0

0 1

1

1

1

3

Decoder converts
1-hot to mux
control bits.

160-bit bit vector divided up into 5 32-bit words. X marks a defective word.

0… 0… 1… 1…

0

0

1

1

Mux control bits
from the decoder

1-hot repair
vector extracted
from defect
mask: 0010

3
3

3
3

3

33

New 128 bit defect-free bit-vector is produced.

Figure 3: Removing bad words from a cache line
(Source: Chris Wilkerson, et al., 2008[6])

“A single logic cache line is divided

into two halves, split between the two

physical lines each with a maximum

of four defective words.”

“Since each level of muxes eliminates

a single defective word, we require

four levels to eliminate four defective

words.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Scaling the Memory Reliability Wall | 23

Fixing Bits
The bit-fix mechanism differs from the word-disable mechanism in three
respects. First, instead of disabling at word-level granularity, the bit-fix
mechanism allows groups of two bits to be disabled. These defective pairs
are groups of two bits in which at least one bit is defective. Second, for each
defective pair, the bit-fix mechanism maintains a 2-bit patch that can be
used to correct the defective pair. Third, the bit-fix mechanism requires no
additional storage for repair patterns, instead storing repair patterns in selected
cache lines in the data array. This eliminates the need for the additional tag
bits required to store the defect map in the word-disable mechanism. In
high performance mode when the bit-fix algorithm is unnecessary, the repair
pointers must be stored in memory.

To illustrate how bit-fix works, consider an 8-way set associative cache with
64-byte lines. The bit-fix scheme organizes the cache into two banks, each
containing four ways. The repair patterns for three cache lines fit in a single
cache line; therefore, we maintain a single fix-line (a cache line storing repair
patterns) for every three cache lines. A fix line is assigned to the bank opposite
to the three cache lines that use its repair patterns. This strategy allows a cache
line to be fetched in parallel with its repair patterns without increasing the
number of cache ports.

Figure 4 contains a high level depiction of how bit-fix works. On a cache hit,
both the data line and a fix line are read. In this figure, we fetch the data line
from Bank A and the fix line from Bank B. The data line passes through n bit
shift stages, where n represents the number of defective bit pairs. Each stage
removes a defective pair, replacing it with the fixed pair. Since the fix line
may also contain broken bits, we apply SECDED ECC to correct the repair
patterns in the fix line before they are used. After the repair patterns have been
fixed, they are used to correct the data line. Repairing a single defective pair
consists of three parts. First, SECDED ECC repairs any defective bits in the
repair pattern. Second, a defect pointer identifies the defective pair. Third, after
the defective pair has been removed, a patch reintroduces the missing correct
bits into the cache line.

Bit shift logic fix 1..

Bank A Bank B

Cache line w/data Cache line w/fix bits

Bit shift logic fix 0

ECC Fix bits in repair pattern

Decode fix pointers/swap in patches. Bit shift logic fix n

Repaired cache line

Figure 4: Applying repair patterns in bit-fix
(Source: Chris Wilkerson, et al., 2008[6])

“The bit-fix mechanism differs from

the word-disable mechanism in three

respects.”

“Repairing a single defective pair

consists of three parts.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

24 | Scaling the Memory Reliability Wall

Since bit-fix stores the repair pointers in the cache, all reads and writes to the
cache are coupled with a request for repair patterns. Reads rely on the repair
patterns to repair broken bits. For writes, repair patterns indicate broken bits,
ensuring they are avoided during the write. Patches must be extracted during
writes and written into fix lines for use in future reads. When the system
operates in modes where bit errors are unlikely, the repair capability provided
by bit-fix will be superfluous and the cache capacity should be reclaimed to
maximize performance. In these modes, bit-fix requires storage elsewhere in the
system (main memory, for example) to hold repair pointers while they are not
in use.

Figure 5 compares the probability of failure for a 32-MB cache augmented
with the bit-fix and word-disable schemes. The dotted line indicates a
hypothetical target for the probability of failure for the whole 32-MB cache;
this can also be thought of as yield loss. We’ve chosen 1/1000 as a target for
the comparisons we make in this article, although in an actual design the target
will depend on a number of factors including the overall yield target of the
product and the likelihood of other structures failing. As shown in Figure 5,
bit-fix and word-disable both dramatically improve the ability of cache to
tolerate bit errors. A conventional 32-MB cache could meet our hypothetical
target of 1/1000 with a bit error rate of about one failure for every 1012 bits. In
contrast, both word-disable and bit-fix tolerate much higher bit error rates of
about one failure for every 1000 bits.

Bit Probability of Failure

S
tr

u
ct

u
re

 P
ro

b
ab

ili
ty

 o
f

Fa
ilu

re

1.E218 1.E215 1.E212 1.E209 1.E206 1.E203
1.E 100

1.E203

1.E206

1.E212

1.E209

1.E215

1.E218

1.E221

1.E224

1.E227

1.E230

32MB

Bit-Fix

WDDis

Figure 5: Bit-fix and word-disable compared to baseline
(Source: Intel Corporation, 2013)

Reducing the Need for Tests
The approaches described in previous sections suffer from a reliance on
testing to identify defective bits. As technology scales, memory may become

“…Word-disable and bit-fix tolerate

much higher bit error rates of about

one failure for every 1000 bits.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Scaling the Memory Reliability Wall | 25

more difficult to test reliably for a number of reasons. First, the time to
run memory tests typically grows as a function of the number bits in the
memory. Simple tests may grow as a linear function of the memory capacity
while more sophisticated tests designed to screen for pattern sensitivity can
be much more complex. Second, increasing density may make it harder to
isolate bit cells, resulting in more pattern-sensitive failures. Third, memory
circuits may become more susceptible to aging-related failures that occur after
the part has been tested and shipped. Finally, bit cells implemented in future
technologies may be subject to erratic changes in device characteristics that can
intermittently change the characteristics of the bit cell even after the product
has been shipped.[7]

To address this, we developed Multi-bit Segmented Error Correcting Code
(MS-ECC)[8], an adaptive approach that minimizes the role of testing. In
place of tests, MS-ECC relies on error correcting codes (ECCs) to identify
and correct bit errors after they occur. Encoding and decoding multi-bit
error correcting codes can require complex logic and MS-ECC introduces
two techniques to reduce this overhead. First, it applied a class of simple but
costly error correcting codes called orthogonal Latin square codes (OLSCs).
Second, it used segmentation to allow processing of different portions of
a cache line in parallel. We describe these in more detail in the following
section.

Reducing Complexity of Error Correcting Logic
MS-ECC strives to provide an architecture that uses codes to correct several
bits per cache line, without incurring the high logic overhead of multi-bit
BCH codes. To do this we rely on a simple class of error correcting codes
called orthogonal Latin square codes (OLSCs). Although OLSCs require more
storage than BCH codes, the use of OLSCs minimizes the cost of the coding/
decoding logic. We also employ segmentation, dividing the cache line up into
8-byte segments and providing separate codes for each segment. Both the use
of OLSCs and segmentation reduce logic overhead at the cost of increased
storage cost for the code itself.

Orthogonal Latin Square Codes
Conventional ECC implementations are based on BCH codes and are
tailored to fix one (SECDED) or two errors (DECTED). BCH codes
optimize storage overhead (that is, number of check bits) at the cost of logic
complexity. The complexity and latency of these codes grow rapidly with the
increase in the number of error corrections. To minimize the logic required
for multi-bit error correction, MS-ECC needs to use an error correction
code whose complexity scales well with the number of error corrections.
Hsiao et al.[8] proposed a coding methodology called orthogonal Latin
square codes (OLSCs) to correct multi-bit errors. While OLSCs require
more check bits than traditional ECCs, they have modular correction
hardware, lower logic complexity, As a consequence, OLSCs can be encoded
and decoded faster than traditional ECCs implementations using BCH
codes.[8]

“MS-ECC relies on error correcting

codes (ECCs) to identify and correct

bit errors after they occur.”

“BCH codes optimize storage

overhead (that is, number of check

bits) at the cost of logic complexity.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

26 | Scaling the Memory Reliability Wall

OLSCs use the general principle of a redundant system based on majority
voting, such as triple modular redundancy (TMR). TMR “votes out” any
incorrect behavior by having three copies of the design and adopting the results
from two out of the three modules as the correct one. Instead of duplicating
each data bit three times, an OLSC encodes “orthogonal” groups of bits to
form check bits. At decoding time, each data bit generates the final value
through a voting process from a group of orthogonally coded data and check
bits. Thus, an OLSC does not need to generate a syndrome but can “correct”
errors directly from majority voting.

Although OLSCs provide a number of benefits for implementing logic, their use
requires many more bits to provide a particular level of error correction relative
to alternatives such as BCH codes. For conventional BCH codes, correcting a
single bit error in a 512-bit cache line requires t × log(n) bits; where t is equal
to the number of bits to correct, 1 in this case; and n is equal to the number of
data bits, 512 in this case. In contrast, an OLSC requires 2 × t × sqrt(n) bits,
growing as the square root of the number of data bits rather than the log. In this
case, this means a typical BCH code would require 9 bits and the OLSC would
require 2 × 1 × 24, or 48 bits to repair a single bit error.

Segmentation
Generating each check bit for an OLSC requires computing a parity for
orthogonal groups of sqrt(n) data bits. As a result, we can further simplify
the encoding and decoding logic by reducing the size of data word through
segmentation. Figure 6 shows an example of multi-bit segmented ECC
with eight 64-bit segments in each 512-bit line. On a read hit, as shown in
Figure 6(b), we fetch both the data line and the corresponding ECC line.
There are separate ECC decoders for each of the eight segments that decode
segments in parallel by using information from both the data and ECC
ways. The decoded segments are then concatenated to obtain the entire
512-bit line.

Data Bits

H matrix

1

1

1

1

1

√
√

√
√

√
√

√
√

√
√

√

√
√

√

√

√
First
Error

Correction

Second
Error

Correction

1
1

1 1

1
1 1

1

1

1

1

1
1

1
1

1

1
1

1
1 1

1 1

1
1

1
1

1
1

1
1

1
1

1

1
1

1

1
1

1

1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

2 3 4 5 6 7 8 9 1011121314150 1 2 3 4 5 6 7 8 9 1011121314150

Check Bits

C0 5 XOR(d0, d1, d2, d3)
C1 5 XOR(d4, d5, d6, d7)

XOR(C0, d1, d2, d3),
XOR(C4, d4, d8, d12),
XOR(C9, d5, d10, d15),
XOR(C12, d5, d11, d13)),

ENCODE:

D0 5 Majority(d0,
DECODE:

(2)
(3)

(4)
(5)

(1)

XOR(C0, d0, d2, d3),
 ))

D1 = Majority(d1,
(2)
(1)

Figure 6: H matrix for a 16-bit OLSC
(Source: Zeshan Chishti, et al., 2009[8])

“OLSCs provide a number of benefits

for implementing logic, their use

requires many more bits to provide

a particular level of error correction

relative to alternatives such as BCH

codes.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Scaling the Memory Reliability Wall | 27

Segmentation reduces latency through the use of parallel decoders and
reduces logic cost by reducing the number of inputs to each check bit
parity tree. But these benefits also come with additional costs. In general,
smaller segments increase the cost of storing the codes. Figure 7 compares
the bit overhead of protecting a 512-bit line with both OLSC and BCH
codes. The cost varies depending on size of the segments each code
protects. A single code protecting the entire 512-bit word minimizes cost.
The smallest segment results in the highest cost. Although it’s true that
segmentation also increases the level of protection (a code that allows 4-bit
errors for every 512-bit line offers less protection than a code that corrects
4-bits for every 32-bit segment), the additional protection segmentation
offers is minimal. This is illustrated in more detail in Figure 8, where you
can compare the probability of failure of a 32-MB cache with a single
SECDED code for each cache line and a second with a SECDED code
for each 8-byte segment. Figure 8 also depicts the ability of MS-ECC
to tolerate bit errors. MS-ECC succeeds in tolerating very error rates, as
high as 1 bit error in every 1000 bits, like the mechanism discussed in the
previous section. It achieves this while avoiding the need for extensive tests
to identify bit errors but also with a significant cost of 50 percent of the
total cache capacity.

Smaller segments mean more bits for storing the code

OLSC requires
more bits for a
similar level of
protection vs BCH

51225612864

Segment Size

32

N
u

m
b

er
 o

f
B

it
s

fo
r

a
51

2
B

it
 C

ac
h

e
L

in
e

900

800

700

600

500

0

300

200

100

400

OLSC-4

OLSC-2

OLSC-1

BCH-4

BCH-2

BCH-1

Figure 7: BCH, OLSC, segment size in code choices
(Source: Intel Corporation, 2013)

“Segmentation reduces latency…”

“In general, smaller segments increase

the cost of storing the codes.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

28 | Scaling the Memory Reliability Wall

1.E100

1.E203

1.E206

1.E209

1.E218

1.E215

1.E212

1.E230

1.E227

1.E224

1.E221

Bit Probability of Failure

1.E218 1.E215 1.E212 1.E209 1.E2031.E206

S
tr

u
ct

u
re

 P
ro

b
ab

ili
ty

 o
f

Fa
ilu

re

SECDED-8B

32MB 4EC5ED-8B (OLSC)

SECDED-64B

4EC5ED-64B

Figure 8: OLSCs and impact of segment size
(Source: Intel Corporation, 2013)

Compensating for Increased Code Storage
MS-ECC mitigates the increased cost of code storage through the use of adaptivity
similar to what’s described in [3]. As in [3], MS-ECC makes the entire cache
capacity available at high voltage, but the use of cache resources to store repair
information reduces cache capacity at low voltage. To better understand how this
approach works, consider an 8-way set associative cache with 64-byte lines.

When using the codes, we divide the eight physical ways in each set amongst
data and ECC ways. The ratio of data ways to ECC ways depends on the
desired reliability level. If the operating system chooses to improve reliability
it could adjust this ratio to increase redundancy at the cost of cache capacity.
In this case, we assume each data way comes with a corresponding way storing
error correcting codes. We use a fixed mapping to associate data ways with their
corresponding ECC ways, as shown in Figure 9(a): physical way 1 stores the
ECC for physical way 0, physical way 3 stores the ECC for physical way 2, and
so on. Thus, when using the codes, cache capacity and associativity are halved,
resulting in a reduction in from eight ways to four ways per cache set. On a
write hit to the L2 cache, shown in Figure 9(c), we first use the ECC encoders
to obtain the ECC for the data line. Like the ECC decoders, there are separate
encoders for each segment that perform ECC encoding in parallel. We then
write the new data to the data line and the new ECC to the corresponding
ECC line. A similar encoding is performed when a new line is brought into
the L2 cache upon a cache miss. We note that when using ECC, each cache
access requires both the data and ECC ways to be read. In light of this, the best
performance would be achieved if the cache was banked with data and ECC
placed in opposite banks, allowing both to be read simultaneously.

“MS-ECC mitigates the increased

cost of code storage through the use of

adaptivity…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Scaling the Memory Reliability Wall | 29

The MS-ECC approach favors simple, high-overhead codes under the
assumption that the high cost of code storage will have little impact when
operating at low voltage. This makes sense for systems where memory reliability
doesn’t present a problem in typical operating conditions.

However, the role of adaptivity is diminished in systems that spend the he bulk
of their time operating in modes that require the use of MS-ECC without
adaptivity to mitigate the high cost of storing the codes, the overhead of
MS-ECC becomes unacceptable. In light of this, we examine other approaches
to reduce the overhead of coding.

Optimizing for the Common Case
The mechanisms reviewed so far represent two extremes: the first two approaches
(bit-fix and word-disable) relying solely on testing to identify bit errors, the
second (MS-ECC) relying solely on high strength codes. Although memory
testing may suffer from a number of challenges, it remains a valuable way of
locating bit errors. Ideally, we’d construct a system that could benefit from the
information testing provides, while protecting against errors that testing fails to
capture. Such a system could rely on memory tests to characterize memory and
rely on error correcting codes to compensate for test escapes. VS-ECC, Variable-
Strength ECC, proposed by Alameldeen et al.[9] is one such approach.

Optimizing Protection Strength with VS-ECC
VS-ECC combines the use of ECC and memory tests. The architecture exploits
the observation that although a few cache lines exhibit multi-bit failures, the
vast majority of cache lines contain one or fewer failures. Unlike prior solutions

“…the high cost of code storage will

have little impact when operating at

low voltage.”
“…without adaptivity to mitigate

the high cost of storing the codes,

the overhead of MS-ECC becomes

unacceptable.”

64

Decode

64

Decode

64

Encode

64

Encode

64

Encode

512 Data In

...

(c) Cache Write

ECC

Data

64

Decode

64 64 64 64 64 64

64 64 64 64

(b) Cache Read

512 Data Out
ECC

Data

Way 0 Way 1 Way 2 Way 7Way 3

Read Logic

Data Out

Data In

(a)

...

W
rit

e
Lo

gi
c

Data
Way

0

ECC
Way

0

Data
Way

1

ECC
Way

3

ECC
Way

1

64 64

Figure 9: Multi-bit segmented ECC with eight 64-bit segments
(Source: Zeshan Chishti, et al., 2009[8])

Intel® Technology Journal | Volume 17, Issue 1, 2013

30 | Scaling the Memory Reliability Wall

that use fixed-strength mechanisms to mitigate the impact of cache failures on
Vmin, we propose mechanisms that only allocate strong protection to cache
lines that need such protection. Figure 10 plots the probability of having one,
two, three, and four errors in a 64-byte cache line. Note that the probability
of a single bit error exceeds that of a double bit error by about two orders of
magnitude. This implies that, in a typical cache, single bit errors should be
about one hundred times more common than double bit errors. It follows,
therefore, that while many cache lines might require SECDED protection,
only a very small subset of the failing cache lines require stronger multi-bit
ECC. This suggests a variable-strength technique, VS-ECC, where the check
bit budget is allocated judiciously only to the lines that require multi-bit
protection.

1.E100

1.E203

1.E206

1.E209

1.E218

1.E215

1.E212

1.E227

1.E224

1.E221P
ro

b
ab

ili
ty

 o
f

51
2

B
it

 L
in

e
Fa

ili
n

g

1.00E215

12error

22error

32error

42error

3.E211

2.E208

5.E203

1.00E212 1.00E209 1.00E2031.00E206

Bit Probability of Failure

Observation: probability of 1 bit error
~100 times higher than 2 bit error

1.E205

Figure 10: Multi-bit errors are rare relative to single bit errors.
(Source: Intel Corporation, 2013)

To implement a VS-ECC architecture, we begin with a cache that supports
SECDED protection for each cache line, then we augment each set with four
extended ECC (eECC) fields; these enable the cache to use a strong ECC code
for any four of the 16 ways in each cache set. To distinguish lines that use
multi-bit correction from lines that use SECDED ECC, we add an extra status
bit to each tag, called “Extended ECC bit” or E-bit. If a cache line is classified
as having multi-bit failures, the E-bit is set to 1; otherwise it is reset to 0. Each
cache access first reads the E-bits with the tag to determine the type of ECC
(SECDED or 5EC6ED) protecting the line. Depending on the strength of the
code, we forward the cache data to one of two blocks of ECC processing logic:
a simple logic block designed for SECDED, or a more complex block designed
for multi-bit ECC processing.

Figure 11 shows the efficacy of VS-ECC on a 32-MB cache. It depicts seven
different configurations, including three baseline configurations: “32MB,”
a 32-MB cache with no ECC protection, “SECDED,” the same cache with

“…the check bit budget is allocated
judiciously only to the lines that
require multi-bit protection.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Scaling the Memory Reliability Wall | 31

a SECDED code for each cache line, and finally “5EC6ED,” a 32-MB
cache with a 5-bit error correcting code protecting each cache line. The
curves labeled “VS-ECC-1,” “VS-ECC-2,” “VS-ECC-3,” and “VS-ECC-4,”
depict four different VS-ECC implementations, with the ability to provide
a 5ED6ED code for one, two, three, or four cache lines, respectively. It’s
worth noting that three of the VS-ECC implementations are virtually
indistinguishable from our 5EC6ED baseline, illustrating our earlier point
that we need very few 5EC6ED codes to approach the performance of the
5EC6ED baseline.

1.E100

1.E203

1.E206

1.E209

1.E218

1.E215

1.E212

1.E230

1.E227

1.E224

1.E221

32MB SECDED VS-ECC-1 VS-ECC-2

VS-ECC-3 5EC6EDVS-ECC-4

Bit Probability of Failure

1.E218 1.E215 1.E212 1.E209 1.E2031.E206

S
tr

u
ct

u
re

 P
ro

b
ab

ili
ty

 o
f

Fa
ilu

re

Figure 11: Efficacy of VS-ECC codes
(Source: Intel Corporation, 2013)

VS-ECC and Runtime Testing
The variable application of ECC protection in VS-ECC allows us to harvest the
benefit of very strong ECC codes while minimizing overhead. Realizing this
benefit, however, relies on prior knowledge of which lines require additional
error correction. Since VS-ECC customizes the strength of the ECC depending
on the presence or absence of bit errors, it requires tests to identify cache lines
that contain bit errors. The strength of the VS-ECC approach, however, is that
these VS-ECC tests can potentially be run while the system is active. Typically,
memory tests must be run while the system is placed in marginal state, without
voltage or timing guard-bands, to increase the likelihood of exposing bit errors.
In conventional system designs, removing these guard-bands places any data
stored in memory at risk. VS-ECC, however, can be used to provide stronger
protection to the parts of the memory that contain live program data, while
the rest of memory is tested. After each test phase, we move live data from the
active to the inactive portion, activate the latter, and start testing the previously
active region.

“…three of the VS-ECC

implementations are virtually

indistinguishable from our 5EC6ED

baseline…”

“…VS-ECC tests can potentially be

run while the system is active.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

32 | Scaling the Memory Reliability Wall

Since VS-ECC allows the system to take advantage of spare cache cycles to test
the cache, it can reduce the impact of testing on the user. This, in turn, opens
up the possibility of using more complex, time-consuming tests. In addition,
it facilitates intermittent testing that would help identify failures due to aging
that may emerge after shipping a product.

The primary benefit of VS-ECC is the additional flexibility it allows in testing,
including runtime testing and the ability to compensate for testing failures
through the universal application of minimal ECC. The primary drawback
of the VS-ECC approach is that apportioning the ECC strength relies on the
ability of tests to identify locations of bit errors. Although VS-ECC ultimately
relies on testing, the flexibility it provides can make tests cheaper and less
intrusive. We could improve on VS-ECC, however, by further minimizing its
reliance on testing.

Error Correcting Codes as a Safety Net
One way to minimize a systems vulnerability to testing escapes is to construct
a “safety net” for memory using ECC. If the overhead of the codes could be
reduced sufficiently we could always rely on the ECC to identify and repair bit
errors regardless of when they occurred. Hi-ECC[10] describes an approach to
building such a system.

Hi-ECC relies on a low cost multi-bit error correcting code to identify bit
errors. To reduce the storage costs of the code, Hi-ECC takes the opposite
approach of MS-ECC. Instead of reducing logic costs through the use of
large codes, Hi-ECC minimizes storage costs through the use of larger
segments and dense but logically complex BCH codes. Typically, these
tradeoffs would dramatically increase logic complexity; however, Hi-ECC
avoids this by taking an approach similar to that of VS-ECC and optimizing
for the common case.

Recall that VS-ECC minimized overhead by providing two mechanisms to
handle errors, a low-cost mechanism for the common case with few or no
errors, and a high-cost mechanism for multi-bit errors. In the case of VS-ECC
the two mechanisms were different strength codes, low-cost SECDED codes
for the majority of the lines in the cache, high-cost 5EC6ED codes for lines
that were identified as being prone to failure. Like VS-ECC, the Hi-ECC
approach offers two mechanisms to handle errors. In contrast, however, the
two mechanisms provided in Hi-ECC don’t differ in the level of protection
they offer but in the latency they incur and the resulting performance impact.

A key insight offered in Hi-ECC is that the ECC “check” (checking for bit
errors) can be separated from the ECC “correct” (correcting the bit errors).
The vast majority of the data is error free and only needs to be checked. Hi-
ECC exploits this through the use of high-speed ECC checking logic (Quick
ECC). Quick ECC (Figure 12) forwards lines that are either error-free or easily
corrected to the processor with minimal additional latency. The remaining
lines, which require additional processing, are sent to slow but relatively cheap
ECC correcting logic.

“The primary benefit of VS-ECC is

the additional flexibility it allows in

testing…”

“…Hi-ECC takes the opposite

approach of MS-ECC.”

Memory/Cache

Tag/ECC Array

Quick
ECC failure?

To L2 Cache/Processor

.1 High Latency ECC
processing

Address

Figure 12: Quick ECC identifies error-free
or easy-to-correct data and forwards it to the
CPU; other data is forwarded to a high-latency
ECC processing block
(Source: Chris Wilkerson, et al., 2010[10])

Intel® Technology Journal | Volume 17, Issue 1, 2013

Scaling the Memory Reliability Wall | 33

Hi-ECC minimizes the cost of the ECC correction at the expense of increased
latency. In fact, correcting a multi-bit error in Hi-ECC may take tens or hundreds
of cycles. We argue that since bit errors are rare, the high latency of the correcting
logic will have little impact on performance. To ensure this and to avoid pathologic
cases such as repeated accesses to particularly error-prone lines, Hi-ECC removes
bit errors as they are identified by ECC either through disabling the cache lines that
contain them or removing the offending bits through techniques like bit-fix.

Conclusion
In this article, we’ve highlighted some emerging challenges in memory resiliency.
We’ve described five mechanisms to handle very high error rates. Three
mechanisms minimized the performance overhead of correcting errors through
adaptivity, incurring overhead when the performance cost of the overhead
was minimized. The other two, VS-ECC and Hi-ECC, minimize overhead
by providing two mechanisms to handle errors, a low-cost mechanism for the
common case with few or no errors, and a high-cost mechanism for multi-bit
errors. Adaptivity and optimizing for the common case are both approaches that can
help us design more resilient memory systems while minimizing the overhead.

Although testing continues to play an important role in managing memory
reliability, future technologies may introduce new failure mechanisms, which
must be handled in new innovative ways. In light of this uncertainty, a memory
resiliency architecture that scales with advancing technology must not rely
on the physics of today’s failures but must be flexible enough to adjust to the
unanticipated failures of future technologies. The approaches taken in VS-ECC
and Hi-ECC are noteworthy for the way they integrate multiple resiliency
techniques. VS-ECC integrates testing and codes, while Hi-ECC supplements
codes with additional repair. Future work in this area will extend this integration,
combining error correcting codes, testing, and supplemental repair. Testing is likely
to be a continuous process, combining information collected from ECC during
use as well as from intermittent tests run throughout the lifetime of the system.

References
[1]	 A. J. Bhavnagarwala, X. Tang, and J. D. Meindl, “The Impact of

intrinsic device fluctuations on CMOS SRAM Cell stability,” IEEE
Journal of Solid-state Circuits, Vol. 40, No. 9, pp. 1804–1814,
September, 2005.

[2]	 S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of
failure probability and statistical design of SRAM array for yield
enhancement in nanoscaled CMOS,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 24, No. 12, pp. 1859–1880, December, 2005.

[3]	 Jaydeep Kulkarni and Kaushik Roy, “Ultra-low Voltage Process
Variation Tolerant Schmitt Trigger based SRAM Design,” IEEE
Transactions on VLSI Systems, 2011.

“Hi-ECC minimizes the cost of the

ECC correction at the expense of

increased latency.”

“Adaptivity and optimizing for the
common case are both approaches

that can help us design more resilient

memory systems while minimizing the

overhead.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

34 | Scaling the Memory Reliability Wall

[4]	 L. Chang et al., “An 8T-SRAM for Variability Tolerance and Low-
Voltage Operation in High-Performance Caches,” IEEE Journal of
Solid-State Circuits, Vol. 43, No. 4, April, 2008.

[5]	 R. E. Aly, M. I. Faisal, and M. A. Bayoumi, “Novel 7T SRAM cell
for low power cache design,” IEEE SOC Conference, pp. 171–174,
September, 2005.

[6]	 Chris Wilkerson, et al., “Trading off Cache Capacity for Reliability
to Enable Low Voltage Operation,” International Symposium on
Computer Architecture, pp. 203–214, June 2008.

[7]	 M. Agostinelli et al., “Erratic fluctuations of SRAM cache Vmin at
the 90nm process technology node,” IEDM Technical Digest,
pp. 655–658, Dec. 2005.

[8]	 Zeshan Chishti et al., “Improving Cache Lifetime Reliability at
Ultra-low Voltages,” Intl. Symp. on Microarchitecture, pp. 89–99,
Dec. 2009.

[9]	 Alaa Alameldeen et al., “Energy-efficient cache design using
variable-strength error-correcting codes,” International Symposium
on Computer Architecture, pp. 461–472, June 2011.

[10]	 Chris Wilkerson et al., “Reducing Cache Power with Low Cost,
Multi-bit Error-Correcting Codes,” International Symposium on
Computer Architecture, pp. 83–93, June 2010.

Author Biograhies
Chris Wilkerson received the master’s degree from Carnegie Mellon University,
Pittsburgh, Pennsylvania, in 1996. He is currently a research scientist at Intel
Labs, Hillsboro, Oregon. He has authored or coauthored a number of papers
published on a number of microarchitectural topics including value prediction,
branch prediction, cache organization, and runahead and advanced speculative
execution. His current research interests include microarchitectural mechanisms
to enable low-power operation for microprocessors.

Alaa R. Alameldeen received BSc and MSc degrees from Alexandria University,
Egypt, in 1996 and 1999, respectively, and the MSc and PhD degrees from
the University of Wisconsin-Madison, in 2000 and 2006, respectively, all in
computer science. He is a research scientist at Intel Labs, Hillsboro, Oregon. His
current research focuses on energy-efficient memory and cache design.

Zeshan Chishti received his BSc (Hons) degree in Electrical Engineering from
the University of Engineering and Technology, Lahore, Pakistan, in 2001, and
the PhD degree in Computer Engineering from Purdue University in 2007.
He is a research scientist at Intel Labs, Hillsboro, Oregon. His current research
interests include energy-efficient processors and memory systems and cache
hierarchy design for chip multiprocessors.

Intel® Technology Journal | Volume 17, Issue 1, 2013

Scaling the Memory Reliability Wall | 35

36 | Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs

Intel® Technology Journal | Volume 17, Issue 1, 2013

Contributors

Many enterprise and mobile systems attempt to maximize energy-efficient
performance, dynamically trading off performance and power to have the best
performance while keeping power within specified limits. Cache and memory
system behavior plays a large role in this tradeoff, since power optimizations
may jeopardize memory cell reliability.

In this article, we show that mixed-cell memory designs could play a key role
in achieving the right balance between performance, power, and reliability for
single-core and multi-core systems. In such designs, part of the memory structure
is built with cells that are more robust and failure-resistant, while the rest is
designed using traditional cells. Robust cells ensure resiliency under low-voltage
conditions to protect the most vulnerable data, while the rest of the memory
structure could be used to store redundant data to improve performance. We
demonstrate this concept using two specific examples: (1) A cache system that
only turns on the robust portion at low-voltage, achieving good reliability and
power savings while providing high-voltage performance improvements; (2) A
cache system that uses the whole cache (including the non-robust portion) at low
voltage, achieving good performance and reliability while not exceeding power
limits. While the specific examples we explore in this article are cache-related, the
same concept could be used throughout the entire memory hierarchy to improve
memory resiliency without sacrificing performance or energy efficiency.

Introduction
Power is a key design constraint for modern multiprocessors used across market
segments, from mobile systems to servers. In mobile systems, thermal design
power (TDP) plays a key role in determining the form factor of the mobile
device, and therefore optimizing processor power is critical. Likewise, data
centers are built with fixed power and cooling capabilities, and improving
processor performance within a given power budget yields direct economic
benefits by increasing the compute capability supported by a fixed investment
in data center infrastructure.

To address these power constraints, new processor generations have provided
improvements in core performance and efficiency and have also increased the
number of cores on a die. Today, state-of-the-art server processors may contain
tens of cores, and even mobile products, including tablets and smart phones,
have more than one core. Increasing core counts, in the context of fixed power
budgets, is a key challenge for future systems.

In today’s TDP-limited systems, the voltage of active cores has to decrease as
the number of active cores increases.[6] Conversely, as cores become inactive,

“Increasing core counts, in the context

of fixed power budgets, is a key

challenge for future systems.”
“In today’s TDP-limited systems,

the voltage of active cores has to

decrease as the number of active cores

increases.”

Alaa R. Alameldeen
Intel Labs

Nam Sung Kim
University of Wisconsin-Madison

Samira M. Khan
Intel Labs and Carnegie Mellon
University

Hamid Reza Ghasemi
University of Wisconsin-Madison

Chris Wilkerson
Intel Labs

Jaydeep Kulkarni
Intel Labs

Daniel A. Jiménez
Texas A&M University

Improving Memory Reliability, Power and Performance
Using Mixed-Cell Designs

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs | 37

the voltage of the remaining cores is raised to maximize performance.
Changing the voltage in response to changes in core activity allows the
power budget of these systems to remain constant regardless of the number
of active cores.

Voltage reduction, however, comes at the cost of dramatically reducing
reliability for memory cells that operate at a low voltage. To circumvent this
problem, prior work has explored using separate voltages for the core logic
and caches. This captures most of the power benefits by reducing the core
voltage, while ensuring reliable cache operation at a higher voltage. However,
separate voltage domains greatly increase design complexity.[13] This added
complexity can be avoided by building memories with robust cells better suited
for low voltage operation (using larger cells with upsized transistors or more
transistors). Unfortunately, robust cells significantly increase power and area for
a memory structure.

The high overhead of cell upsizing has led architects to propose mixed
(heterogeneous) cell cache architectures, consisting of traditional cells and
robust cells[4][5][8], with the goal of minimizing the use of expensive, robust
memory cells, while continuing to harvest their low voltage benefits. Mixed-cell
cache architectures achieve this by implementing a small portion of the cache
with robust cells that can operate reliably at low voltage, and the remainder
with non-robust cells. When operating at a high voltage, both portions would
be used to maximize cache capacity and performance. When operating at
low voltage, the failure-prone non-robust cells would be turned off, reducing
cache capacity by up to 75 percent.[4][5] Conversely, the non-robust cells can be
turned on but are only used to store noncritical data.[8]

We advocate using mixed (heterogeneous) cell cache architectures to build
reliable and scalable memory structures. Memory structures do not need to be
uniformly reliable. With careful design mechanisms, a robust (reliable) portion
can be used to store critical data, while the non-robust portion can be power-
gated or used for noncritical data.

In the remainder of this article, we demonstrate how mixed-cell architectures
help achieve memory resiliency at low voltage. We highlight two examples for
cache hierarchies designed with mixed cells:

●● In the first design[5], a last-level cache is designed with a fraction of all cells
built with robust cells, while the rest are built using standard cells that
are power-gated at low voltage. Such a system helps maintain low-voltage
cache reliability while allowing the whole cache to be active at high voltage/
frequency to maximize performance.

●● In the second design[8], both robust and non-robust cells are enabled at low
voltage, but special logic needs to be implemented to ensure critical data
(that is, the only copy in the system) is stored in robust cells. Such a design
helps maximize performance for a multi-core system where all cores could
be active only at low voltage.

“Voltage reduction, however, comes

at the cost of dramatically reducing

reliability for memory cells that

operate at a low voltage.”

“We advocate using mixed

(heterogeneous) cell cache architectures

to build reliable and scalable memory

structures.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

38 | Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs

Background
Achieving the highest possible density is a main design goal for different
memory technologies. SRAM bit cells, for example, generally employ
minimum-geometry transistors, which are susceptible to systematic as well
as random process variations such as random dopant fluctuations (RDF)
and line edge roughness (LER). Process variations produce VT (threshold
voltage) mismatch between neighboring transistors, resulting in asymmetric
bit cell characteristics, and making bit cells susceptible to failure at low
voltage. DRAM cells are also designed with minimum-sized transistors in a
given process technology, making some cells less reliable when power-saving
optimizations are used (such as lower refresh frequency). We’ll use SRAM
caches as the main topic of discussion in this article, but similar tradeoffs could
also apply to other memory technologies.

With bit cells susceptible to failure, large memory structures in the core, such
as caches, become unreliable at low voltage. This limits voltage and frequency
scaling for the cores, which must operate at a minimum voltage (Vmin) to
ensure reliable operation. Reducing cache Vmin has become an area of active
research. Prior work in this area fits into two broad categories: circuit solutions
and architectural solutions.

Circuit Solutions
Circuit techniques generally aim to reduce Vmin by improving the bit
cell. One approach is to reduce the voltage for the core logic and use a
separate (higher) voltage for caches. Unfortunately, a partitioned power
supply increases power grid routing complexity, reduces on-die decoupling
capacitance, increases susceptibility to voltage droops, and may require
level shifters that add latency to signals that cross voltage domains. [13]
Most commercial processors use multiple voltages generated off-chip by
high-efficiency off-chip voltage regulators (~95-percent efficiency). As the
number of cores increases, providing multiple voltages for each core becomes
increasingly impractical. A four-core system with separate voltages for the
core and its private L1/L2 caches would require three voltage domains per
core (a total of 12 power supplies), in addition to those needed for other
system components.

Another way to improve bit cell Vmin involves upsizing its constituent devices.
Threshold voltage (VT) variation depends inversely on the transistor gate area.[9]
Consequently, upsizing devices can dramatically reduce variations and improve
Vmin. Zhou et al.[22] designed and optimized six different 6T SRAM cells
(C1-C6 cells), and analyzed the failure probabilities of the cells due to process
variations in a 32 nm technology. These analyses demonstrated that increasing a
cell’s size can reduce its failure probability by orders of magnitude.

Unfortunately, the Vmin benefits of upsizing a typical 6T bit cell diminish
as device size increases. Figure 1 compares the Vmin for four different caches
implemented in a 65 nm technology. Each cache is implemented using one

“…large memory structures in the

core, such as caches, become unreliable

at low voltage.”

“…upsizing devices can dramatically

reduce variations and improve Vmin.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs | 39

of four different 6T cells. [11] We set Vmin at the point when the cache failure
probability is 1/1000.[20] The figure depicts the probability (y-axis) that the
cache will contain a single failing bit as a function of voltage (x-axis). A 4-MB
cache constructed with a minimum-sized 6T cell, 4M-min, exhibits very high
failure rates (~30 percent) even at high voltages (>900 mV). The 4M-2X
implementation of a 4-MB cache doubles the device sizes in each memory cell,
increasing cell area by 33 percent. 4M-4X quadruples the size of the devices,
doubling the size of the cell. The 4M-8X implementation uses the most robust
cell with devices that are eight times as large and a 233 percent larger cell size
than 4M-min. Increasing cell sizes initially yields dramatic improvements over
minimum-sized cells (note the 275 mV improvement moving from 4M-min
to 4M-2X). But further size increases yield smaller benefits, 60 mV and 55 mV
for the 4M-4X and 4M-8X, respectively.

Yield target

1.0E200

1.0E203

1.0E206

P
ro

b
ab

ili
ty

 o
f

F
ai

lu
re

 (
15

10
0%

)

1.0E209

1.0E212

0.4 0.5 0.6 0.7 0.8 0.9 1

Vmin (V)

4M2min
4M24X

4M22X
4M28X

Figure 1: Vmin improvements with bit cell upsizing
(Source: Khan et al., 2013[8])

Cell upsizing also causes increases in static and dynamic power. Static power
(leakage) varies linearly as a function of transistor dimensions, therefore
increasing with larger cells. Larger cells also add switching capacitance on
the word lines (WL) and bit lines (BL) increasing dynamic power. Upsizing
from the minimum cell to the 2X cell yields a substantial benefit since the
reduction in Vmin (275 mV) more than compensates for the additional
power introduced by larger devices. Further upsizing, however, increases
power since the costs of larger devices outweigh the savings from voltage
reductions (-60 mV, -55 mV).[8]

Architectural Solutions
Another approach to reducing Vmin uses failure-prone cells with smaller
devices, but augments the memory array with the capability to repair bit
failures. Prior work introduced many repair mechanisms that depend on
memory tests to identify bad bits.[17][18][20] Relying on memory tests limits the
applicability of these approaches when memory tests are expensive or failures
are erratic.[1] Other repair mechanisms rely on coding techniques, such as

“Cell upsizing also causes increases in

static and dynamic power.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

40 | Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs

error-correcting codes (ECC), to autonomously identify and repair defective
bits.[3][10]

Fundamentally, each of these approaches trades off the repair mechanism
overhead for the ability to compensate for defective bits. For memory designs
with very high failure rates, this tradeoff may be unattractive.

To address the high overhead of operating at low voltage, Wilkerson et al.[20]
improve Vmin by storing error-correction patterns in cache resources, trading off
cache capacity for low voltage operation. Chishti et al.[3] identify the limitations
of testing-based implementations and propose to provide error correction
capability using orthogonal Latin square codes. Chakraborty et al.[2] also trade
off cache capacity for lower voltage. A multi-copy cache stores two copies of
each clean datum and three copies of each dirty datum to allow detection and
correction of corrupted bits, respectively.

More recently, designs with mixed (heterogeneous) cell designs have been
proposed to achieve low voltage with modest area cost. Dreslinski et al.[4]
propose to combine the low voltage benefits of robust upsized cells and the
cost benefits of smaller cells by building caches with a mixture of cell types.
Cache lines consisting of robust cells operate at low voltage, while a separate
power supply provides a higher voltage to less robust cells. By moving recently
accessed data to the low voltage cache lines, Dreslinksi et al. service the
majority of requests using low voltage cache lines, and reduce active power in
the L1 cache.

While using mixed cell architectures could help achieve reliable low voltage
operation, it is important to ensure that such design has a minimal impact on
high-voltage performance (for a single-core system) or low-voltage performance
(for a multi-core system). In the next two sections, we highlight two mixed-cell
cache architectures we explored in our prior work. The first architecture[5] is
tailored towards high-performance systems, where high-voltage performance
is critical but we need to maintain reliability at low voltage using robust cells.
The second architecture[8] targets multi-core TDP-limited systems, where the
highest performing point is when all cores are active at low voltage, so low-
voltage performance is critical.

A Mixed-Cell Architecture for
High-Performance Systems
A typical last-level cache (LLC) consists of hundreds or thousands of
SRAM sub-arrays. We proposed an architecture for a single-core system
that uses multiple cell sizes in a single LLC.[5] When high performance
is needed, the processor runs at high voltage/frequency states where even
small (non-robust) cells can operate reliably. As supply voltage is lowered,
the failure rate of small cells increases exponentially, so we disable ways
or sets one after another beginning with those consisting of the smallest
SRAM cells. Ways or sets implemented with large cells remain active

“More recently, designs with mixed

(heterogeneous) cell designs have been

proposed to achieve low voltage with

modest area cost.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs | 41

(and reliable) at lower supply voltage, providing the needed LLC capacity.
To avoid failures, a uniform implementation of the cache using only
robust cells would significantly decrease cache capacity for the same area,
therefore hurting high-voltage performance. Alternatively, we propose
a heterogeneous-cell architecture to avoid low-voltage failures without
hurting high-voltage performance.

LLC Implementation Using Heterogeneous Cell Sizes
to Support Low Vmin
Consider a four-way set-associative cache. Figure 2 illustrates an example of
building a four-way set-associative LLC, where each group of sub-arrays is
associated with a cache way and has a different cell size. In this illustration,
the total number of sub-arrays is divided into four groups where each
group represents a particular way with a particular cell size; the sub-arrays
with larger cells become taller since the cell size increases in the horizontal
direction.[22] In this example, the processor and LLC are operating at 0.7 V.
Thus, the LLC sections corresponding to ways three and four are disabled at
0.7 V since they are comprised of small cells, many of which will fail at such
a voltage.

0.9V

0.8V

0.7V

VDDMIN

0.6V

WAY

2 (active)

1 (active)

LOCAL LLC
CNTR 1 ROUTER

C2C INTERCONNECT

CORE

Figure 2: An example four-way LLC, where each way uses a different
cell size and is active at a different voltage. The processor runs at 0.7 V,
so only ways 1 and 2 are active
(Source: Ghasemi et al., 2011[5])

Consider an 8-MB LLC comprised of C5 and C3 cells[22] where each cell size
provides 4-MB capacity. The cell failure probability of these cells is presented
in Table 1. In this particular architecture, we can reduce the total cell area by
15 percent, that is, the total LLC area by 13 percent considering SRAM array
efficiency equal to 85 percent.[26] When the voltage (frequency) is higher than
0.8 V (1.6 GHz), the processor is able to use the full 8-MB LLC capacity. If
the voltage (frequency) is below 0.8 V (1.6 GHz), the 4-MB section of the
LLC consisting of the smaller C3 cells will be disabled. However, the 4-MB
section consisting of the larger C5 cells will operate reliably in the whole
voltage range from 0.7 V to 0.9 V.

“…we propose a heterogeneous-cell

architecture to avoid low-voltage

failures without hurting high-

voltage performance.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

42 | Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs

C1 C2 C3 C4 C5 C6

Relative Cell Size 1.00 1.12 1.23 1.35 1.46 1.58

Pfail at 0.90 V 3.2 × 10−7 2.5 × 10−9 7.0 × 10−11 4.5 × 10−12 5.1 × 10−13 1.2 × 10−13

Pfail at 0.85 V 5.4 × 10−7 1.0 × 10−8 3.1 × 10−10 1.6 × 10−11 3.8 × 10−12 1.0 × 10−12

Pfail at 0.80 V 1.0 × 10−6 3.0 × 10−8 1.5 × 10−9 7.6 × 10−11 2.9 × 10−11 9.0 × 10−12

Pfail at 0.75V 2.0 × 10−6 8.1 × 10−8 7.4 × 10−9 4.1 × 10−10 2.2 × 10−10 7.9 × 10−11

Pfail at 0.70V 4.1 × 10−6 2.1 × 10−7 3.7 × 10−8 2.2 × 10−9 1.6 × 10−9 7.0 × 10−10

Table 1: Cell Size and Voltage vs. Probability of Cell Failure at Voltages from 0.9 V to 0.7 V
(Source: Ghasemi et al., 2011[5])

To minimize the LLC area further, we can design a more heterogeneous LLC
composed of C5, C4, C3, and C2 cells (Table 1) where each cell size gives
2 MB of capacity (for compactness of notation we refer to this as a 2-MB/2-MB
/2-MB/2-MB C5/C4/C3/C2 LLC). As the voltage is decreased from
0.9 V to 0.8 V, to 0.75 V, and to 0.7 V, the LLC capacity is reduced from 8 MB
to 6 MB, to 4 MB, and to 2 MB. In this architecture, the full 8-MB capacity
operates reliably at 0.9 V. As the voltage decreases to 0.8 V, 0.75 V, and 0.7 V,
each 2-MB section consisting of C2, C3, and C4 cells will, respectively, be
disabled in turn. Within their range of valid operating voltages the resulting
cache failure probability of each of the 6-MB, 4-MB, and 2-MB sections of
the LLC is acceptable. Using this architecture, we can reduce the total area
dedicated to SRAM cells by 18 percent, and therefore, the total LLC area by
16 percent if we assume 85-percent array efficiency. We also explored two other
LLC architectures: (1) a 4-MB/2-MB/2-MB LLC consisting of C2/C3/C4
cells, and (2) a 2-MB/2-MB/4-MB LLC consisting of C1, C2, and C4 cells.
These two additional LLC architectures satisfy the yield target for the given
voltage range, 0.7–0.9 V as long as the proper section of the LLC is shut down
for each voltage down-transition. Figure 3 shows the total LLC cell area and
the operating voltage range of each section for four different LLC architectures
relative to the baseline 8-MB one.

A C5:2M:0.7V

C5:4M:0.7V

C4:2M:0.75V

C4:2M:0.75V C3:2M:0.8V

C3:2M:0.8V C2:2M:0.9V

C2:2M:0.9V

C6:8M:0.7V

C3:4:0.8V

C3:4:0.8VC5:2M:0.7V

C5:4M:0.7V

Baseline

LLC Arch. Capacity, VDDMIN and relative area associated w/each cell type in LLC Rel. tot. area

1.00

0.81

0.85

0.83

0.83

B

C

D

Figure 3: Total LLC cell area for different LLC configurations relative to the baseline. In
each colored box whose area is proportional to the total cell area for a given cell size
X:Y: Z represents cell size capacity and minimum operating voltage
(Source: Ghasemi et al., 2011[5])

“Using this architecture, we can reduce

the total area dedicated to SRAM cells

by 18 percent…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs | 43

Microarchitecture Techniques for LLC Way Shutdown
In our example in Figure 2, as supply voltage decreases, one LLC way
after another will be disabled in ascending order of cell size; a cell size is
associated with an LLC way. When a voltage/frequency down-transition is
triggered by dynamic voltage and frequency scaling (DVFS), an LLC way
that cannot operate reliably at the new voltage is shut down. In such a case,
the dirty LLC lines in the LLC way must be written back to main memory.
The mechanism for shutting down a subset of LLC is already available in
commercial multi-core processors to reduce leakage power consumption.[15]

Once the DVFS controller decides to decrease the operating voltage/
frequency of the processor, each local LLC controller shown in Figure 2
examines each line in the way that is being shut down. If the line is dirty, it
is either (a) written back to the memory controller queue (cache to memory
or C2M) or (b) moved to another way after evicting a least recently used
clean line in the same set (cache to cache or C2C). The next line is then
examined after the status bit of the dirty line is set to the “invalid” state.
This process is repeated until all lines are examined in the way that needs
to be shut down. Note that a way shutdown process using option (a) may
increase the traffic between on-chip cores and off-chip memory (and thus
power consumption). On the other hand, the LLC can still service read/
write requests to minimize the performance impact associated with the
shutdown operations.

Performance and Power Impact
Mixed-cell LLC architectures may impact performance and power both
positively and negatively. First, the leakage power remains significant due
to the use of larger cells. However, our heterogeneous LLC architectures
can reduce a substantial amount of the LLC leakage power since some
LLC ways are automatically disabled at low voltage/frequency operating
states. Second, the heterogeneous LLC architectures require significantly
less die area for the same capacity (Figure 3) compared to a cache with
all-robust cells. This freed-up die area can, in turn, be used to increase the
LLC capacity, providing higher peak performance at the highest voltage/
frequency state.

On the downside, two factors contribute to increasing memory traffic and
higher power consumption. First, the flushing operations required before
reducing voltage/frequency and disabling LLC ways increases memory traffic.
Second, the reduced LLC capacity at low voltage causes more misses and
therefore more memory traffic. These effects reduce overall performance and
increase memory system power consumption. However, one should note
first that workloads that need high performance would spend a substantial
fraction of their runtime at the high voltage/frequency states. Furthermore,
the interval of voltage/frequency changes is often longer than 10 milliseconds
in a commercial operating system, mainly due to the performance penalty
associated with PLL re-locking time (tens of microseconds) for changing

“…heterogeneous LLC architectures

can reduce a substantial amount of

the LLC leakage power…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

44 | Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs

frequency.[16] This makes the overall performance impact of the flushing
operations quite small; on average, the performance degradation is less than
0.5 percent even with the 1ms voltage/frequency change interval when
combined with the C2C scheme.

Evaluation Summary
We evaluated our architecture using Simics[12] augmented with GEMS[14]
running four commercial workloads and two memory-intensive SPEC[19]
workloads. A more detailed analysis of our results is presented in.[5] Our
proposed LLC architecture reduces the LLC total cell area by 15–20 percent
without impacting high-voltage performance, compared to an all-robust
LLC. Comparing the same cache area as an all-robust LLC, our architecture
provides a higher cache capacity, leading to an average 15 percent higher
peak performance. The performance impact of the proposed architecture is
negligible when various voltage/frequency states are explored by DVFS as a
function of changing performance and power demands. The proposed LLC
architecture reduces their leakage power due to way disabling at low voltage.
Overall energy consumption is reduced by 5–10 percent even though extra
energy consumption is required to support the slightly longer runtimes and
more frequent accesses to the LLC and off-chip memory.

A Mixed-Cell Architecture for Multi-Core Systems
The motivation for our second mixed-cell cache architecture[8] is to enable the
whole cache at low voltage, and therefore avoid a higher cache miss rate and
improve low-voltage performance. This is needed for TDP-limited multi-core
architectures where all cores can only be active at low voltage. To achieve
this goal, we need to protect modified lines by storing them in robust cells,
while using the remainder of the cache for clean lines. We use simple error
detection and correction mechanisms to detect errors in clean lines, allocate
write misses to robust lines, and read misses to clean lines. On a subsequent
write to a clean line, we examined three alternatives to ensure modified data
is not lost.

Cache Hierarchy with Mixed-Cell Support
Figure 4 shows all three levels of our cache hierarchy with support for robust
cells. Our baseline cache hierarchy uses a 32-KB 8-way L1 cache, 256-KB
8-way L2 cache, and a 4-MB 16-way LLC (L3). For each level in the cache
hierarchy, we implement two ways with robust cells, while the remaining ways
use standard (non-robust) cells. This adds an area overhead of 25 percent
(L1 and L2) and 12.5 percent (L3) for the cache data array. We add a status bit
associated with each tag indicating whether the associated line is a robust way
or a non-robust way. We don’t necessarily need this extra bit if the robust ways
are fixed to two specific ways (Way 0 and Way 1 in Figure 4). We also add an
extra LRU bit since we implement a different replacement algorithm in the
low-voltage mode.

“Our proposed LLC architecture

reduces the LLC total cell area by

15–20 percent without impacting

high-voltage performance…”

“…we need to protect modified lines

by storing them in robust cells…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs | 45

(a) Heterogeneous Cell Design in the 8-way L1 Data Cache. Shaded Ways 0 and 1 Use Robust Cells.

Per-Byte
Parity

Extra Low
Voltage LRU bits

...
...

...

Cache line tag

Cache tag array ...

C
ac

he
 S

et
s ...

...

Way 0 Way 1 Way 7

...

Cache line data

Cache data array ...

Way 7Way 1Way 0

Robust/Normal Bit

Way 2

Two Robust Ways Six Non-Robust Ways8-Way Set Associative Cache

(c) Heterogeneous Cell Design in the 16-way L3 Cache. Ways 0 and 1 Use Robust Cells.

Extra Low
Voltage LRU bits

SECDED
ECC Bits

...
...

...

Cache line tag

Cache tag array ...

C
ac

he
 S

et
s

...

Cache line data

Cache data array ...

Way 15Way 1Way 0

Robust/Normal Bit

Two Robust Ways 14 Non-Robust Ways

...Way 0 Way 1 Way 4 Way 15Way 2 Way 3

...

16-Way Set Associative Cache

(b) Heterogeneous Cell Design in the 8-way L2 Cache. Ways 0 and 1 Use Robust Cells.

Extra Low
Voltage LRU bits

...
...

...

Cache line tag

Cache tag array ...

C
ac

he
 S

et
s ...

...

Way 0 Way 1 Way 7

...

Cache line data

Cache data array ...

Way 7Way 1Way 0

Robust/Normal Bit

Way 2

Two Robust Ways Six Non-Robust Ways8-Way Set Associative Cache

SECDED
ECC Bits

Figure 4: A Mixed-cell cache hierarchy: L1 cache uses parity, while the L2 and L3 use SECDED ECC
(Source: Khan et al., 2013[8])

Each cache level has a different requirement for error detection and correction.
Since the L1 cache is byte-accessible and extremely latency sensitive, we
use a parity bit for each byte in the L1, similar to many Intel® AtomTM and
Intel CoreTM processors. We use simple SECDED ECC for each line in the
L2 and L3 caches. We provide this protection for both robust and non-robust
lines to account for soft errors as well as voltage-dependent failures. In general,
detectable errors in clean data are recoverable from the next cache level or from
memory. However, detectable errors in dirty lines may not be recoverable.
To minimize detectable unrecoverable errors (DUEs), we handle modified data
differently from unmodified data.

“To minimize detectable unrecoverable

errors (DUEs), we handle modified

data differently from unmodified

data.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

46 | Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs

If an error is detected in a clean line, it is treated like a cache miss and is
obtained from the next cache/memory level. For modified data, however, we
must ensure a very low probability of failure, which we achieve through the
use of robust cells. This is particularly true in the L1, where parity is unable to
correct bit errors and the increased robustness of the cell allows us to minimize
the likelihood of bit errors.

To simplify our L1 cache implementation, we handle all accesses to failing
lines as cache misses. Since the number of such lines is small, this has little
impact on performance. For the L2 and L3 caches, SECDED ECC corrects
most errors. Errors that are detected but not corrected (for example, lines with
two errors) are handled as cache misses and obtained from the next cache level
or from memory. L2 and L3 lines that incur double-bit errors can be disabled
to avoid undetectable errors, that is, silent data corruption (SDC), when soft
errors hit the same line. Our analysis shows that the probability of failures in
robust cells is extremely low at the voltages we consider. For example, we find
that 99.9 percent of the L3 caches will suffer failures in less than 1 percent of
all lines at low voltage.[8]

Our mixed-cell cache handles writes differently from reads. We need to satisfy
the condition of storing modified data only in robust ways. To achieve this
objective, we modify the cache replacement policy to handle write misses
differently from read misses, and also need to handle subsequent writes to non-
robust lines, as we explain in the next two subsections.

Changes to Cache Replacement Policy
We assume the baseline caches implement a least recently used (LRU)
replacement policy to simplify our explanation, though the proposed
mechanism could be applied to other replacement policies. In our mixed-cell
cache architecture, we allocate write misses only to robust ways and read misses
to non-robust ways.

The flowchart in Figure 5 demonstrates changes we made to the cache
replacement policy. On a read miss, we choose a replacement victim,
NR_LRU, only from non-robust ways based on LRU bits. On a write miss,
we choose a victim, GLOBAL_LRU, which is the LRU line among all ways of
the set (both robust and non-robust). If the victim line is robust, we trigger a
writeback for modified data and allocate the new line in its place. If the chosen
victim is in a non-robust way, we choose the LRU line from the two robust
ways (RB_LRU), trigger a writeback for modified data to convert the RB_LRU
line to a clean line, move the RB_LRU line to use the GLOBAL_LRU line’s
storage, and allocate the new line to the RB_LRU line.

An alternative implementation we investigated was to implement LRU for two
disjoint groups of lines for each cache set: robust lines and non-robust lines.
However, some benchmarks, where writes represent a significant fraction of
all misses, suffered significant performance losses when write-allocates were
limited to choose a victim only from robust ways. We still observed significant

“…we allocate write misses only to

robust ways and read misses to non-

robust ways.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs | 47

performance losses even when the number of L3 robust ways increased from
two to four or eight. This motivated our modified algorithm that chooses a
GLOBAL_LRU victim on a write miss. While some benchmarks are affected
due to limiting victim selection for read misses to only non-robust ways, the
performance losses are small since each cache set has many more non-robust
lines than robust lines (6 out of 8 for the L1 and L2 caches, and 14 out of 16
for the L3 cache).

Write

Choose Victim GLOBAL_LRU
from all lines in set

Victim Type
Robust Non-Robust

Choose Victim RB_LRU from
robust lines in set

Read

Choose Victim NR_LRU from
non-robust lines in set

Allocate New Line in
NR_LRU’s location, Update

status bits

Cache Miss Type

Writeback Data in the
RB_LRU Line

Move RB_LRU line to
GLOBAL_LRU’s location,

Update status bits

Allocate new line in
RB_LRU’s location,
Update status bits

Writeback Data in the
GLOBAL_LRU Line

Allocate new line in
GLOBAL_LRU’s location,

Update status bits

Figure 5: Changes to cache replacement policy
(Source: Alameldeen et al., 2013)

Handling Writes to Non-Robust Lines
Our mixed-cell cache architecture needs to prevent DUE and SDC for
modified data. It is straightforward to implement this for lines allocated on
a write miss, since the cache replacement algorithm would allocate them to
robust cells. However, for lines that were allocated to non-robust ways on a
read miss, we explore different alternatives to prevent failures.

Writeback
We handle the write to a non-robust line like we would for a write-through
cache. We store modified data in the same non-robust line, but convert it
to a clean line by writing back the data immediately to the next cache level.

“Our mixed-cell cache architecture

needs to prevent DUE and SDC for

modified data.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

48 | Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs

This writeback traffic causes significant network congestion, as well as power and
latency overhead. A write to the L1 cache can trigger cascading writes all the way
to memory if the L2 and L3 caches allocated the same line to non-robust ways.

Swap
We observe that a write to a cache line is often followed by more writes to the
same cache line. To reduce writeback traffic, we handle a write to a non-robust
line by swapping with the LRU way of robust lines in the set, RB_LRU.
The RB_LRU line triggers a writeback to convert to a clean line. The RB_LRU
line is then swapped with the written line. The status and LRU bits are also
swapped between the two cache tags. This approach reduces traffic as it is more
likely to write to the most recently written line than it is to write to the LRU
robust line. We model this mechanism’s overhead by blocking access to the
cache for three cycles (L1) or six cycles (L2 and L3 that have 32-byte accesses)
to account for using the cache read and write ports to perform the swap.

Duplication
To avoid writeback traffic and the additional swap latency, we explore trading
off capacity to save this overhead. In this mechanism, we assign each two
consecutive non-robust lines as “partner lines” similar to. [21] For example, in
Figure 5’s L1 cache, the line in way 2 is a partner line to that in way 3, the line
in way 4 is a partner line to that in way 5, and the line in way 6 is a partner
line to that of way 7. When a write occurs to a non-robust line, we evict its
partner line and write the data to both lines, using two extra cycles. We modify
the replacement algorithm so that the partner line is always invalid and not a
candidate for replacement. This duplication causes losing some cache capacity,
but avoids writeback traffic and swap overhead. When writing to a duplicate
line, we perform the write to both the original line and its partner. When
reading from a duplicate line, we check parity (L1) or ECC (L2/L3), and
trigger a read from the partner line if an error is detected.

Evaluation Summary
We evaluated a power-constrained system with the ability to operate one, two,
and four cores within the same power budget using CMP$im[7] and SPEC
benchmarks.[19] A more detailed analysis of our results is presented in.[8] To
support four active cores, our hypothetical system used a mixed-cell cache
architecture to operate at 590 mV. In this mode, the 75 percent capacity loss
experienced by our baseline mixed-cell cache architecture resulted in a
12 percent performance loss. Our proposal delivers a 9.5 percent performance
benefit relative to a non-mixed cell baseline using only robust memories, which
is similar to the performance improvement for our mechanism in the section
“LLC Implementation Using Heterogeneous Cell Sizes to Support Low Vmin.”
However, our design avoids significant reductions in cache size at low voltage,
improving multi-core performance by up to 17 percent on average and saving
50 percent of the L1 dynamic power compared to using only robust cells.
While the writeback mechanism incurs significant overheads, both swap and
duplication achieve significant performance improvements and power reductions.

“…our design avoids significant

reductions in cache size at low

voltage…”

“…improving multi-core performance

by up to 17 percent on average and

saving 50 percent of the L1 dynamic

power…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs | 49

Conclusions
In this article, we showed that mixed-cell memory designs could play a key
role in achieving the right balance between performance, power, and reliability
for single-core and multi-core systems. For mixed-cell designs, part of the
memory structure is built with cells that are more robust and failure-resistant,
while the rest is designed using traditional cells. Robust cells ensure resiliency
under low-voltage conditions to protect the most vulnerable data, while the
rest of the memory structure could be used to store redundant data to improve
performance.

We showed how this concept works using two specific examples. First, our
heterogeneous LLC system only turns on the robust portion at low voltage,
while using the whole cache at high voltage. This mechanism achieves significant
power savings at low voltage and significant performance improvements at high
voltage compared to a uniformly robust cache design. Second, our multi-core
mixed cell architecture uses the whole cache (including the non-robust portion)
at low voltage while ensuring modified data is not lost. This mechanism enables a
multi-core system where all cores are active in a TDP-limited design and achieves
significant performance improvements and power savings at low voltage. The
same concept could be used throughout the entire memory hierarchy to improve
memory resiliency without sacrificing performance or energy efficiency.

Acknowledgements
We are very grateful to Aamer Jaleel who helped us with his simulator,
CMP$im. Work at the University of Wisconsin was supported by an NSF
grant (CCF-1016262), a Fall Competition Multidisciplinary Research Award
from the University of Wisconsin-Madison Graduate School, and NSF
CAREER Award (CCF-0953603).

References
[1]	 M. Agostinelli, et al., “Erratic fluctuations of SRAM cache Vmin at

the 90 nm process technology node,” IEDM Technical Digest, pp.
655–658, Dec. 2005.

[2]	 Arup Chakraborty, et al., “E < MC2: Less Energy through Multi-
Copy Cache,” Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), pp. 237–246, Oct. 2010.

[3]	 Zeshan Chishti, et al., “Improving Cache Lifetime Reliability
at Ultra-low Voltages,” International Symposium on
Microarchitecture, pp. 89–99, Dec. 2009.

[4]	 Ronald G. Dreslinski, et al., “Reconfigurable Energy Efficient Near
Threshold Cache Architectures,” International Symposium on
Microarchitecture, pp. 459–470, Dec. 2008.

“This mechanism enables a multi-core

system where all cores are active in a

TDP-limited design…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

50 | Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs

[5]	 Hamid Reza Ghasemi, Stark Draper, and Nam Sung
Kim, “Low-Voltage On-Chip Cache Architecture using
Heterogeneous Cell Sizes for Multi-Core Processors,”
International Symposium on High-Performance Computer
Architecture, pp. 38–49, Feb. 2011.

[6]	 Intel Corporation, “Intel® Turbo Boost Technology in Intel® CoreTM
Microarchitecture (Nehalem) Based Processors,” White Paper, 2008.

[7]	 Aamer Jaleel, et al., “CMP$im: A Pin-Based On-The-Fly
Multi-Core Cache Simulator,” 4th Workshop on Modeling,
Benchmarking and Simulation, Beijing, China, June 2008.

[8]	 Samira M. Khan, et al., “Improving Multi-Core Performance Using
Mixed-Cell Cache Architecture,” International Symposium on
High-Performance Computer Architecture (HPCA), February 2013.

[9]	 Muhammad M. Khellah, et al., “Read and Write Circuit Assist
Techniques for Improving Vccmin of Dense 6T SRAM Cell,” Conf.
on Int. Circuit Design and Technology, pp. 185–189, June 2008.

[10]	 Jangwoo Kim, et al., “Multi-bit Error Tolerant Caches Using
Two-Dimensional Error Coding,” International Symposium on
Microarchitecture, pp. 197–209, Dec. 2007.

[11]	 Jaydeep Kulkarni and Kaushik Roy, “Ultra-low Voltage Process
Variation Tolerant Schmitt Trigger based SRAM Design,” IEEE
Transactions on VLSI Systems, 2011.

[12]	 P. Magnusson et al., “Simics: A full system simulation platform,”
IEEE Computer, 35(2): 50–58, Feb. 2002.

[13]	 Wai-Kei Mak and Jr-Wei Chen, “Voltage Island Generation under
Performance Requirement for SoC Designs,” Asia and South
Pacific Design Automation Conference, Jan. 2007.

[14]	 M. Martin et al., “Multifacet’s General Execution-Driven
Multiprocessor Simulator (GEMS) Toolset,” Computer
Architecture News, 33(4): 92–99, Sep. 2005.

[15]	 A. Naveh et al., “Power and thermal management in the Intel®
Core Duo Processor,” Intel Technology Journal, 10(2): 109–122,
May 2006.

[16]	 Jaehyun Park, et al., “Accurate Modeling and Calculation of
Delay and Energy Overheads of Dynamic Voltage Scaling in
Modern High-Performance Microprocessors,” International
Symposium on Low-Power Electronics and Design (ISLPED),
pp. 419–424, Aug. 2010.

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs | 51

[17]	 David Roberts, Nam Sung Kim and Trevor Mudge, “On-Chip
Cache Device Scaling Limits and Effective Fault Repair Techniques
in Future Nanoscale Technology,” Digital System Design
Architectures, Methods and Tools, pp. 570–578, Aug. 2007.

[18]	 Stanley Schuster, “Multiple Word/Bit Line Redundancy for
Semiconductor Memories,” IEEE Journal of Solid-State Circuits,
vol. 13, no. 5, pp. 698–703, Oct. 1978.

[19]	 SPEC CPU2006 Benchmarks, http://www.spec.org/cpu2006/

[20]	 Chris Wilkerson, et al., “Trading off Cache Capacity for Reliability
to Enable Low Voltage Operation,” International Symposium on
Computer Architecture, pp. 203–214, June 2008.

[21]	 Wei Zhang, et al., “ICR: In-Cache Replication for Enhancing
Data Cache Reliability,” International Conference on Dependable
Systems and Networks, pp. 291–300, June 2003.

[22]	 S.-T. Zhou et al., “Minimizing total area of low-voltage SRAM arrays
through joint optimization of cell size, redundancy, and ECC,” Proc.
IEEE International Symposium on Computer Design, pp. 112–117,
Oct. 2010.

Author Biographies
Alaa R. Alameldeen received BSc and MSc degrees from Alexandria
University, Egypt, in 1996 and 1999, respectively, and MSc and PhD degrees
from the University of Wisconsin–Madison, in 2000 and 2006, respectively, all
in computer science. He is a research scientist at Intel Labs, Hillsboro, Oregon.
His current research focuses on energy-efficient memory and cache design.

Nam Sung Kim is an assistant professor at the University of Wisconsin–
Madison. He has been conducting interdisciplinary research that cuts across
device, circuit, and architecture for power-efficient computing. His research has
been supported by National Science Foundation (NSF), Semiconductor Research
Corporation (SRC), Defense Advanced Research Project Agency (DARPA),
AMD, IBM, Samsung, Microsoft, and Korean Ministry of Education, Science,
and Technology. Prior to joining the University of Wisconsin–Madison, he was a
senior research scientist at Intel from 2004 to 2008, where he conducted research
in power-efficient digital circuits and processor architecture. He also has served
several prominent international conferences as a technical program committee
member. Nam Sung Kim has been the recipient of IEEE Design Automation
Conference (DAC) Student Design Contest Award in 2001, Intel Fellowship in
2002, and IEEE International Conference on Microarchitecture (MICRO) Best
Paper Award in 2003, NSF CAREER Award in 2010, and IBM Faculty Award
in 2011 and 2012. His current research interest is designing robust, low-power
computing systems in nanoscale technology. He is an IEEE senior member

Intel® Technology Journal | Volume 17, Issue 1, 2013

52 | Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs

and holds a PhD in Computer Science and Engineering from the University of
Michigan–Ann Arbor, and both an MS and a BS in Electrical Engineering from
Korea Advanced Institute of Science and Technology.

Samira M. Khan is a post-doctoral researcher associated with Intel Labs
and Carnegie Mellon University. She received her PhD from the University
of Texas at San Antonio. Her research focuses on new microarchitectural
designs that can make future microprocessors fast and energy efficient. She
received her BSc degree from Bangladesh University of Engineering and
Technology.

Hamid Reza Ghasemi is a PhD candidate at the Computer Sciences
Department of University of Wisconsin–Madison. He received a BS and
MS degree from the Electrical and Computer Engineering Department of
University of Tehran. His research interests include computer architecture,
power efficient high-performance processing, and low power architecture.

Chris Wilkerson received a master’s degree from Carnegie Mellon University
in 1996. He is currently a research scientist at Intel Labs, Hillsboro,
Oregon. He has authored or coauthored a number of papers published on
microarchitectural topics including value prediction, branch prediction, cache
organization, and runahead and advanced speculative execution. His current
research interests include microarchitectural mechanisms to enable low-power
operation for microprocessors.

Jaydeep Kulkarni received a BE degree from the University of Pune, India,
in 2002, an M. Tech. degree from the Indian Institute of Science (IISc),
Bangalore, India, in 2004, and a PhD from Purdue University, in 2009,
all in electrical engineering. During 2004–2005, he was with Cypress
Semiconductors, Bangalore, India, where he was involved with low-
power SRAM design. He is currently with the Circuit Research Lab, Intel
Corporation, Hillsboro, Oregon, working on embedded memories, low-voltage
circuits, and power management circuits. Dr. Kulkarni was the recipient of the
Best M. Tech Student Award from IISc Bangalore in 2004, two SRC Inventor
Recognition Awards, the 2008 ISLPED Design Contest Award, the 2008 Intel
Foundation PhD Fellowship Award, and the Best Paper in Session Award at
2008 SRC TECHCON.

Daniel A. Jiménez is an Associate Professor in the Department of
Computer Science and Engineering at Texas A&M University. Previously
he was a full Professor and Chair of the Department of Computer Science
at The University of Texas at San Antonio and Associate Professor in the
Department of Computer Science at Rutgers University. His research focuses
on microarchitecture and low-level compiler optimizations. He introduced
and developed the perceptron branch predictor which has inspired the
design of two implemented microarchitectures: the AMD “Bobcat” core
and the Oracle SPARC T4. Daniel earned his BS (1992) and MS (1994) in
Computer Science at The University of Texas at San Antonio and his PhD
(2002) in Computer Sciences at The University of Texas at Austin. From

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs | 53

2002 through 2007, Daniel was an Assistant Professor in the Department
of Computer Science at Rutgers. In 2005 Daniel took sabbatical leave at the
Technical University of Catalonia (UPC) in Barcelona, Catalonia, Spain.
In 2008 he was promoted to Associate Professor with tenure at Rutgers.
He returned to his native Texas to take a position at UT San Antonio. He
recently returned from a second sabbatical leave in Spain at the Barcelona
Supercomputing Center and was General Chair of the 2011 IEEE HPCA
conference. He is an NSF CAREER award recipient and ACM Distinguished
Scientist.

54 | STTRAM Scaling and Retention Failure

Contributors

Intel® Technology Journal | Volume 17, Issue 1, 2013

Ever larger on-die memory arrays for future processors in CMOS logic
technology drive the need for dense and scalable embedded memory
alternatives beyond SRAM and eDRAM. Recent advances in nonvolatile
spin transfer torque (STT) RAM technology, which stores data by the spin
orientation of a soft ferromagnetic material and shows current induced
switching, have created interest for its use as embedded memory. Any attractive
memory technology would be a viable solution if it could scale well for a few
generations. We study the STTRAM scaling roadmap for last level cache
(LLC) and how much dimensional scaling is feasible with this technology. This
article will show that the main limitation on STTRAM dimensional scaling
will be posed by retention time failure. When an STTRAM cell is scaled,
the thermal stability factor (D) scales down linearly with the area, and causes
unreliability due to retention failure. Today manufacturing techniques can
fabricate nonvolatile STTRAM cells (with D ≥ 60 kT). Researchers are actively
working at two fronts to pave the STTRAM scaling path for a few generations:
1) Novel manufacturing techniques that can facilitate fabrication of non-
volatile STTRAM cells (with D ≥ 60 kT), 2) Architecture solutions that can
relax the non-volatility condition and drop the required lower bound of 60 kT.

In this article, we focus on the solutions in the second category, that is, relaxing
the nonvolatility condition to allow lower bound on D. Although there have
been an extensive number of publications on dramatically relaxing the D, we
believe these solutions alone can lower the bound on the thermal stability down
one more generation before they become too costly. Beyond one more generation
scaling, the dimensional scaling would depend on new manufacturing techniques
to fabricate STTRAM cells with high thermal stability at scaled dimensions.

Introduction
As the number of cores in a chip continues to increase linearly, the demanded
on-die memory capacity is expected to grow linearly as well. The limited power
envelope of the future embedded and general-purpose systems makes emerging
memory technologies, like spin transfer torque (STT) RAM technology, with
zero-static power very attractive solutions in the cache hierarchy. STTRAM
stores data by the spin orientation of a soft ferromagnetic material and
shows current induced switching. When the spin-polarized current passes
through a mono-domain ferromagnet, the ferromagnet absorbs some of the
angular momentum of the electrons. It creates a torque that causes a flip in
the direction of magnetization in the ferromagnet. This is used in magnetic
tunneling junction (MTJ) based STTRAM cells where a thin insulator (MgO)
is sandwiched between a fixed ferromagnetic layer (polarizer) and the free

“This article will show that the main

limitation on STTRAM dimensional

scaling will be posed by retention time

failure.”

STTRAM Scaling and Retention Failure

Contributors

Helia Naeimi
Intel Labs, Intel Corporation

Charles Augustine
Intel Labs, Intel Corporation

Arijit Raychowdhury
Georgia Institute of Technology

Shih-Lien Lu
Intel Labs, Intel Corporation

James Tschanz
Intel Labs, Intel Corporation

Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure | 55

layer (storage node). Depending on the direction of the current flow, the
magnetization of the free layer is switched to a parallel (P: low resistance state)
or antiparallel (AP: high resistance state) state.

STTRAM has the potential to replace the conventional on-die memory
because of its zero standby power, high density, competitive read performance,
and CMOS compatibility. Alongside the above attractive features, a viable
new technology has to demonstrate a clear path to move to smaller technology
nodes as the underlying CMOS technology scales down. STTRAM technology
scaling is challenging with the nonvolatility condition. As the STTRAM
cell scales down, assuming a volumetric dependence of thermal stability, the
thermal stability factor (∆) scales down linearly with the area. Thermal stability
factor is the core feature of STTRAM cell. It identifies how much stability the
MTJ has against thermal noise, which directly impacts the data retention time.
The higher the thermal stability factor is, the longer the data is retained in the
cell. A nonvolatile STTRAM cell (retaining data 10+ years) requires ∆ ≥ 60 kT.
Although cells with ∆ ≥ 60 kT are fabricated today, fabricating nonvolatile
STTRAM cells with practical write performance is not guaranteed at deeply
scaled dimensions. The scaling of STTRAM cells every generation with ∆ ≥ 60
and practical write performance requires novel manufacturing approaches or
materials.

Using STTRAM in the last level cache (LLC) brings up an interesting
opportunity. The data in LLC does not require 10+ years of retention time;
hence the condition on high ∆ can be relaxed. The purpose of this article is to
provide a realistic assessment of relaxing the thermal stability in STTRAM cells
in LLC. The notion of scaling ∆ to support dimensional scaling and also lower
WRITE current has been published quite extensively[1][2][3][4][5][6] and seems to
provide a scaling path beyond what technology can provide. Our aim in this
article is to understand the realistic limits of ∆, and how many generations of
scaling will such change in the nonvolatility condition provide. To formulate
this problem and allow the readers to follow our method of evaluation, we
provide a detailed description of our numerical and analytical simulators,
which have been built bottom-up. In conclusion we will show that, contrary
to what has been previously published, with a true assessment with realistic
process parameter variations, relaxing nonvolatility condition by the means of
architectural solutions do assist dimensional scaling (and the scaling of ∆), but
the advantage is limited.

In the rest of this article, we start by reviewing STTRAM through coupled
transport and LLG solvers in the section “Basics of STTRAM with Magnetic
Tunneling Junction (MTJ).” This section will continue with read, write, and
retention failure of STTRAM. Then we review our study of retention failure
as the technology scales well as architectural solutions to facilitate scaling ∆ in
the section “Retention Failure and Scaling.” Then we complete our retention
failure study by including device variations and the challenges of retention time
testing in the section “Process Variation and Retention Time Testing,” followed
by an article summary.

“Using STTRAM in the last level

cache (LLC) brings up an interesting

opportunity. The data in LLC does not

require 10+ years of retention time;

hence the condition on high ∆ can be

relaxed.”
“Our aim in this article is to

understand the realistic limits of ∆,

and how many generations of scaling

will such change in the nonvolatility

condition provide.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

56 | STTRAM Scaling and Retention Failure

Basics of STTRAM with Magnetic Tunneling
Junction (MTJ)
Here we provide a detailed description of the bitcell, its READ and WRITE
circuits, and the principle technology/material parameters that need to be
considered. The background material will also provide someone unfamiliar
with the operation of an STTRAM cell a basic understanding of the cell
behavior and the rigorousness required to perform a reasonable assessment of
the bitcell.

It is a known fact that when a spin-polarized current passes through a
mono-domain ferromagnet, it attempts to polarize the current in its
preferred direction of magnetic moment. As the ferromagnet absorbs some
of the angular momentum of the electrons (spin transfer effect or STT), it
creates a torque that causes a flip in the direction of magnetization in the
ferromagnet. The application of spin transfer effect in a memory device
was enabled with a structure termed magnetic tunneling junction (MTJ).
MTJ consists of two ferromagnetic layers separated by a tunneling barrier
(such as Al2O3 or MgO) as shown in Figure 1(a) and Figure 1(b). The first
ferromagnetic layer is fixed in magnetization and acts as a polarizer and the
second layer orientation can be altered with the help of spin transfer torque
and is referred to as a free layer. The resistance difference in this structure
is termed tunneling magneto resistance (TMR = [RAP-RP]/RP) due to the
tunneling phenomenon. Switching of Al2O3-based MTJ was experimentally
shown in 2004 and it was replaced by MgO-based MTJ to support better
readability with TMR as high as ~200 percent at room temperature.[19]
TMR improvement in MgO-based MTJs can be attributed to coherent
spin-polarized tunneling.

MTJ stacks can be integrated with an access transistor to realize a bitcell
structure 1T-1MTJ as shown in Figure 1(c). Figure 2 illustrates the 1T-1MTJ
memory bitcell schematic and the voltage polarities for read (RD) and write
(WR). The bitcell is read by precharging the BL to VRD and allowing it to
decay through the cell. A reference BL, which is simultaneously drained using
a reference cell, acts as the sense amplifier reference. Both the reference and
the accessed BLs are clamped using a PMOS current source, so that a constant
differential is maintained at the sense amplifier input even for very long access
times. On the other hand a bidirectional writing scheme is used for writing
into the bitcell. For writing “1”, BL is charged to VWR and SL is connected
to VSS. For opposite direction switching, SL is biased at VWR and BL at VSS.
Figure 3 shows the characteristics of MTJ during read and write operations.
Write voltages for P-to-AP (VWR

P→AP) and AP-to-P (VWR
AP→P) switching and

read voltage (VRD) are indicated in the diagram.

To simulate transport and magnetization dynamics in multilayer magnetic
tunnel junctions (MTJs) we have developed a self-consistent simulation
framework based on non-equilibrium Green’s function (NEGF) formalism
and Landau-Lifshitz-Gilbert (LLG).[25][26] NEGF can numerically estimate
the spin current flowing through the MTJ structure and LLG can

Figure 1: An MTJ stack with (a) parallel spin
configuration (b) antiparallel spin configuration and
(c) integration with the CMOS access transistor
in the metal stack, showing Bit Line (BL), Source
Line (SL) and Word Line (WL)
(Source: Intel Corporation, 2013)

Pinned Ferromagnetic Layer

Tunneling oxide

Free Ferromagnetic Layer

(a)

(b) (c)

SL
WL

BL

Poly Metal 1 Metal 3Metal 2 n-diff MTJ

Figure 2: Circuit schematic
and table showing RD and WR
directions. For WR, the VCC will
be limited by the VMAX of the
technology node
(Source: Intel Corporation, 2013)

0VCC VCC

0VRD < VCCVCCRD

0

SL

VCC VCC

WL

WRAP P

WRP AP

BL

VBLVSL

VWL

SL BL

WL

Rmem

RD

WR

Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure | 57

comprehend the dynamics of the free layer ferromagnet under spin current/
spin torque. NEGF and LLG are coupled together for a self-consistent
simulation framework[28][31] and are experimentally calibrated with material
parameters reported in [27].

STTRAM Failure Analysis
Due to aggressive scaling of STTRAM cell structures, process variations
and thermal disturbances can negatively impact the memory performance.
The process variation and thermal disturbance causes three main failure
modes: 1) Read failure, 2) Write failure, and 3) Retention failure. In our
analysis of these failure modes we considered the following variation
parameters.

In this analysis we have considered variations both in the access transistor
and in the MTJ. Variations in the MTJ can be due to five major parameters,
which are:

(a) � systematic lithographic variation of critical dimensions of feature size
F with s  = 10 percent

(b) � normally distributed localized fluctuation of magnetic anisotropy,
K(K = MSHk)

[22]

(c) � thermally activated initial angle of precession [P(q ) ≈ 2(K/kBT)
exp(−Ksin2q /kBT)]

(d)  thermal component of internal energy with s ~kBT

(e)  variation in MgO thickness

For the access transistor we have considered variations in threshold voltage Vth.
Using the response surface technique[30], we formulate read (RD) and write
(WR) failure probabilities, as well as retention failure rate for the bitcell and for
a memory array.

Read Failure (RD Failure)
During reading bitcell value is identified using the reference current IREF.
When IRD > IREF, the bitcell state is P and when IRD < IREF , the state is AP.
Read failures in a bitcell can be either due to distinguishability of states
(P and AP) or due to read-disturb. In the first failure mechanism the states are
sense limited where IRD[AP state] > IREF or IRD[P-state] < IREF , or they can be
time limited where not enough bit-line (BL) differential has been developed
in the given read cycle time TRD. In the second failure mechanism (read-
disturb), we accidentally write into the cell while reading the cell due to larger
read current IRD > IC (IC = JCA). Since WR is bidirectional and RD is single
directional, only one type RD disturb (either P-to-AP or AP-to-P) can be
present during bitcell reading.

Figure 4 illustrates the probability density function (PDF) of IRD variation from
a typical Monte-Carlo run considering variations described above. The figure

Figure 3: V-J characteristics of
the MTJ. For symmetric JC, the
preferred RD direction is identical
to the WR direction for AP→P
transition. RD is performed at a
constant voltage VRD
(Source: Intel Corporation, 2013)

VAP P
WR

V P AP
WR

RP AP

RAP P

VRD

JRD

JCJC

P

JRD
AP

1

0.5

20.5

0

21
22 21 0 1 2

J [A/cm2] 3 106

V
M

T
J

[V
]

Figure 4: PDF of RD current for a
default Monte-Carlo run (TMR = 100
percent; RA = 100Ω − um2) showing
the failure modes
(Source: Intel Corporation, 2013)

106

103

100

0

O

cc
u

re
n

ce
s

4 8

Normalized IRD

IRD
IREFLOW

IRD

IC

RD Disturb

Distinguis
hability

s/m 5 4%

HIGH

Intel® Technology Journal | Volume 17, Issue 1, 2013

58 | STTRAM Scaling and Retention Failure

shows the different modes of RD failure, namely distinguishability of states
and RD disturb (IRD(P) > IC).

Write Failure (WR Failure)
Figure 5 shows the switching of MTJ under both positive (AP→P
switching) and negative currents (P→AP switching) and associated
resistance changes. Write failure in a bitcell is the inability to write a
specific value into cells. It can be either due to higher JC or due to lower
access transistor current for a target write time TWR. As a result, either
IWRAP→P< ICAP→P or IWRP→AP< ICP→AP or both can happen. Figure 6 shows the
IWR variation in a typical Monte-Carlo run and WR failure is present when
IWRAP→P is lower than ICAP→P.

Retention Failure
Retention failure occurs when the content of an idle cell flips due to the
thermal noise. The thermal activation model of STTRAM suggests that a bit
flip has a Poisson distribution with time characteristic of te∆. Therefore the
probability that a bit flips n times in the unit of time t is:

Pflip(n) = ​ ​λ​n​​e​−λ​ ____ n!  ​� (1)

where , λ = ​  t ___ 
τe∆ ​ and τ is 1ns. The probability that a cell fails during time t is

the sum of the probability that it switches an odd number of time. Since the
first switching probability (Pflip (1)) is the dominating factor, the accumulated
probability of odd number of switching is very close to the accumulated
probability of the total number of switching. So we approximate the
retention failure probability with the probability of total number of flips.
Following the Poisson distribution this probability is:

Pret-fail ≅ ​Σ​n =1​ 
∞  ​ Pflip (n) = 1− exp(−t/exp(∆))� (2)

The retention failure rate is exponentially dependent on the thermal stability
factor (∆). As the STTRAM cell and the MTJ device scales down, assuming
a volumetric dependence of ∆, the thermal stability factor ∆ scales down
linearly with the area, causing exponentially increase in the retention failure
rate.

Figure 7 shows all the failure rates as the technology scales, for a 32-MB cache.
You can see that the retention failure will be the dominating source of error
as the technology scales. This graph shows that retention failure can stop
STTRAM scaling, and it needs to be addressed before any other issue. In the
following sections we review the effect of retention failure on scaling in more
detail, and propose solutions.

Figure 5: Normalized RMTJ as a
function of injected current density
(JC = 1.1 × 106 A/cm2)
(Source: Intel Corporation, 2013)

J [106A/cm2]

R
 [

N
o

rm
al

iz
ed

]

1.5

2

2122 0 1

1

2

RAP P

RP AP

RAP

RP

JCJC

TMR

Figure 6: PDF of WR current
for a default Monte-Carlo run
(JC = 106A/cm2; RAPA = 50Ω − um2)
showing the WR failure modes
(Source: Intel Corporation, 2013)

106

0

O

cc
u

re
n

ce
s

22 21 0 1 2

Normalized IWR

P AP AP P
WRI

WRI

WR

Failure

ICIC

Figure 7: The trends of the type
of failure
(Source: Intel Corporation, 2013)

PFAIL WR

PFAIL RD

PRET FAIL

PFAIL TOTAL

P
FA

IL
 C

H
IP

 [3
2M

B
]

100

1022

1024

Technology Node [nm]

8 11 15 22

Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure | 59

Retention Failure and Scaling
The stochastic process of retention failure resembles the well-known failure
behavior of soft errors induced by cosmic rays. Soft error mitigation has been
studied for decades, and the outcome of these studies can very well be applied to
STTRAM as well or at least has to be taken into consideration to find a solution
for STTRAM retention failure. The stochastic nature of error occurrence both in
the soft errors and in STTRAM retention failure can flip the bit content with no
warning or detectable signal. Therefore to ensure the data integrity by first, detect
whether an error has happened and second, correct it; we need to incorporate
some information redundancy in the array. The most efficient way of including
the redundant information is to use error correcting codes (ECC). Each cache
line is encoded separately with a number of code bits. Assuming a cache line
has 64 bytes (plus c bits of code), the failure probability of a line with an ECC
correcting e errors is a binomial cumulative distribution:

Pline-fail = 1 - ​Σ​i = 0​ 
e  ​ Pfail

i(1 − Pfail)
512 + c − i � (3)

This is the probability that more than e errors happen in a line and it either
goes undetected, or it is corrected to an incorrect value. Both of these two cases
fall under the Silent Data Corruption or SDC. As the name suggests these
are the types of errors that corrupt the data without being detected. When
designing a reliable system, an SDC budget is allocated to each part of the
system. Each part of the system has to be designed in a way that stays below
its SDC budget. The LLC array is allocated an SDC budget, which will be
divided equally among all the cache lines. To ensure the reliability of an array,
each cache line has to follow its SDC budget. Below we explain the expected
reliability failure of an array and how it is measured.

The SDC is measured in the number of failures in 1 million hours, which
is called FIT rate. The target SDC FIT rate of a system is picked based on
the sensitivity of the application. The SDC FIT rate of a CPU in today’s
supercomputer is expected to be around 10 (that is, 10 failures in 1 million
hours).[33] Since most of the CPU area is occupied by the LLC, the LLC will be
the main contributor to the CPU SDC FIT rate. So we assume the LLC SDC
FIT rate to be close to 10 as well. To ensure this SDC FIT rate for the array,
the cache line SDC has to be bounded by 10/N, where N is the number of
cache lines. Obviously the bound becomes tighter as the cache capacity grows.
Figure 8 shows the SDC FIT rate bound of a 64-byte cache line in LLC,
assuming linear cache capacity scaling. Any reliability measure for a cache line
has to ensure that the SDC FIT rate of a line falls below this curve. Therefore
the value of Pfail-line from Equation 4 has to stay below the red curve of Figure
8 to guarantee the 10 SDC FIT rate for the whole array structure. In the next
section we evaluate how ECC can guarantee this bound and what are the
associated costs.

“The stochastic process of retention

failure resembles the well-known failure

behavior of soft errors induced by

cosmic rays.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

60 | STTRAM Scaling and Retention Failure

Figure 8: Maximum cache line SDC FIT rate with the
technology and capacity scaling
(Source: Intel Corporation, 2013)

1.E210

1.E209

1.E208

1.E207

1.E206

1.E205

1.E204

64
M

B

12
8M

B

25
6M

B

51
2M

B

1G
B

Technology Node/Cache Capacity

Cache Line SDC FIT Rate

ECC and Scrubbing
The cost and complexity of error detection and correction circuitry of ECC
increase rapidly for larger ECCs. The higher the bit failure rate is, the stronger
code and more code bits are required. A large number of ECC bits take up
array size and detecting and correcting strong ECCs with a large number of
bits is a costly process from a performance and power point of view, which
adds unwanted latency and power usage to access the array. In order to balance
the number of ECC bits, one well-known technique is scrubbing.[8] During the
scrubbing process, each cache line is read periodically and checked for errors. If
there is an error, the line is corrected and written back. If the scrubbing process
is done at the right frequency, it prevents the accumulation of error bits in a
line; hence with the right scrubbing rate in place, we can achieve the target
SDC rate with smaller ECC.

We did our analysis on BCH codes (Bose and Ray-Chaudhuri code) that are
widely used in the memory architectures.[32] The detection and correction
latency of BCH code grows with the error correcting capability of the codes.
The access latency to an array is very critical, so we bound the ECC detecting
latency to 1 clock cycle (1 ns). This bound includes ECCs with up to 5-error
correcting capabilities.[10] So in this article we look at the codes up to 5-error
correcting, which includes: SECDED (single error correction and double error
detection), DECTED (double error correction and triple error detection),
3EC4ED, 4EC5ED, and 5EC6ED codes. For a 64-byte cache line, a code
with e error correction and e + 1 error detection capability requires 10e + 1
ECC bits.

Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure | 61

Besides the ECC costs, there are also costs associated with scrubbing as
well. Too frequent scrubbing consumes power and performance. During
the scrubbing process, lines are read one by one. After each line is read it is
checked using the ECC bits. If an error is detected then it is corrected and
written back to the array. If no error is detected, then there is no need to
rewrite the correct line. We use the timing model in [23] where the read access
is 3 ns, and it is constant with the technology scaling. The ECC checking
and correction takes one cycle, and write access takes 10 ns. Correction
and writing back happens rarely, since an error occurs rarely. Therefore the
scrubbing time is mainly reading and checking the lines. By using the read
buffer and pipelining the reading and checking process, the checking latency
is also hidden during scrubbing, and the main portion of the scrubbing is the
time to read all the lines one by one.

We bound the scrubbing performance overhead by 5 percent. With
5 percent performance overhead limit and read latency of 3ns, we ran
scrubbing experiment on SPEC CPU 2006 benchmark[34] that resulted
the following scrubbing rates of 11.5 Hz, 5.8 Hz, 1.9 Hz, 0.7 Hz , and
0.25 Hz for 64-MB (at 32 nm) array, 128-MB (at 22 nm) array, 256-MB
(at 15 nm) array, 512-MB (at 11 nm) array, and 1-GB (at 8 nm) array
respectively. The last two scrub rates are extrapolated from the simulation
data. Figures 9, 10, and 11 show the detail performance overhead of
scrubbing for 64-Mb single core, 128-MB double core, and 256-MB quad
core environment, respectively.

0.00%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

42
9.

m
cf

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al

ll

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

T
D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

46
5.

to
nt

o

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
1.

w
rf

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

Figure 9: Scrubbing overheads of 64-MB cache with single core processor at 11.5 Hz
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 1, 2013

62 | STTRAM Scaling and Retention Failure

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

42
9.

m
cf

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al

ll

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

T
D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

46
5.

to
nt

o

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
1.

w
rf

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

Figure 10: Scrubbing overheads of 128-MB cache with dual core processor at 5.8 Hz
(Source: Intel Corporation, 2013)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al

ll

45
3.

po
vr

ay

45
8.

sj
en

g

46
4.

h2
64

re
f

46
5.

to
nt

o

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

Figure 11: Scrubbing overheads of 256-MB cache with quad core processor at 1.9 Hz
(Source: Intel Corporation, 2013)

Based on the derived scrubbing rates, the new lower bound on the value of ∆ is
presented in Table 1. The ∆ value in Table 1 is generated in such a way that it
follows the SDC rate of Figure 8.

Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure | 63

Here we implemented a simple scrubbing algorithm. It simply blocks the
cache with the scrubbing frequency for the period of time that takes to read
all the cache lines. Of course, performing smarter scrubbing algorithm and
parallelizing the process can potentially facilitates higher scrubbing rates and
hence smaller lower bounds on ∆.

ECC type 64 MB 128 MB 256 MB 512 MB 1 GB

No ECC 60.0 60.0 60.0 60.0 60.0

SECDED 47.3 48.1 48.7 49.4 50.1

DECTED 39.8 40.5 41.2 41.9 42.5

3EC4ED 35.9 36.6 37.3 38.0 38.7

4EC5ED 33.6 34.2 35.0 35.6 36.3

5EC6ED 32.0 32.6 33.3 34.0 34.7

Table 1: Highest thermal stability scaling available with ECC, as the
technology and capacity scales
(Source: Intel Corporation, 2013)

In the next section we evaluate the power overheads of ECC and scrubbing.
We investigate the costs of adding ECC bits and scrubbing and the benefit of
lower write power as the result of scaled thermal stability.

Power Analysis
Here we first review our power model, and then explain the scrubbing costs.
The write power scales with the technology and the thermal stability.[23] The
read power at the first order is independent of the thermal stability factor and
stays constant in this analysis. We assume 3-to-1 read/write ratio for typical
operation. We assume 64-MB cache at 32nm and linear capacity increase at
every generation. We assume maximum LLC bandwidth usage in our analysis.
The array structure and power model follow the model in [23].

The goal of this power analysis is to show how much power saving is gained by
lower write power and how much power is consumed by ECC and scrubbing
process. Figure 12 summarizes the power analysis. The power numbers for
each array size and technology node are relative to the base case, which is at
32nm with ∆ = 60 kT and no scrubbing. For each array size and technology
node we evaluated 5 different ECC strengths. The lower bounds on the ∆ of
each of the ECCs and array sizes are available from Table 1. The relative power
consumption trend for each ECC and technology node is illustrated with one
bar in Figure 12.

The graph shows the scaled thermal stability reported in Table 1 that facilitate
close to one more dimensional scaling can save up to 5% in power by using
ECC and scrubbing.

“The graph shows the scaled

thermal stability reported in Table

1 that facilitate close to one more

dimensional scaling can save up

to 5% in power by using ECC and

scrubbing.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

64 | STTRAM Scaling and Retention Failure

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

64MB/32nm 128MB/22nm 256MB/15nm 512MB/11nm 1GB/8nm

Power Trend of STTRAM with Scaling

SECDED DECTED 3EC4ED 4EC5ED 5EC6ED No ECC

Figure 12: Relative power consumption of STTRAM array with 5 different ECCs
and no ECC
(Source: Intel Corporation, 2013)

DRAM-Style Refresh vs. ECC and Scrubbing
The idea of scaling ∆ to support lower power consumption has been widely
applied. Then to address the increased retention failure due to the scaled
∆, there are number of publications proposing DRAM-style refresh.[1][2][6][5]
DRAM-style refresh though popular and low cost, cannot provide any reliability
for STTRAM technology. Below we explain the details, starting by reviewing
the DRAM or eDRAM retention failure mechanism and how the refresh
process can boost the DRAM or eDRAM retention time, but not the STTRAM
cell retention time.

The data in DRAM cells is represented by the amount of charge on the
DRAM cell capacitor. As soon as the data is written into the DRAM cell,
the cell capacitor starts discharging gradually, and hence losing its state value
slowly. Figure 13 shows the discharge process and the retention failure as the
function of time for different cell capacitors. Note that the failure probability
is a sharp function. When the capacitor charge gradually reaches the set
threshold, the probability of a failure increases sharply (the figure shows
the success probability). Hence any time before the charge drops to the set
threshold the DRAM cell value can be read and the lost charge of the capacitor
can be restored. Figure 14 shows how the refresh process restores the charge
periodically and hence the retention failure is kept low by refreshing.

In STTRAM the retention failure is a stochastic process. A bit flip happens
due to the thermal noise and it happens almost instantly. So there is no gradual

“…DRAM-style refresh though

popular and low cost, cannot

provide any reliability for STTRAM

technology.”

“In STTRAM the retention failure is

a stochastic process. A bit flip happens

due to the thermal noise and it

happens almost instantly.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure | 65

degradation process similar to DRAM capacitor. Reading and writing back
like DRAM-style refresh will not improve reliability. It just reads corrupted bit
values and rewrites corrupted values.

50

Time (msec)
D

R
A

M
 C

el
l C

ap
ac

it
o

r
V

o
lt

ag
e

(V
)

S
u

cc
es

s
P

ro
b

ab
ili

ty
 (

%
)

100

25 pF
40 pF
55 pF
70 pF

0
0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.5

0.6

0.8

1

Figure 13: This graph shows the discharge process of DRAM cell
capacitor and the retention failure probability of a DRAM cell. We
assumed Vth is 40% of VDD and 10% random process variation
(Source: Intel Corporation, 2013)

Time (msec)

0 10 20 30 40 50 60 70 80 90 100

100

0

S
u

cc
es

s
P

ro
b

ab
ili

ty
 (

%
)

D
R

A
M

 C
el

l C
ap

ac
ito

r V
o

lt
ag

e
(V

)

0.6

0.7

0.8

0.9

1

Figure 14: This graph shows the discharge process and the
retention failure with refresh every 40ms. The cell capacitor is 40fF.
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 1, 2013

66 | STTRAM Scaling and Retention Failure

Since there is no way to predict or sense whether the bit is going to fail
in STTRAM, we need to add some way of redundancy to protect the
information, like ECC, and in order to prevent error accumulation in the
codewords, every line has to be scrubbed frequently, as it was explained earlier
in this section.

Process Variation and Retention Time Testing
The above analysis on thermal stability scaling is done with zero variation.
Later in this section we evaluate the effect of scaling with process variation.
Since the MTJ fabrication process is compatible with CMOS, we expect
that STTRAM will have the same variation as the CMOS process. We
make conservative assumption and assume the cell features have a normal
distribution with a standard deviation of s  = 10 percent m.[35]

Here we evaluate three commonly used approaches to address process
variation. The most common approach is designing with guardband. In this
approach the system is overdesigned or made to underperform to make the
weak bits functional. The other commonly used approach is to detect bad bits
and isolate them. The detect-and-isolate technique can use spare bits or ECC
to replace the isolated bits. The last approach is to design for the average case,
by adjusting the design values such that the average value matches the nominal
value. Below we evaluate the cost and reliability of these three approaches for
STTRAM.

Designing with Guardband
Guardbanding is the most common solution to address variation. We start
with a simple review of how it works. Assume a device parameter is required to
be above a certain threshold t, and it has variation s with normal distribution.
If the nominal feature value is targeted for t, then 50 percent of the cells have
lower than the threshold value, and are considered broken. However if the
nominal feature is targeted for a value higher than t, for example t + 3s, only
0.1 percent of the cells are bad and if it is targeted for t + 6s, then only one
cell in every one billion cells is bad. So guardbanding the feature value t with
6s improves the BER (bit error rate) to 1 per billion. Even with this low BER,
the chip yield will be very low (58 percent for 64MB array). For more practical
chip yield, e.g. 99.99 percent, the nominal Δ should be 103.6 kT for 64 MB
array. Using the guardbanding approach, the whole chip has to be tested to
detect any bad bits with low Δ, and if a bad bit is detected the chip will be
discarded. Detecting cells with low Δ is not an easy process (details in the
section “Retention Time Testing”).

Detect-and-Isolate
Unlike guardbanding which discards a chip with any detected bad bits, the
detect-and-isolate approach can tolerate limited number of bad bits (about
0.1 percent [11]), and require small area and performance costs. Consider the

“Since there is no way to predict or

sense whether the bit is going to fail

in STTRAM, we need to add some

way of redundancy to protect the

information, like ECC…”

“The last approach is to design for the

average case, by adjusting the design

values such that the average value

matches the nominal value.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure | 67

STTRAM example from the previous section, with a s  = 10 percent, and
∆ ≥ 60 kT. Since detect-and-isolate can tolerate limited BER, in this case 0.1
percent, we have to guardband ∆ by 4s to get to the low BER of 0.1 percent.
This requires nominal ∆ = 80.4 kT,

Similar to guardbanding, detect-and-isolate requires retention time testing to
identify the bad bits.

Designing for the Average Case
Both of the previous approaches depend on retention time testing and since
it is a costly process, here we look at another solution that does not require
testing and detecting bits with low ∆.

It is important to note that the variation caused weak bits in MTJ fails
differently than the weak bits in SRAM or capacitance-based cells. The
capacitance-based weak cells tend to behave as permanently broken or
intermittently broken bits. The weak MTJ cells with lower thermal stability
follow the same stochastic bit flip process as the strong cells, except with
higher probability, so even the weak bits work most of the time. With this
understanding of the retention failure process, we can keep the weak bits
and just add more ECC the same way that we added ECC earlier to address
retention failure with no variation, in the section “ECC and Scrubbing.”

We calculated the retention failure of an array in the average. Then we calculate
the effective ∆ based on this average value; that is, if there were no variation
and all the cells have the same thermal stability factor, how much would have
been the value of ∆, so that the array has the same failure rate as the array with
the variation. First we calculate the average failure probability as:

Pfail_avg = ​∫​0​ 
+∞

​ f (∆) × Pret-fail(∆)� (4)

Where Pret-fail(∆) is the retention failure of STTRAM cell with thermal stability
factor ∆ from Equation 3, and f (∆) is the normal distribution. We used
trapezoid numerical solution to solve the above equation.

Then we calculate the value of Δeffective such that:

Pfail-avg = 1 − exp(−t/exp(∆effective))� (5)

Table 2 summarizes the minimum nominal delta required for each of the
above approaches with the presence of 10 percent variation. For example, using
DECTED on a 64-MB array requires nominal ∆ of 54.3 kT. We can see that
the architectural solutions the ECC plus scrubbing can support scaling the
thermal stability factor down to 44 for 1-GB array size. Depending on the
application any one of the above solutions could be used by using the nominal
thermal stability value from Table 2. Since the first two solutions depend on
the retention time testing, for the sake of completeness we review the cost of
performing retention time testing next.

Intel® Technology Journal | Volume 17, Issue 1, 2013

68 | STTRAM Scaling and Retention Failure

Solutions 64 MB 128 MB 256 MB 512 MB 1 GB

Design
for

average

NO ECC 113.5 113.5 113.5 113.5 113.5

SECDED 73.9 75.9 78.0 80.0 82.1

DECTED 54.3 55.7 57.2 58.6 60.0

3EC4ED 46.6 47.8 49.1 50.3 51.6

4EC5ED 42.4 43.5 44.7 45.8 47.0

5EC6ED 39.6 40.7 41.8 42.9 44.0

Guardbanding (99.99%
yield)

103.6 104.2 104.7 105.3 105.9

Detect-and-isolate 80.4 80.4 80.4 80.4 80.4

Table 2: The thermals stability scaling available with the process variation
(Source: Intel Corporation)

Retention Time Testing
MTJ characteristic is determined by two figures of merit, the thermal stability
factor (∆) and the intrinsic switching current (Jc0). Retention time testing
therefore boils down to determining the value of these two features. The key
model to obtain these values is based on the thermal activation model:

Psw 5 1 2 exp Ic

Ic0
1 2

exp

2 t
D

�

(6)

This function and the functions derived from it are commonly used to fit
experimental data in order to obtain the values of Ic0 and ∆.[12][13][14][15] Since
this model is a stochastic model, all the retention time test approaches require
a large number of experimental data to obtain statistically significant result (for
example, 1e5 to 1e7 experiments per data point[12]). Additionally, the simple
thermal activation model is most accurate in the low switching current and long
pulse width (100 ns[12][13][14][15][16]). The combined large number of experimental
data with long pulse width makes the retention test time very long.

The retention test can be set up in various ways depending on how to use the
thermal activation model. Here we look at one of such approaches from [12].
Other approaches are similar.

Starting from the thermal activation model and with

​ 
tp ___________  

τ0exp ​( ∆​( 1 -  ​ Ic __ Ic0

 ​ )​ )​
 ​<<1� (7)

performing a Taylor expansion, results in the following expression:

In ​( PSW​( ​ Ic __ 
Ic0

 ​ )​ )​ = In ​( ​ tp __ t0
 ​ )​ − ∆​( 1 - ​ Ic __ Ic0

 ​ )​� (8)

Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure | 69

As we mentioned, the thermal activation model is most accurate for long pulse
width and small switching current. Experimental data from [12] and [13]
suggests switching pulse width of tp = 100ns and switching current ratio of
Ic/Ic0 ≤ 0.80 are reasonable values, which results in Psw ≤ 1E−3. For this small
switching probability, in order to have a statistically significant result we need
more than 1E+5 experimental data for each data point on the curve.[17] Testing
the hypothesis of expected probability of 1E-3 with ±1 percent error margin
and 99 percent confidence requires 5E+5 number of experiments.[17] We need
multiple points on the curve to be able to fit the curve accurately. Assuming
we need 10 points, if multiplied by 100ns pulse width, it takes about half a
second to test one cell (we neglected the one-nanosecond read time after each
100-nanosecond write pulse). Assuming that the cells of a line can be tested in
parallel, then testing a 64-MB array, line-by-line, takes more than five days. This
is obviously not practical. We need to parallelize the test process with multiple
built-in self-test (BIST) structures embedded in the array. We show below that
parallelizing the test process can improve the test time to 16 minutes.

Test Algorithm and Structure
Figure 15 demonstrates the BIST structure to test a subarray. For simplicity it
only shows one line of the subarray. The test pattern is first scanned in to the
test flip-flips (FF). Then we follow the test process of Figure 16. First the test
pattern is written to the line under the test. Then a weak current, Ic, is applied
for tp (that is, 100 ns). Then the value of the line is read. If there is a mismatch
between the value of the FFs and the read value, then the error counter will
increase. The error counter will help identify the switching probability. If the
total number of failures during testing a line for an Ic/Ic0 value is Nfail , dividing
Nfail by the total number of experiments, N, is the estimated switching
probability of that cell

Psw ​( ​ Ic __ 
Ic0

 ​ )​ ≈ ​ 
Nfail

 ___ N ​� (9)

The value of the counters will be scanned out after N rounds of disturb and
read. The inner loop rotates N times. Then this process is repeated for M times,
the number of required points on the curve for curve-fitting. Once all the M
values of Ic/Ic0 are tested, the pairs of

​( Psw ​( ​ Ic __ Ic0

 ​ )​, Ic/Ic0 )​� (10)

are used for curve fitting to Equation 8 and identifying ∆ and Ic0. This process
will be repeated for each line in the subarray (and other subarrays that share the
same tester). Assuming each subarray has one thousand lines, and every other
subarray has one BIST. The total test time is:

Number of Lines × N × M × tp = 2000 × 5E + 5 × 10 × 100ns ≈ 16min� (11)

Although this is still very long test time, we cannot increase the parallelism due
to the limit on the amount of current that the system can draw. In [12] the
switching current is about 0.23mA. In a 64-MB array, writing 512 bits per line
and testing 500 lines in parallel draws 60 A. This is about the upper bound of
the current that the array can draw.

Intel® Technology Journal | Volume 17, Issue 1, 2013

70 | STTRAM Scaling and Retention Failure

The retention time testing is mainly challenging due to its lengthy process.
We should expect 16 minutes to test an array of size 64MB. Due to current
limitations it is not possible to test more than 500 subarrays in parallel.
Therefore the test time grows as the cache size grows.

Based on the above analysis, testing a 128-MB, 256-MB, 512-MB, and
1-GB array takes half an hour, one, two, and three hours, respectively. So any
variation tolerance solutions that rely on retention time testing will suffer from
very long test time.

BL

FF FF FF FFFF

...

...

Error Signal
[Reset the Line value]

Scan Out

WL

...

E
rr

or
 C

ou
nt

er

E
rr

or
 C

ou
nt

er

E
rr

or
 C

ou
nt

er

E
rr

or
 C

ou
nt

er

E
rr

or
 C

ou
nt

er

Figure 15: Test structure for retention time testing of an array
(Source: Intel Corporation, 2013)

Summary
STTRAM has many attractive features to be considered for replacing the
capacitance-based cache or main memory technology. In order to have spin-
based memory technology scalable to future technologies it has to sustain
its reliability requirement. We showed that the dominating source of failure
is the retention failure, and a key contributing factor is the thermal stability
factor scaling. Assuming volumetric dependence for ∆, the thermal stability
factor scales linearly with the technology nodes, sustaining high ∆ despite the
dimensional scaling demands, application of novel manufacturing solutions,
or new material with higher coercivity at each generation. The alternative,
as many have tried to show, is to use an architectural solution to relax the
nonvolatility and the bound on the thermal stability. Unlike the claims of
many previous publications, we showed that this alternative cannot facilitate
continues linear scaling. It can accommodate only modest scaling. The result is
summarized in Figure 17.

The green curve in Figure17 shows the required thermal stability for 10SDC
FIT rate as the technology scales, with SECDED. This curve assumes the
thermal stability for nonvolatile cells can be achieved at scaled dimensions. The
blue line shows the scaling that can be supported with ECC plus scrubbing
proposed in this article. The red curve shows the volumetric scaling of MTJ
and ∆ assuming consistent coercivity.

Step 1: Write the test pattern into the line.

Step 2: Apply the weak noise current.

Is there and error
in the line?

Step3: Read the line value.

Step4: Increase
the error counter
of the cells with

error value.
Rewrite the

correct value

Has the line
been tested
for N times?

NO

YES

NO

Start

Is this the last
line to be tested

in the set?

End

Select the next
untested line.

YES

YES

NO

Select the next Ic test
point.

Have all the M
different Ic test point

been tested?

YES

NO

Figure 16: Retention time testing algorithm
(Source: Intel Corporation, 2013)

Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure | 71

The gap between the red and the blue curve has to be closed by either system level
reliability solutions or by manufacturing innovations and high coercivity material.

0

10

20

30

40

50

60

70

32nm/64MB 22nm/128MB 15nm/256MB 11nm/512MB 8nm/1GB

D

no ECC ECC1Scrubbing linear scaling

Figure 17: Thermal stability scaling trend with technology scaling
(Source: Intel Corporation, 2013)

References
[1]	 A. Nigam, C. Smullen, V. Mohan, E. Chen, S. Gurumurthi, and

M. R. Stan, “Delivering on the promise of universal memory for spin-
transfer torque RAM (STT-RAM),” in ISLPED, Fukuoka, Japan, 2011.

[2]	 C. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. Stan,
“Relaxing non-volatility for fast and energy-efficient STT-RAM
caches,” in HPCA, 2011.

[3]	 X. Cong, N. Dimin, Z. Xiaochun, S. h. Kang, M. Noak, and X.
Yuan, “Device-architecture co-optimization of STT-RAM based
memory for low power embedded systems,” in ICCAD, 2011.

[4]	 L. Hai, W. Xiaobin, O. Zhong-Liang, W. Weng-Fai, Z. Yaojun,
W. Peiyuan and C. Yiran, “Performance, Power, and Reliability
Tradeoffs of STT-RAM Cell Subject to Architecture-Level
Requirement,” IEEE Transactions on Magnetics, Vol. 47, No. 10,
pp. 2356–2359, 2011.

[5]	 A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and
C. R. Das, “Cache revive: architecting volatile STT-RAM caches for
enhanced performance in CMPs,” in DAC, San Francisco, USA, 2012.

[6]	 Z. Sun, X. Bi, H. Li, W.-F. Wong, Z.-L. Ong, X. Zhu, and W. Wu,
“Multi retention level STT-RAM cache designs with a dynamic
refresh scheme,” in Micro, Porto Alegre, Brazil, 2011.

Intel® Technology Journal | Volume 17, Issue 1, 2013

72 | STTRAM Scaling and Retention Failure

[7]	 X. Wang, Y. Zheng, H. Xi, and D. Dimitrov, “Thermal fluctuation
effects on spin torque induced switching: Mean and Variations,”
Journal of Applied Physics, Vol. 103, No. 3, pp. 034507–034507–4,
2008.

[8]	 B. Jacob, S. NG and D. Wang, Memory Systems: Cache, DRAM,
Disk, Morgan Kaufmann, 2007.

[9]	 S. Lin and D. Costello, Error Control Coding: Fundamentals and
Applications, Prentice Hall, 2004.

[10]	 D. Strukov, “The area and latency tradeoffs of binary bit-parallel
BCH decoders for prospective nanoelectronic memories,” in
ACSSC, Asilomar, 2006.

[11]	 S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ECP, not
ECC, for hard failures in resistive memories,” in ISCA, Saint-Malo,
France, 2010.

[12]	 R. Heindl, W. Rippard, S. E. Russek, M. R. Pufall, and A. B. Kos,
“Validity of thermal activation model for spin-transfer torque
switching in magnetic tunnel junctions,” Journal of Applied Physics,
Vol. 109, No. 7, pp. 073910–073910–5, 2011.

[13]	 A. Driskill-Smith, S. Watts, V. Nikitin, D. Apalkov, D. Druist,
R. Kawakami, X. Tang, X. Luo, A. Ong and E. Chen, “Non-
volatile spin-transfer torque RAM (STT-RAM): Data, analysis and
design requirements for thermal stability,” in Symposium on VLSI
Technology, 2010.

[14]	 M. Pakala, Y. Huai, T. Valet, Y. Ding, and Z. Diao, “Ciritical
Current distribution in spin-transfer-switched magnetic tunnel
junctions,” Journal of Applied Physics, Vol. 98, No. 5, 2005.

[15]	 T. Min, C. Qiang, R. Beach, G. Jan, H. Cheng, W. Kula, T.
Torng, R. Tong, T. Zhong, D. Tang, W. Pokang, C. Mao-min,
J. Z. Sun, J. K. Debrosse, D. C. Worledge, T. M. Maffitt and W.
J. Gallagher, “A Study of Write Margin of Spin Torque Transfer
Magnetic Random Access Memory Technology,” IEEE Transactions
on Magnetics, Vol. 46, No. 6, pp. 2322–2327, 2010.

[16]	 H. Zhao, A. Lyle, Y. Zhang, P. K. Amiri, G. Rowlands, Z. Zeng,
J. Katine, H. Jiang, K. Galatsis, K. L. Wang, I. N. Krivorotov,
and J.-P. Wang, “Low writing energy and sub nanosecond spin
torque transfer switching of in-plane magnetic tunnel junction for
spin torque transfer random access memory,” Journal of Applied
Physics, Vol. 109, No. 7, pp. 07C720–07C720–3, 2011.

[17]	 D. Montgomery and G. Runger, Applied Statistics and Probability
for Engineers, John Wiley and Sons, 2010.

Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure | 73

[18]	 Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L. Wang,
and Y. Huai, “Spin-transfer torque switching in magnetic tunnel
junctions and spin-transfer torque random access memory,”
Journal of Physics: Condensed Matter, Vol. 19, No. 16, pp.
165209 (1–13), April, 2007.

[19]	 S. S. P. Parkin, C. Kaiser , A. Panchula , P. M. Rice , B. Hughes,
M. Samant, and S.-H. Yang, “Giant tunneling magnetoresistance
at room temperature with MgO (100) tunnel barriers,” Nature
Materials, Vol. 3, pp. 862–867, 2004.

[20]	 Z. Diao, A. Panchula, Y. Ding, M. Pakala, S. Wang, Z. Li, D.
Apalkov, H. Nagai, A. DriskillSmith, L. Wang, E. Chen, and Y. Huai,
“Spin transfer switching in dual MgO magnetic tunnel junctions,”
Appl. Phys. Lett., Vol. 90, No. 13, pp. 132508 (1–3), March, 2007.

[21]	 N. N. Mojumder, C. Augustine, D. E. Nikonov, and K. Roy,
“Electronic Transport and Effect of Quantum Confinement in
Dual Barrier Resonant Tunneling Spin-Torque-Transfer Magnetic
Tunnel Junctions,” J. Appl. Phys., Vol. 108, pp. 104306 (1–12),
November, 2010.

[22]	 Y. Saito, H. Sugiyama, T. Inokuchi, and K. Inomata, “Interlayer
exchange coupling dependence of thermal stability parameters in
synthetic antiferromagnetic free layers,” J. Appl. Phys., Vol. 99,
pp. 08K702 (1–3), April, 2006.

[23]	 A. Raychowdhury, D. Somasekhar, T. Karnik, and V. De,
“Design Space and Scalability Exploration of 1T-1STT MTJ
Memory Arrays in the Presence of Variability and Disturbances,”
International Electron Device Meeting (IEDM) Tech. Dig.,
pp. 707–710, December, 2009.

[24]	 Y. Chen, Y. Wang, Y. Wang, C. Lin, US Patent 20090303779, 2009.

[25]	 S. Salahuddin, D. Datta, P. Srivastava, and S. Datta, “Quantum
transport simulation of tunneling based spin torque transfer (STT)
devices: Design tradeoffs and torque efficiency,” International
Electron Device Meeting (IEDM) Tech. Dig., pp. 121–124,
December, 2007.

[26]	 D. Datta, B. Behin-Aein, S. Salahuddin, and S. Datta, “Quantitative
model for TMR and spin-transfer torque in MTJ devices,”
International Electron Device Meeting (IEDM) Tech. Dig.,
pp. 548–551, December, 2010.

[27]	 J. C. Sankey, Y. T. Cui, R. A. Buhrman, D. C. Ralph, J. Z. Sun, and
J. C. Slonczewski “Measurement of the spin-transfer-torque vector
in magnetic tunnel junctions,” Nature Phys., Vol. 4, pp.67–71,
January, 2008.

Intel® Technology Journal | Volume 17, Issue 1, 2013

74 | STTRAM Scaling and Retention Failure

[28]	 C. Augustine, A. Raychowdhury, D. Somsekhar, J. Tschanz, K.
Roy, and V. De, “Numerical Analysis of Typical STT-MTJ Stacks
for 1T-1R Memory Arrays,” International Electron Device Meeting
(IEDM) Tech. Dig., pp. 544–547, December, 2010.

[29]	 J. Li, P. Ndai, A. Goel, S. Salahuddin, and K. Roy, “Design
paradigm for robust spin-torque transfer magnetic RAM (STT-
MRAM) from circuit/architecture perspective,” Transactions on
VLSI Systems, Vol. 18, No. 12, pp. 1710–1723, December, 2010.

[30]	 A. R. Alvarez, B. L. Abdi, D. L. Young, H. D. Weed, J. Teplik, and
E. R. Herald “Application of statistical design and response surface
methods to computer-aided VLSI device design,” IEEE Trans.
Computer Aided Des. Integrated Circuits Syst., Vol. 7, No. 2,
pp. 272–288, February, 1988.

[31]	 C. Augustine, A. Raychowdhury, D. Somsekhar, J. Tschanz,
V. De, and K. Roy, “Design Space Exploration of Typical STT
MTJ Stacks in Memory Arrays in the Presence of Variability and
Disturbances,” IEEE Transaction on Electron Devices, Vol. 58,
No.12, pp. 4333–4343, December 2011.

[32]	 Shu Lin and Daniel J. Costello. 2004. Error Control Coding,
Second Edition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[33]	 S. E. Michalak, A. J. DuBois, C. B. Storlie, H. M. Quinn, W. N. Rust,
D. H. DuBois, D. G. Modl, A. Manuzzato, S. P. Blanchard,
“Assessment of the Impact of Cosmic-Ray-Induced Neutrons on
Hardware in the Roadrunner Supercomputer,” IEEE Transactions on
Device and Materials Reliability, Vol. 12, No. 2, pp. 445–454, 2012.

[34]	 SPEC CPU2006: http://www.spec.org

[35]	 Kelin J. Kuhn, Martin D. Giles, David T. Becher, Pramod Kolar, Avner
Kornfeld, Roza Kotlyar, Sean T. Ma, Atul Maheshwari, Sivakumar
P. Mudanai, “Process Technology Variation,” IEEE Transactions on
Electron Devices, Vol. 58, No. 8, pp. 2197–2208, 2011.

Author Biographies
Helia Naeimi joined Intel in 2008 and is a member of the Microprocessor and
Programming Research Lab. She received PhD and MS degrees from Caltech
on 2008 and 2005 respectively, and her Bachelor degree from Sharif University
of Technology on 2002. Helia is very passionate about reliability and efficiency.
Her research interests lie at the intersection of reliability, low power, and efficient
computing. Her work has received Intel Labs division recognition awards and
best paper and poster awards.

Charles Augustine received the Bachelors in Electronics from BITS, Pilani,
India in 2004 and the PhD degree in Electrical and Computer Engineering

Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure | 75

from Purdue University in 2011. He is currently a senior research scientist in
the Circuit Research Lab (CRL) at Intel Corporation in Hillsboro, Oregon. His
primary research interests include low-power memory and logic using spin-
torque devices, low-voltage CMOS circuits, and reliability issues associated with
them. He received Best Paper in Session Award at SRC Techcon in 2009, Best
Paper Award at ISLPED 2012, AMD Design Excellence Award from Purdue
in 2008, nominated for Best Paper Award at ISQED in 2009 and won Bronze
medal for academic excellence from BITS, Pilani in 2004. He has held positions
at Texas Instruments, ST Microelectronics, Philips Semiconductors, and
Freescale Semiconductor, where he worked on CMOS digital integrated circuits
and memories, including spin-torque based memories. Charles has published
more than 35 papers in refereed journals and conferences.

Arijit Raychowdhury is currently an associate professor in the School of
Electrical and Computer Engineering at the Georgia Institute of Technology.
He received his PhD in electrical and computer engineering from Purdue
University and his BE in electrical and telecommunication engineering from
Jadavpur University, India. His industry experience includes five years as a staff
scientist in the Circuits Research Lab, Intel Corporation, (2007–2012) and a
year as an analog circuit designer with Texas Instruments Inc. (2001–2002).
His research interests include digital and MS circuit design, design of on-chip
sensors, memory, and device-circuit interactions. Dr. Raychowdhury holds
more than 25 U.S. and international patents and has published over 80 articles
in journals and refereed conferences. He serves on the technical program
committee of several conferences and has received several best paper awards.

Shih-Lien Lu received his BS in EECS from UC Berkeley, and MS and PhD
both in CSE from UCLA. He is a principal researcher and leads the memory
architecture team at Intel Labs. From 1984 to 1991 he was on the MOSIS
project at USC/ISI, which provides research and education community VLSI
fabrication services. He was on the faculty of the ECE Department at Oregon
State University from 1991 to 2001. His research interests include computer
microarchitecture, memory circuits, and VLSI systems design.

Jim Tschanz received the BS degree in computer engineering and the MS degree
in electrical engineering from the University of Illinois at Urbana-Champaign,
in 1997 and 1999, respectively. Since 1999, he has been a member of the Intel
Circuit Research Lab in Hillsboro, Oregon, where he leads a team of researchers
working on low-power circuit techniques. His research interests include low-
power digital and memory circuits, design techniques, reliability, and methods
for tolerating static and dynamic variations. He also taught VLSI design for
seven years as an adjunct faculty member at the Oregon Graduate Institute in
Beaverton, Oregon. He has published 53 conference and journal papers in this
field, has authored three book chapters, and has over 41 issued patents.

76 | ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays

Contributors

Intel® Technology Journal | Volume 17, Issue 1, 2013

Error correcting codes (ECCs) are widely used to provide protection against
data integrity problems in memory. With continue scaling of technology and
lowering of supply voltage, failures in memory are becoming more prevalent.
Moreover, the usage and organization of DRAM have also been expanded.
Integrating a large-scale DRAM cache is a promising solution to address the
memory bandwidth challenge, and this is becoming more compelling with
3D-stacking technology. To enable a high-performance DRAM cache, previous
works have proposed storing a tag array off-chip with data in DRAM. The
tag-and-data access inevitably changes the traditional access pattern to memory
and brings new challenges to ECC schemes due to the granularity of the
data access. How to design efficient ECC for new memory usage within the
restrictions of commercial DIMMs has emerged as a new challenge.

In this article, we propose two new ECC techniques, Hybrid ECC and Direct
ECC Compare. Hybrid ECC is a linear ECC that uses the same bit overhead
as a Double Error Correction, Triple Error Detection (DEC-TED) ECC,
but provides error correction for more frequent burst error patterns. Direct
ECC Compare eliminates the delay and gate overhead caused by comparing
multiple encoded words in parallel. The design for off-chip tag storage falls
into two major categories, distributed and continuous. For distributed tag
storage, we propose to store tags in the ECC chip, protected by Hybrid ECC.
For continuous tag storage, we propose separate ECCs for each individual tag
to reduce the bandwidth overhead for tag update and the use of Direct ECC
Compare to improve the matching latency of encoded tags. A design based on
16-way set associative cache shows that a 30-percent gate count reduction and
a 12-percent latency reduction are achieved.

Introduction
Errors in dynamic random access memory (DRAM) devices have always been
a concern in modern computing systems. Memory errors have many possible
causes: for example, electrical or magnetic interference such as cosmic rays can
spontaneously flip a bit to the opposite state, hardware defects can result in
a cell being permanently damaged, and any problem along the data path can
corrupt the value reading out of or writing into a bit. Due to continued scaling
of technology and lowering of supply voltage, memory faults are becoming
more prevalent.[17]

Error correcting codes (ECCs) are used to provide protection against data
integrity problems in memory. The most commonly used technique is Single
Error Correction, Double Error Detection (SEC-DED), which uses extra 8-bit

“How to design efficient ECC for new

memory usage within the restrictions

of commercial DIMMs has emerged as

a new challenge.”

ECC Techniques for Enabling DRAM Caches with
Off-Chip Tag Arrays

Wei Wu
Intel Labs Intel Corporation

Shih-Lien Lu
Intel Labs Intel Corporation

Dinesh Somasekhar
IAG Intel Corporation

Rajat Agarwal
IAG Intel Corporation

ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays | 77

Intel® Technology Journal | Volume 17, Issue 1, 2013

sets of ECC bits to protect 64 bits of data.[5] For mission-critical commercial
systems, advanced reliability features are supported, such as Chip-Kill*[1][4][6]
or Single Device Data Correction (SDDC)[2][8], which can protect data against
single x4 or x8 DRAM device failure. More advanced technology called
Enhanced Double Device Data Correction (DDDC)[2] even allows recovery
from two sequential DRAM chip failures.

ECC design for memory is restricted to a limited bit overhead due to the
fixed DRAM chip organization. Unlike normal DIMM, an ECC DIMM
usually has 18 rather than 16 × 4 chips or 9 × 8 chips. The extra chips store
the redundancy information used for detection and/or correction. The ratio
between data bits and ECC check bits is 8:1. To enable stronger protection,
smaller devices and wider access are preferred. For example, DDDC can only
be enabled on x4 devices under double channel lockstep mode.[2] Therefore,
changes to memory data organization may require changes to the ECC
technology.

Recent work[9][11][12][13][16] has proposed using DRAM as an off-chip cache to
address the memory bandwidth problems. Die-stacking and System-in-Package
(SiP) technologies enable multiple layers of DRAM to be integrated with
processors[14][15], which makes the DRAM cache a more compelling idea. A key
challenge for enabling high-performance DRAM cache is how to efficiently
manage the tag array. As it’s impractical to put the whole tag array in SRAM, a
lot of research has been conducted on architecting the tag array off-chip. Based
on the manner tags are organized in a DRAM row, most of the solutions fall
into two categories, continuous[11][13] or distributed[16][12]. In continuous tag
stores, one DRAM row is partitioned into two segments, one for a set of cache
lines and the rest for their tags. In distributed tag stores, the tag is placed next
to its cache line. The nature of cache involves reading both tag and data for
each access. A tag is usually shorter than the memory bus width; checking and
recalculating ECC for tags is neither straightforward nor convenient in either
tag store scheme.

In this article, we propose two ECC technologies that were invented at Intel,
and one for each tag store scheme. For distributed tag stores where the tag
is associated with its own data entry, we show that storing the tag on the
ECC chip by occupying part of reserved ECC bits is feasible. To maintain
the reliability feature with reduced check bits, we propose a new ECC called
Hybrid ECC. This new code can correct both random errors and burst errors.
Random errors are mostly introduced by soft errors such as cosmic rays. Local
burst errors can be attributed to device failure or pin/channel fault. With only
19 bits, Hybrid ECC can correct 2-bit random errors or 4-bit burst errors for
bit-interleaved 4 transfers (half cache line and a total of 288 bits), leaving
26 bits for tags per cache line.

For continuous tag stores, we propose to have individual ECC protection
for each tag entry. Since multiple tags are packed into a few lines, updating
a single tag and recalculating ECC require a read-modify-write to the

“…changes to memory data

organization may require changes to

the ECC technology.”

“A tag is usually shorter than the

memory bus width; checking and

recalculating ECC for tags is neither

straightforward nor convenient in

either tag store scheme.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

78 | ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays

entire line, which increases the memory bandwidth overhead. In addition,
we propose a “Direct ECC Compare” to speed up the address matching
for encoded tags. Since the incoming address is always correct, the Direct
ECC Compare performs approximate matching for encoded tags, instead
of strict matching for decoded tags. It also saves energy by encoding only
one incoming tag other than decoding all encoded tags in the same set.
We compare two types of tag array designs based on a 16-way set associative
cache. The results show a 30-percent gate count reduction and a 12-percent
latency reduction.

The rest of the article is organized as follows. The next section, “Background,”
reviews the memory error mechanisms and ECC algorithm. The section
“DRAM Cache Tag Arrays” discusses the tradeoff of two tag store schemes and
high-level architecture of our two proposed ECC technologies. The Hybrid
ECC for distributed tag stores is described in the section “ECC Technology I:
Hybrid ECC.” The continuous tag store with separate ECC and Direct
ECC Compare is detailed in the section “ECC Technology II: Direct ECC
Compare.” This is followed by a section that summarizes the article and draws
some conclusions.

Background
Errors in DRAM are a common cause for system failure. Researchers have
observed that about one third of the machines and 8 percent of DIMMs in
the study were affected by correctable errors each year, and the per DIMM
correctable error rate is approaching 4000 per year.[17] When the number of
affected cells exceeds the correction limit of the ECC, a machine shutdown is
forced. If an uncorrectable error misses detection, it leads to applications using
corrupted data or even system crash.

Hardware errors generally fall into two categories: soft (or transient) errors and
hard errors. Soft errors mostly occur due to electrical or magnetic interference,
such as cosmic rays or alpha particle strikes. Such events change the logical
state of one or multiple bits, and cause incorrect data reading. They occur
randomly and disappear when the bits are rewritten. Hard errors are related to
permanent device damage, which cause a memory bit to return incorrect values
consistently, such as a “stuck-at” fault. The faulty devices are usually replaced
once detected. There is one kind of error that only lasts for a while or occurs
only under certain conditions (such as with low voltage). Unlike hardware
errors, they are not permanent. Such intermittent errors are sometimes counted
as soft errors.

Memory ECC
The industry standard for DRAM protection is SEC-DED, which is 8 ECC
check bits for each 64 bits of data. The check bits are stored in one extra x8
ECC chip or two x4 chips, as illustrated in Figure 1.

“…an uncorrectable error misses

detection, it leads to applications using

corrupted data or even system crash.”

ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays | 79

Intel® Technology Journal | Volume 17, Issue 1, 2013

... ...

4b 4b 4b 4b 4b 4b 4b 4b

X4 DRAM Chips

72b

X8 DRAM Chips

8b 8b 8b 8b
72b

ECC ChipData Chip
...

Figure 1: DDR DIMMS with x8 and x4 devices
(Source: Intel Corporation, 2013)

Servers have more critical reliability requirements and stronger protection is
provided. For example, the Chip-Kill technology by IBM [6] can correct 4-bit
errors in the same nibble. The code requires 16 ECC check bits on 128 bits
of data. Intel has similar technology called Single Device Data Correction
(SDDC)[2], which protects against single x4 or x8 DRAM device failure.
Equivalent technologies are provided by other vendors with different names,
such as Chip Sparing or Advanced ECC.[5] Recently, Intel® Xeon® system
supports an even more advanced correction technology called Enhanced
Double Device Data Correction (DDDC)[8], which allows recovery from two
sequential DRAM device failures as well as one more single-bit soft error.

To enable stronger protection, smaller devices and more independent chips
are preferred. As illustrated in Figure 1, the ratio between data and check bits
is always 8:1. With fixed bus width, smaller device means more independent
chips. Advanced ECC technologies have to pay extra bandwidth or capacity
for stronger protection. That’s why DDDC is only naturally supported on
x4 devices. But to enable DDDC or SDDC on x8 devices, lockstep memory
mode is mandatory, which requires two memory channels working as a
single channel. It reduces the total system memory capacity by one third in a
3-channel system.

Unlike commercial DRAM chips, on-chip caches are usually custom-designed.
This provides more flexibility in choosing ECC protection schemes and
granularity. For example, in OpenSPARC*, L2 cache has SEC-DED on a word
(32-bit) basis. In AMD Opteron*, both L1 and L2 have 8 ECC check bits for
each 64 bits of data. In Intel Xeon, L2 cache is protected by 10-bit SEC-DED
while L3 has in-line DEC-TED.

Linear Block Code
All memory ECCs, including SEC-DED, DEC-TED and the Chip-Kill
type of symbol correction code, belong to the family of systematic linear
block code. The two ECC technologies we propose in this article are based

“To enable stronger protection, smaller

devices and more independent chips

are preferred.”

“Advanced ECC technologies have to

pay extra bandwidth or capacity for

stronger protection.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

80 | ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays

on the same type of code, and more specifically, the BCH.[7] In this section,
we explain some coding basics and properties that will be used in the
following sections.

An [n, k, d] code is a linear block code with block length n, information length
k, and Hamming distance d. Let D[k] be the k-bit information. The codeword
V [n] is the multiplication of D and encoding matrix G.

D[k] * G[k, n] = V [n]� (1)

As a systematic code, the information bits (D) are retained in the codeword
V, that is, V = [D, C ], while C is the set of ECC check bits. During error
decoding, a parity-matrix, which is often referred to as the H-matrix, is
multiplied by the codeword. The result is error syndrome, shortened as S.

V [n] × H [n, n - k] = S[n - k]� (2)

The H- and G-matrices are designed in such a way that any valid codeword
must have its syndrome equal to zero, and a nonzero syndrome is essentially
the footprint of errors. The distributive property of a linear code ensures that a
corrupted codeword V  ′ = V + E has its syndrome only determined by errors E:

V  ′ × H = (V + E ) × H = V × H + E × H = E × H� (3)

For a single-bit error, the syndrome equals the value in the corresponding
H-matrix column. For multi-bit errors, the syndrome is the sum of all
corresponding columns.

Each ECC is uniquely defined by its H-matrix, since the H-matrix (more
specifically, the columns) determines the error syndrome’s composition, and
thus the error correction and detection capability. For a binary [n, k, d] code, the
H-matrix is a binary matrix of the form n by (n − k). However, to facilitate the
study, the binary columns are often noted by the Galois Field (GF) elements,
that is {1, a, a2, ..., an-2}. For example, H1 is a binary form of (7, 4, 3) Hamming
code; it can also be represented by GF(23) primitive element a as in H2.

H1 =
1  1  0  1  1  0  0
1  0  1  1  0  1  0
0  1  1  1  0  0  1

 H2 = [a6a5a4a3a2a1]

The two matrices are totally equivalent, but symbol and polynomial form is
more convenient in studying the code properties and will be used instead of
the binary form in the following sessions.

DRAM Cache Tag Arrays
Recent work has proposed using DRAM as an off-chip cache to address
the memory bandwidth problems. It is desirable to organize the DRAM
caches at cache line granularity, because larger page granularity requires too
much memory bandwidth, and the miss rate is not low enough to overcome
the bandwidth increase. At cache line granularity, the key challenge is the
placement of the huge tag array. Storing the tag array on-chip in SRAM is
impractical. For example, a 256-MB DRAM cache would require 24 MB of
tag storage, which is larger than on-chip LLC.

“…any valid codeword must have its

syndrome equal to zero, and a nonzero

syndrome is essentially the footprint of

errors.”

“At cache line granularity, the key

challenge is the placement of the huge

tag array.”

ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays | 81

Intel® Technology Journal | Volume 17, Issue 1, 2013

To avoid SRAM overhead, the alternative is placing the tags in DRAM. Most prior
hardware-based approaches toward fine-grain DRAM caches have either stored tags
in a continuous region[11][13] or stored with each single cache block[12][16]. We note
them as continuous tag store and distributed tag store, as illustrated in Figure 2.

Sense Amplifier

Column Decoder
Ta

g

Data Data

(a) Continuous Tag Store

(b) Distributed Tag Store

Ta
g

Ta
g Data Data

Data

Row

Ta
gR

ow
 D

ec
od

er

Data Data Data

Figure 2: Two trends of placing tags in DRAM cache
(Source: Intel Corporation, 2013)

A cache access must obtain both tag and data, either sequentially or together.
Naively placing the tags might result in two full memory accesses. Prior
architecture optimizations have been focused on improving the performance,
especially the DRAM cache access latency. For example, Loh and Hill[13]
proposed reducing the access penalty by locating the tags and data for the
entire set in the same row, such that the second access for data is guaranteed to
hit in the row buffer. This is a typical continuous tag-store configuration, as we
show in Figure 2(A). A recent work from Qureshi[16] eliminates the delay due
to tag serialization by streaming data and tag together in a single burst. The
design is based on a distributed tag store as shown in Figure 2(B) and it serves
the DRAM cache hit much faster.

However none of the works about tag array placement considered the
potential effect to the error protection scheme. The bit length of a single tag is
obviously smaller than the memory bus width (64 bits). DRAM ECC is not
designed for such fine-grain access. Updating a single tag entry would result
in a read-modify-write of a whole encoded word, which is at least 72 bits. For
advanced ECC technologies, the entire codeword is even longer and equal to a
burst of 4 or 8 transfers.

In this article, we propose two ECC technologies, one for each tag store
configuration. The base case ECC is an 8b SEC-DED for 64 bits of data.

Distributed Tag Store
For distributed configuration, the tag is stored with data locally. To save
bandwidth and avoid the partial write problem during tag updates, we propose
merging the data and tag into one “real” single burst; that is, by hiding the tag
bits into reserved ECC check bits. By storing tag bits on the ECC chip, data,
tag, and check bits will all be transferred together. However, with reduced space
for ECC bits, the original code cannot be applied.

“…we propose merging the data and

tag into one “real” single burst; that

is, by hiding the tag bits into reserved

ECC check bits.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

82 | ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays

To enable the ECC with reduced check bits, we propose a new ECC algorithm,
Hybrid ECC. As advanced ECC technologies for servers have implied, stronger
error correction capability can be achieved by combining the check bits from
multiple transfers. The Hybrid ECC uses all partial check bits collected from
four data transfers. It corrects both local burst errors and random global
errors. The detailed code design and results are presented in the section “ECC
Technology I: Hybrid ECC.”

Continuous Tag Store
In this configuration, tags are stored in a continuous region. Any tag
update would require a full access and recalculate the check bits for entire
64 bits. To reduce the ECC recalculation and entire codeword access
overhead during tag update, we propose having separate ECC protection
for each tag entry such that each tag entry is independent and can be
accessed directly.

At the memory controller side, prior to the tag matching, error detection and
potential correction are required for encoded tags. We propose a Direct ECC
Compare to reduce the address matching latency. The key observations are: the
incoming address is always correct, and a codeword within a certain Hamming
distance to a valid codeword is guaranteed to be correctable. We eliminate the
multiple copies of the decoding circuit for tags and replace them with a single
encoder logic circuit for the incoming address. The result shows a 30-percent
gate count reduction and a 12-percent latency reduction. The details of this
fast matching scheme are discussed in the section “ECC Technology II: Direct
ECC Compare.”

ECC Technology I: Hybrid ECC
Most ECCs previously considered in the literature have the property that
their error-correction capabilities target a specific type of error, either
random, burst, or symbol error. For example, a symbol error correction
code cannot correct a burst error that ranges across the symbol boundary,
and a burst-2 correction code cannot correct two errors that are not
adjacent.

In this section, a new code called Hybrid ECC is investigated in which the
codeword is protected against two types of errors, both random and burst
errors. In a DRAM system, the random error is mostly due to soft errors, and
local burst errors are attributed to device-level failure or pin/channel fault.
Based on the error coverage, we also denote it as tEC-bBEC, which means the
code can correct either t-bit random errors or b-bit burst errors, where b is
greater than t.

The proposed Hybrid ECC is constructed based on regular BCH, and
more specifically DEC-TED BCH. The goal is to redesign the DEC-TED
H-matrix, reuse the same check bits overhead, maintain the 2-bit random error
correction, and at the same time maximize the correctable burst error length.

“…we propose having separate ECC

protection for each tag entry such

that each tag entry is independent

and can be accessed directly.”

“…the codeword is protected against

two types of errors, both random and

burst errors.”

ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays | 83

Intel® Technology Journal | Volume 17, Issue 1, 2013

We have a main observation for standard BCH H-matrix that the matrix
columns naturally form a geometric sequence. In the rest of the section, we
present this observation and related properties. Then we show how to utilize
these properties to quickly evaluate the correction capability for a given
H-matrix. We also present a systematic column permutation method such
that the new matrix can remain the column properties. Combining the quick
evaluation and column permutation, we can easily find the H-matrix that can
correct a large number of burst errors. Last, we show some results.

Observations for Standard BCH Code
BCH code is a family of linear block codes. Its SEC-DED and DEC-TED
forms are widely used in current computer systems.[7] Let α be a primitive
element of GF(2m) of order n, where n = 2m−1 and a n = 1. A standard
DEC-TED matrix Hstd is defined as:

Hstd =
1	1	 1	 1	 ...	 1	 ...	1
1	a	 a 2	a 3	...	a i	 ...	a (n - 1)

1	a 3	a 6	a 9	...	a 3i	...	a 3(n - 1)
� (4)

The first row has all 1s, which is an overall parity. The rest of the rows are
comprised of the first n powers of consecutive powers of a. Let hi denote the
ith column. It’s obvious that each column is proportional to its previous one
with a fixed ratio:

hi + 1 = K × hi,  where  K = diag [1, a, a 3]� (5)

Since K is a constant, the columns are in fact a geometric sequence.
Recursively, the whole H-matrix can be represented by K and h0 only:

Hstd = [1, K, K  2, K  3, ... , K n - 1] · h0� (6)

It’s easy to prove that the syndrome of any burst error is a multiple of the
syndrome of its first error bit; the multiplier is a constant solely determined by
the error pattern. For example, the syndrome for a burst -3 at bit i, i + 1, and
i + 2 is:

S(bi, bi + 1, bi + 2) = hi + Khi + K  2hi = (1 + K + K  2) × S(bi)� (7)

The coefficient (1 + K + K  2) is fixed and independent of the starting bit
position. Similarly, for a burst-4 error with pattern “1101” the syndrome
multiplier would be (1 + K + K  3). Each pattern has its own multiplier.

Fast Evaluation for Burst Error Correction Capability
A correctable error means the syndrome of this error is nonzero and distinct
from all other correctable errors and detectable errors. To evaluate the
correction capability for a given code (that is, H-matrix) by enumerating
all possible error patterns and syndromes would be too expensive. An n-bit
binary codeword has n single errors, C(n, 2) double errors and (n − d)
instances for each burst error of length d. The computation complexity
for cross-comparing all syndromes at all possible bit locations is
(n - d ) × (n + C(n, 2)) = O(n3).

“…the syndrome of any burst error is

a multiple of the syndrome of its first

error bit”

“…enumerating all possible error

patterns and syndromes would be too

expensive.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

84 | ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays

As burst errors with the same pattern share a common multiplier, a group of
syndromes can be represented by a single coefficient. Combined with other
BCH algebraic properties, the evaluation can be much simplified.

Let Parity be the part of syndrome that corresponds to the first row in
H-matrix, let S1 be the part to the second row, and let S3 be the third row.
We define the normalized syndrome factor for each syndrome as x = (S1

3/S3).

Single Bit Error: a single error at the ith bit and the syndrome is denoted as
S(bi), which equals the ith column of H-matrix. According to the definition,
the syndrome must have:

Parity = 1 &&  S1
3/S3 = 1� (8)

Obviously, the normalized syndrome factor x for all single error is 1.

Burst Errors: for given burst pattern e, the syndrome can be represented as

S(e) = (1, K1, K3) × S(bi)

where i is the location of first error bit, and (1, K1, K3) is determined by the
burst pattern e. It’s easy to prove that all burst errors with pattern e share a
common normalized syndrome factor, that is x = K1

3/K3.

Double Bit Error: given a pair of error bits at position i and j, the
syndrome is

S(bi + bj) =
1
a i
a 3i

 +
1
a j
a 3j

 =
0

1 + a d
1 + a 3d

 *S(bi),  where  d = i - j,  and  x = ​ (1 + a d  )3

 _______ 1 + a 3d  ​� (9)

The factor x is determined by the first bit (i) and the relative bit distance (d).
Since the finite field elements are cyclic, the maximum relative distance is
no longer than half the loop, that is n/2. There are n/2 different normalized
syndrome factors for all double-bit errors.

Two syndromes that have different x values must be different. Two syndromes
that share a same x value but different start bits are also different, since they
have distinct S(bi). Now the problem of comparing all syndromes becomes
comparing all normalized syndrome factors x. Odd errors can be distinguished
from even errors by simply checking the overall parity. Then, all odd burst
errors must have x other than 1, that is, a single-bit error. And all even burst
errors must have different x from any random double error. The total number
of comparisons for b burst errors is only O(n):

odd burst + # Even Burst * # Random double = ​ b __ 2 ​ + ​ b __ 2 ​ * ​ n __ 2 ​ = ​ b __ 
4
 ​ * (2 + n) = O(n)

Finding the Best H-Matrix
The burst error correction capability of the standard H-matrix may not be as
much as user requires. An easy way to construct a new H-matrix is to rearrange
the H-matrix columns. However, the nice property of geometric sequence will
be lost if columns are arbitrarily permuted.

“We define the normalized syndrome
factor for each syndrome…”

“Now the problem of comparing all

syndromes becomes comparing all

normalized syndrome factors x.”

ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays | 85

Intel® Technology Journal | Volume 17, Issue 1, 2013

The rearrangement property of Fermat’s Little Theorem in number theory says,
if p and a are co-prime positive integers, then {a, 2a, 3a, ... , (p - 1)a} when
reduced modulo p, becomes a rearrangement of the sequence {1, 2, 3, ... , p - 1}.
Based on this property, we rearrange the H-matrix column by picking one
column every L columns, where L and n are co-prime, and n is the degree of the
finite field GF(2m) as we defined in previous section. We called L the step size of
rearranged H-matrix. The modified H-matrix will be as the following, where the
standard H-matrix is a special case with step size equals to 1:

HRearranged = [h0hLh2Lh3L ... hiL ... h(N - 1)L]

Galois Field elements are cyclic, so hi = hi%n. The above matrix is equivalent
to Hstd, only that the column orderings are changed. But all the columns still
form a geometric sequence, such that the normalized syndrome factor and fast
evaluation method can still be applied. The search space is well controlled, and
the best H-matrix can be quickly identified.

Results
The system configurations for one complete code word are: burst length of 4,
total transfer of 288 bits, including 32 bytes of data (half cache line), 13 bits
of tag and 19 bits of check bits (the same as DEC-TED). Hybrid ECC can
correct any one of the three errors illustrated in Figure 3:

x x x x x x x x

b0

Neighborhood bit
failure

Bits are interleaved

Data_0

Single wire failure
Random bit failure

Data_1

Data_2

Data_3

b1 b2 b3 b4 b71

b71b0 b1 b2 b3 b4

b0 b1 b2 b3 b4

b0 b1 b2 b3 b4

b71

b71

Figure 3: Data bursts per half cache line. The bits of four bursts are
interleaved. Three error patterns are popular: 1) random bit error;
2) wire fault; 3) device-level (neighborhood bit) failure
(Source: Intel Corporation, 2013)

With frequent memory scrubbing, the possibility of having two types of error
together is very low and can be neglected.

The Hybrid ECC is adapted from conventional DEC-TED and retains the
capability of correcting two random-bit errors. The remainder of the multi-bit
patterns are listed in Table 1. Two-bit burst errors are not included, since they
are special case of 2-bit random errors. Remember that the four transfers are
bit-interleaved to form the half cache line data. A single wire fault will manifest
as an error in four adjacent bits. The neighborhood bit fault in a same transfer
will be separated in a distance of four. The exact number of bit flips depends on
the stored bit values.

“Hybrid ECC can correct any one

of the three errors illustrated in

Figure 3.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

86 | ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays

Pattern Num. Bit Pattern Error Source weight

1 111 Single

Wire Fault

Odd

2 1101 Odd

3 1011 Odd

4 1111 Even

5 1– – –1– – –1– – – Neighborhood

Bits Fault

Odd

6 1– – –1– – –0– – –1– – – Odd

7 1– – –0– – –1– – –1– – – Odd

8 1– – –1– – –1– – –1– – – Even

Table 1. Correctable burst error patterns with bit interleaving of four data
bursts. “1” means bit-failure, “0” means valid bit, and “-” stands for a valid bit
from a different data burst.
(Source: Intel Corporation, 2013)

A qualified H-matrix should have all burst patterns in Table 1 detectable
and correctable. As a result, the syndromes must meet the following
requirements:

●● R1: All burst error syndromes are nonzero.
●● R2: All burst error syndromes are distinct from each other.
●● R3: All odd burst error syndromes are different from any single-bit error.
●● R4: All even burst error syndromes are different from any double-bit error.

R1 is always true, because DEC-TED has a Hamming distance of 6, which
means to have an error alias to a valid word requires at least 6 bits of difference.
The maximum burst pattern has bit weight of 4. Therefore none of the
syndromes would be zero.

Given the number of bits for this specific problem, we need GF(29) to cover all
272 bits. The degree of field is 29 − 1 = 511, and the total number of co-primes
for 511 is 432. So there are a total of 432 varieties of the H-matrix that we can
test. Let the GF generator be x9 + x4 + 1; we find a working H-matrix to match
all the requirements where L equals 47.

ECC Technology II: Direct ECC Compare
The data comparison circuit is usually in the critical path of a pipeline stage
because the result of the comparison determines the flow of the succeeding
operations. The common way of comparing two pieces of data with one or
both protected by ECC is to retrieve the correct data first by running error
check and perform the comparison later. The decoding stage exacerbates
the latency criticality. In this section, we present a direct ECC compare
technique [18], with which the encoded word can be compared with an
incoming data without decoding it first. Direct ECC Compare reduces the
critical latency and power consumption due to ECC decoding. The saving

“The data comparison circuit is

usually in the critical path of a

pipeline stage…”

ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays | 87

Intel® Technology Journal | Volume 17, Issue 1, 2013

is more significant for situations with multiple data comparison in parallel,
such as cache tag match.

For cache tag match, the tag is accessed first, then it must go through ECC
decoding and correction before the comparison operation can be performed.
In the meantime, the corresponding data array is waiting for the comparison
result to decide which way in the set to load the data from. In the DRAM
cache, the latency of comparing tags is small compared to the long memory
access latency. However, the direct compare technology would still be valuable
for reducing total gate count and power consumption.

In Direct ECC Compare, instead of decoding the codeword prior to
the comparison, we propose comparing the codeword with the encoded
incoming address. By doing so, we replace the tag decoding latency by
address encoding latency, which resides at the incoming data side and is
less critical. This approach relies on one condition: one of the compare
data must be known and valid. For tag match, the incoming address is
believed to be valid since it is newly generated and has not been stored in
a memory array.

In the rest of the section, we first review the Hamming distance property
of linear ECC codes. Then, we show how these properties can be utilized
to compare a codeword (that potentially has an error) with a known valid
codeword directly without decoding and correction.

Distance Metrics for Linear ECC Code
The minimum distance gives a measure of how strong a code is in detecting and
correcting errors. Given a code that is capable of correcting any combination of
t-bit errors and detecting up to r-bit errors, the minimum Hamming distance d
equals (t + r + 1). In other words, given a code with minimum distance d, the
maximum number of correctable errors is: tmax = (d - 1)/2 . The corresponding
detectable distance rmax is less than d - tmax = (d + 1)/2 . If d is an odd number,
rmax = tmax; if d is an even number, rmax = tmax + 1.

Codeword Direct Compare
The key idea of Direct ECC Compare is to utilize the information carried by
the valid incoming data (referred to as input) to circumvent the necessity of
decoding and correction of the stored codeword, which may or may not have
errors. For information protected with ECC, in most scenarios, the corrupted
codeword is the only copy that contains the original information. Without
redundancy provided by ECC there is no other way to retrieve it. However,
for data comparison, the absolute values of the stored information are not
that important, but rather the relative value to the incoming data is important
for deriving the comparison result. In the following, we show that as long as
we can determine if it is a match or mismatch, the absolute value itself is not
required.

The stored codeword matches the input as long as the Hamming distance is equal to
or less than tmax.

“…replace the tag decoding latency

by address encoding latency, which

resides at the incoming data side

and is less critical.”

“…is to utilize the information

carried by the valid incoming data

(referred to as input) to circumvent

the necessity of decoding and

correction of the stored codeword…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

88 | ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays

If the stored codeword is error-free, then two codewords match each other
only when they are exactly the same, that is, the Hamming distance between
two codewords is zero. If the stored codeword is not valid, a potential match
implies two facts: the error must be correctable in the first place, and the
data recovered from ECC correction should be equal to the input. In other
words, this erroneous codeword is within the correctable distance (tmax) of the
input data. If the Hamming distance falls in the annulus for detectable but
uncorrectable errors, the original data cannot be resumed, and this indicates a
system fault.

We enumerate the four possibilities below. Given an input data v, let the
encoded word be V, and the retrieved codeword from storage be U. The
Hamming distance is d = dist (V,U ). Then the direct compare between V and
U has four possible outcomes:

1.	 d = 0: U is valid and is equal to V

2.	 d ≠ 0 and d ≤ tmax: U is equal to V  but with errors

3.	 tmax < d ≤ rmax: U has an uncorrectable error

4.	 d > rmax: U is not equal to V

Hardware Design
Figure 4 shows the data flow of conventional tag matching. The encoded tags
go through ECC decoders and ECC correction logic before they are compared
with the tag field of the incoming address. If the incoming address does not
match to any of the stored tags, a “cache miss” happens. The incoming tag is
encoded by the “ECC Gen” logic (encoder) and will replace one out of the
16 ways in the set just referenced.

Way 0 Way 1 Way 15

Tags
Address

......

......

......

ECC
Gen

ECC
Decoder

ECC
Decoder

ECC
Decoder

ECC
Correct

ECC
Correct

ECC
Correct

�

Match_0

MCA
Signals

�

Match_1

�

Match_15 New Entry

31b 31b 31b

25b

25b

25b 25b

Figure 4: Original tag matching flow with encoded tags
(Source: Intel Corporation, 2013)

Figure 5 illustrates the data flow using the proposed fast compare approach.
Information retrieved from the tag directory is compared directly with the
incoming tag field of the address after it is encoded. Note that the encoding of
the incoming tag can be performed during with tag access, since the memory

“If the Hamming distance falls

in the annulus for detectable but

uncorrectable errors, the original

data cannot be resumed…”

ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays | 89

Intel® Technology Journal | Volume 17, Issue 1, 2013

access latency is long enough. The decoding and correction time has been
removed from the access time.

Way 0

Match_0

MCA
Signals

Match_1 Match_15 New Entry

Address
+ ECC

Way 1 Way 15
ECC
Gen

Tag + ECC
compare

Tag + ECC
compare

Tag + ECC
compare

Tags

31b31b31b

Address

......

......

Figure 5: The data flow for Direct ECC Compare
(Source: Intel Corporation, 2013)

In both Figure 4 and Figure 5, the MCA signal refers to the Machine Check
Architecture in which the microprocessor has detected an uncorrectable
error and the system needs to take action. In general, there are a total of four
possible outcomes:

1.	 Zero bit difference: two encoded tags match exactly and is a cache hit; there
is no error in the stored tags.

2.	 Differ by one bit: A cache hit with correctable errors. The incoming address
can be used for correction.

3.	 Differ by two bits: this is a fault. An uncorrectable error has been detected,
MCA generated, and the machine will go into the special handling routine.

4.	 Differ by more than two bits: this is a mismatch. There are multiple causes
of this mismatch. First, the tag address (with or without errors) read differs
from the incoming address tag. Second, two address tags are supposed
to be the same but with undetectable errors. However, there is no means
to distinguish these two cases with the conventional ECC correction
technique either. With the first case, detection and correction will be
done when the matching address is probed. If it is never probed again, the
potential error will be detected and corrected at replacement.

The “Tag + ECC Compare” block is implemented as a summing logic. One
possible design is to use a parallel counter that counts the total number of
different bits. The logic can be optimized by truncating higher significant bits
in the carry propagation circuit, since the accurate sum is not required but the
relative value is compared to tmax and rmax.

Results
We assume a 16-way set associative cache and the tag has 25 bits. With
SEC-DED protection, the total length of the encoded tag is 31. Table 2
lists the logic implementation cost and latency estimate for each function
unit.

“The decoding and correction time has

been removed from the access time.”

“…detection and correction will be

done when the matching address is

probed.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

90 | ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays

DC-1 and DC-2 are two compare logic designs. DC-1 uses half adders and
DC-2 uses full adders for partial sum calculation. Compared to the traditional
correction-based design, both approaches have lower gate count. Regarding
the latency, DC-1 is about the same as the original decoding-based design, and
DC-2 is better than both by 12.5 percent, assuming equal latency for each gate.

The gate count for original decoding-based design is 4.8K. For direct compare
design, the numbers are 3K and 3.4K, respectively. The new approach saves
roughly 35 percent and 30 percent in total gate counts. With lower gate
count and less area, the routing and interconnect complexity should be lower,
resulting in smaller routing area and shorter routing latency. Since both designs
are implemented in combinational logic, power will be proportional to the
total gate count. We expect an approximately 30-percent power reduction.

Conclusion
There are two tag storage methods in architecting DRAM caches with tag array
off-chip. Architecture optimizations that don’t take error protection overhead
into consideration could result in read or write bandwidth overhead. To address
the problem, we proposed two ECC technologies. One is for continuous tag
storage. We suggested that individual tag protection is more efficient and a fast
tag matching method is provided to reduce latency and power cost. The other
is distributed tag storage. For such a tag store, a new ECC code called Hybrid
ECC is presented. Hybrid ECC utilizes multiple transfers to provide similar
error coverage with a reduced number of check bits.

References
[1]	 Sun Microsystems Inc., “OpenSPARC T2 System on Chip (SOC)

Microarchitecture Specification,” May 2008.

[2]	 J. Wuu, D. Weiss, C. Morganti, and M. Dreesen, “The asynchronous
24MB on-chip level-3 cache for a dual-core Itanium R-family
processor,” in Proc. of the Int’l Solid-State Circuits Conf. (ISSCC),
Feb. 2005.

“With lower gate count and less

area, the routing and interconnect

complexity should be lower…”

Area (Gate Count) Latency (Gate Level)

AND2 OR2 XOR2 Total AND2 OR2 XOR2 Total

ECC Generator 0 0 79 79 0 0 4 4

Decoder, Correct
and Compare

130 30 160 320 4 6 6 16

DC-1 62 61 63 186 1 9 6 16

DC-2 60 90 61 211 0 8 6 14

Table 2: Function unit logic estimation
(Source: Intel Corporation, 2013)

ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays | 91

Intel® Technology Journal | Volume 17, Issue 1, 2013

[3]	 J. Huynh, “White Paper: The AMD Athlon MP Processor with
512KB L2 Cache,” May 2003.

[4]	 C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway, “The
AMD Opteron processor for multiprocessor servers,” IEEE Micro,
Vol. 23, No. 2, pp. 66–76, Mar.-Apr. 2003.

[5]	 T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for
PC server main memory,” IBM Microelectronics Division, Nov. 1997.

[6]	 IBM, “Chipkill Memory,” http://www-05.ibm.com/hu/
termekismertetok/xseries/dn/chipkill.pdf

[7]	 C. L. Chen and M. Y. Hsiao, “Error-correcting codes for
semiconductor memory applications: A state-of-the-art review,” IBM J.
Research and Development, Vol. 28, No. 2, pp. 124–134, Mar. 1984.

[8]	 Intel, “Intel® Xeon® Processor E7-8800/4800/2800 Product Families
Datasheet,” April 2011.

[9]	 X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni,
D. Newell, Y. Solihin, and R. Balasubramonian. “CHOP:
Adaptive filter-based dram caching for CMP server platforms,”
in HPCA-16, 2010.

[10]	 N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R.
Balasubramonian, R. Iyer, S. Makineni, and D. Newell, “Optimizing
Communication and Capacity in a 3D Stacked Reconfigurable
Cache Hierarchy,” in HPCA-15, 2009.

[11]	 J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan,
“Enabling efficient and scalable hybrid memories using fine-
granularity dram cache management,” in Computer Architecture
Letters, Feb. 2012.

[12]	 L. Zhao, R. Iyer, R. Illikkal, and D. Newell, “Exploring DRAM
cache architectures for CMP server platforms,” in ICCD, 2007.

[13]	 G. Loh and M. D. Hill, “Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches,” in MICRO, 2011.

[14]	 J.-S. Kim, C. Oh, H. Lee, D. Lee, H.-R. Hwang, S. Hwang, B.
Na, J. Moon, J.-G. Kim, H. Park, J.-W. Ryu, K. Park, S.-K. Kang,
S.-Y. Kim, H. Kim, J.-M. Bang, H. Cho, M. Jang, C. Han, J.-B.
Lee, K. Kyung, J.-S. Choi, and Y.-H. Jun, “A 1.2V 12.8GB/s 2Gb
Mobile Wide-I/O DRAM with 4x128 I/Os Using TSV-Based
Stacking,” in Proc. of the Intl. Solid-State Circuits Conference, San
Francisco, CA, February 2011.

[15]	 J. T. Pawlowski, “Hybrid Memory Cube: Breakthrough DRAM
Performance with a Fundamentally Re-Architected DRAM
Subsystem,” in Proc. of the 23rd Hot Chips, Stanford, CA, August 2011.

Intel® Technology Journal | Volume 17, Issue 1, 2013

92 | ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays

[16]	 Moinuddin K. Qureshi and Gabriel Loh, “Fundamental Latency
Trade-offs in Architecting DRAM Caches,” in International
Symposium on Microarchitecture (MICRO), Vancouver, BC, 2012.

[17]	 B. Schroeder, E. Pinheiro, and W-D. Weber, “DRAM Errors in the
Wild: A Large-Scale Field Study,” in SIGMETRICS/Performance’09,
pp. 193–204.

[18]	 Wei Wu, Dinesh Somasekhar, and Shih-Lien Lu, “Direct Compare
of Information Coded With Error-Correcting Codes,” IEEE Trans.
VLSI System, 20(11): 2147–2151, 2012.

Author Biographies
Wei Wu received her BS degree in radio engineering from Southeast
University, Nanjing, China in 2000, and PhD degree in computer science
from the University of California at Riverside in 2008. She then joined Intel
labs in Hillsboro, Oregon and currently a staff research scientist in Memory
Architecture team. Her research interests include reliability, error correction
algorithm, low power and cache memory architecture design.

Shih-Lien Lu received his BS in EECS from UC Berkeley, and MS and PhD
both in CSE from UCLA. He is a principal researcher and leads the memory
architecture team at Intel Labs. From 1984 to 1991 he was on the MOSIS
project at USC/ISI, which provides research and education community VLSI
fabrication services. He was on the faculty of the ECE Department at Oregon
State University from 1991 to 2001. His research interests include computer
microarchitecture, memory circuits, and VLSI systems design.

Dinesh Somasekhar is a Senior Staff Scientist at Intel. He is currently
responsible for the memory strategy on the high-performance-computing
program under Intel Federal. He received the B.E. degree in Electronics
Engineering from the Maharaja Sayajirao University Baroda, India, in 1989,
the M.E degree in Electrical Communications Engineering from Indian
Institute of Science Bangalore, India, in 1990, and the Ph.D. degree from
Purdue University in West Lafayette in 1999. From 1991 to 1994 he was
an I.C. Design Engineer at Texas Instruments, Bangalore, India, where he
designed ASIC compiler memories and interface I.C.s. From 1999–2011 was
with Circuits Research Lab, Intel R&D, Hillsboro, Oregon. From 2011–2012
he was with GlobalFoundries, Sunnyvale, CA. He has published 35 papers,
3 book chapters, and holds over 70 patents in the field of VLSI.
Dr. Somasekhar served as Mentor at the Semiconductor Research Consortium,
and has participated in the Technical Program Committee of ISLPED,
ISQED, DATE, GLVLSI and CICC.

Rajat Agarwal is a Principal Engineer with Intel Corporation. He is the lead
architect for HPC memory architecture driving the memory architecture of
Xeon Phi product line. His research interests are focused around new memory

ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays | 93

Intel® Technology Journal | Volume 17, Issue 1, 2013

technologies to scale the memory BW wall and memory reliability. Prior
to his current role, Rajat has been a design manager with the server chipset
group and drove the development of Seaburg chipset for workstation market.
Before joining Intel, Rajat had worked with Qualcomm, ST Microelectronics
and Indian Space research organization. Rajat holds 10 patents in memory
controller policies and memory RAS.

94 | Improving Error Correction in NAND with Dominant Error Pattern Detection

Intel® Technology Journal | Volume 17, Issue 1, 2013

Contributors

With technology scaling, NAND devices suffer from high raw bit error rate
(RBER) incurred by device physics variations at sub-20nm. At the same time,
their error patterns also exhibit unbalanced characteristics. Circuit techniques
have been explored to overcome the unbalanced error behaviors. However
they cannot fully purge them and these techniques require extra overhead on
the device side. On the other hand, the ECC engine usually treats the errors
in NAND devices as random errors, which is not true in real NAND devices.
This article proposes to fully utilize the error pattern characteristics abstracted
from the NAND device to facilitate ECC decoding, so that we can simplify
the NAND device design to reduce cost and/or improve the system’s overall
reliability. We describe the ECC engine process flow. We also show decoding
gains under various flipping asymmetric bits.

Introduction
The continuous bit cost reduction of NAND flash memory mainly relies on
aggressive technology scaling. Besides technology scaling, multi-level per cell
(MLC) technique has been widely used to further improve effective storage
density and hence reduce bit cost of NAND flash memory. Because of its
obvious bit cost advantage, MLC NAND flash memory has been increasingly
dominating the global flash memory market. In current design practice, most
MLC NAND flash memories store 2 bits per cell, while 3-bit-per-cell NAND
flash memories have been recently reported.[1]

RBER in NAND continues to increase as industry is pushing technology
scaling and storing more than one bit into a single cell. Currently, errors
are usually assumed to be randomly distributed, and error patterns are
independent of pre-stored values. However, due to various physical phenomena
such as program disturb, single bit charge loss (SBCL), intrinsic charge loss
(ICL), and electron trap effect, the NAND device tends to suffer from certain
specific error patterns.[2][3] For example, for the voltage of LSB cell in 3-bit-per
cell(3bpc) NAND, the L0 cell in a “7-0-7” pattern write sequence is more
likely to move upward because of program disturb. Also, because of the
iterative program-verify algorithm for NAND programming, the cell has much
larger probability of experiencing a lower state to higher state misplacement
than a higher state to lower state misplacement. Additionally, with ICL and
SBCL, the distribution of Vt tends to move downward.

In current NAND devices, people adopt circuit techniques to reduce these
unbalanced cell effects as much as possible; however, it’s not only expensive to
take time and money to design, tune, and optimize the circuits but this strategy

“RBER in NAND continues to

increase as industry is pushing

technology scaling and storing more

than one bit into a single cell.”

Ningde Xie
Storage Technology Group,
Intel Corporation

Jawad Khan
Storage Technology Group,
Intel Corporation

Improving Error Correction in NAND with
Dominant Error Pattern Detection

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Error Correction in NAND with Dominant Error Pattern Detection | 95

also sacrifices performance in the NAND device itself due to the extra processing.
At the same time, even with the help of these circuits, from the system side, we
still observe unbalanced error patterns due to device inherent characteristics, and
the NAND has to reserve a large read window budget for them.

Dominant error pattern detection in read channels has been proposed to
facilitate the detector and ECC decoding.[4] In NAND, dominant error
patterns vary through its whole lifetime, due to aging (program/erase cycle).
They are also changing with NAND’s retention and read/write disturb.
Therefore, we propose to have a dominant error pattern list; the ECC engine
can use a trial-and-error decoding until it goes through all patterns on the list
or decoding succeeds. Such an error pattern list can be pre-established when
the device is manufactured, or we can also store it in the controller. Although
it is not mandatory, for efficient operation, the controller may also keep
tracking the age of the NAND and data retention time so that more accurate
error patterns are selected for ECC engine. Once the NAND logic is equipped
with ECC designed for unbalanced errors, it is there in digital circuits. The
error list may require updates but the ECC circuit doesn’t need the extra effort
to tune and optimize in each generation that the current NAND device does.
Also, the overall performance overhead is small, because ECC is triggered
based on need, unlike the circuit-level change in the device, which will be in
function all the time.

BCH codes with classical hard-decision decoding algorithms[5] are being
widely used in current NAND controllers. As the industry continues
to push the technology scaling envelope and pursue aggressive use of
multi-level per-cell storage, raw storage reliability of NAND flash memory
inevitably continues to degrade, which quickly makes current design practice
inadequate and hence naturally demands more powerful ECCs. Because
of their well-proven superior error correction capability with reasonably
low decoding complexity, advanced ECCs, such as low-density parity-
check (LDPC) code with soft-decision decoding algorithms, appear to be
promising candidates. Due to the sparse nature of its parity check matrix,
we can further use the built-in parity checks in LDPC to help us identify
error candidates without adding extra parity check bits as people normally
do in the read channel.

Dominant Error Detection and Decoding in NAND
In this article, we propose to feed the information of dominant error
patterns in NAND devices into the ECC engine at the SSD controller so
that ECC is more informed about the NAND channel and able to use this
extra information to improve its error correction capability. For example,
once we have an ECC decoding failure, we can try to flip candidate bits
based on the parity check failure and the dominant error patterns and try
decoding again. In order to detect the dominant error pattern, we can add
a weak parity on top of the existing ECC. However this will reduce the
coding gain.

“In NAND, dominant error patterns

vary through its whole lifetime…”

“…ECC is more informed about

the NAND channel and able to use

this extra information to improve its

error correction capability.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

96 | Improving Error Correction in NAND with Dominant Error Pattern Detection

Dominant Error Pattern Detection
Most recently, due to its superior error correction capability, LDPC is
attracting more and more interest in the most recent SSD applications.[6][7][8]
The sparse parity check matrix in LDPC gives us an opportunity to avoid
adding any coding overhead to detect error patterns. For an LDPC code with
parity check matrix H, X is a codeword if H · X = 0. Therefore, “1” entries in
each row of H check the parity of their corresponding bits in a codeword. For
example, as Figure 1 shows, the fourth and fifth “1” entries in the second row
of H check the fourth and fifth bits in a codeword respectively. If there is an
error in one of the fourth and fifth bits (for example, the fourth bit becomes
1 because of noise in NAND), the parity check results will be nonzero. In
conventional ECC decoding, it decodes based on the assumption that all errors
are random, which is not true in NAND-based systems.

=.

1 1

1 1

H

1 1 0

0 0

0

0

0 0

0 0 0

0 0

0

0

0

1

0

0

1

1

0

Figure 1: Parity Check in LDPC
(Source: Ningde Xie, 2013)

Based on the dominant error patterns in NAND and combining this parity
check information provided by the sparse parity check matrix H, we are able
to flip some suspicious error bits during decoding. For example, if the current
dominant error pattern is “1” to “0”, then the ECC engine will be told that
bit “0” that violates parity check is a high risk candidate and it can flip it on
purpose to help the decoding.

Decoding with Dominant Error Patterns
Figure 2 shows the ECC engine process flow when a decoding failure happens.
Whenever an ECC decoding fails, ECC engine checks those bits where their
parity checks are nonzero. Then based on the dominant error pattern list, it
starts to search for the error pattern on the top of the list. Whenever there is
a match, it intentionally forces these bits to the value they are supposed to be.
In order to increase the chance to flip the “right” error bits, this error pattern
information should be combine with the “bit flipping”[9] decoding process in
LDPC hard decoding.

NAND Channel Modeling
In order to quantitatively verify the effectiveness of the above proposed method,
a mathematical channel that takes into account program method and common
noise in NAND is developed according to the method proposed in [10].

“…if the current dominant error

pattern is “1” to “0”, then the ECC

engine will be told that bit “0” that

violates parity check is a high risk

candidate…”

Decoding
Failure

Search for bits
violating parity

Flip bits based on
dominant error

pattern list

Decoding

Reach the
end of list?

ECC
Fatal

Done

No

No

Yes

Yes

Successful?

Figure 2: Decoding flow chart with dominant
error patterns information
(Source: Ningde Xie, 2013)

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Error Correction in NAND with Dominant Error Pattern Detection | 97

Each NAND flash memory cell is a floating gate transistor whose threshold
voltage can be configured (or programmed) by injecting a certain amount of
charges into the floating gate. Before a flash memory cell is programmed, it
must be erased (that is, all the charges from the floating gate must be removed,
which sets the gate’s threshold voltage to the lowest voltage window). It is well
known that the threshold voltage of erased memory cells tends to have a wide
Gaussian-like distribution.[11] Hence, we can approximately model the threshold
voltage distribution of erased state as a Gaussian distribution function.

During NAND programming, threshold voltage control is typically realized by
using an incremental step pulse program (ISPP).[12] With such a program-and-
verify strategy, each programmed state (except the erased state) associates with
a verify voltage that is used in the verify operations and sets the target position
of each programmed state threshold voltage window. Denote the verify voltage
of the target programmed state as Vp, and program step voltage as ΔVpp. The
threshold voltage of the programmed state tends to have a uniform distribution
over [Vp, Vp + ΔVpp] with the width of ΔVpp.

Flash memory program/erasure (P/E) cycling causes damage to the tunnel
oxide of floating gate transistors in the form of charge trapping in the oxide
and interface states, which directly results in threshold voltage shift and
fluctuation, and hence gradually degrades memory device noise margin. Major
distortion sources include

●● Electrons capture and emission events at charge trap sites near the interface
developed over P/E cycling directly result in memory cell threshold voltage
fluctuation, which is referred to as random telegraph noise (RTN).

●● Interface trap recovery and electron detrapping gradually reduce memory
cell threshold voltage, leading to the data retention limitation.

RTN causes random fluctuation of memory cell threshold voltage, where the
fluctuation magnitude is subject to exponential decay. Hence, we can model
the probability density function of RTN-induced threshold voltage fluctuation
as a symmetric exponential function.

In NAND flash memory, the threshold voltage shift of one floating gate transistor
can influence the threshold voltage of its neighboring floating gate transistors
through parasitic capacitance-coupling effect.[13] This is referred to as cell-to-cell
interference, which has been well recognized as the one of major noise sources in
NAND flash memory. Threshold voltage shift of a victim cell caused by cell-
to-cell interference can be estimated by adding all weighted neighbor threshold
voltage shift of interfering cells that are programmed after the victim cell. Each
weighting factor, which is also called coupling ratio, can be estimated by the ratio
of parasitic capacitance between the interfering cell and the victim cell.[10]

Simulation Results
As a case study of this proposed work, we use the above channel model to show
the improvement in NAND. For simulation setup, we follow the parameters
in [10] where the most popular MLC NAND is used and carefully selected

“Each NAND flash memory cell

is a floating gate transistor whose

threshold voltage can be configured

(or programmed) by injecting a

certain amount of charges into the

floating gate.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

98 | Improving Error Correction in NAND with Dominant Error Pattern Detection

cell-to-cell coupling factors; P/E cycles affects and retention time according to
real-life NAND.

We first simulate the case where program disturbance is the dominant error
source. It is a very common scenario for a user to program more than tens
of pages of NAND and then come back to read the data back immediately.
Therefore, we set up the simulation model by programming cells with random
bits, which randomly disturb victim bits with various strengths. We also
assume the retention time and P/E cycle to be 0 to simulate the almost new
NAND. In this case, because of the program disturbance, we will see bit errors
are mostly “1” to “0” misplacements. We implemented a hard decoding LDPC
decoder using a bit flipping algorithm. (Note that although soft decoding
brings the largest coding gain, it requires a very large read latency overhead in
NAND; therefore we normally try hard decoding first whenever hard sensing
results are available to the LDPC decoder). In this implementation, when a
normal decoding fails, it will try to decode again by randomly flipping some of
“0” bits that violate most parities.

Figure 3 shows the simulation results for the proposed ECC decoding with
dominant error flipping and conventional ECC decoding without dominant
error flipping. We can see very obvious coding gain in this case.

2
10–7

3 10–3

10–6

10–5

10–4

10–3

U
B

E
R

10–2

10–1

100

2.2 2.4 2.6

RBER

2.8 3 3.2 3.4

With Dominant Error Dection
W/O Dominant Error Dection

Figure 3: Simulation results for write disturb dominated errors
(Source: Ningde Xie, 2013)

As discussed above, after NAND is cycled towards its end of life, combing
the data retention, we will see more “0” to “1” bit errors. To simulate this
scenario, we set the channel model to be cycled at 5000 and adjust the retention
time to three months to simulate the charge loss. This is also a very common
phenomenon in real life after the NAND has been used for a long time and the
user tries to read data that was stored a while ago. Figure 4 shows the simulation
results for the proposed ECC decoding with dominant error flipping and
conventional ECC decoding without dominant error flipping. Again, with
dominant error detection in ECC decoding flow, we get significant coding gain.

“We implemented a hard decoding

LDPC decoder using a bit flipping

algorithm.”

“We can see very obvious coding gain

in this case.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Error Correction in NAND with Dominant Error Pattern Detection | 99

2
10–7

10–6

10–5

10–4

10–3

U
B

E
R

10–2

10–1

100

2.2 2.4 2.6

RBER

2.8 3 3.2 3.4

With Dominant Error Dection
W/O Dominant Error Dection

3 10–3

Figure 4: Simulation results for retention dominated errors
(Source: Ningde Xie, 2013)

Comparing Figure 3 and Figure 4, we noticed that the coding gain is much less
in Figure 4. It is because when we set larger P/E cycle and retention time, we
actually mix all noises together, which include program disturbance as well. We
also see the coding gain tends to increase with lower RBER in both cases. This
is because with lower RBER, dominant error detection used in the simulation
can more accurately detect error locations. This also explains why at very high
RBER, we see no gain at all.

The above implementation is very simple and effective. It can be further
optimized by utilizing other information in NAND. For example, we may
use neighbor cell values to help the ECC decide if a bit needs to be flipped
or not. Of course, this requires the knowledge of how the device does the
interleaving internally so that we can locate the real neighbors bits of a
victim cell.

Conclusions
With this proposed method, we can either simplify the process at the
device level to reduce design cost and time to market without sacrificing
the overall system reliability (for example, delivering the NAND devices for
SSD employing this proposed method without adding peripheral circuits to
mitigate program disturb, ICL, and SBCL can be faster than normal release
of the NAND devices with those circuits ready in the device). Alternatively,
we can also leave the NAND device as is and improve the overall system
reliability by taking advantage of this information enhanced ECC correction
capability. Since ECC has already been used in any NAND-based system,
it requires very little hardware overhead to include this extra information.
Also, the normal hard decoding failure works for the majority of the errors,
so this extra effort is only triggered when normal decoding doesn’t succeed
the first time, which further reduces its impact on the overall system
performance.

“The above implementation is

very simple and effective. It can be

further optimized by utilizing other

information in NAND.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

100 | Improving Error Correction in NAND with Dominant Error Pattern Detection

References
[1]	 Li, Yan, et al. “128Gb 3b/cell NAND flash memory in 19nm

technology with 18MB/s write rate and 400Mb/s toggle mode.”
Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2012 IEEE International. IEEE, 2012.

[2]	 R. Motwani and C. Ong, “Robust decoder architecture for
multilevel flash memory storage channels,” in Computing,
Networking and Communications (ICNC), 2012 International
Conference on. IEEE, 2012, pp. 492–496.

[3]	 Intel, Micron Introduce 25-Nanometer NAND—The Smallest,
Most Advanced Process Technology in the Semiconductor Industry,
http://www.intel.com/pressroom/archive/releases/20100201comp.
htm, Feb., 2010.

[4]	 G. Sonu, “Dominant error correction circuitry for a viterbi
detector,” June 17 2003, US Patent 6,581,181.

[5]	 R. E. Blahut, Algebraic Codes For Data Transmission, Cambridge
University Press, 2003.

[6]	 Wang, Jiadong, et al. “LDPC Decoding with Limited-Precision
Soft Information in Flash Memories.” arXiv preprintarXiv:
1210.0149 (2012).

[7]	 N. Duann, “Error Correcting Techniques for Future NAND Flash
Memory in SSD Applications,” in Flash Memory Summit, 2009.

[8]	 R. Motwani, Z. Kwok, and S. Nelson, “Low density parity check (ldpc)
codes and the need for stronger ecc,” Flash Memory Summit, 2011.

[9]	 Jiang, Ming, et al. “An improvement on the modified weighted bit
flipping decoding algorithm for LDPC codes.” Communications
Letters, IEEE 9.9 (2005): 814–816.

[10]	 Dong, Guiqiang, et al. “Estimating Information-Theoretical NAND
Flash Memory Storage Capacity and its Implication to Memory
System Design Space Exploration.” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 20.9 (2012): 1705–1714.

[11]	 Takeuchi, Ken, Tomoharu Tanaka, and Hiroshi Nakamura. “A Double-
Leve1-Vth Select Gate Array Architecture for Multilevel NAND Flash
Memories.” IEICE Transactions on Electronics 79.7 (1996): 1013–1020.

[12]	 Suh, Kang-Deog, et al. “A 3.3 V 32 Mb NAND flash memory with
incremental step pulse programming scheme.” Solid-State Circuits,
IEEE Journal of 30.11 (1995): 1149–1156.

[13]	 Lee, Jae-Duk, Sung-Hoi Hur, and Jung-Dal Choi. “Effects of
floating-gate interference on NAND flash memory cell operation.”
Electron Device Letters, IEEE 23.5 (2002): 264–266.

Intel® Technology Journal | Volume 17, Issue 1, 2013

Improving Error Correction in NAND with Dominant Error Pattern Detection | 101

Author Biographies
Ningde Xie received his BS and MS degrees in Radio Engineering from
Southeast University, Nanjing, China, in 2004 and 2006, respectively, and
the PhD in Electrical, Computer and Systems Engineering Department
at Rensselaer Polytechnic Institute in 2010. He then joined the Storage
Technology Group at Intel Corporation. His research interests include
application of emerging nonvolatile memory (NVM) in computing, VLSI
systems, and architecture design for storage and communication systems.
Currently, he is working on the next generation NVM and its applications in
computing.

Jawad Khan is an SSD architect with Intel Corporation and is responsible for
SSD architectures, technical innovation, and invention in solid state storage
devices. Jawad has particular expertise in innovating compression, encryption,
and data recovery algorithms for solid state storage devices, and has two issued
patents. Jawad received both is MS and PhD degrees from the University of
Cincinnati.

102 | Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support

Intel® Technology Journal | Volume 17, Issue 1, 2013

Contributors

Javier Carretero
Intel Labs, Intel Corporation

Isaac Hernández
Visual and Parallel Computing,
Intel Corporation

Xavier Vera
Intel Labs, Intel Corporation

Toni Juan
Visual and Parallel Computing,
Intel Corporation

Enric Herrero
Intel Labs, Intel Corporation

Tanusú Ramírez
Intel Labs, Intel Corporation

Matteo Monchiero
Intel Development, Intel Corporation

Antonio González
Intel Labs, Intel Corporation

Nicholas Axelos
Intel Labs, Intel Corporation

Daniel Sánchez
Intel Labs, Intel Corporation

Memory Controller–Level Extensions for GDDR5 Single
Device Data Correct Support

Support for Reliability, Availability, and Serviceability (RAS) is one of the
quintessential features of computing systems targeting the server and mission-
critical markets. Among these RAS features, Chipkill* stands out as the most
crucial for main memory protection. IBM Chipkill protects the main memory
from the failure of an entire memory chip, as well as multi-bit faults from any
portion of a memory chip. Similar technologies from other vendors are Single
Device Data Correction (SDDC) from Intel, Sun Extended ECC* and HP
Chipspare*.

However, some advanced memory technologies (such as GDDR5) do not
allow traditional SDDC implementation, since their specification does not
include extra devices to store error correction codes (ECC codes).

Some future high performance computing products hitting the server market
will be based on these advanced memory technologies. In this article we
propose a method to provide SDDC (single device data correct) support at
the memory controller level for memory technologies that inherently have no
RAS support for memory contents protection. Specifically, we focus on how
to provide single-device SDDC support for GDDR5 memory. The technique
allows the failure of 1/8 of the memory devices to be tolerated by using 25
percent of the memory to store error correction codes.

We also describe how the technique can be implemented for RAS-less memory
technologies feeding a wider data bus than GDDR5 (such as DDR3, which in
fact uses narrower devices). This opens the possibility to offer high reliability
with cheap DIMM devices. We also describe how to provide SDDC support
without the use of lockstepped memory channels.

Introduction
Advanced memory technologies post-DDR3 provide very high memory
bandwidth with low implementation costs and high capacity. This is the case
for GDDR5 with multiple memory channels. These features make these
memory technologies very suitable not only for graphics cards but also for high
performance computing (HPC) systems. Some HPC Intel products, such as
the prototype product codenamed Knights Ferry (KNF) and the commercial
product Intel® Xeon Phi™ (formerly codenamed Knight’s Corner, or KNC),
are based on these or similar advanced memory technologies, and they are also
targeting the server segment.

Targeting the server segment inevitably implies offering memory-level
RAS techniques, such as SECDED (single error correction / double error

“…we propose a method to provide

SDDC (single device data correct)

support at the memory controller level

for memory technologies that inherently

have no RAS support for memory

contents protection. Specifically, we

focus on how to provide single-device

SDDC support for GDDR5 memory.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support | 103

detection), memory mirroring, memory sparing, and memory migration.
However, there are several road-blocking issues related to these advanced
memory technologies.

First, some memory technologies do not provide extra devices to protect
memory contents. This is the case of the GDDR5 standard.[1] As a
consequence, there is no native support to build these RAS techniques on top
of GDDR5-based products. Second, due to cost, energy overhead, memory
capacity restrictions or vendor strategies, the type of available memories may
not include RAS features.

IBM Chipkill and related techniques allow the correction of errors
resulting from the failure of one or several memory devices.[12] As an
example, dual device data correction (DDDC[2]) memory controllers allow
correcting two failing x4 DRAM devices provided the failures are separated
in time out of a set of thirty-six x4 devices. Devices with more output
pins tend to be more power efficient than those with fewer pins because
the energy per memory access can be amortized over more output bits.[10]
This is the reason why other Intel products, such as the Intel® Xeon® 5500
family and the Intel Xeon 6500/7500 series, also extend their protection to
DDR x8 devices.

However, supporting wide devices comes with an increase either in the code
overhead with respect to the protected word, an increase in the word size, or an
increase in the access granularity (amount of data obtained from the memory).
Clearly, for wide memory devices such as GDDR5 (two x16 devices per
memory module), SDDC support represents a challenge.

To our knowledge, there is no previous solution addressing the problem of
device error detection and/or correction for advanced memory with no RAS
support. Yoon and Erez[3] propose using address virtualization in order to
store the codes in regular memory devices. However, this technique requires
microarchitectural changes in the core and OS modifications as well. Also, the
paper targets regular DDR2 memories.

Background Information
In this section we first give a general description of existing memory RAS
techniques for tolerating failures of memory chips. We then describe the
high-level architecture of GDDR5 memory.

Implementation Examples
Several products have hit the market offering RAS capabilities for surviving to
failures of an entire memory chip. We present some of them.

Oracle Sun UltraSPARC* T1/T2 and AMD Opteron*
Some products provide SSC-DSC (single symbol correct – double symbol
detect) protection for x4 DDR2 DIMMs devices. This is the case of the
Oracle Sun UltraSPARC T1/T2 and AMD Opteron systems.[4][5] Memory

“…some memory technologies do

not provide extra devices to protect

memory contents. This is the case of

the GDDR5 standard.”

“…for wide memory devices such as

GDDR5 (two x16 devices per memory

module), SDDC support represents a

challenge.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

104 | Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support

RAS support is constructed by using b-adjacent error correction codes.[7]
These two products use the 4-check-symbol error code.[8] In these cases, the
four 4-bit adjacent check symbols protect thirty-two 4-bit data symbols. This
allows a simple implementation when using two x4 DDR2 DIMMS residing
on two different channels working in lockstep mode. With a burst size of 4,
a whole cache line is accessed within the 4 accesses of a DDR2 burst.
Specifically, in every access of a burst, one data word of 128 (16 data devices
per DIMM × 2 DIMMs × 4 bits per device) bits is obtained and is protected
with a code of 16 bits (2 RAS devices per DIMM × 2 DIMMs × 4 bits per
device). Clearly, this allows recovering the failure of one x4 device, out of a
set of 36 devices.

Intel’s DDDC
Some Intel products improve memory reliability by providing dual-device data
correction (DDDC) in lockstep mode for x4 DRAM chips, and additional
single-bit error correction[2] (correcting two failing x4 DRAM devices “provided
the failures are separated in time” out of a set of thirty-six x4 devices). DDDC
was initially implemented on the Intel® Itanium™ 9300 series (IPF) and on the
Intel Xeon E7-x8xx series (x86). At a high level, DDDC is implemented by
using two x4 ECC-DIMMS in two channels working in lockstep mode with
DDR3 burst chop mode (forced burst of 4).

DDDC is supported for x4 devices by means of lockstepped channels.
However, SDDC (single device data correction) is supported for x4 and for x8
devices. Whereas SDDC for x8 devices also requires two lockstepped channels,
SDDC for x4 devices can work on independent memory channels.

IBM Blue Gene/P*
In the IBM Blue Gene/P system every memory controller communicates
through DDR2 protocol via a 160-bit-wide bus.[6] Of these bits, 128 are user
data and 32 bits are devoted for RAS purposes. This represents an overhead of
25 percent. However, this redundancy allows storing address parity bits, spare
bits, and enhanced ECC protection data. Overall, it can detect/correct up to
six adjacent bits and tolerate the failure of two x8 DRAM chips. However, no
details on the implementation are available.

GDDR5 Basics
Before describing our technique, it is first necessary to understand the basics
of the GDDR5 internal architecture.[1] GDDR5 uses a burst size of 8 (8n
prefetch scheme) to achieve high-speed bus operation while decreasing the
internal memory core frequency for power savings. The data input/output bus
consists of 32 data pins (as opposed to the 64 bits of DDR3), and in every bus
clock cycle 4 chunks of 32 bits are transmitted. Hence, an access with a burst
size of 8 provides 256 bits over two clock cycles. There is no support for burst
chop of 4, as opposed to DDR3 memory. The data bus is logically split into
4 bytes, and two extra signals are added to each byte: the data bus inversion
signal (to reduce the noise on the high-speed interface and power dissipation)
and an error detection and correction signal (to catch errors in the data transfer

“GDDR5 uses a burst size of 8…”

“The data input/output bus consists

of 32 data pins…”

“…every bus clock cycle 4 chunks

of 32 bits are transmitted.”

“…an access with a burst size of

8 provides 256 bits over two clock

cycles.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support | 105

through the bus). Moreover, partial writes where individual bytes are excluded
from write operations are also supported through the use of an extra data
mask pin associated with each data byte. This avoids costly read-modify-write
operations.

The link between the memory controller and GDDR5 is protected by means of
a cyclic redundancy check (CRC) code. This CRC code allows the detection of
all single and double bit faults occurring in the bus for data and bus inversion
signals, as well all bursts errors of length no bigger than 8. Upon error
detection, the command that caused the error should be repeated and also a
retrain of the transmission line can be performed to adapt to varying operating
conditions on such a high-bandwidth bus.

According to the standard[1], GDDR5 memories run with two different
clocks: commands and addresses are referenced to the differential clock
(CK and /CK). Commands are registered at every rising edge of CK,
whereas addresses are registered at the rising edge of CK or /CK. Read
and write data are referenced to both edges of a free-running differential
forwarded clock (WCK, /WCK), which replaces the pulsed strobes used in
previous DRAMs. This relation between clocks and data rates is depicted
in Figure 1. This means that there is a x4 relationship between data rate
and CK clock, as opposed to the x2 relationship in DDR3. Differential
clocking allows a more precise communication and this is the reason of the
dramatic increase in bandwidth provided by GDDR5 (it allows between
4 and 8 Gbps).

Figure 1: GDDR5 clocks and data rates
(Source: Intel Corporation, 2013)

Address

WCK, /WCK

Data

CK, /CK

Command

On top of this, the GDDR5 standard supports a new mode of operation called
2x16 clamshell mode. Basically, as Figure 2 shows, this feature allows doubling
the memory capacity by adding an extra GDDR5 module on every existing
memory channel, at the expense of a decrease in the bus clock frequency. The
data travelling through the bus is provided by the two memory modules at the
same time, each of them providing 16 bits. Every pair of 16 bits is provided by
one of the two devices in a module. Note that during clamshell mode, we have
four x16 devices per memory channel.

“…partial writes where individual

bytes are excluded from write

operations are also supported…”

“…GDDR5 standard supports a

new mode of operation called 2x16
clamshell mode.”

“…this feature allows doubling the

memory capacity by adding an extra

GDDR5 module on every existing

memory channel, at the expense of a

decrease in the bus clock frequency.”

“The data travelling through the bus is

provided by the two memory modules

at the same time, each of them

providing 16 bits.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

106 | Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support

316 316

GDDR5
Module 1

D1 D2

316 316

GDDR5
Module 2

D3 D4

316 316

GDDR5
Module 3

D5 D6

316 316

GDDR5
Module 4

D7 D8

MEMORY CONTROLLER

Channel 1 Channel 2

Address/
Command Bus

Address/
Command Bus

16 data bits

16 data bits

16 data bits

16 data bits

Figure 2: Two channel memory controller working in clamshell mode.
(Source: Intel Corporation, 2012)

SDDC Proposal
Our approach to provide SDDC support is to use b-adjacent error detection-
correction codes.[7][3] Given that multi-bit errors typically affect contiguous bit
locations, computing systems can exploit this fact and use error correction
codes for adjacent faulty locations. This includes the b-adjacent error
detection-correction codes, where a word is divided in chunks of b bits, and
codes can correct any number of bit flips in at least one of these chunks. The
different adjacent codes differ in the maximum size of the word they can
protect, the code overhead, and the number of faulty chunks they can detect
and/or correct.

Given that GDDR5 does not provide extra devices or storage to accommodate
error detection-correction codes, we use the existing data devices for keeping
error correction codes. In order to do so, we propose stealing memory and
devoting it to RAS purposes. Our technique is implemented at the memory
controller level (this does not require cooperation among memory controllers)
and is transparent to the OS. Also, it works by using the two memory channels
of a memory controller in lockstep mode, hence 8 x16 devices are available
for SDDC purposes. We propose using regular x16 devices to store the error
correction codes. As an implementation example and because of its low
overhead, we show how to obtain SDDC support with 2-redundant b-adjacent

“…we use the existing data devices for

keeping error correction codes.”

“…we propose stealing memory and

devoting it to RAS purposes. Our

technique is implemented at the

memory controller level…”
“…works by using the two memory

channels of a memory controller in

lockstep mode…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support | 107

Bossen’s codes.[7] However, other codes with similar overheads could also be
used in a similar fashion.[8][9] Specifically, 2-redundant b-adjacent Bossen’s
codes allow detecting and correcting a maximum of b-adjacent errors of a
data word with a maximum length of b × b bits and an overhead of 2b bits.
We propose a new way to map data and codes to devices that minimizes the
amount of sequestered memory. Moreover, we propose several enhancements
to deal with the performance problems that this data layout induces.

Data Mapping to x16 Devices
For GDDR5 memory, a device is connected to 16 data input/output pins
(that is, a x16 device), and hence Bossen’s codes would allow the protection
of a maximum of 256 data bits with 32 bits of overhead (b = 16), as long as
each one of the sixteen chunks of 16 bits (256 bits) is stored in a different x16
device. Otherwise, if we were to store 256 bits in less than 16 devices, it would
imply that at least one device would be providing 32 bits or more of the word.
In case that device was faulty, we could not correct the data word when using
an adjacent error detection/correction code for b = 16.

However, two lockstepped channels cannot form a word of 256 bits, because
there are 8 available x16 devices when working in clamshell mode. Our intra-
memory controller SDDC technique is based on protecting 96 bits of data
with 32 bits of code. This is done by using 25 percent of the memory to store
the codes. Regarding recovery, our technique allows recovering 1 out of 8
failing devices, whereas DDDC can recover 2 nonadjacent devices out of 36,
when using x4 DDR3 DIMMs.

Figure 3 shows an example on how cache lines can be stored across the different
eight devices in the two memory channels. For clarification purposes, Figure 2
depicts the different devices and their names connected to a memory controller
through two channels working in clamshell mode. However, it would be possible
to assign the chunks of data and codes to the existing devices in different ways.
From now on, we will assume the layout depicted in Figure 2.

Cache line data (512 bits long) is scattered across six x16 devices and across
the two memory channels. Two devices are devoted to store the codes. It is
interesting to note that contiguous cache lines start at different devices, and the
pattern repeats after three cache lines.

In order to access a cache line, two bursts of eight accesses are performed.
The two consecutive bursts allow activating the four different devices in every
channel. A simple way to achieve this is to use the most significant bit of the
column address to select the device within a GDDR5 module. Therefore,
two consecutive bursts will have the most significant bit with opposite values.
The memory controller determines the device where a cache line begins, the
starting column, and what columns to skip. Given that the cache lines layout is
regular and repeats every three cache lines, the memory controller just needs to
perform fixed modulo 3 operations.

“…our technique allows recovering

1 out of 8 failing devices, whereas

DDDC can recover 2 nonadjacent

devices out of 36, when using x4

DDR3 DIMMs.”

“Cache line data (512 bits long) is

scattered across six x16 devices and

across the two memory channels.”

“Two devices are devoted to store the

codes. It is interesting to note that

contiguous cache lines start at different

devices, and the pattern repeats after

three cache lines.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

108 | Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support

D1 D3 D2 D4 D5 D7 D6 D8
1 2 3 4 5 6 C1 C1'
7 8 9 10 11 12 C2 C2'

13 14 15 16 17 18 C3 C3'
19 20 21 22 23 24 C4 C4'
25 26 27 28 29 30 C5 C5'
31 32 33 34 35 36 C6 C6'
37 38 39 40 41 42 C7 C7'

0
1
2
3
4
5
6
7 43 44 45 46 47 48 C8 C8'

49 50 51 52 53 54 C9 C9'
55 56 57 58 59 60 C10 C10'
61 62 63 64 65 66 C11 C11'
67 68 69 70 71 72 C12 C12'
73 74 75 76 77 78 C13 C13'
79 80 81 82 83 84 C14 C14'
85 86 87 88 89 90 C15 C15'

8
9

10
11
12
13
14
15 91 92 93 94 95 96 C16 C16'

CHANNEL 2

LAYOUT OF DATA AND CODES ACROSS DEVICES
32 blocks of 16 bits are 512 bits (cache line size)

CHANNEL 1

Figure 3: Example of data and codes layout. Three cache lines are shown
(Source: Intel Corporation, 2012)

Figure 4 shows an access example where the yellow cache line is accessed.
The two access bursts allow providing 1024 bits of data. Of these, 512 bits of
data correspond to the cache line, the excess data corresponds to a partially
prefetched cache line (half of the blue one in the example) and the codes of the
partially prefetched cache line.

D1 D3 D2 D4 D5 D7 D6 D8
1
7

13
19
25
31
37
43

2
8

14

26
32
38
44

5
11
17
23
29
35
41
47

6
12
18
24
30
36
42
48

3
9

15
21
27
33
39
45

4
10
16
22
28
34
40
46

C1
C2
C3
C4
C5
C6
C7
C8

C1'
C2'
C3'
C4'
C5'
C6'
C7'
C8'

B
U

R
S

T
 1

CHANNEL 2CHANNEL 1

Example: C1.C1' protects chunks 1.2.3.4.5.6
 C2.C2' protects chunks 7.8.9.10.11.12

20

B
U

R
S

T
 2

ti
m

e

Figure 4: Acceses to obtain the yellow line. Partial prefetch of the blue
cache line is achieved
(Source: Intel Corporation, 2012)

Intel® Technology Journal | Volume 17, Issue 1, 2013

Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support | 109

Enhancements
In order to avoid wasting memory space, cache lines start at different device
boundaries, and as a consequence, there are column addresses that can store
segments of two different cache lines (column 5 and 10 in Figure 3 are two
examples). For the blue cache line in Figure 5, chunks 31 and 32 do not constitute
a part of the blue cache line, but these fragments must be read and written along
with the blue cache line, since they are involved in the code C6 and C6’. We refer
to these two data chunks as the preamble of the blue cache line. Similarly, the same
happens for chunks 65 and 66, and we refer to these fragments as the postamble of
the blue cache line. Despite the fact that preambles and postambles are read/written
upon the blue cache line request, unless no enhancement is introduced at the
memory controller they do not represent useful data for the request being serviced.

Similarly, these columns (preambles/postambles) are problematic during cache line
writes because without extra optimizations, it would be necessary to read the cache
line again to obtain the preamble and postamble data (see Figure 5) so that the
codes could be computed. This implies that a total of the request would be satisfied
after three bursts (one parallel burst across the two channels to obtain the preamble
and postamble, and two parallel bursts across the two channels to accomplish the
write request), incurring important performance overhead on writes.

Preamble is 31.31
Line L is 33 … 64 Postamble is 65.66

31 32 33 34 C6 C6'

37 38 39 40 C7 C7'

43 44 45 46 C8 C8'

49 50 51 52 C9 C9'

55 56 57 58 C10 C10'

61 62 63 64 C11 C11'

67 68 69 70 C12 C12'

73 74 75 76

35

41

47

53

59

65

71

77

36

42

48

54

60

66

72

78 C13 C13'

Preamble and postamble used to optimize writes. If preamble and postamble were
not cached, we would have to read the line L again in order to determine 31.32 and
65.66 because they are part of codes C6.C6' and C11.C11'. 31.32 and 65.66 etc
would not be modified during writes (using write masks)

Figure 5: Preamble and postamble example
(Source: Intel Corporation, 2012)

Caching and Prefetching Optimizations
As a way to speed up writes, we “cache” in the memory controller the preamble
and postamble (if any) as well as the cache line address of the last read cache
line(s). If a cache line write matches the address of the last read line(s), there is
no need to perform a read to obtain the preamble and/or postamble to compute
the codes for overlapping columns. This can be generalized to “cache” any
number of preambles/postambles. Also, since GDDR5 supports write masks,
there is no need to write again the data that has not been touched. Every cache
line has a maximum of 64 bits for preamble and postamble, hence introducing
a low overhead. Since a GDDR5 page is 2 KB long, and we use 4 GDDR5
modules in a lockstepped and clamshell manner upon a cache request, it means

“If a cache line write matches the

address of the last read line(s), there is

no need to perform a read to obtain the

preamble and/or postamble to compute

the codes for overlapping columns.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

110 | Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support

that there are globally 96 cache lines (data) in all the row buffers of the eight
devices (for a single bank). The cache lines layout follows a repetitive pattern,
which indicates that in order to store all the preambles/postambles in a page
of a bank, roughly 768 bytes of data are needed plus 96 × 2 bits (24 bytes) to
indicate whether the preamble/postamble data is valid (has been cached). To
implement this feature, a direct access memory is the simplest option: the cache
line ID is used to access one of the 96 entries, where each entry holding 8 bytes
for preamble/postamble. Upon a cache line write request, first this information
is obtained in order to compute the codes for the columns holding the preamble
and postamble. Just in case neither the preamble nor the postamble is available
in the memory, an additional read request will have to be performed. After that,
and in parallel to the cache line writing, a maximum of two entries (adjacent
cache lines) are accessed to update their information. However, since four cycles
are needed to perform the writing of a cache line, enough timing is provided for
the update, as well as for previous preamble/postamble query.

Regarding the excess data obtained during a cache line access, we manage this
data as prefetched data. To improve performance, this prefetched data is kept
at the memory controller level so that subsequent read requests arriving to the
memory controller check if part of the information to be retrieved is already
“cached.” This cached data allows advancing the column address to be read
and as a consequence, prefetching more data. Overall, sequential (forward or
backward) reads of three cache lines can be satisfied with an average cost of four
groups of bursts across two channels. As an example, Figure 6 shows a forward
read access of the yellow, blue, and green cache lines. The first request, as
previously commented, returns the yellow cache line and prefetches half of the
blue cache line. Afterwards, when there is a request for the blue cache line, the
column address will be moved to column 8 and the whole green cache line will
be prefetched in the memory controller. This allows that the future request for
the green line can be satisfied with no access to the GDDR5 modules.

To implement that, whenever a cache line is being read from the main memory,
the memory controller groups together the data and code chunks that come
from the same column address and identifies whether they correspond to the
cache line being requested, it is a column where two different lines reside, or it
is a column from another different line. This can be easily inferred because the
cache lines layout follows a repetitive pattern. Once a read has been completed,
the above-mentioned preamble and/or postamble “direct access memory” is
filled. As commented, the entire last read data (potentially for every bank) is kept
in a buffer in the memory controller along with the starting column address.

For the next read request the memory controller will determine the number of
overlapping column addresses that overlap with the previous cached information.
If there is some overlap, the read column address can be moved forward (or
backward) as many columns as the number of overlapping columns with respect
to the previous cached information. The new read data belonging to the requested
cache line is merged with the data coming from the last request (the one cached)
and returned to the requesting agent. The same caching process starts again.

“Regarding the excess data obtained

during a cache line access, we manage

this data as prefetched data.”

“…this prefetched data is kept at

the memory controller level so that

subsequent read requests arriving to

the memory controller check if part

of the information to be retrieved is

already “cached.” ”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support | 111

D1 D3 D2 D4 D5 D7 D6 D8
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15
8
9

10
11
12
13
14
15

CHANNEL 1 CHANNEL 2

B
U

R
S

T
 1

B
U

R
S

T
 2

B
U

R
S

T
 4

B
U

R
S

T
 3

1
7

13
19
25
31
37
43

49
55
61
67
73
79
85
91

2
8

14
20
26
32
38
44

50
56
62
68
74
80
86
92

3
9

15
21
27
33
39
45

51
57
63
69
75
81
87
93

4
10
16
22
28
34
40
46

52
58
64
70
76
82
88
94

5
11
17
23
29
35
41
47

53
59
65
71
77
83
89
95

6
12
18
24
30
36
42
48

54
60
66
72
78
84
90
96

C1
C2
C3
C4
C5
C6
C7
C8

C9
C10
C11
C12

C14
C15
C16

C1'
C2'
C3'
C4'
C5'
C6'
C7'
C8'

C9'
C10'
C11'
C12'

C13 C13'
C14'
C15'
C16'

Green cache line is fully cached in the memory controller. 0 bursts are needed

Figure 6: Example of cost amortization
(Source: Intel Corporation, 2012)

Other Implementations
Several implementations of the proposed idea are possible. As commented, the
assignment of data chunks to devices is arbitrary. Also, other kinds of adjacent
error detection/correction codes with different amounts of overhead are also
possible.

On another axis, in order to avoid overlapping cache lines, an alternative solution
may simply waste the extra space at the end of a cache line. This simplifies the
write method, because there is no need to keep preambles or postambles, but it
comes at a cost in extra space (33.33 percent or 16/48 of the memory is lost).
Also, the prefetching optimization is for performance purposes so designers may
want to drop this feature for simplicity and less hardware overhead.

Applications to Other Memory Technologies
The same idea can be applied to other types of memory technologies where
devices are grouped to feed a wider data bus. For example, common DDR,
DDR2, and DDR3 modules (as well as other future memory technologies)

“The same idea can be applied to

other types of memory technologies

where devices are grouped to feed

a wider data bus. For example,

common DDR, DDR2, and DDR3

modules…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

112 | Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support

feed a bus of 64 data bits. Normally, this modules come prepackaged in the
form of four x16 devices, eight x8 devices, or sixteen x4 devices.

Table 1 briefly lists possible applications of the proposed implementation to
this kind of memory modules. Notice that the list of possible implementations
is not exhaustive.

As an example, the very same idea presented for GDDR5 can be applied
to x4 DIMMs that have no RAS support (no extra devices to store ECCs),
and output 64 bits per each access of every burst. We can even apply the
technique to achieve SDDC support by using just one DIMM and avoiding
lockstepped channels. This can be achieved with the same overhead of
25 percent of sequestered memory by using a 2-redundant b-adjacent Bossen
code for b = 8, or by using a 4 check symbol code[8] for b = 4. Specifically,

Device Size #DIMMs Error Detection Code Area Cost Access granularity (bits)

x4 1 2-redundant b-adjacent Bossen code (b = 8) or

4 check symbol code (b = 4)

4/16 768 (burst of 4)

1024 (burst of 8)

2 4 check symbol code (b = 4) 4/32 1024 (burst of 4)

1024 (burst of 8)

4 4 check symbol code (b = 4) 4/64 1024 (burst of 4)

2048 (burst of 8)

x8 1 2-redundant b-adjacent Bossen code (b = 8) 2/8 768 (burst of 4)

1024 (burst of 8)

2 4 check symbol code (b = 8) 4/16 1024 (burst of 4)

1024 (burst of 8)

4 4 check symbol code (b = 8) 4/32 1024 (burst of 4)

2048 (burst of 8)

n ≤ 1024,

n power of 2

4 check symbol code (b = 8) 4/8n n × 4 × 64 (burst of 4)

n × 8 × 64 (burst of 8)

x16 2 2-redundant b-adjacent Bossen code (b = 16) 2/8 1024 (burst of 4)

1024 (burst of 8)

4 2-redundant b-adjacent Bossen code (b = 16) 2/16 1024 (burst of 4)

2048 (burst of 8)

4 4 check symbol code (b = 16) 4/16 1024 (burst of 4)

2048 (burst of 8)

n ≤ (64 × 1024
× 1024) − 1,
n power of 2

4 check symbol code (b = 16) 4/4n n × 4 × 64 (burst of 4)

n × 8 × 64 (burst of 8)

Table 1: Possible SDDC implementations on RAS-less memory technologies with a 64-bit bus
(Source: Intel Corporation, 2012)

Intel® Technology Journal | Volume 17, Issue 1, 2013

Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support | 113

4 check symbol codes allow protecting 22b + 1 – 4b bits against b-adjacent
faults with 4b bits of code.[8] This means that for b = 4, b = 8, a maximum
word of 241, and 65505 bits can be protected with an overhead of 16 and
32 bits, respectively.

For the x4 case where one DIMM is used, in order to obtain a cache line (given
a burst size of 8), two consecutive accesses are necessary. This allows obtaining
a cache line and prefetching half of another one. The cache lines layout pattern
stays unchanged with respect to the GDDR5 SDDC implementation (so MC
address determination is simple). The same happens for the x8 implementation
using one DIMM.

Since only one bank is accessed and only one DIMM is required to provide
the requested cache lines, several benefits can be obtained from this lockstep-
free implementation. First, the number of devices activated is reduced to
the bare minimum of 16 chips for a x4 DIMM. A reduction in the active
power consumption can also be achieved because fewer devices are activated
to satisfy a cache line request. Regarding performance, despite an access to a
cache line is served (in the worst case when there is no previous prefetching)
using an additional burst (hence, increasing the read latency), performance
can also be boosted because there is an increase in bank-level and rank-level
parallelism (no interlocked channels/ranks/banks). Given the expected low
row locality for future multi-threaded tera-scale processors[11], a SDDC
solution using a single memory module is more desirable in terms of power
and performance.

Summary
We have presented a memory controller level solution to provide SDDC
support for memory technologies with no RAS support. The technique can be
applied to several types of memory, such as GDDR5 or common memory with
no special devices for ECC. Our proposal allows recovering failures in one out
of eight devices with a memory capacity cost of 25 percent.

Additionally, we have shown that this SDDC technique can be implemented
for memory technologies feeding a wider data bus (such as DDR3, not
GDDR5) without the use of lockstepped channels (see Table 1).

It is also worth noting that this way of implementing SDDC opens the
possibility to offer high reliability with cheap DIMM devices.

References
[1]	 JEDEC Solid State Technology Association, “GDDR5

SGRAM,” 2009.

[2]	 Intel Corporation, “Intel Xeon Processor E7 Family: Reliability,
Availability and Serviceability,” White Paper

“We have presented a memory

controller level solution to provide

SDDC support for memory

technologies with no RAS support. The

technique can be applied to several

types of memory, such as GDDR5

or common memory with no special

devices for ECC. Our proposal allows

recovering failures in one out of eight

devices with a memory capacity cost

of 25 percent.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

114 | Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support

[3]	 Yoon D.H, Erez M., “Virtualized and Flexible ECC for Main
Memory,” Architectural Support for Programming Languages and
Operating Systems Conference (ASPLOS), 2010.

[4]	 Sun Microsystems Inc, OpenSPARC T2 System on Chip (SOC)
Microarchitecture Specification, May 2008.

[5]	 AMD, “BIOS and kernel developer’s guide for AMD NPT family
0Fh processors,” URL http://support.amd.com/us/Processor_
TechDocs/32559.pdf.

[6]	 IBM Blue Gene Team, “Overview of the IBM Blue Gene/P
Project,” IBM Journal of Research and Development 2008 Bossen
D.C., “b-Adjacent Error Correction,” IBM Journal of Research and
Development, 1970.

[7]	 Bossen D.C., “b-Adjacent Error Correction,” IBM Journal of
Research and Development, 1970.

[8]	 Chen, C.L. “Symbol error correcting codes for memory
applications,” International Symposium on Fault-Tolerant
Computing (FTCS), 1996.

[9]	 Chen C.L., Hsiao M.Y., “Error-Correcting Codes for
Semiconductor Memory Applications: A State-of-the-Art Review,”
IBM Journal of Research and Development, 1984.

[10]	 Jacob B., Ng S.W, Wang D.T., “Memory Systems: Cache, DRAM,
Disk,” Morgan Kaufmann.

[11]	 Udipi A.N., Muralimanohar N., Chatterjee N., Balasubramonian R.,
Davis A., Jouppi N.P, “Rethinking DRAM Design and Organization
for Energy-Constrained Multi-Cores,” International Symposium on
Computer Architecture (ISCA), 2010.

[12]	 Dell T.J. “A White Paper on the Benefits of Chipkill-Correct ECC
for PC Server Main Memory,” IBM Report, 1997.

Author Biographies
Javier Carretero received an MS degree in Computer Engineering from the
Universitat Politècnica de Catalunya (UPC) at Barcelona, Spain, in 2005. Since
April 2006, he has been a research scientist at Intel Labs Barcelona. His main
research interests include processor microarchitecture, hardware reliability, and
lightweight on-line testing. He can be contacted at javier.carretero.casado@
intel.com

Isaac Hernández is a silicon architecture engineer who has been with Intel
for 10 years. He was the memory controller architect on KNF and Intel®
Xeon Phi™ products. He is currently working on interconnect and coherence

Intel® Technology Journal | Volume 17, Issue 1, 2013

Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support | 115

protocols for future Intel® Many Integrated Core Architecture products. He
can be contacted at isaac.l.hernandez@intel.com

Xavier Vera received an MS degree in computer science from the Universitat
Politècnica de Catalunya (UPC), Barcelona, Spain, in 2000, and a PhD from
Mälardalens Högskola, Västerås, Sweden, in 2004. He has been with Intel since
February 2004, participating in research in the area of reliable and variations-
aware microarchitectures. He can be contacted at xavier.vera@intel.com

Toni Juan is a principal engineer with more than 10 years of experience at
Intel and has been the uncore architect for KNF and Intel® Xeon Phi™. He is
currently working in the uncore architecture of future Intel MIC generations.
His contributions span from memory hierarchy, memory controllers, on-
die interconnect, memory coherence and performance modeling. He can be
contacted at toni.juan@intel.com

Enric Herrero received his MS in Electronics and PhD in Computer Science
from the Universitat Politècnica de Catalunya (UPC), in Barcelona, and an MS
in Electricity from the Royal Institute of Technology (KTH), in Stockholm,
Sweden. He was a visiting researcher at the University of California San Diego
(UCSD) in 2009. He now works as a research scientist at Intel. His research
focuses on reliability and memory hierarchy. He can be contacted at enric.
herrero@intel.com

Tanausú Ramírez has been a research scientist at Intel Labs Barcelona since
December 2009. He received BS and MS degrees in Computer Science from
the University of Las Palmas de Gran Canaria, Spain. In 2010 he received his
PhD from the Universitat Politècnica de Catalunya, Barcelona. His current
research interests include architectural optimizations for future processors,
hardware reliability, and variations-aware microarchitectures. He can be
reached at tanausu.ramirez@intel.com

Matteo Monchiero is a performance architect in the Intel® Xeon® Performance
Architecture Group in Intel Santa Clara. Matteo joined Intel in 2010 in the
Intel Barcelona Research Lab where he worked on several topics in post-silicon
validation and reliability. He is coauthor of more than thirty international
publications and three granted patents. He can be contacted at matteo.
monchiero@intel.com

Antonio González holds a PhD in Computer Engineering from the
Universitat Politècnica de Catalunya (UPC), in Barcelona. He is the founding
director of Intel Labs Barcelona, started in 2002, whose research focuses on
computer architecture. Prior to his work at Intel, he joined the faculty of
the Computer Architecture Department of UPC in 1986, and became a full
professor in 2002. Antonio holds over 40 patents, has published over 300
research papers and has given over 100 invited talks in the areas of computer
architecture and compilers. He has also made significant contributions to
the design of the architecture of several Intel processors. Antonio has served
as program chair for ISCA, MICRO, HPCA, ICS, and ISPASS among

Intel® Technology Journal | Volume 17, Issue 1, 2013

116 | Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support

other symposia and has been associate editor of the IEEE Transactions on
Computers, IEEE Transactions on Parallel and Distributed Systems, IEEE
Computer Architecture Letters, ACM Transactions on Architecture and Code
Optimization, and Journal of Embedded Computing. He can be contacted at
antonio.gonzalez@intel.com

Nicholas Axelos joined Intel in 2010 and works as a research scientist at
Intel Barcelona Research Center. His interests include computer architecture,
reliability estimates, fault tolerance, and heterogeneous architectures. He can be
contacted at nicholasx.axelos@intel.com

Daniel Sánchez received his MSc and PhD degrees in computer architecture
in 2007 and 2011, respectively, from the University of Murcia (Spain). He
now works as a research scientist at Intel Barcelona Research Center, which he
joined in 2011. His research interests include general computer architecture,
fault tolerance and reliability, chip multiprocessors, and performance
simulation. He can be contacted at danielx.sanchez@intel.com

Intel® Technology Journal | Volume 17, Issue 1, 2013

Memory Controller–Level Extensions for GDDR5 Single Device Data Correct Support | 117

118 | Towards Proportional Memory Systems

Contributors

Intel® Technology Journal | Volume 17, Issue 1, 2013

Off-chip memory systems are currently designed to present a uniform interface
to the processor. Applications and systems, however, have dynamic and
heterogeneous requirements in terms of reliability and access granularity because
of complex usage scenarios and differing spatial locality. We argue that memory
systems should be proportional, in that the data transferred and overhead of error
protection be proportional to the requirements and characteristics of the running
processes. We describe two techniques and specific designs for achieving aspects
of proportionality in the main memory system. The first, dynamic and adaptive
granularity, utilizes conventional DRAM chips with minor DIMM modifications
(along with new control and prediction mechanisms) to access memory with
either fine or coarse granularity depending on observed spatial locality. The
second, virtualized ECC, is a software/hardware collaborative technique that
enables flexible, dynamic, and adaptive tuning between the level of protection
provided for a virtual memory page and the overhead of bandwidth and capacity
for achieving protection. Both mechanisms have a small hardware overhead, can
be disabled to match the baseline, and provide significant benefits when in use.

Introduction
With increasing levels of system integration, the need to improve power and
energy efficiency is paramount. With voltage scaling leveling off, process
technology alone cannot provide the necessary sustained improvements in
efficiency. An attractive alternative to improving performance is to waste
less power when resources are not fully utilized. This idea of proportionality,
where the resources consumed are proportional to actual requirements, is thus
key to achieving necessary efficiency, and hence, necessary performance
improvements. In this article we argue the importance of proportionality in
the memory system and describe two mechanisms that enable it. The discussed
research was conducted at the University of Texas at Austin with support from
the Intel URO Memory Hierarchy Program.

The memory system continues to consume significant power and energy resources
as available computation increasingly outpaces memory bandwidth. At the same
time, the need for increasing memory capacity and the inherent error sensitivity
of memory devices require hardware error protection for high reliability. Existing
systems attempt to manage these bandwidth and reliability issues by using coarse-
grained (CG) memory accesses and by applying error checking and correcting
(ECC) codes uniformly across all memory locations. Large granularity accesses
reduce cache miss rates and amortize control for spatially local requests and
can thus maximize peak bandwidth. Coarse-grained ECC codes provide low-
redundancy error tolerance enabling strong protection with acceptable overhead.

“...proportionality, where the resources

consumed are proportional to actual

requirements, is key to achieving

necessary efficiency, and hence,

necessary performance improvements.”

Towards Proportional Memory Systems

Doe Hyun Yoon
HP Labs

Min Kyu Jeong
Oracle Labs

Michael Sullivan
The University of Texas at Austin

Mattan Erez
The University of Texas at Austin

Intel® Technology Journal | Volume 17, Issue 1, 2013

Towards Proportional Memory Systems | 119

While the coarse-grained approach can maximize peak bandwidth with required
reliability levels, it is ill-suited for many applications and scenarios. The optimal
memory access granularity and error detection and correction schemes are, by
nature, application specific. When a program lacks spatial locality, CG accesses
waste power, memory bandwidth, and on-chip storage. Furthermore, protecting
all data to the same degree carries either a large associated cost, forces CG
accesses, or carries a hidden risk of silent data corruption. This one-size-fits-all
approach is inherently not proportional, in that it does not account for specific
needs and usage. Thus, CG accesses waste the scarcest resources: off-chip (or
off-package) bandwidth, power and power. As a result, it is unlikely that uniform
granularity and protection will provide adequate system efficiency and reliability
for future workloads and system scales.

In contrast to uniform schemes, we advocate a cooperative and flexible memory
system that transfers data and protects it from error in a manner that is
proportional to the requirements and characteristics of the running processes. This
work describes two techniques for achieving proportionality in the main memory
system. Our techniques are unique in that they do not target low-utilization phases
or background power. Instead, by taking into account application-specific memory
access properties, these techniques provide scalable, efficient, and reliable operation
for a wide range of demanding applications and operating environments. While
adding significant flexibility and enabling new levels of performance and efficiency,
our proposed mechanisms have only a small hardware overhead and may provide
benefits even without the support of the application developer.

In the rest of this article we explain the importance of proportionality in the
memory system, describe our two proportional mechanisms, and discuss their
potential future applications and impact. The first of the two mechanisms, the
dynamic granularity memory system (DGMS) enables memory to be accessed
with granularity that can vary dynamically to maximize utilization of off-chip
links, performance, and efficiency. In our experiments, DGMS is able to improve
performance by up to 180 percent in a bandwidth-constrained environment
and power efficiency by an even higher 280 percent over a CG-only system. The
second mechanism, virtualized ECC (VECC), decouples ECC information from
the data it protects and enables ECC schemes that are dynamic, adaptive, and
proportional. With VECC, each memory page can receive its own ECC scheme
from an available palette, thus eliminating the waste associated with a uniform
error code. Furthermore, VECC relaxes many design constraints by storing
ECC information as data. We show that this design flexibility offers significant
efficiency advantages—memory protection can be increased with a stronger
ECC code while at the same time improving system energy-delay product over a
system with conventional uniform error codes.

The Need for Proportional Memory Systems
While proportionality is an appealing approach to improve efficiency, and
hence, performance, much of the work on proportionality has been on the
processor side. Advanced power management features, such as flexible and

“...we advocate a cooperative and

flexible memory system that transfers

data and protects it from error in a

manner that is proportional to the

requirements and characteristics of the

running processes.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

120 | Towards Proportional Memory Systems

hardware-managed DVFS and both coarse- and fine-grained clock and power
gating minimize wasted power when the full compute capabilities are not
needed.[6][17] The memory system, despite consuming a large and (in servers at
least) growing fraction of overall consumed power, has received less attention
with respect to proportional mechanisms. Similar to compute-oriented
techniques, the little memory proportionality research that exists focuses on
times when the memory system is not fully utilized. At these times, devices can
be placed in a low power mode, DVFS can be applied to links and potentially
even memory arrays, and refresh periods can be extended.

We argue that the importance of main memory provides sufficient motivation
to develop fine-grained proportional mechanisms that can be used not just
when utilization is low. Specifically, new mechanisms are needed that minimize
unnecessary data transfers and wasted storage resources. As explained earlier,
memory systems currently favor coarse-grained accesses to amortize control
and uniform ECC redundancy, thus maximizing peak bandwidth when spatial
locality is high. When a program lacks spatial locality, however, CG accesses
waste power, memory bandwidth, and on-chip storage. Uniform ECC wastes
both capacity and bandwidth when protection needs are variable. We explain
the need for proportionality of granularity and ECC in the subsections below.

Accesses Granularity
Figure 1 shows the spatial locality of various benchmarks by profiling the
number of 8-byte words accessed in each 64-byte cache line before the line
is evicted (in a 1-MB cache). Most applications touch less than 50 percent
of each cache line. For these applications, a CG-only memory system wastes
off-chip bandwidth and power by fetching unused data. A memory system that
makes only a fine-grained (FG) access eliminates this minimum-granularity
problem and may achieve higher system throughput than a CG-only memory
system. An FG-only memory system, however, incurs high ECC (error
checking and correcting) overhead since every FG data block needs its own
ECC. High-end vector processors (such as Cray’s Black Widow[2]) often use
the FG-only approach but relinquish the benefits of CG accesses when spatial
locality is high.

GUPS

ca
nn

ea
l

m
st

em
3d

SSCA2
as

ta
r

om
ne

tp
p

bz
ip2 m

cf
lbm

OCEAN

str
ea

m
clu

ste
r

hm
m

er

STREAM

100%

75%

50%

25%

0%

8 words 5–7 words 2–4 words 1 word

Figure 1: Number of touched 8-byte words in a 64-byte cache line before the line is evicted
(Source: University of Texas at Austin, 2011)

“When a program lacks spatial

locality, CG accesses waste power,

memory bandwidth, and on-chip

storage.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Towards Proportional Memory Systems | 121

Unlike CG and FG memory systems, our dynamic-granularity DGMS is
proportional. It amortizes overhead and uses CG accesses when spatial locality
is high, while enabling FG accesses when spatial locality is lacking. In the
section “Dynamic and Adaptive Granularity,” we describe two variants of this
system. The first relies on software to adapt granularity and the second is a
pure-hardware microarchitectural approach.

Memory Error Protection
The traditional approach for memory error protection applies error checking
and correcting (ECC) codes uniformly across all memory locations, potentially
resulting in system inefficiency or at the risk of data corruption. With uniform
ECC, each memory access is extended to also include redundant information
that is used to detect and correct potential errors. Memory protection is
necessary because memory capacity requirements dictate both denser and
more memory chips. Unfortunately, this increase in capacity comes with a
corresponding increase in memory failures.

Currently, uniform ECC is typically implemented by adding additional
memory chips to each memory rank or DIMM. ECC DIMMs are most often
used to provide single-bit error correction and double-bit error detection
(SEC-DED) for each DRAM rank, which does not reduce memory system
performance. Tolerating failures of entire DRAM chips requires the use of
Chipkill correct, which “spreads” a DRAM access across multiple chips and
uses a wide ECC to allow high error tolerance.[9] While this conveniently
provides a fixed level of error tolerance, uniform ECC cannot efficiently
provide the error tolerance levels that will be required in future computing
platforms without a significant increase in cost. The reason is that the
increasing granularity, DRAM interface width, and burst length necessitates
either a corresponding increase in memory access granularity or an increase in
redundancy. Increasing granularity is undesirable for the reasons mentioned
earlier. Increasing redundancy may be even more costly because it requires both
additional storage resources and additional I/O pins to communicate more
redundant information with each access. For example, providing Chipkill with
current DRAM packaging technology is best when x4 DRAMs are used, which
have a 4-bit interface width. These narrow chips consume roughly 30 percent
more energy for a given total DIMM capacity with respect to the more efficient
x8 configurations.[5] This extra overhead is required for all the memory, which
may be multiple terabytes in large-capacity systems.

To complicate and constrain designs even further, the error tolerance level,
hence the cost of reliability, must be determined at design time based on a
“worst-case” scenario of error propensity. This worst case may never arise
in many systems, but may actually be exceeded in others. This is a poor
combination that results in the overprovisioning of reliability techniques in
most environments and a potential compromise to reliable operation in others.
We present a proportional alternative to uniform ECC. Virtualized ECC is
a general scheme for virtualizing memory error correction to provide design-
time flexibility and runtime adaptivity. Virtualized ECC maps the redundant

“...the cost of reliability must be

determined at design time based

on a “worst-case” scenario of error

propensity.”

“This worst case results in the

overprovisioning of reliability

techniques in most environments and

a potential compromise to reliable

operation in others.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

122 | Towards Proportional Memory Systems

information needed to correct errors into the memory namespace itself. This
mechanism enables flexible memory protection, as opposed to the fixed error
tolerance level of uniform ECC. Furthermore, Virtualized ECC enables error
correction mechanisms that adapt to user and system demands.

Dynamic and Adaptive Granularity
We describe two variants of DGMS that proportionally adapt memory
access granularity. Both variants use a similar overall design and differ in how
granularity information is obtained and communicated and in how data
and ECC information are laid out across memory chips. An overview of the
design is shown in Figure 2. DGMS uses sectored caches[14] with eight 8-byte
subsectors to maintain FG information in the on-chip memory hierarchy,
a modified memory controller that can schedule FG and CG requests, and
a sub-ranked memory DIMM design that we leverage to enable low-cost
independent access to each DRAM chip in a rank[3][29]. In a sub-ranked
DIMM, a register or demux chip can decouple a rank of DRAM chips and
direct memory command signals to only sub-ranks of one or more chips, while
the datapath is still dedicated to each chip as in a regular memory module.

Core
0

TLB/
SPP

$1Sectored
$D

Sectored L2

Core
1

TLB/
SPP

$1Sectored
$D

Sectored L2

Sub-ranked
Memory

Core
N–1

TLB/
SPP

$1Sectored
$D

Sectored L2

Sectored Last Level Cache

Memory
Controller

Figure 2: Overview of DGMS design, which uses sectored caches throughout the
hierarchy, identifies FG/CG accesses either with information communicated from software
through the TLB or with a spatial pattern predictor (SPP), and uses a modified memory
controller that is aware of mixed granularity and controls a sub-ranked memory module
(Source: University of Texas at Austin, 2012)

Our first variant, the adaptive granularity memory system (AGMS)[27] relies
on software to communicate a static granularity for each memory page.
AGMS enables the processor to selectively use FG accesses only when software
determines FG to be beneficial and still maintains the efficiency of CG accesses
by default. The information for determining whether an access is FG or CG is
provided at page granularity and is communicated by the operating system (OS)

“AGMS enables the processor

to selectively use FG accesses only

when software determines FG to be

beneficial and still maintains the

efficiency of CG accesses by default.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Towards Proportional Memory Systems | 123

through the page table and is stored in the TLB. With AGMS, each memory
page is assigned an access granularity when it is allocated. An important
reason for using this static approach is to enable different layouts of data and
ECC information that are better tuned for CG and FG accesses. Figure 3
compares the data layouts for CG and FG pages. An FG access can achieve high
throughput when spatial locality is low, but pays with increased ECC overheads.

(a)

(b)

Burst 8
8-bit data 1 5-bit SEC-DED or 8-bit DEC

B0
B8

B16
B24
B32
B40

B1
B9

B17
B25
B33
B41

B2
B10
B18
B26
B34
B42

B3
B11
B19
B27
B35
B43

B4
B12
B20
B28
B36
B44

B5
B13
B21
B29
B37
B45

B6
B14
B22
B30
B38
B46

B7
B15
B23
B31
B39
B47

E 0–7
E 8–15

E 16–23
E 24–31
E 32–39
E 40–47

B48
B56

B49
B57

B50
B58

B51
B59

B52
B60

B53
B61

B54
B62

B55
B63

E 48–55
E 56–63

Burst 8
64-bit data 1 8-bit ECC (SEC-DED)

B0
B1
B2
B3
B4
B5
B6

B8
B9

B10
B11
B12
B13

E8
E9

E10
E11
E12
E13

B16
B17
B18
B19
B20
B21

B24
B25
B26
B27
B28
B29

E0
E1
E2
E3
E4
E5
E6 B14 E14 B22

E16
E17
E18
E19
E20
E21
E22 B30

E24
E25
E26
E27
E28
E29
E30

B7 E7 B15 E15 B23 E23 B31 E31

Figure 3: CG and FG accesses in AGMS. (a) Coarse-grained: Bx represents
the xth byte in a 64-byte block, and Ey-z is 8-bit SEC-DED ECC for data By to
Bz. (b) Fine-grained: Bx represents the xth byte in a 64-byte block, and Ex is
8-bit SEC-DED ECC for data Bx
(Source: University of Texas at Austin, 2012)

Due to the different data and ECC layouts for CG and FG, AGMS requires
changes to (and collaboration between) all system levels, from the memory
system to user-space applications: the application dictates the preferred
granularity during memory allocation; the OS manages per-page access
granularity by augmenting the virtual memory interface; a sector cache
manages fine-grained data in the cache hierarchy; and a sub-ranked memory
system and mixed granularity memory scheduling handle multiple access
granularities within the off-chip memory system.

Our second variant extends AGMS with dynamic mechanisms that offer
numerous and substantial benefits. We refer to the resulting system as the
Dynamic Granularity Memory System (DGMS).[28] DGMS supports both
CG and FG accesses to a single, uniform memory space. Eliminating the strict
separation of CG and FG data pages enables true dynamic adaptivity and has
the potential to simplify the implementation of an AGMS system.

The data layout of DGMS shares the same memory, including ECC, between CG
and FG accesses. This allows FG accesses to benefit from the same low-redundancy

“DGMS supports both CG and

FG accesses to a single, uniform

memory space. Eliminating the strict

separation of CG and FG data pages

enables true dynamic adaptivity

and has the potential to simplify the

implementation of an AGMS system.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

124 | Towards Proportional Memory Systems

error tolerance as CG accesses, eliminating the 100-percent FG ECC overhead
required for the original AGMS design. This reduction in error-protection overhead
affects the capacity, bandwidth, and power efficiency of FG accesses.

We encode the data within each 64-byte data chunk such that each 8-bit
SEC-DED ECC protects the eight bytes transmitted out of a single DRAM
chip over all bursts. The eight bytes of DGMS ECC protect the full 64-byte
data chunk with the same redundancy as the conventional CG-only system.
Since each 8-bit SEC-DED ECC protects an independent DRAM chip, the
layout supports both CG and FG accesses. Figure 4(a) illustrates how an FG
request is serviced with the proposed data layout. To avoid contention in the
ECC DRAM chip, we spread ECC blocks across sub-ranks in a uniform,
deterministic fashion, as shown in Figure 4(b), similar to RAID-5.

B0
B1
B2
B3
B4
B5
B6

B16
B17
B18
B19
B20
B21

B24
B25
B26
B27
B28
B29

B32
B33
B34
B35
B36
B37

B48
B49
B50
B51
B52
B53

(b)

(a)

Burst 8
64-bit data 8-bit ECC (SEC-DED)

B8
B9
B10
B11
B12
B13
B14 B22 B30 B38

B40
B41
B42
B43
B44
B45
B46 B54

B56
B57
B58
B59
B60
B61
B62

E 0–7
E 8–15
E 16–23
E 24–31
E 32–39
E 40–47
E 48–55

B7 B15 B23 B31 B39 B47 B55 B63 E 56–63

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

SR 0 SR 1 SR 2 SR 3 SR 4 SR 5 SR 6 SR 7 SR 8

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 BECC

ECC

ECC

ECC

ECC

ECC

ECC

ECC

ECC

8 B

8 B

8 B

8 B

8 B

8 B

8 B

8 B

Figure 4: The data layout used by DGMS to support multiple access granularities
and the method used to lessen bank conflicts in the ECC DRAM chip. (a) Proposed
data layout: Bx represents the xth byte in a 64-byte block, and Ey-z is 8-bit SEC-DED
ECC for data By to Bz. (b) Spreading ECC locations in sub-ranks (SR: sub-rank)
(Source: University of Texas at Austin, 2012)

Because the layout of DGMS permits pages to service both CG and FG
accesses, it enables the dynamic prediction of access granularities and does not
need predetermined per-page granularity information and complicated virtual
memory mechanisms. Dynamic locality and granularity speculation allows
DGMS to operate as a hardware-only solution, without application knowledge,
operating system support, or the need for programmer intervention. DGMS
modifies previously proposed spatial pattern predictors[7][11] to operate at the
main memory interface of a multi-core CPU, and adds layers to account for

“...the layout of DGMS permits pages

to service both CG and FG accesses,

which enables the dynamic prediction

of access granularities...”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Towards Proportional Memory Systems | 125

memory scheduling and the interactions between cores. This study shows
dynamic granularity adjustment to be an effective method for improving
performance and system efficiency. Hardware-only DGMS provides comparable
performance to software-controlled AGMS and demonstrates superior DRAM
traffic and power reductions. Our ISCA paper describes more details in hardware
granularity prediction in the context of chip-multiprocessors.[28]

DGMS Evaluation
We use cycle-based simulation and multi-programmed workloads to evaluate
DGMS. The detailed evaluation methodology can be found in our ISCA
paper.[28]

Figure 5 compares the system throughput of the CG baseline, AGMS, and
DGMS, with and without ECC. AGMS improves the system throughput by
20–220 percent in many applications with low spatial locality. In general, the
performance of DGMS is very close to that of AGMS, with the exception of
some outliers. The performance of DGMS suffers slightly with respect to AGMS
due to increased bank conflicts from accessing the randomly distributed ECC
information—with ECC disabled, DGMS outperforms AGMS. AGMS avoids
bank conflicts by using a separate memory layout for FG pages, but does so at
the cost of memory capacity, increased memory traffic, and increased energy
spent accessing memory. Note that DGMS, with the proposed unified data/ECC
layout, also does not require any changes in the OS, the virtual memory interface,
compiler, or application. DGMS is a hardware-only solution, yet it achieves
almost the same advantages of AGMS with “expert” program annotations.1 In
addition, we believe a better granularity prediction and multigranularity memory
scheduling can improve the performance of DGMS in the future.

7

6

5

4

3

2

1

0

W
ei

g
h

te
d

 S
p

ee
d

u
p

SSCA2 canneal em3d mst gups mcf omnetpp lbm s-cluster stream MX1 MX2 MX3 MX4 MX5OCEAN

CG AGMS (ECC) DGMS-prediction (ECC)

DGMS-profiling (No ECC) DGMS-prediction (No ECC)

Figure 5: System throughput of AGMS and DGMS with and without ECC
(Source: University of Texas at Austin, 2012)

Virtualized ECC
To achieve proportionality of memory protection overhead, we offer a
fundamentally different approach to storing and manipulating redundant
DRAM storage, which brings flexibility to memory error protection.

1 Extracted from dynamic memory profiling information.

“...AGMS improves system throughput

by 20–220 percent in many

applications with low spatial loactily.”

“...DGMS is a hardware-only

solution, yet it achieves almost the same

advantages of AGMS, which require

“expert” program annotation.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

126 | Towards Proportional Memory Systems

The Virtualized ECC architecture has four important advantages over
uniform ECC. First, VECC[26] is a general OS/architecture mechanism
for virtualizing DRAM ECC protection and decoupling the mapping of
redundant information from the mapping of data. Second, with VECC we
enable two-tiered protection for DRAM and show how to improve reliability
guarantees and reduce the power consumption of the DRAM system by using
wider-access configurations. Third, combining virtualization and multiple tiers,
VECC can adapt error protection levels to match application, user, and system
needs. Fourth, VECC can provide ECC protection for systems with standard
non-ECC DIMMs without requiring changes to data mapping. We describe
the VECC architecture and how it achieves these advantages below.

Virtualized ECC Architecture
The main innovation of Virtualized ECC is that it offers great flexibility in
the method and level of memory protection. This flexibility allows Virtualized
ECC to dynamically tune the memory protection scheme based on system
configurations, environmental conditions, and application needs. In this way,
Virtualized ECC can avoid the need to uniformly pay the overhead for the
worst-case operating scenario, increasing system efficiency.

There are two basic mechanisms underlying Virtualized ECC: an augmented
virtual memory (VM) interface that allows a separate virtual-to-physical
mapping for data and for its associated redundant ECC information, and
a generalization of DRAM ECC into a two-tiered protection mechanism,
inspired by prior research.[18][24] Virtualized ECC uses a tier-one error code
(T1EC) to detect errors on every access and a tier-two error code (T2EC) to
correct the (rare) occurrence of an error.[25] Figure 6 compares a traditional VM
ECC mapping with the decoupled two-tiered approach of Virtualized ECC.
The traditional VM mapping, shown in Figure 6(a) translates a virtual address
from the application name space to a physical address in DRAM. A DRAM
access then retrieves or writes both the data and the ECC information, which is
stored in alignment with the data in dedicated ECC DRAM chips.

Figure 6(b) gives an example of a flexible mapping enabled by Virtualized ECC
in which a portion of the redundant information, the T1EC, is aligned with
the data, but the T2EC part is mapped to a different physical address.

The data and the T2EC share the same physical address space and storage
devices, and the OS and hardware memory management unit ensure that data
and ECC are always matched and up to date. Less total data is accessed on a
read in Virtualized ECC than in the conventional approach because T2EC is
only read on the very rare event of an error. Data writes, however, may have
higher corresponding overhead because all ECC data needs to be updated,
requiring a second DRAM access. To mitigate the potential degradation in
performance, we utilize the processor cache to reduce the amount of ECC
traffic and discuss this in detail in the following subsection. Another advantage
of the decoupled mapping and two-tiered approach is that different memory
pages can have different protection types. For example, clean pages do not
require any T2EC storage, potentially increasing the effective memory capacity.

“Virtualized ECC can dynamically

tune the memory protection scheme

based on system configurations,

environmental conditions, and

application needs.”

Application
Program

Application
Program

VA

PA

VA

PA

Data ECC

(a)

(b)

PA spaceVA space

Data T1EC

PA space

T2EC

EA

VA space

Figure 6: High-level view of memory accesses
in a conventional virtual memory with fixed ECC,
and Virtualized ECC with a two-tiered flexible
protection scheme; (a) conventional architecture
(b) Virtualized ECC architecture
(Source: University of Texas at Austin, 2010)

Intel® Technology Journal | Volume 17, Issue 1, 2013

Towards Proportional Memory Systems | 127

Cache-DRAM Interface
The cache filters requests from the core to DRAM and can also help improve
the performance of Virtualized ECC. Because we store redundant information
in the same physical namespace as data, we can cache ECC information on
chip and can improve ECC access bandwidth using the same principles that
make caches advantageous for data. Unlike application data, however, ECC
is only accessed by the memory controller when it needs to address off-chip
DRAM and is not shared among multiple processor cores. Thus, the redundant
information is stored in the cache level to which the memory controller has
direct access—the last-level cache (LLC) bank to which it is attached. Due
to this arrangement, ECC information does not participate in any coherence
protocol and is kept up to date by the memory controller. Virtualized ECC
does not require significant changes to the existing cache interface; the only
exceptions are the additional hardware for ECC address translation and the
ability to maintain and write back partially valid cache lines. The latter is
necessary because the cache has up-to-date ECC information only for data that
is generated on chip (in two-tiered DRAM ECC). We describe this in detail
below and address the different operations needed for two-tiered protection
and for ECC with Non-ECC DIMMs.

Two-Tiered DRAM ECC
Figure 7 shows two-tiered Virtualized ECC on top of a generic memory system
configuration with the LLC connected to two ranks of DRAM with dedicated
ECC chips. We use the ECC chips to store T1EC, which can detect all errors
of interest but cannot correct them without the additional T2EC information.
The T2EC is mapped to the data DRAM chips such that data and its
associated T2EC are in two different ranks.

The numbers in the text below refer to operations shown in Figure 7.
Handling a fill into the LLC on a cache miss follows the same operations
as in a conventional system; a data burst and its aligned T1EC are fetched
from main memory, and error detection is carried out (1). This differs from
a conventional system only insomuch that any detected errors cannot be
immediately corrected. Evicting a dirty line and writing it back to DRAM (2),
however, requires additional operations when compared to a conventional
memory hierarchy. The memory controller must update the T2EC information
associated with the evicted line, which starts with translating the data address
to the location of the ECC address (EA) (3 and 4). If the translated EA is
already in the LLC, it is simply updated in place. Otherwise, we allocate an
LLC line to hold the T2EC. We do not need to fetch any information from
memory because T2EC is only read when an error is detected, and any writes
render the prior information obsolete. Thus, we compute the new T2EC and
write it into the LLC along with a mask that indicates what portion of the LLC
line contains valid T2EC information. As we explain later, our coding schemes
use T2ECs that are 16–128 bits long and thus require very few valid bits.
Depending on the exact ECC used to protect the LLC itself, it may even be
possible to repurpose the LLC ECC bits to store the valid mask. We can ignore
errors in a T2EC line in the LLC because there is no need to add a third level

“We use the ECC chips to store T1EC,

which can detect all errors of interest

but cannot correct them without the

additional T2EC information. The

T2EC is mapped to the data DRAM

chips such that data and its associated

T2EC are in two different ranks.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

128 | Towards Proportional Memory Systems

of redundancy and protect T2EC information from errors. This mask is used
when a T2EC LLC line is evicted back to DRAM (5) as invalid portions of the
line must not overwrite T2EC data in DRAM.

B

B

LLC

A

A

ECC Address
Translation Unit

PA: 0301803

EA: 0305504

Wr: 0301802 Rd: 0300c01 Wr: 0305405

C

C

Rank 1Rank 0DRAM

T2EC for
Rank 1 data

Data T1EC Data

0000
0050
0100
0150
0200
0250
0300
0350
0400
0450
0500
0550

0040
00c0
0140
01c0
0240
02c0
0340
03c0
0440
04c0
0540
05c0

T1EC

T2EC for
Rank 0 data

Figure 7: Operations of DRAM and LLC for accessing a two-tiered Virtualized
ECC configuration
(Source: University of Austin, 2010)

When an error is detected by T1EC, correction is carried out using the
corresponding T2EC. If the T2EC is not in the cache, correction requires an
additional DRAM access to fetch the redundant information. This additional
latency, however, does not significantly impact performance because errors in a
particular memory channel are very rare. Frequent errors indicate a hard fault
and can be mitigated by data migration, as suggested by Slayman.[19]

Virtualized ECC Interface with Non-ECC DIMMs
Even if physical memory does not provide ECC storage, we can use Virtualized
ECC to protect memory. In the non-ECC DIMM configuration, we cannot
store an aligned T1EC; therefore we place all the redundant information in the
virtualized T2EC instead (we still refer to this as T2EC to keep the notation
consistent). When data is read from main memory, we use the ECC address
translation unit to find its EA. A T2EC LLC miss will fetch the T2EC from
main memory because without ECC DIMMs, the information is required for
error detection, and not just for correction. Unlike the two-tiered scenario,
we fetch an entire cache-line’s worth of T2EC data on a miss to amortize
the DRAM access, and expect spatial locality to reduce the cost of following
memory accesses. We only return data to the cache controller after the ECC
information is fetched, and the data is verified. On a dirty write-back, the PA

“Even if physical memory does not

provide ECC storage, we can use

Virtualized ECC to protect memory.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Towards Proportional Memory Systems | 129

is translated to an EA, and a T2EC is fetched from main memory if the EA is
not already cached.

Virtualized ECC Protection Schemes
We now discuss possible DRAM configurations for Virtualized ECC, assuming
a memory system that is representative of servers requiring Chipkill correct
error protection. The baseline memory system is composed of a 128-bit wide
DDR2 DRAM channel with an additional 16 bits of dedicated ECC. Our
techniques work as well, or better, with DDR3 because it uses longer bursts
and limits use of traditional Chipkill techniques.[3]

Virtualized ECC with ECC DIMMs
While traditional Chipkill uses a 4-check-symbol error code, Virtualized ECC,
with two-tiered protection and T2EC virtualization, enables a more efficient
3-check-symbol error code.[8] In two-tiered error protection, the first two check
symbols of the 3-check-symbol code construct a T1EC that can detect up to
two symbol errors, while the T2EC is the third check symbol. If the T1EC
detects a single symbol error, it is corrected using all three check symbols of
both tiers. Our scheme uses 8-bit symbols for x4 and x8 DRAM configurations
and 16-bit symbols with x16 chips. In the x4 system, we use two consecutive
transfers of 128 bits so that we have an 8-bit symbol from each DRAM chip
for the 8-bit symbol based error code. This effective 256-bit access does not
actually change the DRAM access granularity, which is still 64 bytes as in the
baseline system. The Virtualized ECC configurations using ECC DIMMs are
summarized in Table 1, which also presents the details of the baseline Chipkill
technique.

ECC x4 uses x4 chips, but utilizes the two-tiered approach to improve energy
efficiency. We store two 8-bit check symbols in two ECC DRAM chips (in an
ECC DIMM) to serve as a T1EC that can detect up to two chip failures. The
third check symbol is the T2EC, which is stored in the data chips. Thus, ECC
x4 only requires two ECC chips instead of the four chips of the conventional
approach, saving eight pins and the associated costs of storage, power, and
bandwidth.

ECC x8 is an efficient scheme for Chipkill protection using ECC DIMMs
with x8 chips. We use the two ECC chips in a rank for the 2-symbol
T1EC and store the third check symbol in data memory as the T2EC.
Thus, we access 16 x8 data chips and two additional ECC chips on every
read for the same 64-byte access granularity and redundancy overhead of
the conventional Chipkill approach. Without virtualizing the T2EC, an
additional DRAM chip to hold the third symbol would be touched on every
access, increasing power and pin redundancy to a fixed 18.5 percent[3] as well
as requiring nonstandard DIMMs.

Virtualized ECC with Non-ECC DIMMs
Another advantage of Virtualized ECC is the ability to add ECC protection to
systems that use non-ECC DIMMs. We suggest schemes that are based on a
2-check-symbol Reed Solomon (RS) code[16], which can detect and correct one

“While traditional Chipkill uses a

4-check-symbol error code, Virtualized

ECC, with two-tiered protection and

T2EC virtualization, enables a more

efficient 3-check-symbol error code.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

130 | Towards Proportional Memory Systems

symbol error—in our case, a code that can tolerate any number of bit errors as
long as they are confined to a single chip. The details for this scheme using x4,
x8, and x16 DRAM chips are also summarized in Table 1. All three non-ECC
DIMM configurations have the same protection capability, but the access
properties differ. The wider symbols needed for x16 DRAMs imply that fewer
T2EC words fit into an LLC line.

Flexible Protection Mechanisms
Virtualized ECC allows error protection levels and overhead to be
proportional to dynamic application, user, and system needs. A single
processor with virtualized ECC can support different levels of error tolerance
by varying the T2EC size (see “T2EC per cache line” columns in Table 1).
Supporting flexible protection tuning requires that the memory controller
be able to compute and decode different codes as well as select which ECC
technique to use for any given DRAM access. One elegant method to achieve
the latter is to augment the OS page table and the TLB to include protection
information for each page. We do not explore the benefits of protection
tuning in this article but list two potential scenarios that we will explore in
future work. The first is an opportunity to reduce system power by protecting

“A single processor with virtualized

ECC can support different levels of

error tolerance by varying the T2EC

size...”

Table 1: DRAM configurations for Chipkill correct of the baseline system and Virtualized ECC
(Source: University of Texas at Austin, 2010)

DRAM
type

Data
DRAMs
per rank

ECC
DRAMs
per rank

Rank
Organization

T2EC
access T2EC per cache line

read write
No
Protection

Chipkill
detect

Chipkill
correct

Double
Chipkill
correct

Baseline Chipkill Correct

Baseline x4 x4 32 4 2 ECC
DIMMs

N N N/A N/A N/A N/A

Virtualized ECC

ECC x4 x4 32 2 1 ECC
DIMM and
1 Non-ECC
DIMMM

N Y N/A 0 B 2 B 4 B

ECC x8 x8 16 2 2 ECC
DIMMs

N Y N/A 0 B 4 B 8 B

Non-ECC x4 x4 32 N/A 2 Non-ECC
DIMMs

Y Y 0 B 2 B 4 B 8 B

Non-ECC x8 x8 16 N/A 2 Non-ECC
DIMMs

Y Y 0 B 4 B 8 B 16 B

Non-ECC
x16

x16 8 N/A 2 Non-ECC
DIMMs

Y Y 0 B 8 B 16 B 32 B

Intel® Technology Journal | Volume 17, Issue 1, 2013

Towards Proportional Memory Systems | 131

more critical data with stronger codes and potentially leaving some data
unprotected. Another potential use is to adapt the protection level to the
changes in environmental conditions, such as higher temperature or a higher
energetic particle flux (while on an airplane, or if the system is located at a
high altitude).

Evaluation
We evaluate the impact of Virtualized ECC on performance and energy
efficiency relative to the baseline Chipkill system. The details of our evaluation
methodology are available in our ASPLOS paper.[26]

Chipkill Performance and Energy
Figure 8 presents the execution time and system energy-delay product
(EDP) of the Virtualized ECC configurations described in Table 1
normalized to those of the baseline x4 Chipkill ECC. For system EDP, we
calculate system power consumption as the sum of processor core power,
LLC power, and DRAM power. Virtualized ECC with ECC DIMMs has
a very small impact on performance. With the exception of the PARSEC
canneal workload, all applications have lower than 0.5-percent performance
difference. This very low penalty is a result of effective T2EC caching
and the fact that the additional DRAM traffic for writing out T2EC
information is not on the computation critical path. Even the write-
intensive GUPS microbenchmark that has no T2EC locality and very low
arithmetic intensity only suffers a 10-percent reduction in performance.
ECC x4, unfortunately, has little positive impact on EDP. ECC x8, on the
other hand, shows a significant improvement in energy efficiency. DRAM
power is reduced by an average of almost 30 percent, and EDP is improved
by an average of 12 percent. EDP improvement is consistent using x8
DRAMs, with only two outliers: mcf and STREAM have a 20-percent and
18-percent improvement respectively. Both benchmarks place significantly
higher pressure on the memory system, thus benefiting more from
increased memory power efficiency. GUPS demands even higher memory
performance. While the EDP of GUPS is improved by 10 percent in ECC
x8 with more energy-efficient x8 DRAMs, it is degraded by 23 percent
in ECC x4, mainly due to the increase in DRAM power consumption (7
percent). Note that supporting Chipkill with x8 DRAMs in conventional
systems is not possible unless custom-designed DIMMs with higher
redundancy or increased access granularity are used.

Virtualized ECC can also bring DRAM error tolerance to systems that use
non-ECC DIMMs. The extra DRAM accesses required for every read (and not
just for writes) result in a larger impact on performance. Even with this extra
traffic, however, application performance is degraded by 3 percent, 6 percent,
and 9 percent using x4, x8, and x16 chips, respectively, on average. While the
x4 configuration slightly degrades EDP, wider DRAM configurations improve
EDP by 5 percent (x8) and 12 percent (x16) when compared to a standard
Chipkill that uses ECC DIMMs.

“Virtualized ECC with ECC

DIMMs has a very small impact on

performance.”

“ECC x8, shows a significant

improvement in energy efficiency.

DRAM power is reduced by an

average of almost 30 percent, and

EDP is improved by an average of

12 percent.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

132 | Towards Proportional Memory Systems

Figure 8: Performance and system EDP for baseline and Virtualized ECC Chipkill correct
(Source: University of Texas at Austin, 2010)

0.7

0.8

0.9

1

1.1

1.2

1.3
B

as
el

in
e

x4

E
C

C
 x

4
E

C
C

 x
8

N
on

-E
C

C
 x

4
N

on
-E

C
C

 x
8

N
on

-E
C

C
 x

16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

B
as

el
in

e
x4

E

C
C

 x
4

E
C

C
 x

8
N

on
-E

C
C

 x
4

N
on

-E
C

C
 x

8
N

on
-E

C
C

 x
16

bzip2 hmmer mcf libquantum omnetpp milc lbm sphinx3 canneal dedup fluidanimate freqmine Average

SPEC 2006 PARSEC

Normalized Execution Time

Normalized EDP

Flexible Protection
Virtualized ECC enables flexibility in choosing the error protection level based
on dynamic application, user, and system needs. To assess the new tradeoff that
Virtualized ECC enables, we evaluate the effect of different T2EC sizes, which
are summarized in Table 2. The detailed evaluation of individual applications
can be found in our ASPLOS paper.[26]

Table 2: Summary of flexible error protection results with Virtualized ECC. The x4 configurations are omitted since they do not
show significant gain
(Source: University of Texas at Austin, 2010)

ECC x8 Non-ECC x8 Non-ECC x16

Chipkill
detect

Chipkill
correct

Double
Chipkill
correct

No
protection

Chipkill
detect

Chipkill
correct

Double
Chipkill
correct

No
protection

Chipkill
detect

Chipkill
correct

Double
Chipkill
correct

Performance
penalty

 0% 0.7%   1%   0% 3.4% 5.8%    8.9%   0%     5.8%     8.9% 12.8%

DRAM
power
reduction

 29% 27.8% 27.2% 37.1% 32.6% 30.1% 26.7% 59.5% 53.4% 50.1% 46.2%

System EDP
gain

14.6%    12% 11.2% 17.3% 10.4% 5.6% -0.9% 27.8% 17.8% 12.1% 4.9%

As expected, increasing the protection level increases EDP and execution time.
The impact of adding the capability to tolerate a second dead chip, however,
has a fairly small overhead overall when using ECC DIMMs. Double Chipkill
correct increases execution time by at most 0.3 percent relative to single
Chipkill correct, and system EDP is still 10–20 percent better than that of
conventional x4 Chipkill.

“...increasing the protection level

increases EDP and execution time.

The impact of adding the capability to

tolerate a second dead chip, however,

has a fairly small overhead overall...”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Towards Proportional Memory Systems | 133

Significance and Potential Impact
of Proportional Memory
We have shown that DGMS and VECC offer substantive advantages for
current systems and technologies through memory proportionality. Trends
in computer architectures, workloads, and memory technologies will make
proportional memory systems even more valuable in future systems.

DGMS
The idea of dynamic, hardware-only, multigranularity memory access has
great potential to improve system efficiency in current and future architectures
where off-chip bandwidth is scarce. We describe both near-term and long-term
potential impacts of DGMS in detail below.

Memory I/O Power
Recent advances in off-chip interconnect technology enable high-speed I/O
in DRAM: DDR3 and DDR4 use sophisticated I/O signaling to overcome
signal integrity issues, at the cost of increased I/O power. For instance, on-die
termination used in DDR3 burns out static power on the terminating pins
when transferring data. By transferring only useful data over I/O pins, DGMS
can reduce the static power burnt in terminating I/O pins.

DGMS for SIMD and Vector Architectures
Wide SIMD architectures have been gaining popularity, as seen in GPUs and
increasing SSE operand widths. Utilizing wide SIMD for complex algorithms
frequently requires non-unit stride and indexed gather/scatter memory
operations. Such SIMD architectures will suffer from poor effective throughput
with conventional coarse-grain-only memory systems. DGMS has great
potential to achieve higher throughput for non-unit stride and indexed gather/
scatter operations. In addition, the notion of vector memory operations can
help to predict memory access granularities more accurately.

Emerging Applications
Emerging workloads (such as social network services, data analytics, and
data-intensive computing) frequently leverage graph structures. Our initial
evaluation indicates that graph applications (such as SSCA2) benefit
significantly from DGMS due to their pointer-chasing intensive memory-
access patterns. We believe that DGMS can provide the high graph-
traversal rates demanded by emerging systems without sacrificing efficiency.
Furthermore, the higher fine-grained access throughput of DGMS may allow
software engineers to rethink the data structures used for graph storage and
sparse matrices. With DGMS, a more intuitive data structure using pointer
operations can perform comparable to (or may even outperform) a cache-
conscious data structure such as a compressed-sparse-row based approach.

Bandwidth Scaling
Chip multiprocessor (CMP) architectures are ubiquitous, and trends
indicate rapidly increasing numbers of integrated cores and threads. Off-chip
bandwidth scaling, on the other hand, is limited because of scarce pins and

“The idea of dynamic, hardware-

only, multigranularity memory

access has great potential to improve

system efficiency in current and

future architectures where off-chip

bandwidth is scarce.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

134 | Towards Proportional Memory Systems

power. As a result, most applications, if not all, will become bandwidth-
limited, and efficient utilization of the finite off-chip bandwidth is key to
continued performance scaling.

DGMS judiciously applies fine-grained accesses to boost the available
effective bandwidth when spatial locality is low. DGMS is unique in that it
is orthogonal to other circuit-level techniques (such as high-speed signaling
or optical communication) and in that it reduces power consumption at the
same time as it improves throughput (unlike other bandwidth-enhancing
techniques). As such, DGMS is a cost-effective way to scale memory
throughput and efficiency.

DGMS for Emerging Memory Technologies
Recently, new memory technologies have emerged that can revolutionize
memory systems by providing new capabilities and significantly increased
capacity: nonvolatile memory (NVRAM) including phase-change memory
and memristors; and Micron’s hybrid memory cube (HMC) with 3D stacking.
Unfortunately, the interface bandwidth connecting these off-chip components
to the processor will scale much more slowly than potential capacities.
Thus, compared to current systems, the ratio of capacity to bandwidth of
main memory is expected to get worse, necessitating better utilization of
available bandwidth. DGMS offers an effective solution for accessing only the
required data without sacrificing transfer efficiency. We believe the dynamic
tradeoff between amortizing control bandwidth, ECC overhead, and fine-
granularity accesses will increase in importance once NVRAM and HMC are
commoditized.

DGMS for Mass Storage
The underlying idea of DGMS can help improve any system where the
interface bandwidth is constrained. Memory architectures such as disaggregated
memory[13], Violin memory[22], Fusion I/O[10], or PCIe-attached PCRAM[4] are
of great interest commercially and improve database performance by orders
of magnitude. However, these memory architectures have a relatively low-
bandwidth interface; as such, a technique similar to DGMS can better utilize
the limited channel in such emerging memory systems.

Virtualized ECC (VECC)
VECC is a general scheme for virtualizing the memory error tolerance
mechanisms. Virtualized ECC is based on two key ideas: (1) decoupling
data from its ECC-redundant information; and (2) virtualizing the
redundant information to allow it to share space with the data in both
memory and caches. This unique combination enables new tradeoffs
between cost, error protection, and performance. More importantly,
these new tradeoffs can be tuned at runtime to meet dynamically changing
reliability needs while simultaneously relaxing DRAM system design
constraints. We believe that these capabilities will have a lasting and
important influence on memory error protection, and we discuss the
potential for other impact below.

“Virtualized ECC ...”

“...enables new tradeoffs between

cost, error protection, and

performance. More importantly,

these new tradeoffs can be tuned

at runtime to meet dynamically

changing reliability needs...”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Towards Proportional Memory Systems | 135

Double Chipkill and More
Even though the cost of providing Chipkill protection is high, the industry is
offering even stronger memory reliability for high-end servers. Implementing
schemes such as the double device data correction (DDDC) of Itanium® 2 and
new Intel® Xeon® based systems, however, requires more redundancy and
constrains the design space of the memory system. This results in less energy-
efficient memory system configurations, such as requiring the use of x4 DRAM
chips. Configurations with more energy-efficient x8 DRAMs are highly
desirable; our system provides a cost-effective way to provide strong protection
is such systems. Moreover, Virtualized ECC can apply the stronger and more
costly protection only to memory pages that actually require it, minimizing the
cost of double Chipkill correct.

Protection for Low Power and Stacked DRAM
Recent research has offered new solutions for better energy efficiency by
avoiding DRAM “overfetch,” where a large DRAM page is activated but only
a fraction is actually transferred to the processor. These proposals include
MC-DIMM[3] as well as more recent research that redesigns the DRAM array
itself [20]. These designs achieve energy efficiency through a narrow data path
and through the activation of fewer bits in DRAM; however, such techniques
make memory protection difficult. Contrary to conventional reliability,
Virtualized ECC can effectively protect such systems from memory errors.
Recent work has picked up on some of the ideas of VECC and extended
aspects of the design to stacked memories and memory cubes, showing the
versatility of this approach.[21]

Tunable/Adaptive Reliability
We are excited about the potential of using Virtualized ECC as the basis
of a tunable/adaptive reliability framework. Such a dynamically adaptive
paradigm is presented in recent cross-layer reliability[1] collaborative efforts
in academia and industry and is discussed in papers such as “Mixed-Mode
Multicore Reliability”[23]. To the best of our knowledge, Virtualized ECC was
the first mechanism to enable tunable and adaptive memory protection. A
recently proposed mechanism offers an alternative design for adapting memory
protection, where access granularity can be dynamically increased rather than
adapting capacity overhead.[12] Such a design offers a tradeoff between capacity
and granularity and may offer interesting interactions between VECC and
DGMS.

GPU Memory Protection
Graphics processing units (GPUs) are already being used as compute
accelerators, and memory protection is essential for integrating GPUs in
larger high-end systems. GPU memory systems use high-bandwidth memory
products (such as GDDR5), where the dedicated storage for ECC is not
available. Virtualized ECC for non-ECC DIMMs can be straightforwardly
applied and enable memory protection in GPU systems. At the moment,
NVIDIA’s latest GPUs[15] support SEC-DED protection with GDDR5
memory, and we believe their mechanism is quite similar to the technique

“Virtualized ECC can apply stronger

and more costly protection only

to memory pages that actually

require it…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

136 | Towards Proportional Memory Systems

we presented (but without adaptivity). We argue that SEC-DED (and static
in-memory ECC) is not enough for GPU systems. Unlike general purpose
systems, GPUs do not utilize memory modules so the entire card needs to
be replaced if only a single memory device fails (or manifests any intolerable
hard failures). In future systems, a more stringent protection mechanism
(such as Chipkill) will be required. The flexible memory protection enabled
with Virtualized ECC can allow GPU systems to proportionally support
the required error tolerance level. In essence, the cost of Chipkill will only
be incurred after a memory device fails, enabling graceful performance
degradation at low cost.

Emerging NVRAM
Virtualized ECC can also protect emerging nonvolatile memory (NVRAM)
such as phase-change memory (PCRAM). This new memory technology has
finite write-endurance so tolerating hard errors is a challenge. With Virtualized
ECC, we can adapt error tolerance levels to NVRAM wear-out status,
increasing error tolerance levels as NVRAM devices wear out.

Conclusions
Conventional memory system techniques will not be able to satisfy the
dynamic and heterogeneous requirements of future workloads with scarce
available off-chip bandwidth. To provide efficient and reliable operation across
diffing applications and usage scenarios, future memory systems must transfer
and protect data in a manner that is proportional to application, system, and
environmental needs. This article describes two mechanisms that offer such
memory proportionality. The first, DGMS, is a minimally intrusive hardware-
only mechanism that transfers data from off-chip memory at a granularity
appropriate for the spatial locality of running programs. The second, VECC,
allows the level of error protection to be dynamically tuned and adapted. These
mechanisms offer performance, power, and reliability advantages in current
systems, and will become necessary in future systems given computing trends.

References
[1]	 	 A. DeHon, N. Carter, and H. Quinn (Editors), Final Report

for CCC Cross-Layer Reliability Visioning Study, 2011.
http://www.xlayer.org

[2]	 D. Abts, A. Bataineh, S. Scott, G. Faanes, J. Schwarzmeier,
E. Lundberg, M. Byte, and G. Schwoerer. “The Cray Black Widow:
A highly scalable vector multiprocessor.” In Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2007.

[3]	 J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber.
“Future scaling of processor-memory interfaces.” In Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2009.

“To provide efficient and reliable

operation across differing applications

and usage scenarios, future memory

systems must transfer and protect data

in a manner that is proportional

to application, system, and

environmental needs.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

Towards Proportional Memory Systems | 137

[4]	 A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson.
“Onyx: A protoype phase-change memory storage array.” In
Proceedings of the USENIX conference on Hot topics in storage
and file systems (Hot Storage), 2011.

[5]	 S. Ankireddi and T. Chen. “Challenges in thermal management
of memory modules.” http://electronics-cooling.com/html/2008_
feb_a3.php.

[6]	 L. Barroso and U. Holzle. “The case for energy-proportional
computing.” Computer, 40(12):33–37, 2007.

[7]	 C. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos. “Accurate and
complexity effective spatial pattern prediction.” In Proceedings of
the International Symposium on High Performance Computer
Architecture (HPCA), 2004.

[8]	 C. L. Chen and M. Y. Hsiao. “Error-correcting codes for
semiconductor memory applications: A state-of-the-art review.”
IBM Journal of Research and Development, 28(2):124–134, 1984.

[9]	 T. J. Dell. “A white paper on the benefits of chipkill-correct ECC
for PC server main memory.” IBM Microelectronics Division,
1997.

[10]	 Fusion-io. “Fusion-io ioDrive performance testing: A comparative
study on storage performance improvement using Fusion-io
technology.” http://www.fusionio.com/fusion-io-iodrive-
performance-testing-a-comparative-study-on-storage-performance-
improvement-using-fusion-io-technology/, 2011.

[11]	 S. Kumar and C. Wilkerson. “Exploiting spatial locality in data
caches using spatial footprints.” In Proceedings of the International
Symposium on Computer Architecture (ISCA), 1998.

[12]	 S. Li, D. H. Yoon, K. Chen, J. Zhao, J. H. Ahn, J. B. Brockman,
Y. Xie, and N. P. Jouppi. “MAGE: Adaptive granularity and ECC
for resilient and power efficient memory systems.” In Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), 2012.

[13]	 K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and
T. F. Wenisch. “Disaggregated memory for expansion and sharing
in blade servers.” In Proceedings of the International Symposium
on Computer Architecture (ISCA), 2009.

[14]	 J. S. Liptay. “Structural aspects of the System/360 Model 85, part
II: The cache.” IBM Systems Journal, 7:15–21, 1968.

[15]	 NVIDIA. “Fermi architecture.” http://www.nvidia.com/object/
fermi_architecture.html.

Intel® Technology Journal | Volume 17, Issue 1, 2013

138 | Towards Proportional Memory Systems

[16]	 I. S. Reed and G. Solomon. “Polynomial codes over certain
finite fields.” Journal of the Society for Industrial and Applied
Mathematics, 8:300–304, 1960.

[17]	 E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and
E.Weissmann. “Power management architecture of the Intel,
microarchitecture code-named Sandy Bridge.” IEEE Micro,
32(2):20–27, 2012.

[18]	 N. N. Sadler and D. J. Sorin. “Choosing an error protection
scheme for a microprocessor’s L1 data cache.” In IEEE International
Conference on Computer Design (ICCD), Oct. 2006.

[19]	 C. Slayman. “Impact of error correction code and dynamic
memory reconfiguration on high-reliability / low-cost server
memory.” In Proceedings of the International Integrated Reliability
Workshop (IIRW), 2006.

[20]	 A. N. Udipi, N. Muralimanohar, N. Chatterjee,
R. Balasubramonian, A. Davis, and N. Jouppi. “Rethinking
DRAM design and organization for energy constrained
multi-cores.” In Proceedings of the International Symposium on
Computer Architecture (ISCA), 2010.

[21]	 A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis,
and N. P. Jouppi. “LOT-ECC: Localized and tiered reliability
mechanisms for commodity memory systems.” In Proceedings
of the International Symposium on Computer Architecture
(ISCA), 2012.

[22]	 Violin Memory Inc. “Scalable memory applicance.” http://violin-
memory.com/DRAM.

[23]	 P. M. Wells, K. Chakraborty, and G. S. Sohi. “Mixed-mode
multicore reliability.” In Proceedings of the International
Symposium on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2009.

[24]	 C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu,
D. Somasekhar, and S.-L. Lu. “Reducing cache power with
low-cost, multi-bit error correcting codes.” In Proceedings of the
International Symposium on Computer Architecture (ISCA),
June 2010.

[25]	 D. H. Yoon and M. Erez. “Memory mapped ECC: Low-cost error
protection for last level caches.” In Proceedings of the International
Symposium on Computer Architecture (ISCA), 2009.

[26]	 D. H. Yoon and M. Erez. “Virtualized and flexible ECC for main
memory.” In Proceedings of the International Symposium on

Intel® Technology Journal | Volume 17, Issue 1, 2013

Towards Proportional Memory Systems | 139

Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Mar. 2010.

[27]	 D. H. Yoon, M. K. Jeong, and M. Erez. “Adaptive granularity
memory systems: A tradeoff between storage efficiency and
throughput.” In Proceedings of the International Symposium on
Computer Architecture (ISCA), 2011.

[28]	 D. H. Yoon, M. K. Jeong, M. B. Sullivan, and M. Erez. “The dynamic
granularity memory system.” In Proceedings of the International
Symposium on Computer Architecture (ISCA), June 2012.

[29]	 H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu.
“Mini-rank: Adaptive DRAM architecture for improving memory
power efficiency.” In Proceedings of the International Symposium
on Microarchitecture (MICRO), 2008.

Author Biographies
Doe Hyun Yoon is a post-doctoral researcher at Hewlett-Packard Labs. He
has a BS in Electrical Engineering (Yonsei, 1998), an MS in Electrical and
Computer Engineering (Yonsei, 2000), an MS in Electrical Engineering
(Stanford, 2007), and a PhD in Electrical and Computer Engineering (the
University of Texas at Austin, 2011). His research includes energy efficiency
and reliability in caches, DRAM, and nonvolatile memory. He can be
contacted at doe-hyun.yoon@hp.com

Min Kyu Jeong is a senior hardware engineer at Oracle Labs. Min Kyu holds
a BS in Computer Science and Engineering from Seoul National University,
and an MSE and a PhD in Electrical Engineering from the University
of Texas at Austin. His research interests are in the area of computer
architecture, with emphasis on the memory system. He can be contacted at
min.jeong@oracle.com

Michael Sullivan is a graduate research assistant at the University of Texas at
Austin who studies the design of dependable and power-efficient systems with
an emphasis on reliable arithmetic. He holds a BS in computer engineering,
a BA in mathematics, and an MS in computer science from George Mason
University. He also holds an MSE in computer engineering from the University
of Texas at Austin. Michael can be contacted at mbsullivan@utexas.edu.

Mattan Erez is an Associate Professor of Electrical and Computer
Engineering at the University of Texas at Austin. Mattan hold a BA in
Physics (Technion, 1999) and a BSc (Technion, 1999), MS (Stanford, 2002),
and PhD (Stanford, 2007) in Electrical Engineering. His research interests
include computer architecture and programming models. Contact him at
mattan.erez@utexas.edu.

140 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

Contributors

Intel® Technology Journal | Volume 17, Issue 1, 2013

With continued scaling of NAND flash memory process technology and multiple
bits programmed per cell, NAND flash reliability and endurance are degrading.
In our research, we experimentally measure, characterize, analyze, and model error
patterns in nanoscale flash memories. Based on the understanding developed
using real flash memory chips, we design techniques for more efficient and
effective error management than traditionally used costly error correction codes.

In this article, we summarize our major error characterization results
and mitigation techniques for NAND flash memory. We first provide a
characterization of errors that occur in 30- to 40-nm flash memories, showing
that retention errors, caused due to flash cells leaking charge over time, are
the dominant source of errors. Second, we describe retention-aware error
management techniques that aim to mitigate retention errors. The key idea is
to periodically read, correct, and reprogram (in-place) or remap the stored data
before it accumulates more retention errors than can be corrected by simple
ECC. Third, we briefly touch upon our recent work that characterizes the
distribution of the threshold voltages across different cells in a modern 20- to
24-nm flash memory, with the hope that such a characterization can enable the
design of more effective and efficient error correction mechanisms to combat
threshold voltage distortions that cause various errors. We conclude with a brief
description of our ongoing related work in combating scaling challenges of
both NAND flash memory and DRAM memory.

Introduction
During the past decade, the capacity of NAND flash memory has increased
more than 1000 times as a result of aggressive process scaling and multilevel
cell (MLC) technology. This continuous capacity increase has made flash
economically viable for a wide variety of applications, ranging from consumer
electronics to primary data storage systems. However, as flash density
increases, NAND flash memory cells are more subject to various device and
circuit level noise, leading to decreasing reliability and endurance. The P/E
cycle endurance of MLC NAND flash memory has dropped from ∼10K for
5x-nm (that is, 50- to 59-nm) flash to around ∼3K for current 2x-nm (that
is, 20- to 29-nm) flash.[1][5] The reliability and endurance are expected to
continue to decrease when 1) more than two bits are programmed per cell,
and 2) flash cells scale beyond the 20-nm technology generations. This trend
is forcing flash memory designers to apply even stronger error correction
codes (ECC) to tolerate the increasing error rates, which comes at the cost of
additional complexity and overhead.[4]

“...we summarize our major error

characterization results and mitigation

techniques for NAND flash memory.”

“...as flash density increases, NAND

flash memory cells are more subject

to various device and circuit level

noise,...”

Error Analysis and Retention-Aware Error Management
for NAND Flash Memory

Yu Cai
Carnegie Mellon University

Gulay Yalcin
Barcelona Supercomputing Center

Onur Mutlu
Carnegie Mellon University

Erich F. Haratsch
LSI Corporation

Adrian Cristal
Barcelona Supercomputing Center

Osman S. Unsal
Barcelona Supercomputing Center

Ken Mai
Carnegie Mellon University

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 141

Intel® Technology Journal | Volume 17, Issue 1, 2013

In our research at Carnegie Mellon University, we aim to develop new
techniques that overcome reliability and endurance challenges of flash memory
to enable its scaling beyond the 20-nm technology generations. To this end, we
experimentally measure, characterize, analyze, and model error patterns that
occur in existing flash chips, using an experimental flash memory testing and
characterization platform we have developed.[2] Based on the understanding
we develop from our experiments, we aim to develop error management
techniques that aim to mitigate the fundamental types of errors that are likely
to increase as flash memory scales. Our goal is to design techniques that are
more effective and more efficient than stronger error correction codes (ECCs),
which has been the traditional way of improving endurance and reliability
of flash memory. In this article, we provide an overview of the results of
our recent error characterization experiments[3][6] and describe some error
mitigation techniques.[4]

In particular, we have recently experimentally characterized complex flash
errors that occur at 30- to 40-nm flash technologies[3], categorizing them
into four types: retention errors, program interference errors, read errors, and
erase errors. Our characterization shows the relationship between various
types of errors and demonstrates empirically using real 3x-nm flash chips that
retention errors are the most dominant error type. Our results demonstrate
that different flash errors have distinct patterns: retention errors and program
interference errors are program/erase-(P/E)-cycle-dependent, memory-
location-dependent, and data-value-dependent. Since the observed error
patterns are due to fundamental circuit and device behavior inherent in flash
memory, we expect our observations and error patterns to also hold in flash
memories beyond 30-nm technology node.

Based on our experimental characterization results that show that the retention
errors are the most dominant errors, we have developed a suite of techniques
to mitigate the effects of such errors, called Flash Correct-and-Refresh (FCR).[4]
The key idea is to periodically read each page in flash memory, correct its
errors using simple ECC, and either remap (copy/move) the page to a different
location or reprogram it in its original location by recharging the floating gates
before the page accumulates more errors than can be corrected with simple
ECC. Our simulation experiments using real I/O workload traces from a
variety of file system, database, and search applications show that FCR can
provide 46x flash memory lifetime improvement at only 1.5 percent energy
overhead, with no additional hardware cost.

Finally, we also briefly describe major recent results of our measurement
and characterization of the threshold voltage distribution of different
logical states in MLC NAND flash memory.[6] Our data shows that the
threshold voltage distribution of flash cells that store the same value can
be approximated, with reasonable accuracy, as a Gaussian distribution. The
threshold voltage distribution of flash cells that store the same value gets
distorted as the number of P/E cycles increases, causing threshold voltages of
cells storing different values to overlap with each other, which can lead to the

“Our goal is to design techniques

that are more effective and more

efficient than stronger error correction

codes (ECCs), which has been

the traditional way of improving

endurance and reliability of flash

memory.”

“Our characterization shows the

relationship between various types of

errors and demonstrates empirically

using real 3x-nm flash chips that

retention errors are the most dominant

error type.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

142 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

incorrect reading of values of some cells as flash cells accumulate P/E cycles.
We find that this distortion can be accurately modeled and predicted as
an exponential function of the P/E cycles, with more than 95-percent
accuracy. Such predictive models can aid the design of more sophisticated
error correction methods, such as LDPC codes[7], which are likely needed
for reliable operation of future flash memories. Even though we will not
describe these models in detail in this article, the interested reader can refer
to Cai et al.[6] for more detail.

As flash memory continues to scale to smaller feature sizes, we hope that the
characterization, understanding, models, and mechanisms provided in this
work (and in our aforementioned previous works[3][4][6]) would enable the
design of new and more effective error tolerance mechanisms that can make
use of the observed characteristics and the developed models.

Flash Memory Background
NAND flash memory can be of two types: single level cell (SLC) flash and
multilevel cell (MLC) flash. Only one bit of information can be stored in an
SLC flash cell, while multiple bits (2 to 4 bits) can be stored in an MLC flash
cell.[8][9][10] MLC flash represents n bits by using 2n non-overlapping threshold
voltage (Vth) windows. The threshold voltage of a given cell is mainly affected
by the number of electrons trapped on the floating gate. Figure 1 shows the bit
mapping to Vth and the relative proportion of electrons on the floating gates of
a 2-bit MLC flash.

L1 L2 L3L0

11 10 01 00

Erased Partially programmed Fully programmed

Vth

LSB/MSB REF1 REF2 REF3

2 2 2 2 2 2 22 2 2

Figure 1: Threshold voltage distribution example of 2-bit
MLC flash
(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu,
and Ken Mai, 2012[3])

A NAND flash memory chip is composed of thousands of blocks. Each block
is a storage array of floating gate transistors. A flash block usually has 32 to 64
wordlines. The cells on the same wordline can be divided into two groups:
even and odd, depending on the physical location. For SLC flash, each group
corresponds to just one logical page, that is, even pages and odd pages. As an
MLC flash cell stores multiple bits, the bits corresponding to the same logical
location of a cell in a group form one logical page. For example, all the most
significant bits (MSBs) of the cells of an even group form one MSB-even
page. Similarly, other types of pages are MSB-odd page, LSB-even page, and
LSB-odd page. The page number assignments for each bit of the flash memory

“...we hope that the characterization,

understanding, models, and

mechanisms provided in this work

(and in our aforementioned previous

works) would enable the design of

new and more effective error tolerance

mechanisms that can make use of

the observed characteristics and the

developed models.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 143

Intel® Technology Journal | Volume 17, Issue 1, 2013

are shown in Figure 2(a), ranging from 0 to 127 for the selected flash in this
article. The size of each page is generally between 2 KB and 8 KB (16k and
64k bitlines). The stack of flash cells in the bitline direction forms one string.
The string is connected to a bit line through SGD (the select gate at the drain
end) and connect to the common source diffusion through SGS (the select gate
at the source end) as shown in Figure 2(b). Flash memories generally support
three fundamental operations as follows:

0V 2V 0V 2V

even odd even page numberodd

(b)

SGD

126
122

124
118

8
2

4
0

9
3

5
1

127
123

125
119

8
2

4
0

126

122
124
118

MSB
LSB

Vinhib (10V)

Vinhib (10V)

Vinhib (10V)

2V

Vpgm (20V)

0V

(a)

9
3

5
1

127

123
125
119

WL32

WL31

WL1

WL0

SGS

SGD

SGS

Vcc

Vcc

Vpass (6V)

Vpass (6V)

Vpass (6V)

Vread (REF)

Figure 2: NAND flash organization and operations: (a) Partial block organization and
program operation on page 118; (b) Read operation
(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 2012[3])

Erase
During the erase operation, a high positive erase voltage (for example, 20V) is
applied to the substrate of all the cells of the selected block and the electrons
stored on the floating gate are tunnelled out through Fowler-Nordheim (FN)
mechanisms.[9] After a successful erase operation, all charge on the floating
gates is removed and all the cells are configured to the L0 (11) state. The erase
operation is at the granularity of one block.

Program
During the program operation, a high positive voltage is applied to the
wordline, where the page to be programmed is located. The other pages
sharing the same wordline are inhibited (from being programmed) by
applying 2V to their corresponding bitlines to close SGD and boost the
potential of corresponding string channel. The voltage bias for programming
page 118 is shown in Figure 2(a) as an example. The programming process
is typically realized by the incremental step pulse programming (ISPP)
algorithm.[11] ISPP first injects electrons into floating gates to boost the Vth of
programmed cells through FN mechanisms and then performs a verification
to check whether the Vth has reached the desired level. If Vth is still lower

“Flash memories generally support

three fundamental operations...”

Intel® Technology Journal | Volume 17, Issue 1, 2013

144 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

than the desired voltage, the program-and-verify iteration will continue
until the cell’s Vth has reached the target level. Note that the NAND flash
program operation can only add electrons into the floating gate and cannot
remove them from the gate. As a result, the threshold voltage can only shift
toward the right in Figure 1 during programming. The program operation is
executed at page granularity.

Read
The read operation is also at the page granularity and the voltage bias is shown
in Figure 2(b). The SGD, SGS, and all deselected wordlines are turned on.
The wordline of selected read page is biased to a series of predefined reference
voltages and the cell’s threshold voltage can be determined to be between the
most recent two read reference voltages when the cell conducts current.

Flash Memory Error Classification
We test the NAND flash memory using the cycle-by-cycle programming model
shown in Figure 3. During each P/E cycle, the selected flash block is first
erased. Then data are programmed into the block on a page granularity. Once
a page has been programmed, it cannot be reprogrammed again unless the
whole block is erased for the next P/E cycle. The stored data will be alive in the
block until it becomes invalid. Before the stored data becomes invalid, it can
be accessed multiple times. Once a page is programmed, we can test how long
it retains data by reading the data value of the page after a retention interval,
and comparing it to the original programmed value. Whether or not the data
is retained correctly between two accesses depends on the time distance of
two consecutive accesses. We repeat the above per-P/E-cycle procedure for
thousands of cycles until the flash memory block becomes unreliable and
reaches the end of its lifetime. Errors could happen in any stage of this testing
process. We classify the observed errors into four different types, from the flash
controller’s point of view:

Start

P/E cycle 0

P/E cycle i

P/E cycle n

End of life

Retention1
(t1 days)

Read
Page

Erase
Block

Program
Page (Page0–Page 128)

Retention j
(tj days)

Read
Page

Figure 3: NAND flash programming model for error
characterization
(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu,
and Ken Mai, 2012[3])

“We classify the observed errors into

four different types, from the flash

controller’s point of view:.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 145

Intel® Technology Journal | Volume 17, Issue 1, 2013

●● An erase error happens when an erase operation fails to reset the cells to
the erased state. This is mainly due to manufacturing process variations or
defects caused by trapped electrons in the tunnel oxide after stress due to
repeated P/E cycles.

●● A program interference error happens when the data stored in a page changes
(unintentionally) while a neighboring page is being programmed due to
parasitic capacitance-coupling.

●● A retention error happens when the data stored in a cell changes over time.
The main reason is that the charge programmed in the floating gate may
dissipate gradually through the leakage current.

●● A read error happens when the data stored in a cell changes as a neighboring
cell on the same string is read over and over.

Error Characterization Methodology
The following section describes the error characterization methodology.

Experimental Hardware
To characterize the error patterns, we built a hardware test platform that
allows us to issue commands to raw flash chips without ECC.[2] The test
platform mainly consists of three components: a HAPS–52 board with Xilinx
Virtex-5 FPGAs used as NAND flash controller, a USB daughter board used
to connect to the host machine, and a custom flash daughter board. The
flash memory under test is a 2-bit MLC NAND flash device manufactured
in 3x-nm technology. The device is specified to survive 3000 P/E cycles stress
under 10-year data retention time if ECC with 4-bit error correction per
512 bits is applied. Details of the experimental flash test platform we use to
collect our data are provided in [2].

Flash Error Testing Procedure
To test the P/E-cycle-dependence of errors, we stress-cycle flash memory blocks
up to a certain number of erase cycles and check if the data is retained. This is
achieved by iteratively erasing a block and programming pseudorandom data
into it at room temperature.

We test whether the data is retained after T amount of time, to characterize
retention errors. T is called the retention test time and is varied in the range of
1 day, 3 days, 3 weeks, 3 months, 1 year, and 3 years. We consider T = {1 day,
3 days} to be short-term retention tests, while the remaining values of T are
long-term retention tests. Short-term retention errors are characterized under
room temperature. Long-term retention errors are characterized by baking the
flash memory in the oven under 125° C. According to the classic temperature-
activated Arrhenius law[12], the baking time at 125° C corresponds to about
450 times of the lifetime at room temperature (25° C).

We refer the reader to Cai et al.[3] for our testing and characterization
methodology for program interference and read errors.

“A retention error happens when

the data stored in a cell changes over

time.”

“To characterize the error patterns, we

built a hardware test platform that

allows us to issue commands to raw

flash chips without ECC.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

146 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

Error Characterization Results
We provide our experimental measurements of the errors in the state-of-the-art
3x-nm MLC NAND flash memory we have tested using our infrastructure.
NAND flash errors show strong correlation with the number of P/E cycles,
location of the physical cells, and the data values programmed into the cells.
The following subsections analyze detailed error properties and briefly describe
the causes of the observed phenomena. Our main focus in this article is
retention errors, but our previous work analyzes all types of errors in detail[3],
and we refer the reader to [3] for characterization and analysis of program
interference, read, and erase errors.

Error Rate Analysis for Different Error Types
Figure 4 shows the bit error rate due to various types of NAND flash errors.
The x-axis shows the number of P/E cycles and the y-axis depicts the raw
bit error rate. Error rates are obtained characterized from the beginning of
the flash chip’s life until the region of >100x times of its specified lifetime
(3000 P/E cycles for the chips we tested). We make several observations about
error properties.

First, all types of errors are highly correlated with P/E cycles. At the beginning
of the flash lifetime, the error rate is relatively low and the raw bit error rate
is below 10-4, within the specified lifetime (3K cycles). As the P/E cycles
increase, the error rate increases exponentially. The P/E cycle-dependence
of errors can be explained by the deterioration of the tunnel oxide under
cycling stress. During erase and program operations, the electric field strength
across the tunnel oxide is very high (for example, several million volts per
centimeter). Such high electric field strength can lead to structural defects
that trap electrons in the oxide layer. Over time, more and more defects
accumulate and the insulation strength of the tunnel oxide degrades. As a
result, charge can leak through the tunnel oxide and the threshold voltage of
the cells can change more easily. This leads to more errors for all types of flash
operations.

Second, there is a significant error rate difference between various types of
errors. The long-term retention errors are the most dominant; their rate is
highest. The program interference error rate ranks the second and is usually
between error rates of 1-day and 3-day retention errors. The read error rate is
slightly less than 1-day retention error rate, while the erase error rate is only
around 7 percent of the read error rate.

Third, retention error rates are highly dependent on retention test time. If
the time before we test for retention errors is longer, the floating gate of flash
memory is more likely to lose more electrons through leakage current. This
eventually leads to Vth shift across Vth windows and causes errors (see [6] for
more detail). From our experimental data, we can see that the retention error
rate increases linearly with the retention test time. For example, the 3-year
retention error rate is almost three orders of magnitude higher than one-day
retention error rate.

“...all types of errors are highly

correlated with P/E cycles.”

“The long-term retention errors are the

most dominant; their rate is highest.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 147

Intel® Technology Journal | Volume 17, Issue 1, 2013

B
it

 E
rr

o
r

R
at

e

100

1022

1024

1026

1028

102 103 104 105

P/E Cycles

3-year Retention Errors

Erase Errors

Read Errors

3-month Retention Errors

1-day Retention Errors

3-week Retention Errors

3-day Retention Errors

Program Interference Errors

1-year Retention Errors

Figure 4: Rates of various types of errors as P/E cycles increase
(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 2012[3])

Retention Error Analysis
Value dependence of retention errors: We find that the retention errors are value
dependent; their frequency is asymmetric with respect to the value stored in
the flash cell. Figure 5 demonstrates this asymmetric nature of retention errors
by showing how often each possible value transition was observed due to an
error. We characterized all possible error transitions, in the format AB→CD,
where AB are the two bits stored in the cell before retention test, while CD are
the two bits recorded in the cell after retention test. If the errors are not value
dependent, the fraction of erroneous changes between each of the different
value pairs should be equal. But, we find that this is not the case. The most
common retention errors are 00→01, 01→10, 01→11 and 10→ 11, with
their relative percentage over all retention errors being 46 percent, 44 percent,
5 percent, and 2 percent, respectively. The relative percentages among various
error transitions are almost constant for different P/E cycles.

To understand the reasons for value dependence, we need to observe Figure
1 in conjunction with the value transition observed in the most common
retention errors. We find that the most common retention errors (00→01,
01→10, 01→11, and 10→ 11) are all cases in which Vth shifts towards the left
(see Figure 1). This can be explained by an understanding of the retention error
mechanisms. During retention test, the electrons stored on the floating gate
gradually leak away under stress induced leakage current (SILC). When the
floating gate loses electrons, its Vth shifts left from the state with more electrons
to the state with fewer programmed electrons (as seen in Figure 1, states to
the left have fewer electrons trapped on the gate than states to the right). It
is significantly less likely for the cells to shift right in the opposite direction
because this requires the addition of more electrons. As the states of 00 and 01
hold the largest number of electrons on the floating gates, SILC is higher in

“We find that the retention errors are

value dependent; their frequency is

asymmetric with respect to the value

stored in the flash cell.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

148 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

these states and therefore it is more likely for the Vth of the cells in these two
states to shift left, which leads to the observation that most common errors are
due to shifting from these states (00→01, 01→10, 01→11).

E
rr

o
r

C
o

u
n

t

1000000

100000

10000

1000

100

10

1

0 1500 3000 6000 12000 24000 48000 100000 300000

P/E Cycles

01 1000 01

00 01

00 10

00 11

01 00

01 10

01 11

10 00

10 01

10 11

11 00

11 01

11 10

Figure 5: Value dependence of retention errors
(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 2012[3])

Location dependence of retention errors: We also characterized the relation between
retention errors and their physical locations. The experimental results are shown
in Figure 6. The x-axis shows the wordline number of a block and the y-axis
shows the bit error rates of pages on the corresponding wordline (observed after
50K P/E cycles). Each wordline contains four pages, including LSB-even, LSB-
odd, MSB-even, and MSB-odd. The bit error rates of these four types of pages
are shown in Figure 6. Several major observations are in order.

R
aw

 b
it

 e
rr

o
r

ra
te

100

1021

1022

1023

1024

5 10 15 20 25 30

Wordline Index

LSB-Even Page

MSB-Even Page

MSB-Odd Page

LSB-Odd Page

Figure 6: Retention error rate vs. physical location
(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 2012[3])

“We also characterized the relation

between retention errors and their

physical locations.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 149

Intel® Technology Journal | Volume 17, Issue 1, 2013

First, the error rate of the MSB page is higher than that of the corresponding
LSB page. In our experimental data, the MSB-even page error rate is
1.88 times higher than the LSB-even page error rate and the MSB-odd page
error rate is 1.67 times higher than the LSB-odd page error rate on average.
This phenomenon can be explained by understanding the bit mapping within
the flash memory. Dominant retention errors are mainly due to the shifting
of Vth between two adjacent threshold voltage levels, that is shifting of Vth
from the ith level to the (i–1)th level. From the bit mapping in Figure 1,
we can see that such a Vth shift can cause an LSB error only at the border
REF2 between state L2 (01) and state L1 (10) because these are the only
two adjacent threshold voltage levels where LSB differs. On the other hand,
such a Vth shift can cause an MSB error on any border (REF1, REF2, REF3)
between any two adjacent states because MSB differs between all possible
adjacent threshold voltage levels. Hence, since the likelihood of a change
in MSB when a Vth shift happens between adjacent states is higher than the
likelihood of a change in LSB, it is more common to see retention errors in
MSB than in LSB.

Second, the retention error rate of odd pages is always higher than that
of the corresponding even pages. For example, the error rate of MSB-odd
pages is 2.4 times higher than that of MSB-even pages, and the error rate of
LSB-odd pages is 1.61 times higher than that of LSB-even pages, on average.
This result can be explained by the over-programming introduced by inter-
page interference. Generally, the pages inside a flash block are programmed
sequentially, and a block is programmed in order, that is, from page 0 to
page 127. For the same wordline, even pages are programmed first followed
by odd pages. When odd pages are programmed, a high positive program
voltage is applied to the control gates of all the cells on the wordline,
including the cells of the even page, which has already been programmed.
Thus, the even page comes under programming current disturbance and
some additional electrons could be attracted into the floating gates of the
even page. As a result of this, the Vth of cells of the even pages shift slightly to
the right. Consequently, the cells of the even pages hold more electrons than
the cells of the odd pages, even if they are programmed to the same logic
value and are in the same threshold voltage window (in some sense, the cells
of the even pages are thus more resistant to leakage because they hold more
electrons). When electrons leak away over time during the retention test, as
a result, it is more likely for the cells of even pages to still keep their original
threshold voltage window and hold the correct value. In contrast, since the
cells of the odd pages hold fewer electrons, they are more likely to transition
to a different threshold voltage window and hence acquire an incorrect value
as electrons leak over time.

Third, the bit error rates of all the four types of pages have the same trend related
to physical wordlines. For example, the error rates of the four types of pages are
all high on wordline #31 and are all low on wordline #7. We conclude that error
rates are correlated with wordline locations. This could possibly be due to process
variation effects, which could be similar across the same wordline.

“...the error rate of the MSB page is

higher than that of the corresponding

LSB page.”

“...the retention error rate of odd

pages is always higher than that of the

corresponding even pages.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

150 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

The major takeaway from our measurement and characterization results is that
the rate of retention errors, which are the most common form of flash errors,
is asymmetric in both original cell value and the location of the cell in flash bit
organization. This observation can potentially be used to devise error protection
or correction mechanisms that have varying strength based on cell value and
location.

Mitigating Retention Errors:
Flash Correct-and-Refresh
We describe a set of new techniques, called Flash Correct-and-Refresh
(FCR), that exploit the dominance and characteristics of retention errors to
significantly increase NAND flash lifetime while incurring minimal overhead.
The basic idea of the FCR schemes is to periodically read, correct, and refresh
(reprogram or remap) the stored data before it accumulates more retention
errors than can be handled by ECC. Thus, we can achieve a low uncorrectable
bit error rate (UBER) while still using a simple, low-overhead ECC. Two
key questions central to designing a system that uses FCR techniques are:
(1) how to refresh the data in flash memory and (2) when to refresh the data.
We address the first question with two techniques for how to refresh the
data: remapping (in the section “Remapping-based FCR Mechanisms”) and
reprogramming in-place (in the section “In-Place Reprogramming-based FCR
Mechanisms”). We then tackle the second question with two techniques for
when to refresh: periodically and adaptively based on the number of P/E cycles
(Section 6.3).

Remapping-based FCR Mechanisms
Unlike DRAM cells, which can be refreshed in-place[13], flash cells generally
must first be erased before they can be programmed. To remove the slow erase
operation from the critical path of write operations, current wear-leveling
algorithms remap the data to another physical location rather than erasing the
data and then programming in-place. The flash controller maintains a list of
free blocks that have been erased in background through garbage collection
and are ready for programming. Whenever a write operation is requested, the
controller’s wear-leveling algorithm selects a free block and programs it directly,
remapping the logical block address to the new physical block.

The key idea of remapping-based FCR is to leverage the existing wear-
leveling mechanisms to periodically read, correct, and remap to a different
physical location each valid flash block in order to prevent it from
accumulating too many retention errors. Figure 7 shows the operational flow
of remapping-based FCR: (1) During each refresh interval, a block with
valid data that needs to be refreshed is selected. (2) The valid data in the
selected block is read out page by page and moved to the SSD controller.
(3) The ECC engine in the SSD controller corrects all the errors in the read
data, including retention errors that have accumulated since the last refresh.
After ECC, the data are error free. (4) A new free block is selected and the

“The major takeaway from our

measurement and characterization

results is that the rate of retention

errors, which are the most common

form of flash errors, is asymmetric

in both original cell value and

the location of the cell in flash bit

organization.”

“The basic idea of the FCR schemes

is to periodically read, correct, and

refresh (reprogram or remap) the

stored data before it accumulates more

retention errors than can be handled

by ECC.”

Select Block

Read Page Data Page Num 11

Select next Block

Yes

No

Program
Corrected Data

Error Correction

Alloc. Block/page

Last Page?

Figure 7: Operation of a remapping-based
flash correct-and-refresh scheme
(Source: Yu Cai, Gulay Yalcin, Onur Mutlu,
Erich F. Haratsch, Adrian Cristal, Osman
Unsal, and Ken Mai, 2012[4])

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 151

Intel® Technology Journal | Volume 17, Issue 1, 2013

error free data are programmed to the new location, and the logical address
is remapped. Note that the proposed address remapping techniques leverage
existing hardware and software of contemporary wear-leveling and garbage
collection algorithms.

Unfortunately, periodic remapping of every block introduces additional
erase cycles. This is because after the flash data are corrected and remapped
to the new location, the original block is marked as outdated. Thus,
the block will eventually be erased and reclaimed by garbage collection.
The more frequent the remap operations, the more the additional erase
operations, which wears out flash memory faster. As such, there might be
an inflection point beyond which increasing the refresh rate in remapping-
based FCR can lead to reduced lifetime. To avoid this potential problem, we
next introduce enhanced FCR methods, which minimize unnecessary remap
operations.

In-Place Reprogramming-based FCR Mechanisms
To reduce the overhead associated with periodic remapping, we describe a
technique for periodic in-place reprogramming of the block most of the time,
without a preceding erase operation, which can greatly reduce the overhead of
periodic remapping. This in-place reprogramming takes advantage of the key
observation that retention errors arise from the loss of electrons on the floating
gate over time and the flash cell with retention errors can be reprogrammed to its
original correct value without an erase operation using the incremental step pulse
programming (ISPP) scheme used to program flash memory. We first provide
background on ISPP.

ISPP
Before a flash cell can be programmed, the cell must be erased (that is,
all charge is removed from the floating gate, setting the threshold voltage
to the lowest value). When a NAND flash memory cell is programmed,
a high positive voltage applied to the control gate causes electrons to be
injected into the floating gate. The threshold voltage of a NAND flash cell
is programmed by injecting a precise amount of charge onto the floating
gate through ISPP.[11] During ISPP, floating gates are programmed iteratively
using a step-by-step program-and-verify approach. After each programming
step, the flash cell threshold voltage is boosted up. Then, the threshold
voltage of the programmed cells are sensed and compared to the target
values. If the cell’s threshold voltage level is higher than the target value,
the program-and-verify iteration will stop. Otherwise the flash cells are
programmed once again and more electrons are added to the floating gates
to boost the threshold voltage. This program-and-verify cycle continues
iteratively until all the cells’ threshold voltages reach the target values. Using
ISPP, flash memory cells can only be programmed from a state with fewer
electrons to a state with more electrons and cannot be programmed in the
opposite direction.

“...the flash cell with retention
errors can be reprogrammed to its
original correct value without an
erase operation using the incremental

step pulse programming (ISPP) scheme

used to program flash memory.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

152 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

Retention Error Mechanisms
Retention errors are caused by the loss of electrons from the floating gate
over time. As such, a cell with retention errors moves from a state with
more electrons to a state with fewer electrons. Figure 8(a) shows the relative
relationship between the stored data value and its corresponding threshold
voltage distribution for a typical MLC flash storing 2-bits per cell. The leftmost
state is the erased state (state 11) with the smallest threshold voltage, and there
is no charge on the floating gate. The states located on the right in Figure
8(a) are programmed with more electrons and have higher threshold voltages
than the states located relatively to the left. Over time, as the electrons on
the floating gate leak away, the threshold voltage of a cell shifts to the left, as
shown in Figure 8(b). If the threshold voltage of a cell shifts too far to the left
(that is, it loses too many electrons from the floating gate), it will cross the read
reference voltage between adjacent states and can be misinterpreted during a
read as the wrong value.

In-Place Reprogramming Can Fix Retention Errors
A cell with a retention error can be reprogrammed to the value it had
before the floating gate lost charge by recharging additional electrons onto
the floating gate through ISPP, as shown in Figure 8(c). Note that this does
not require an erase operation because the only objective is to add more
electrons (not to remove them), which can be accomplished by simple
programming.

(a) Threshold voltage distribution vs number of electrons in flash cell

11 10 01 00

VT

REF1 REF2 REF3

2 2 2 2 2 2 22 2 2

(b) Retention errors cause threshold voltage shift to the left

11 10 01 00

VT

REF1 REF2 REF3

(c) ISPP shifts threshold voltage to the right and can fix retention errors

VT

11 10 01 00

Figure 8: Retention errors are caused by threshold voltage
shift to the left and can be fixed by programming in-place
using ISPP
(Source: Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch,
Adrian Cristal, Osman Unsal, and Ken Mai, 2012[4])

“Over time, as the electrons on the

floating gate leak away, the threshold

voltage of a cell shifts to the left...”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 153

Intel® Technology Journal | Volume 17, Issue 1, 2013

6.2.4  Basic In-Place Reprogramming-based FCR Mechanism
A basic FCR mechanism that uses in-place reprogramming works as follows.
Periodically, a block is selected to be refreshed and read page-by-page into
the flash controller. By selecting a suitable refresh interval, we can ensure
that the total error number is below the correction capability of the ECC.
Then we can reprogram the flash cells in the same location with the error-
corrected data, without erasing the whole block. If the new corrected value
corresponds to a state with more charge than the old value, then the cell can
be in-place reprogrammed to the correct value. If the corrected value is exactly
the same as the original value, in-place reprogramming will not change the
stored data value, as ISPP will stop programming the cell as soon as it detects
that the target value has already been reached. Note that most of the cells are
reprogrammed with exactly the same data value as error rates are generally
significantly below 1 percent.

Problem: Accumulated Program Errors
While this basic mechanism can effectively fix retention errors, it introduces
a problem because there is another error mechanism in flash cells that is
caused by program operations, which are required to perform in-place
reprogramming. When a flash cell is being programmed, additional electrons
may be injected into the floating gates of its neighbor cells due to coupling
capacitance.[14] The threshold voltage distribution of the neighbor cells will
shift right as they gain more electrons, as shown in Figure 9(a). If the threshold
voltage shifts right by too much, it will be misread as an error value that
represents a state located to the right. This is called a program interference error
(or simply a program error). Although it is a less common error mechanism
than retention errors as we have shown in Figure 4, periodic reprogramming
can exacerbate the effects of program errors.

Two potential issues are: (1) As ISPP cannot remove electrons from the
floating gate, program errors cannot be fixed by in-place reprogramming;
(2) Reprogramming of a page can introduce additional program errors due to
the additional program operations. Figure 9(b) illustrates both issues in the
context of in-place programming. First, the original data is programmed into
the page. This initial programming can cause some program errors (for example,
value 11 is programmed as 10 on the second cell from the left). After some
time, retention errors start to appear in the stored data (for example, the first
cell changes from state 00 to 01). Note that there are generally many more
retention errors than program errors. When the page is reprogrammed in-place,
it is first read out and corrected using ECC. The error-corrected data (which is
the same as the original data) is then written back (programmed) into the page.
This corrects all the retention errors by recharging the cells that lost charge.
However, this reprogramming does not correct the program error (in the second
cell) because this correction requires the removal of charge from the second cell’s
floating gate, which is not possible without an erase operation. Furthermore,
additional program errors can appear (for example, in the sixth cell) because the
in-place program operation can cause additional disturbance.

“When a flash cell is being

programmed, additional electrons

may be injected into the floating gates

of its neighbor cells due to coupling

capacitance.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

154 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

(a) Program interference causes threshold voltage shift to the right

(b) Example of reprogramming a page with retention and program errors

11 10 01 00

VT

REF1 REF2 REF3

Original data to
be programmed

Program errors after
initial programming

Retention errors
after some time

Errors after in-place
reprogramming

00 11 01 00 10 11 00

00 10 01 00 10 11 00

01 10 10 00 11 11 01

00 10 01 00 10 10 00

Figure 9: In-place reprograming can correct retention
errors but not program errors because in-place
programming can only add more electrons into the floating
gate and cannot remove them. Note that red values with
dotted circles are retention errors and blue ones with solid
circles are program errors
(Source: Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch,
Adrian Cristal, Osman Unsal, and Ken Mai, 2012[4])

Hybrid FCR
To mitigate the errors accumulated due to periodic reprogramming, we
propose a hybrid reprogramming/remapping-based FCR technique to control
the number of reprogram errors. The key idea is to monitor the right-shift
error count present in each block. If this count is below a certain threshold
(likely most of the time) then in-place reprogramming is used to correct
retention errors. If the count exceeds the threshold, indicating that the block
has too many accumulated program errors, then the block is remapped to
another location, which corrects both retention and program errors. In our
evaluation, we set the threshold to 30 percent of the maximum number of
errors that could be corrected by ECC, which is conservative. Figure 10
provides a flowchart of this hybrid FCR mechanism. Note that this hybrid
FCR mechanism greatly reduces the additional erase operations present in
remapping based FCR because it remaps a block (requires an erase operation)
only when the number of accumulated program errors is high, which is rare
due to the low program error rate.

“To mitigate the errors accumulated

due to periodic reprogramming,

we propose a hybrid reprogramming/

remapping-based FCR technique

to control the number of reprogram

errors.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 155

Intel® Technology Journal | Volume 17, Issue 1, 2013

Choose a block to
be refreshed

Yes

No

No

Yes

Right shift errors
,Threshold

Last LSB/MSB
page pair?

Read LSB and
MSB page pair

Error
Correction

Cell threshold
voltage comparison

Reprogram
in-place

LSB/MSB
page pair num11

Re-map to the
new block

Figure 10: Hybrid FCR workflow: if reprogramming error count is less
than a threshold, in-place reprogram the block; otherwise, remap to a
new block
(Source: Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian
Cristal, Osman Unsal, and Ken Mai, 2012[4])

Adaptive-Rate FCR
So far we assumed that FCR mechanisms, be it based on in-place reprogramming
or remapping, are invoked periodically. This need not be the case. In fact, we
observe that the rate of (retention) errors is very low during the beginning
of flash lifetime, as shown in Figure 4. Until more than 1000 P/E cycles, the
retention error rate is lower than the acceptable raw BER that can be corrected
by the simplest BCH code (not shown, but described in detail in [4]), which
is a commonly used ECC type in flash memories. Hence, at the beginning of
its lifetime, flash memory does not need to be refreshed. Retention error rate
increases as the number of P/E cycles increases. We leverage this key observation
to reduce the number of unnecessary refresh operations.

The main idea of adaptive-rate FCR is to adapt the refresh rate to the number
of P/E cycles a block has incurred. Initially, refresh rate for a block starts out
at zero (no refresh). Once ECC becomes incapable of correcting retention
errors, the block’s refresh rate increases to tolerate the increased retention error
rate. Hence, refresh rate is gradually increased over each flash block’s lifetime
to adapt to the increased P/E cycles. The whole lifetime of a flash block can
be divided into intervals with different refresh rates ranging, for example,
from no refresh (initially), yearly refresh, monthly refresh, weekly refresh, to
daily refresh. The frequency of refresh operations at a given P/E cycle count
is determined by the acceptable raw BER provided by the used ECC and
the BER that corresponds to the P/E cycle count (which can be known by
the controller[4]). Note that this mechanism requires keeping track of P/E
cycles incurred for each block, but this information is already maintained to
implement current wear-leveling algorithms.

“...refresh rate is gradually increased

over each flash block’s lifetime to adapt

to the increased P/E cycles.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

156 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

Additional Considerations
We briefly discuss some additional factors that affect the implementation and
operation of the proposed FCR mechanisms.

Implementation Cost
The FCR mechanisms do not require hardware changes. They require
changes in FTL software/firmware to implement the flowcharts shown in
Figures 7 and 10. FCR can leverage the per-block validity and P/E cycle
information that is already maintained in existing flash systems to implement
wear leveling.

Power Supply Continuity
To perform a refresh, the flash memory must be powered. As FCR is
proposed mainly for enterprise storage applications, these systems are typically
continuously powered on. Our proposed techniques use daily, weekly, or
monthly refresh and it is rare for a server to be powered off for such long
periods.

Response Time Impact
Refresh may interfere with normal flash operations and degrade the response
time. To reduce this penalty, we can decrease the refresh priority, making it
run in the background. The SSD can issue refresh operations whenever it is
idle, and refresh operations can be interrupted to avoid the impact on the
response time of normal operations. Unlike DRAM, where refresh is triggered
frequently (for example, every 64 ms) to maintain correctness[13], the refresh
period of FCR is at least a day, and the SSD can finish refresh operations
within the refresh period. Recent work has shown that the response time
overhead is within a few percent for daily refresh.[15] Note that our hybrid and
adaptive FCR techniques have much lower overhead for refresh operations
than periodic remapping based FCR.

Additional Erase Cycles
FCR introduces additional erase operations. Our evaluations take into
account the impact of additional erase operations on flash lifetime and energy
consumption.

Adapting to Variations in Retention Error Rate
Note that retention error rate is usually constant for a given refresh rate and
P/E cycle combination. However, there are environmental factors, such as
temperature, that can change this rate. For example, retention error rate
would be dependent on temperature. To adapt to dynamic fluctuations in
retention error rate, our hybrid FCR and adaptive-rate FCR mechanisms
monitor the changes in the retention error rate at periodic intervals, and
increase or decrease the refresh (that is, FCR) rate if the error rate in the
previous interval is greater or less than a threshold. These mechanisms are
similar in principle to what is employed in DRAM to adapt refresh rate to
temperature changes.[13]

“The FCR mechanisms do not require

hardware changes.”

“Unlike DRAM, where refresh is

triggered frequently (for example,

every 64 ms) to maintain correctness,

the refresh period of FCR is at least a

day...”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 157

Intel® Technology Journal | Volume 17, Issue 1, 2013

Evaluation of Flash Correct-and-Refresh
We evaluate FCR using Disksim[20] with SSD extensions[21]. All proposed
techniques are simulated using various I/O traces from real workloads:
iozone[22], cello99[23], oltp, postmark[24], MSR-Cambridge[25] and a web search
engine[26]. We configure the simulated flash-based SSD with four channels.
Each channel has eight flash chips. Each flash chip has 8,192 blocks containing
128 pages. The page size is 8 KB. The total storage capacity is 256 GB.
The energy of flash read, program, and erase operations are collected from
our experimental flash memory platform[2], and are used in the simulation
infrastructure to obtain the overall energy consumption. The details of
our experimental evaluation methodology, workloads, and our method for
estimating lifetime are described in our previous work[4]. We present the major
results showing the effect of our mechanisms on flash lifetime and energy
consumption in this article. Much more detailed analyses of our individual
techniques, analysis of sensitivity to refresh interval length, and results on
individual workloads are provided in [4].

Effect on Flash Memory Lifetime
Figure 11 shows the lifetime improvement provided by three different versions
of FCR compared to the baseline with no refresh. The adaptive-rate FCR
mechanism is implemented on top of the hybrid FCR substrate. Flash lifetime
is evaluated under various ECC configurations, ranging from weak 512-bit
to strong 32-kb BCH codes (described and evaluated in detail in [4]). The
refresh period of each periodic mechanism is chosen on a per-workload basis
such that the lifetime provided for a workload by the mechanism is maximized
(more analysis on the refresh period can be found in [4]). Adaptive-rate
FCR, which adaptively and realistically chooses the refresh period, provides
the highest lifetime improvement over the baseline as it corrects retention
errors while avoiding unnecessary refreshes. The improvements are especially
significant in read-intensive workloads since these workloads do not have
high P/E cycles, causing the adaptive-rate FCR to keep the refresh rate very
low. On average, adaptive-rate FCR provides 46.7x, 4.8x, and 1.5x higher
flash lifetime compared to no-refresh (on the baseline system using 512-bit
ECC), remapping-based FCR, and hybrid FCR, respectively. Note that the
lifetime improvement provided by the much stronger 32-kb ECC is only
four times that of the lifetime provided by the baseline 512-bit ECC, yet the
implementation of the former, stronger ECC, requires 71 times the power
consumption and 85 times the area of the latter, weaker ECC.[4] Contrast this
with the 46.7x lifetime improvement provided by adaptive-rate FCR on the
system with 512-bit ECC. Thus, improving lifetime via FCR is much more
effective and efficient than doing so by increasing the strength of ECC. We
conclude, based on these results, that adaptive-rate FCR implemented over
the hybrid FCR mechanism is a promising mechanism for significant lifetime
enhancement of flash memory at low cost.

“...adaptive-rate FCR provides 46.7x,

4.8x, and 1.5x higher flash lifetime

compared to no-refresh”...

“...improving lifetime via FCR is

much more effective and efficient than

doing so by increasing the strength of

ECC.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

158 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

N
o

rm
al

iz
ed

 L
if

et
im

e

200

180

160

140

0

20

40

60

80

100

120

512b-BCH

46x

4x

1k-BCH 2k-BCH 4k-BCH 8k-BCH 32k-BCH

Base (No-Refresh)

Remapping-Based FCR

Adaptive FCR

Hybrid FCR

Figure 11: Lifetime improvement provided by different FCR techniques in comparison to
systems employing varying strength ECC (BCH) codes. Data normalized to lifetime with
no refresh on a system with 512-bit ECC
(Source: Onur Mutlu, 2012)

P/E Cycle and Energy Overhead Analysis
FCR techniques can introduce two main overheads: (1) additional P/E cycles
due to remapping; (2) additional energy consumed by refresh operations.
A detailed evaluation of the former is provided in [4]. Note that all P/E cycle
overheads have already been accounted for in the collection of the flash lifetime
results.

Figure 12 shows the additional flash energy consumption of remapping-based
FCR and hybrid FCR averaged over all workloads compared to a system
with no FCR. The refresh energy is estimated under the worst-case scenario
that all data are to be refreshed. Even if we assume we must refresh the
entire SSD each day, the energy overhead is only 7.8 percent and 5.5 percent
for remapping-based FCR and hybrid FCR respectively. When the refresh
interval is three weeks, the energy overhead is almost negligible (less than
0.4 percent). We also observe that hybrid FCR has less energy overhead than
remapping based FCR mainly because hybrid FCR reduces the high-energy
erase/remap operations by performing in-place reprogramming most of the
time.

We also evaluate the energy overhead of adaptive-rate FCR and find that it is
only 1.5 percent (not shown in the figure). Recall that adaptive-rate FCR starts
out with no refresh and gradually increases the refresh rate up to daily refresh
as the P/E cycles accumulate. Yet its energy overhead is significantly lower than
periodic daily refresh. We conclude that adaptive-rate FCR is the most superior
of flash correct-and-refresh mechanisms in terms of both lifetime and energy
consumption.

“When the refresh interval is three

weeks, the energy overhead is almost

negligible...”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 159

Intel® Technology Journal | Volume 17, Issue 1, 2013

0.00%

2.00%

4.00%

6.00%

8.00%

1 Year 3 Months 3 Weeks 3 Days 1 Day

E
n

er
gy

 O
ve

rh
ea

d

7.8%

5.5%

2.6%

1.8%

0.37% 0.26%

Remapping-based Refresh Hybrid Refresh

Figure 12: Energy increase of remapping-based and hybrid FCR vs.
no refresh
(Source: Onur Mutlu, 2012)

Ongoing Work
In our comprehensive continued effort for enhancing flash memory scaling to
smaller technology nodes, we have been characterizing the effects of different
error mechanisms in flash memory, developing models to predict how they
change over the lifetime of flash memory, and designing error tolerance
mechanisms based on the developed characterization and models.

Recently, we have also experimentally investigated and characterized the
threshold voltage distribution of different logical states in MLC NAND flash
memory.[6] We have developed new models that can predict the shifts in the
threshold voltage distribution based on the number of P/E cycles endured
by flash memory cells. Our key results, presented in [6], show that 1) the
threshold voltage distribution of flash cells that store the same value can be
approximated, with reasonable accuracy, as a Gaussian distribution, 2) under
ideal wear leveling, the flash cell can be modeled as an AWGN (Additive
White Gaussian Noise) channel that takes the input (programmed) threshold
voltage signal and outputs a threshold voltage signal with added Gaussian
white noise, and 3) threshold voltage distribution of flash cells that store
the same value gets distorted (shifts to right and widens around the mean
value) as the number of P/E cycles increases. This distortion can be accurately
modeled and predicted as an exponential function of the P/E cycles, with
more than 95 percent accuracy. Such predictive models can aid the design of
much more sophisticated error correction methods, such as LDPC codes[7],
which are likely needed for reliable operation of future flash memories.
We refer the reader to [6] for more detail.

We are currently investigating another increasingly more significant
obstacle to continued MLC NAND flash scaling, which is the increasing
cell-to-cell program interference due to increasing parasitic capacitances
between the cells’ floating gates. Accurate characterization and modeling
of this phenomenon are needed to find effective techniques to combat
this program interference. In our recent work[16], we leverage the read retry

“We have developed new models that

can predict the shifts in the threshold

voltage distribution based on the

number of P/E cycles endured by flash

memory cells.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

160 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

mechanism found in some flash designs to obtain measured threshold voltage
distributions results from state-of-the-art 2Y-nm (24- to 20-nm) MLC
NAND flash chips. These results are then used to characterize the cell-to-cell
program interference under various programming conditions. We show that
program interference can be accurately modeled as additive noise following
Gaussian-mixture distributions, which can be predicted with 96.8 percent
accuracy using linear regression models. We use these models to develop and
evaluate a read reference voltage prediction technique that reduces the raw
flash bit error rate by 64 percent and increases the flash lifespan by 30 percent.
We refer the reader to [16] for more detail.

Finally, apart from investigating scaling challenges in flash memory, we
are investigating techniques to enable better scaling of DRAM. Improving
DRAM cell density by reducing the cell size, as has been done traditionally,
is becoming significantly more difficult due to increased manufacturing
complexity/cost and reduced cell reliability. We are examining alternative ways
of enhancing the performance and energy-efficiency of DRAM while still
maintaining low cost. A key direction is to co-design the DRAM controller
and DRAM, rethinking the DRAM interface and microarchitecture, such
that DRAM scaling challenges are tolerated at the system level. For example,
we have recently proposed new techniques to reduce DRAM access latency
at low cost by segmenting bitlines and creating a low-latency low-energy
segment within a subbank[17], to increase DRAM parallelism and locality by
enabling pipelined access of subbanks and enabling multiple row buffers to be
concurrently active within a bank[18], to reduce the number of DRAM refreshes
by taking advantage of variation in retention times of DRAM rows in a low-
cost manner[13], and to accelerate bulk data copy and initialization operations
by performing them solely in DRAM with only minor modifications to
DRAM[19]. We have also experimentally characterized retention behavior
of DRAM cells and rows for 248 commodity DRAM chips[27], with the
goal of developing mechanisms that can dynamically profile retention times
of different rows. We observed two significant phenomena: data pattern
dependence, where the retention time of DRAM cells is significantly affected
by the data stored in other DRAM cells, and variable retention time, where the
retention time of some DRAM cells changes over time. We refer the reader to
these respective works for further detail.

Conclusion
Reliability and energy efficiency challenges posed by technology scaling are
a critical problem that jeopardizes both flash memory and DRAM capacity,
cost, performance, lifetime, and efficiency. In this article, we have described
our recent error analysis of flash memory and a new method to improve flash
memory lifetime. We hope other works by us and other researchers in the
field collectively enable the memory and microprocessor industry to develop
cooperative techniques to enable scalable, efficient, and reliable flash memory
(and DRAM) that continues to scale to smaller feature sizes.

“A key direction is to co-design the

DRAM controller and DRAM,

rethinking the DRAM interface and

microarchitecture, such that DRAM

scaling challenges are tolerated at the

system level.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 161

Intel® Technology Journal | Volume 17, Issue 1, 2013

References
[1]	 A. Maislos et al., “A New Era in Embedded Flash Memory,”

FMS 2011.

[2]	 Y. Cai, et al., “FPGA-Based Solid-State Drive Prototyping
Platform,” FCCM 2011.

[3]	 Y. Cai et al., “Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization and Analysis,” DATE 2012.

[4]	 Y. Cai et al., “Flash Correct-and-Refresh: Retention-Aware
Error Management for Increased Flash Memory Lifetime,”
ICCD 2012.

[5]	 Y. Koh, “NAND Flash Scaling Beyond 20nm,” IMW 2009.

[6]	 Y. Cai et al., “Threshold Voltage Distribution in MLC NAND
Flash Memory: Characterization, Analysis and Modeling,”
DATE 2013.

[7]	 R. G. Gallager, Low-Density Parity Check Codes. Cambridge: MIT
Press, 1963.

[8]	 T. Hara, et al., “A 146-mm2 8-Gb multi-level NAND flash
memory with 70-nm CMOS technology,” JSSC, Vol. 41,
pp. 161–169, 2006.

[9]	 Y. Li, et al., “A 16Gb 3-Bit Per Cell(X3) NAND Flash Memory
on 56nm Technology With 8MB/s Write Rate,” JSSC, Vol. 44,
pp. 195–207, 2009.

[10]	 N. Shibata, et al., “A 70nm 16Gb 16-Level-Cell NAND flash
Memory,” JSSC, Vol. 43, pp. 929–937, 2008.

[11]	 K. D. Suh, et al., “A 3.3V 32Mb NAND Flash Memory with
Incremental Step Pulse Program Scheme,” JSSC, Vol. 30, No.11,
pp. 1149–1156, 1995.

[12]	 M. Xu, et al., “Extended Arrhenius law of time-to-breakdown
of ultrathin gate oxides,” Applied Physics Letters, Vol. 82,
pp. 2482–2484, 2003.

[13]	 J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” ISCA 2012.

[14]	 K. Park et al., “A Zeroing Cell-to-Cell Interference Architecture
with Temporary LSB Storing and Parallel MSB Program Scheme
for MLC NAND Flash Memories,” JSSC 2008.

[15]	 Y. Pan et al., “Quasi-Nonvolatile SSD: Trading Flash Memory
Nonvolatility to Improve Storage System Performance for
Enterprise Applications,” HPCA 2012.

Intel® Technology Journal | Volume 17, Issue 1, 2013

162 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

[16]	 Y. Cai et al. “Program Interference in MLC NAND Flash
Memory: Characterization, Modeling, and Application,” Carnegie
Mellon University SAFARI Technical Report, January 2013.

[17]	 D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

[18]	 Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

[19]	 V. Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy
and Initialization of Bulk Data,” Carnegie Mellon University
SAFARI Technical Report, March 2013.

[20]	 J. Bucy et al., “DiskSim Simulation Environment Reference
Manual,” 2008.

[21]	 N. Agrawal et al., “Design Tradeoffs for SSD Performance,”
USENIX 2008.

[22]	 IOzone.org, “IOzone Filesystem Benchmark,” http://iozone.org.

[23]	 Open Source software at HP Labs, http://tesla.hpl.hp.com/
opensource.

[24]	 J. Katcher, “Postmark: a New File System Benchmark Technical
Report,” 1997.

[25]	 SNIA: IOTTA Repository, http://iotta.snia.org/tracetypes/3.

[26]	 UMass Trace: http://traces.cs.umass.edu/index.php/Storage/
Storage.

[27]	 J. Liu et al., “An Experimental Study of Data Retention Behavior
in Modern DRAM Devices: Implications for Retention Time
Profiling Mechanisms,” To Appear in ISCA 2013.

Author Biographies
Yu Cai obtained his PhD degrees in Electrical and Computer Engineering
from Carnegie Mellon University (2012). He received an MS degree
in Electronic Engineering from Tsinghua University and a BS degree
in Telecommunication Engineering in Beijing University of Posts and
Telecommunication (BUPT). Currently, he is a staff engineer, SSD Architect
working in the Flash Channel Department of LSI Corporation. Prior to LSI,
he worked at Hong Kong Applied Science and Research Institute (ASTRI),
Lucent Technology, and Microsoft Research Asia (MSRA). His research
interests include data storage, reconfigurable computing, and wireless
communication.

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 163

Intel® Technology Journal | Volume 17, Issue 1, 2013

Gulay Yalcin is a PhD student at Universitat Politecnica de Catalunya and
a researcher student in Bacelona Supercomputing Center. She holds a BS
degree in Computer Engineering from Hacettepe University and an MS
degree in Computer Engineering from TOBB University of Economics and
Technology. Her research interests are reliability and energy minimization
in computer architecture. For more information please see the web page at
http://www.bscmsrc.eu/people/gulay-yalcin.

Onur Mutlu is the Dr. William D. and Nancy W. Strecker Early Career
Professor at Carnegie Mellon University. He enjoys teaching and researching
important and relevant problems in computer architecture and computer
systems, including problems related to the design of memory systems,
multi-core architectures, and scalable and efficient systems. He obtained his
PhD and MS in ECE from the University of Texas at Austin (2006) and
BS degrees in Computer Engineering and Psychology from the University
of Michigan, Ann Arbor. Prior to Carnegie Mellon, he worked at Microsoft
Research (2006-2009), Intel Corporation, and Advanced Micro Devices.
He was a recent recipient of the IEEE Computer Society Young Computer
Architect Award, CMU College of Engineering George Tallman Ladd
Research Award, Intel Early Career Faculty Honor Award, Microsoft Gold
Star Award, best paper awards at ASPLOS, VTS and ICCD, and a number
of “computer architecture top pick” paper selections by the IEEE Micro
magazine. For more information, please see his web page at http://www.ece
.cmu.edu/∼omutlu.

Erich F. Haratsch is Director of Engineering, Flash Channel Technology at
LSI Corporation. In this role, he leads the development of advanced signal
processing and error correction coding features for solid-state disk controllers.
Prior to joining LSI, Haratsch was a Senior Member of Technical Staff at Agere
Systems, where he developed signal processing architectures for magnetic
recording in hard disk drives. He also developed equalizer and decoder
architectures for Gigabit Ethernet over copper and optical communications
at Bell Labs Research. Haratsch is the author of more than 30 peer-reviewed
journal and conference papers, and holds 35 U.S. patents. He is a Senior
Member of IEEE. Haratsch earned his MS and PhD from the Technical
University of Munich, Germany.

Adrián Cristal is co-manager of the Computer Architecture for Parallel
Paradigms research group at BSC. His interests include high-performance
microarchitecture, multi- and many-core chip multiprocessors,
transactional memory, programming models, and computer architectures
for Big Data. He received a PhD from the Computer Architecture
Department at the Polytechnic University of Catalonia (UPC), Spain, and
he has a BS and an MS in computer science from the University of Buenos
Aires, Argentina.

Intel® Technology Journal | Volume 17, Issue 1, 2013

164 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

Osman Unsal received the BS, MS, and PhD degrees in Electrical and
Computer Engineering from Istanbul Technical University (Turkey),
Brown University (USA) and University of Massachusetts, Amherst (USA)
respectively. Together with Dr. Adrian Cristal, he co-manages the Computer
Architecture for Parallel Paradigms research group at BSC. His current research
interests include many-core computer architecture, reliability, low-power
computing, programming models and transactional memory.

Ken Mai received his BS, MS, and PhD degrees in electrical engineering
from Stanford University in 1993, 1997, and 2005, respectively. He
joined the Faculty of Carnegie Mellon University in 2005 as an Assistant
Professor in the Electrical and Computer Engineering Department. His
research interests are in high-performance circuit design, secure IC design,
reconfigurable computing, and computer architecture. He was the recipient
of an NSF CAREER award in 2007 and the George Tallman Ladd Research
Award in 2008.

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 165

Intel® Technology Journal | Volume 17, Issue 1, 2013

166 | A Case for Nonuniform Fault Tolerance in Emerging Memories

Intel® Technology Journal | Volume 17, Issue 1, 2013

Contributor

As DRAM systems face scalability challenges, the architecture community
has started investigating alternative technologies for main memory. These
emerging memory technologies tend to suffer from the problem of limited write
endurance. This problem is exacerbated because of the high variability in lifetime
across different cells, resulting in weaker cells failing much earlier than nominal
cells. Ensuring long lifetimes under high variability requires that the design
can correct a large number of errors for any given memory line. Unfortunately,
supporting high levels of error correction for all lines incurs significantly high
overhead, often exceeding 10 percent of overall memory capacity. We propose
to reduce the storage required for error correction by exploiting the observation
that only a few lines require high levels of hard-error correction. Therefore,
prior approaches that uniformly allocated a large number of error correction
entries for all lines are inefficient, as most (more than 90 percent) of these entries
remain unused. We propose Pay-As-You-Go (PAYG), an efficient hard-error
resilient architecture that allocates error correction entries in proportion to the
number of hard faults in the line. We describe a storage-efficient and low-latency
organization for PAYG. Compared to uniform error correction, PAYG requires
one third the storage overhead and yet provides 13 percent more lifetime.

Introduction
As DRAM-based memory systems get limited by power and scalability
challenges, architects are turning their attention towards emerging memory
technologies for building future systems. Phase Change Memory (PCM) has
emerged as one of the most promising technologies suitable for incorporation
into main memory.[3] While PCM has several desirable attributes such as
improved scalability and nonvolatility, the physical properties of PCM dictates
that only a limited number of writes can be performed to each cell. On average,
PCM devices are expected to last for about 10 to the 7th and 10 to the 8th,
writes per cell.[1] Once a cell reaches its end of life, it gets stuck in one of the
states, manifesting itself as a hard error. The problem of limited lifetime is further
exacerbated by the high variability in lifetime across different cells due to process
variations. This means a small percentage of cells that have a significantly lower
than average lifetime end up determining the overall lifetime of the system.

Ensuring reasonable system lifetime under high variability requires that the
design provision large amounts of error correction for PCM lines. As we
are concerned with lifetime failures that manifest themselves as hard errors,
we focus only on hard-error correction in this article. Recent studies have
proposed write-efficient error correction schemes such as Error Correction

“…a small percentage of cells that

have a significantly lower than average

lifetime end up determining the

overall lifetime of the system.”

Moinuddin K. Qureshi
Georgia Institute of Technology

A Case for Nonuniform Fault Tolerance
in Emerging Memories

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 167

Pointers (ECP)[5] and SAFER[6] to tolerate a large number of hard faults in
memory lines. While our analysis is applicable to any hard-error correction
scheme, we discuss ECP for our studies owing to its simplicity.

ECP corrects a failed bit in a memory line by recording the position of the bit
in the line and its correct value. For example, a 64-byte (512-bit) line needs
a 9-bit pointer plus 1 replacement bit resulting in a total of 10 bits for each
ECP entry. Our evaluations show that correcting six errors per line can provide
a lifetime of about 6.5 years for our baseline (the configuration is described
in the section “Experimental Methodology”). Provisioning for 6 bits of error
correction requires an overhead of 61 bits (60 bits of ECP plus one full bit
to indicate that all ECP entries are used) per line, which translates to a total
storage overhead of 12 percent. Note that this level of error correction would
not be an optional feature in future PCM systems but rather something that
would be essential to enable meaningful operation of the PCM array. Given
that the memory market is low margin and highly cost-sensitive, it is important
that the storage overhead of such necessary error correction be minimized,
while retaining the desired levels of reliability. Thus, the 12 percent storage
overhead of ECP may very well prove to be too high for wide-scale adoption
of PCM.

To reduce the storage overhead of error correction, we begin by pointing to
the inefficiency with the ECP approach that uniformly allocates six ECP
entries per line. Our analysis shows that very few lines are weak, and more
than 95 percent of the lines require no more than one ECP entry per line.
Therefore, we would expect that with uniform ECP-6, the majority of the ECP
entries would remain unused. Table 1 shows the distribution of lines that use
a given number of ECP entries at different aging levels (age normalized to the
lifetime under ECP-6, or 6.5 years). The average number of ECP entries used
is also shown.

Number Writes
(Normalized Age)

Number of ECP Entries Used per Line Average Number of
ECP Entries Used0 1 2 3–6

50% 99.02% 0.97% 0.00% 0.00% 0.010

90% 84.76%   14.02% 1.16% 0.07% 0.165

95% 79.63%   18.14% 2.06% 0.17% 0.228

  100% 73.24%   22.82% 3.55% 0.40% 0.311

Table 1: Inefficiency of Uniform ECP-6. On average, only 0.3 out of six
entries eventually gets used
(Source: Moinuddin K. Qureshi, 2013)

As the number of writes increase, the rate of faults increases, and hence more
and more of the allocated ECP entries get used. However, even at the end of
the expected system lifetime under ECP-6, less than 5 percent of the lines
utilize more than one ECP entry. On average, only 0.3 entries out of the
allocated six entries of ECP get used, indicating significant inefficiency with

“Our analysis shows that very few lines

are weak, and more than 95 percent

of the lines require no more than one

ECP entry per line.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

168 | A Case for Nonuniform Fault Tolerance in Emerging Memories

uniform ECP. If we could allocate ECP entries only to lines that need those
entries, we would reduce the required ECP entries by almost 20X. Ideally,
we want to allocate more ECP entries to weak lines (lines with large number
of errors) and fewer ECP entries to other lines. Unfortunately, uniform ECP
allocates a large (and wasteful) number of ECP entries with each line a priori,
being agnostic of the variability in lifetime of each line.

We propose Pay-As-You-Go (PAYG, pronounced as “page”), an error correction
architecture that allocates error correction entries in response to the number of
errors in the given memory line. To maintain low latency of error correction,
PAYG splits the correction entries into two parts: first, a per-line Local Error
Correction (LEC) that can correct up to one error per line and is sufficient for
95 percent of the lines; and second, a Global Error Correction (GEC) pool that
contains tagged ECP entries and provides error correction entries for lines that
have more errors than can be handled by the LEC.

We describe several versions of PAYG, each with varying effectiveness, storage
overhead, and latency overhead. Our evaluations show that PAYG reduces the
storage overhead of error correction by a factor of 3.1X compared to ECP-6
(19.5 bits per line vs. 61 bits per line) while still obtaining 13 percent longer
lifetime. Thus, PAYG obtains the best of both worlds in that it achieves the
lifetime corresponding to strong levels of error correction while maintaining
the low storage overhead that is sufficient for most of the lines.

Background
The problem of limited write endurance is common to many of the emerging
memory technologies. Without loss of generality, this article analyzes Phase Change
Memory (PCM) as an example of emerging memory technology. PCM suffers
from the limited endurance in that the memory cells cease to have the ability to
store data after a certain number of writes. Such cells get stuck to one of the states
and manifest themselves as hard errors.[5] Designing a robust PCM system that can
last for several years requires carefully architecting the system to tolerate such errors.

Problem: Variability in Lifetime
ITRS[1] projections (and various other studies) indicate that PCM cells can be
expected to have an average endurance in the range of 107–108 writes. While
this range of endurance is much lower than the ~1015 endurance of DRAM,
it is still sufficient to architect a system with several (more than five) years of
lifetime. Unfortunately, the lifetime of PCM cells is not uniform, and process
variability results in significant variations even within adjacent cells in the same
die.[2][5] This causes certain cells to have much lower endurance than the average
population. Such weak cells fail much earlier than the typical cell and can
reduce the lifetime of the system significantly to the tune of a few weeks.

The variation in lifetime is typically expressed as normalized standard deviation
(COV) around the mean. Previous studies on variability of PCM endurance
have used COV values between 10–30 percent of the mean.[2][5][6] In our

“…Pay-As-You-Go (PAYG,

pronounced as “page”), an error

correction architecture that allocates

error correction entries in response

to the number of errors in the given

memory line.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 169

analysis, we use a default COV value of 20 percent. With a COV of 20 percent,
the cell failure probability at the very start is in the range of 10-6. Given that a
typical main memory system contains tens of billions of cells, even this small
failure probability would result in several thousand cells having bit failures,
which in turn would result in a drastic reduction in the overall system lifetime
because of variability.

Prior Work
The lifetime of a PCM system can be increased to a useful range if the system
can tolerate errors. Hamming code-based error correction, which is typically
employed in memory systems, can tolerate transient errors as well as hard
errors. Unfortunately, such codes are write intensive and can further exacerbate
the endurance problem in PCM. Fortunately, identifying the endurance-related
write failures is easy as it can be done by simply performing a verify read after
completing a write.1 If the two values do not match then the nonmatching bit
is likely to be a hard error.

Recent studies[5][6] have focused on developing write-efficient methods to
provide error correction of hard faults, relying on this simple detection
property of endurance-related failures.

One such proposal is Error Correcting Pointers (ECP).[5] ECP performs error
correction by logging bit errors in a given line. For example, for a line of
64 bytes (512 bits), a 9-bit pointer is used to point to the failing bit and an
additional bit to indicate the correct value. This scheme can correct one error
and is referred to as ECP-1. The concept can be extended to correct multiple
bits per line. Intelligent precedence rules allow correction of errors even in
the ECP entries. A generalized scheme that can correct N errors per line is
called ECP-N. A full bit per line indicates if all the ECP entries associated
with the line are used. Thus, the storage overhead of ECP-N is (10N + 1) bits
per line.

Need to Correct Several Errors per Line
Given that transient faults are rare, a typical memory system is designed to
handle at most one or two transient faults per line. However, unlike transient
faults, endurance-related hard errors accumulate over time. Therefore, we
need to provide large amount of error correction per line in order to obtain
reasonable system lifetime. Figure 1 shows the mean time to first uncorrectable
error for our baseline system, where the number of ECP entries per line is
varied from 1 to 12. All lifetime numbers are normalized to the case of zero
variance. To show dependence of lifetime on variance, we show data for
different COVs. For COV = 20 percent, ECP-6 obtains 35 percent of ideal

1 If the system supports some amount of transient fault protection with each line, then we can
identify the hard faults without performing the verify read. For example, the position of a bit that
causes a failure with a transient fault protection mechanism can be tracked. Given that transient
faults are rare, if the same bit position is causing frequent errors then that bit is likely to be a
hard fault. Such a bit can then be corrected using a hard-error correction mechanism. This article
assumes that an efficient means of detecting endurance-related failures exists and focuses only on
correcting such failures.

“…a typical main memory system

contains tens of billions of cells, even

this small failure probability would

result in several thousand cells having

bit failures,…”

100

N
o

rm
. S

ys
te

m
 L

if
et

im
e

(w
rt

 C
O

V
 5

 0
%

) 90

80

70

60

50

40

30

20

10

0 1 2 3 4 5
ECP-N (Num Error Correction Per Line)

6 7 8 9 10 11 12
0

COV 5 10%
COV 5 15%
COV 5 20%

Figure 1: Normalized value of system lifetime
(defined as the mean time of first uncorrectable
error) as a function of the ECP strategy. The
system lifetime is normalized with respect to a
memory cell with 0% COV. Note that at COV
of 20%, ECP-6 obtains 35% of theoretical
maximum lifetime
(Source: Moinuddin K. Qureshi, 2013)

Intel® Technology Journal | Volume 17, Issue 1, 2013

170 | A Case for Nonuniform Fault Tolerance in Emerging Memories

lifetime. For our baseline, this translates to a lifetime of 6.5 years, which is
in the desired range of 5–7 years for a typical server. ECP-6 incurs storage of
61 bits per line, which translates to 12 percent storage overhead. Given that
memory chips are extremely cost sensitive, such overhead may be too high for
practical use.

Inefficiency of Traditional Approach
For a memory of N lines, a PCM system would provision a total of 6N ECP
entries to implement ECP-6. The problem with such an approach is that it
results in significantly underutilized ECP entries. Because weak lines are few,
only a few lines require high levels of error correction. Most of the other lines
do not use the allocated ECP entries. Figure 2 shows the failure probability
as the number of writes is increased (under COV = 20 percent), normalized
to a system that has zero variance. The failure of line (or system) occurs
when there is at least one uncorrectable error for a given amount of ECP.
The expected time to failure is computed as the time at which the failure
probability is 50 percent.

1.0

F
ai

lu
re

 P
ro

b
ab

ili
ty

Total Writes Performed as a Percentage of Max Writes in a System Zero Variance

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Bit

Line-ECP0

Line-ECP1

Line-ECP2

Line-ECP6

System-ECP6

Figure 2: Failure probability vs. the percentage of writes assuming a COV = 20%, normalized to a system that
has zero variance. “Bit” shows probability of failure of a single bit. “Line-ECPN” shows the probability of failure of
a single line if N bits can be corrected. “System-ECP6” shows the probability that “at least one line fails out of all
the lines” when each line has ECP-6. Observe that when the system failure is expected to occur under ECP-6,
the probability of line failure with ECP-1 is approximately 3.5%
(Source: Moinuddin K. Qureshi, 2013)

Given that memory has millions of lines, the line failure probability must be
very low (much less than 10−6) to achieve a low system failure probability.
When the system failure is expected to occur under ECP-6, the probability
of line failure with ECP-1 is approximately 3.5 percent. This implies that
fewer than 5 percent of the lines have more than one failed bit at the time of
system failure, indicating significant inefficiency in the traditional approach
that allocates six ECP entries for all lines. We note that ECP-1 is sufficient in
the common case, and we need higher levels of ECP for very few lines. Ideally,

“ECP-6 incurs storage of 61 bits per

line, which translates to 12 percent

storage overhead. Given that memory

chips are extremely cost sensitive,

such overhead may be too high for

practical use.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 171

we would like to retain the robustness of ECP-6 while paying the hardware
overhead of only ECP-1.

We base our solution on the insight that hard errors are quite different from
transient faults. We need to allocate the storage for the error detection of
transient faults up-front—before the error occurs. However, for hard errors,
we can detect the error using a separate mechanism and allocate the error
correction entry only when the error occurs. We discuss our experimental
methodology before describing our proposal.

Experimental Methodology
The following section describes our experimental methodology.

Baseline Configuration
We assume a memory configuration that is designed with PCM banks each with
1 GB memory. Each bank has one write port and the write operation can be
performed with a latency of 1 microsecond. The size of the line in the last-level
cache is 64 bytes, which means there are 224 lines in each bank. All operations on
memory occur at line-size granularity. Given that each bank is a separate entity
and can be written independently, we focus on determining the lifetime of one
bank. We assume that each line has an endurance of 225 writes. If endurance
variance was 0 percent, we would expect the baseline to have a lifetime of
18 years.2 ECP-6 obtains 35 percent of this lifetime, which translates to 6.5 years.

Assumptions
We are interested in evaluating the lifetime of memory, which is typically in the
range of several years. Modeling a system for such a long time period inevitably
involves making some simplifying assumptions. We make the following
assumptions in order to evaluate memory lifetime:

●● We assume the lifetime of each memory cell to follow a normal distribution
without any correlation between neighboring cells. We assume a mean
lifetime of 225 writes[4] and a COV of 20 percent of the mean.

●● We assume perfect wear-leveling to focus only on the impact of the error
correction schemes. This implies that all the memory lines will receive the
same number of writes.

●● A write request to memory is converted into a sequence of write requests
followed by a read request to detect hard faults. We assume that this
technique can identify hard faults with 100 percent accuracy.

Figure of Merit
The endurance-limited lifetime of the system can be defined as the number
of writes performed before encountering first uncorrectable error. Thus, for a
given scheme, lifetime is determined by the first line that gets more errors than

2 Each of the 224 lines can be written 225 times, for a total of 249 writes. With write latency of
1 microsecond, we can perform 106 writes/second or 244.8 writes per year, hence, a lifetime of
18 years, even under continuous write traffic.

Intel® Technology Journal | Volume 17, Issue 1, 2013

172 | A Case for Nonuniform Fault Tolerance in Emerging Memories

can be corrected. ECP-6 obtains a lifetime of 6.5 years, which is in the range of
5–7 years of lifetime for a typical server. We want a lifetime in this range; hence
all lifetime numbers in our evaluation are normalized to ECP-6. We define
Normalized Lifetime (NL) as follows, and use this as the figure-of-merit in our
evaluations:

NL = ​  Total Line Writes Before System Failure × 100%

Total Line Writes Before System Failure With ECP 6
 ​� (1)

Pay-As-You-Go Error Correction
We can architect an efficient and robust design by allocating error correction
entries only on demand, as and when an error occurs. In fact, one can reduce
the percentage of unused ECP entries to zero by having a fully associative
structure where each entry contains one tagged ECP-1 unit. Unfortunately, such
a design would incur intolerable latency as each memory access would need to
search through hundreds of thousands of error-correction entries. Our proposed
design, PAYG, provides storage-efficient on-demand error correction while
incurring negligible latency overhead. In this section, we first start with a naive
design for PAYG, identify its shortcomings, and then propose the robust design.

Architecture of Naive PAYG
When failure occurs under ECP-6, we observe that 73 percent of the lines have
0 errors (Table 1). Hence, error correction overhead could be decreased by ~4x,
by allocating ECP-6 only for lines that have at least one error. This simplified
architecture is called Naive-PAYG, and is shown in Figure 3.

Main Memory

Way (Num GEC entries per set)

Global Error Correction (GEC) Pool
GEC Entry

V TAG ECP–NSets

Memory Line (64B)OFB
O

Figure 3: Architecture of Naive-PAYG (newly added
structures are shaded)
(Source: Moinuddin K. Qureshi, 2013)

Each line contains an overflow bit (OFB) to indicate if the line has at least one
failed bit.3

A Global Error Correction (GEC) pool provides error correction entries for
such lines. Each GEC entry contains a valid bit, a tag (to identify the owner

3 A stuck-at-zero OFB can be a single point of failure. Under COV = 20 percent, the probability
that a bit will fail at first write is 0.3 × 10−6. Given 16 million lines in memory, 4.8 lines are
expected to have such a failure on average. We avoid this problem by using two-way replication for
the OFB bit. We assume that OFB is set to 1, if any of the replicated bits is 1. The probability that
both the replicated bits of OFB are stuck-at-zero is negligible (10−13).

“…PAYG, provides storage-efficient

on-demand error correction while

incurring negligible latency overhead.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 173

line), and one or more ECP entries (ECP-6 in our case). GEC is organized
as a set-associative structure. Given that memory designs are highly
optimized for a given array size, we want to use a line-size granularity for
GEC as well. Therefore one set of GEC is sized such that it fits in 64 bytes,
translating to seven GEC entries per set. We found that such a design is
noncompetitive compared to even uniform ECP-6 because it suffers from
three problems:

●● The set associative organization needs a much larger number of entries
(~8x) than a fully associative structure to reach the same level of
effectiveness.

●● Even with the filtering provided by the OFB, 25 percent of the lines can
still incur a latency of two accesses (one for main memory and second for
GEC), resulting in significant slowdowns.

●● Most ECP entries remain unused as six ECP entries are allocated for lines
with even one error.

We now describe efficient solutions to each of these problems, leading up to
our final design.

Addressing Problem 1: Shortcoming of Set Associative Structure for
GEC Pool
In a set-associative organization, each set has only a fixed number of
ways, which means that the first set to exceed its allocation causes an
uncorrectable failure. So, an important question in determining efficiency
of the set-associative structure is to analyze the number of GEC entries
occupied before one of the sets overflows. Given that most of the efficient
wear-leveling algorithms[4][7] randomize the address space in PCM, we
assume that failures occur at random lines in memory, and that any access
pattern gets spread over the entire memory (due to remapping from
wear leveling). Based on this randomized address space property, we can
analyze the effective capacity utilization of a set-associative structure using
an analogous buckets-and-balls problem, where a bucket represents one
of the sets and a ball represents one of the occupied ways. If there are
N buckets, each of which can hold B balls, then the collection can hold a
maximum of NB balls. However, if balls are thrown at random, then how
many balls can be thrown before one of the buckets overflows? Our Monte
Carlo simulations indicate that a 7-way or 8-way GEC pool is only about
12 percent occupied when one of the sets overflows, indicating about
8x inefficiency with a set-associative structure.

Ideally, we want the efficiency of a fully associative structure (where all entries
get used) and latency of set-associative structure (single low-latency index). To
handle these contradictory requirements, we use a hash-table-with-chaining
structure. It consists of two tables: first, the Set Associative Table (SAT) and
second, the Global Collision Table (GCT). SAT provides a single-index low-
latency access to the GEC pool, while GCT provides flexibility in placement.
Both SAT and GCT are structurally identical and differ only in the way they

“Ideally, we want the efficiency of a

fully associative structure (where all

entries get used) and latency of set-

associative structure (single low-latency

index).”

Intel® Technology Journal | Volume 17, Issue 1, 2013

174 | A Case for Nonuniform Fault Tolerance in Emerging Memories

are indexed. Each GEC set (both in SAT and GCT) also contains a pointer
(GCTPTR) that points to a location in the GCT.4 The proposed GEC
structure is shown in Figure 4.

GEC Entry

PTR

1

0

OFB

GEC Entry

Set Associative Table (SAT)

Global Collision Table (GCT)

PTR1

OFB

GCT–Head

PTR

Figure 4: Architecture of scalable GEC pool (Set Associative Table + Global Collision Table)
(Source: Moinuddin K. Qureshi, 2013)

Reading GEC Entries
For obtaining a GEC entry, SAT is accessed first in a set that is indexed by
some bits of the line address. If there is no tag match in the set, then the
GCTPTR of that set identifies the GCT set that must be checked. GCT can be
indexed only in this manner. If there is a tag match in the GCT row, then GEC
entries can be obtained. If there is no match, the GCTPTR in that set identifies
the next GCT set that must be checked. The traversal continues until a GCT
entry with matching tag (or a set with OFB = 0) is found.

Allocating GEC Entries
Initially, all GCT sets remain unallocated. These sets get allocated to a set of
SAT only on overflow. To aid this allocation, a register called GCT-Head keeps
track of the number of GCT entries that have been allocated. When one of the
set of SAT or GCT overflows, the GCTPTR of that set is initialized to GCT-
Head and the OFB associated with that set is set to 1. The newly allocated
set of GCT provides as many GEC entries as the associativity of GCT. The
GCTPTR of this newly allocated entry is marked invalid and OFB is set to 0
(to indicate end of traversal).

The GCT-Head is incremented after every GCT allocation. When the value
of GCT-Head reaches the number of sets in GCT, it indicates an uncorrectable
error.

We use a GCT that has half as many sets as SAT. Table 2 shows the effective
capacity if there are N sets in SAT and 0.5N sets in GCT, as the associativity of
SAT is varied. For an 8-way SAT, our organization obtains an effective capacity
of more than 70 percent of the allocated 1.5N entries, much higher than the
12 percent with a set-associative structure.

4 We use two-way replication for GCTPTR for tolerating errors. We force the GCTPTR with
a single stuck-at-bit to point to either location all-zeros or all-ones (both locations are reserved).
On mismatch between the two copies of GCTPTR, the entry pointing to the reserved location is
ignored. The probability of two bits stuck in GCTPTR is negligible (10−12).

“…our organization obtains an

effective capacity of more than 70

percent of the allocated 1.5N entries,

much higher than the 12 percent with

a set-associative structure.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 175

Associativity of SAT 1 2 4 8

Effective Capacity 1.19N 1.15N 1.11N 1.08N

Table 2: Effective capacity utilization (of 1.5N entries) with proposed
(SAT+GCT) organization
(Source: Moinuddin K. Qureshi, 2013)

In the common case, we want the access to be satisfied by SAT and not
the GCT, as GCT incurs higher latency due to multiple memory accesses.
Our Monte Carlo simulations show that until about half the entries in SAT
get occupied, the probability of single GCT access remains low (less than
1 percent). Thus, the proposed design has a good storage efficiency as well as
low latency.

Addressing Problem 2: Local Error Correction for
Low-Latency
One of the shortcomings of the naive design is that it accesses the GEC for
a line with even one error. We can reduce latency and storage requirements
for GEC by allocating a small amount of error correction with each line.
For example, we observe that with ECP-1, the likelihood of failure is less
than 4 percent even at the end of system lifetime. Therefore if we allocate
ECP-1 with each line, we can reduce the GEC access rate as well as demand
significantly. We propose to have such Local Error Correction (LEC) with
each line. When the number of errors in the line exceeds what can be
corrected by LEC, the OFB associated with that line is set and an entry from
GEC is allocated. With ECP-1 in LEC, each GEC entry would need to store
only ECP-5, which means the GEC can be an 8-way structure in a 64-byte
space.

Addressing Problem 3: Fine-Grained On-Demand
Allocation for Improved Efficiency
Another source of inefficiency in the naive design is that it allocates a large
number of ECP entries for each assignment of a GEC entry. While this
amortizes the tag overhead, it results in severe inefficiency, as most of the
allocated ECP entries remain unused. The utilization of ECP entries can
be increased by reducing the number of ECP entries in each GEC entry.
For example, if each GEC entry contained only ECP-1, it would result in
significant increase in utilization of ECP entries, even if it would mean relative
increase in tag overhead. With ECP-1 in GEC entry, we can fit approximately
24 entries in the space of 64 bytes, therefore the associativity of GEC (SAT as
well as GCT) would be 24. As there can be multiple tag hits in a given GEC
set, we use the same precedence rule as used in the ECP proposal, that is, GEC
entries are allocated from right to left, and younger entries have precedence
over older entries. Our design restricts that all GEC entries of a given line must
be placed in the same set. If a line needs more GEC entries and that set is full,
then all ECP entries of the line are invalidated from the GEC set and relocated
into a new set in GCT.

Intel® Technology Journal | Volume 17, Issue 1, 2013

176 | A Case for Nonuniform Fault Tolerance in Emerging Memories

Proposed PAYG: Tying It All Together
PAYG obtains both high storage efficiency and low latency by leveraging the
flexible structure for GEC, a hybrid LEC-GEC organization, and fine-grained
allocation. Figure 5 shows the overall architecture of our proposed PAYG
design.

Main Memory

Memory Line (64B)O LEC
Over Flow Bit

O LECSAT

GCT

Global Error Correction (GEC) Pool

PTR

O LEC PTR

Figure 5: Proposed Architecture of PAYG
(Source: Moinuddin K. Qureshi, 2013)

The LEC handles the common case of one-or-zero errors in a line for more
than 95 percent of the lines. The GEC provides a storage-efficient low-
latency on-demand allocation of ECP entries for lines that have more than
one error. Each GEC entry would contain only ECP-1 for high utilization
of ECP entries. To reduce the array design overhead, we assume the same
memory array for GEC (SAT and GCT) as the main memory, and provision
the LEC + OFB for GEC as well, to maintain uniformity (this also allows
the GEC size to be changed freely at runtime by the OS). An access to main
memory with OFB = 0 is satisfied by single access. When OFB = 1, the GEC
is accessed, one or more memory lines are read, matching GEC entries are
obtained, ECP information is retrieved, and the line or lines get corrected.

Unlike uniform ECP-6, PAYG does not have to limit the maximum error
correction allocated to a line. Thus, a weak line can use as many ECP entries
as needed (limited only by the number of GE entries per line). This allows
PAYG to outperform even ECP-6. The only real limiter of lifetime with PAYG
is the number of GEC entries, as the likelihood of 24 or more errors per line is
negligible for our system.

Results and Analysis
Our proposed design has three key components: the scalable structure for the
GEC pool, Fine Grained Allocation (FGA), and Local Error Correction (LEC).
In this section, we present the key results highlighting the importance of each
of these components. We then analyze the storage and latency overheads, and
also the impact of different variability scenarios on the effectiveness of our
proposal.

“The LEC handles the common case

of one-or-zero errors in a line for

more than 95 percent of the lines. The

GEC provides a storage-efficient low-

latency on-demand allocation of ECP

entries…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 177

Importance of Scalable GEC Pool
The key component of PAYG that provides scalability and efficiency is
the architecture of the GEC pool. The first set of results we present are to
emphasize the need for such a scalable structure. For this analysis, we assume
a version of PAYG that has LEC implemented as ECP-1. The GEC does not
have fine-grained allocation, which means each GEC entry contains ECP-5,
and each set of GEC (in both SAT and GCT) contains 8 GEC entries. We call
this configuration PAYG-NoFGA. Figure 6 compares the normalized lifetime
of uniform ECP to that with PAYG-NoFGA. The left sets of bars are for ECP
where the level of ECP is varied from 1 to 6. The middle sets of bars are for
PAYG-NoFGA without GCT, where the number of sets in SAT is varied from
32K to 1024K. The right sets of bars are for PAYG-NoFGA with 128K sets in
SAT and GCT sets vary from 2K to 64K.

Uniform ECP

ECP-1

ECP-2

ECP-3

ECP-4

ECP-5

ECP-6
32

K
64

K
12

8K
25

6K
51

2K

10
24

K 2K

Num_GCT_SetsNum_SAT_Sets

4K 8K 16
K

32
K

64
K

PAYG-NoFGA-NoGCT PAYG-NoFGA(SAT_Sets 5 128K)

L
if

et
im

e
N

o
rm

al
iz

ed
 t

o
 E

C
P

-6
 (

%
) 100

90

80

70

60

50

40

30

20

10

0

Figure 6: Lifetime of uniform ECP and PAYGNoFGA. Without GCT, PAYG-NoFGA needs
1024 sets (6.25% storage overhead) for lifetime comparable to ECP-6. With GCT, this
reduces to (128K + 64K = 192K), 5x lower
(Source: Moinuddin K. Qureshi, 2013)

The first observation is that ECP-6 improves lifetime compared to ECP-1
by more than 10x. Unfortunately, ECP-6 incurs a storage overhead of 12
percent of memory capacity. The second observation is that PAYG-NoFGA
needs a large number of sets (1 million) to achieve the lifetime as ECP-6,
resulting in significantly high storage overhead (6.25 percent). However, the
presence of GCT decreases storage requirement significantly. Combining
128K sets in SAT with 64K sets in GCT can provide a lifetime slightly
higher than ECP-6 (this occurs because PAYG does not cap maximum
error correction entries to six per line, so a few lines end up using ECP-7).
The storage overhead of this combination would be 128K + 64K = 192K
sets (1.2 percent overhead), which is 5x lower. Thus, a SAT-GCT based
architecture is much more storage efficient than a simple set-associative
structure. Unless specified otherwise, we will use 128K-set SAT combined
with 64K-set GCT for the rest of the article.

“…SAT-GCT based architecture is

much more storage efficient than a

simple set-associative structure.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

178 | A Case for Nonuniform Fault Tolerance in Emerging Memories

Importance of Fine-Grained Allocation
PAYG-NoFGA allocates five ECP entries with each GEC entry, most of which
remain unused. FGA improves the utilization of ECP entries by reducing the
number of ECP entries in each GEC entry. Table 3 shows the number of GEC
entries that can be packed in one set (64 bytes), when the number of ECP entries
in each GEC entry is varied from one to five. The tag size for our GEC structures
is 7 bits, and we replicate the valid bit in GEC entry for fault tolerance. We also
reserve 32 bits for GCTPTR (16 bits, 2-way replicated), which means only 480
bits per line are available for GEC entries. As the number of ECP entries per
GEC entry decreases, the total number of GEC entries per each set increases.

Number of ECP in each GEC entry 1 2 3 4 5

Number of tag bits + valid bits 9 9 9 9 9

Number of bits for ECP 11 21 31 41 51

Size of 1 GEC entry (bits) 20 30 40 50 60

Number of GEC entries per set 24 16 12 9 8

Number of ECP entries per set 24 32 36 36 40

Table 3: Tradeoff between the number of ECP entries per GEC entry vs.
ECP entries per set. Note that 24 GEC entries can be packed in one GEC
set if each GEC entry contains ECP-1
(Source: Moinuddin K. Qureshi, 2013)

Figure 7 shows the normalized lifetime of PAYG as the number of ECP entries
in GEC is varied from six to one. PAYG is implemented with LEC of ECP-1,
SAT contains 128K sets, and GCT contains 64K sets. As the number of ECP
entries in each GEC entry is reduced, there is a gradual increase in relative
lifetime indicating that the effective utilization of ECP entries outweighs the
relative increase in tag-store overhead.

114

112

110

108

106

104

102

100
6 5 4 3 2 1

L
if

et
im

e
N

o
rm

al
iz

ed
 t

o
 E

C
P

-6
 (

%
)

Number of ECP Entries in Each GEC Entry

Default PAYG

Figure 7: Effect of fine-grained allocation on effectiveness of
PAYG. Note that having ECP-1 in GEC provides the highest
lifetime and is the default PAYG configuration
(Source: Moinuddin K. Qureshi, 2013)

With only ECP-1 in each GEC entry, PAYG obtains a lifetime 13 percent higher
than ECP-6, which is similar to that obtained with uniform ECP-8. Given the

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 179

efficiency of such fine-grained allocation, we assume that PAYG is implemented
with ECP-1 in each GEC entry. The Default PAYG configuration used in our study
is: 128K sets in SAT, 64K sets in GCT, LEC with ECP-1, and FGA with ECP-1
in each GEC entry. This configuration incurs a storage overhead of 3.8 percent of
memory capacity and provides 13 percent more lifetime than uniform ECP-6.

Importance of Local Error Correction
The LEC provides the first line of defense for error correction in PAYG and is
designed to handle the common case of zero or one failure per line. Figure 8 shows
the normalized lifetime with PAYG as the level of ECP in LEC is varied from zero
to six. Note that each ECP in LEC accounts for storage of approximately 2 percent
of overall memory capacity, so having higher levels of ECP in each LEC entry incurs
significant storage overhead. As expected, the lifetime increases with increasing ECP
in LEC. A version of PAYG that has LEC containing ECP-5 has storage similar to
uniform ECP-6 and provides a lifetime improvement of 43 percent. Thus, PAYG
can not only be used to obtain a given amount of lifetime for reduced storage but
can also be used to enhance lifetime at a given storage budget.

For the PAYG configuration without LEC (NoLEC), the given number of GEC
entries are insufficient to handle the error rate, hence it obtains a lifetime lower
than ECP-6. This can be avoided by simply increasing the number of GEC
entries. The right set of bars in Figure 8 shows the lifetime of PAYG without
LEC, when the GEC entries are doubled or quadrupled. We observe that simply
doubling the entries (storage overhead of 2.4 percent) has lifetime equivalent to
ECP-6, and when we double the GEC entries further to overhead of 4.8 percent,
this combination can provide a lifetime significantly higher than with uniform
ECP. However, the key problem of the PAYG configuration without LEC is the
increased access latency. Because the line of defense of LEC is absent, all lines that
have even a single error will experience increased latency because of GEC accesses.

ECP-6

No-
LE

C

L-
ECP-1

L-
ECP-2

L-
ECP-3

L-
ECP-4

L-
ECP-5

L-
ECP-6

G-1
XSet

s

G-2
XSet

s

G-4
XSet

s

150

L
If

et
im

e
N

o
rm

. t
o

 E
C

P
-6

 (
%

)

Default PAYG

140
130
120
110
100
90
80
70
60
50
40
30
20
10

0

ECP-6 PAYG-VaryLEC-FixGEC PAYG-NoLEC-VaryGECSSets

Figure 8: Lifetime impact of LEC: the middle set of bars vary ECP in
each LEC entry from zero to six. To get lifetime comparable to ECP-6,
we either need at least ECP-1 in LEC, or twice as many sets in GEC
(Source: Moinuddin K. Qureshi, 2013)

“This configuration incurs a storage

overhead of 3.8 percent of memory

capacity and provides 13 percent more

lifetime than uniform ECP-6.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

180 | A Case for Nonuniform Fault Tolerance in Emerging Memories

Storage Overhead of PAYG
The storage overhead of PAYG consists of two parts: LEC and GEC. The
overhead of LEC is incurred on a per-line basis, whereas the overhead of GEC
gets amortized over all the lines. Table 4 computes the storage overhead of
Default PAYG, given that the bank in our baseline contains N = 224 lines. The
LEC incurs 13 bits/line (2-way replicated OFB bits + (1+10) bits for ECP-1).
The storage overhead of PAYG is 3.13x lower than ECP-6. On average, PAYG
needs 19.5 bits/line vs. 61 bits/line for ECP-6.

PAYG

LEC (2 OFB + ECP-1) 13 bits/line

SAT (217) sets 217 lines × 64 B = 8 MB

GCT (216) sets 216 lines × 64 B = 4 MB

Total overhead of LEC 13 bits (224 + 217 + 216) = 26.9 MB

Total overhead of PAYG 26.9 MB + 8 MB + 4 MB = 38.9 MB

Total overhead of ECP-6 61 bits/line × 224 = 122 MB

Ratio of (ECP-6/PAYG) 122 MB/38.9 MB = 3.13x

Table 4: Storage overhead of PAYG (PAYG obtains 13% more
lifetime than ECP-6)
(Source: Moinuddin K. Qureshi, 2013)

Effective Latency with PAYG
Correcting an error with PAYG may require multiple accesses to memory. The
main access simply gets broken down into multiple memory accesses (each of
which takes deterministic time). The structures SAT and GEC are organized
at a granularity of memory line, and we assume that an access to them incurs
similar latency as access to main memory. When a GEC access occurs, the SAT
is indexed and the memory line obtained is searched for a GECP entry with
a matching tag. This incurs one extra memory access. If a match is not found,
then the GCT is accessed, which incurs yet another memory access for each
GCT access. However, this occurs rarely, given that GEC access happens only
when the number of errors in a given line exceeds what can be corrected by
the LEC. Figure 9 shows the percentage of demand accesses that require one
extra access (satisfied by SAT) and two extra accesses (one for SAT and one for
GCT). The probability of one extra access remains 5 percent or less throughout
the expected lifetime under ECP-6 (6.5 years under continuous write traffic).
Only after that does it increase significantly, reaching 17 percent at the end
of lifetime with PAYG. In fact, for the first five years of system lifetime there
is on average only 0.4 percent extra access per memory access, which means
the performance impact is negligible (less than 0.4 percent) during the useful
lifetime. The probability of two extra accesses remains very low throughout
the lifetime.

“The storage overhead of PAYG is

3.13x lower than ECP-6.”

“…for the first five years of system

lifetime there is on average only

0.4 percent extra access per memory

access…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 181

0
0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50

5 years

Num. Writes (Percentage, normalized with respect to lifetime of ECP-6)

P
er

ce
n

ta
g

e
o

f A
ll

A
cc

es
se

s

6.5 years

60 70 80 90 100 110

1 Extra Access (SAT Only)

2 Extra Access (SAT 1 GCT-1)

Figure 9: Extra accesses for each demand accesses with PAYG. Note that 100% of
ECP lifetime is 6.5 years. PAYG incurs one extra access for less than 0.4% of memory
accesses during the first five years of machine lifetime. The latency increases to
noticeable range only after 6.5 years. The probability of three or more extra accesses as
it remains negligible (< 0.01%) throughout the lifetime
(Source: Moinuddin K. Qureshi, 2013)

Summary
Emerging memory technologies suffer from the problem of limited write
endurance. Such systems need high levels of error correction to ensure
reasonable lifetime under high variability in device endurance. Uniformly
allocating large amounts of error correction entries to all the lines results
in most of them remaining unused. We can avoid the storage overhead of
such unused entries by allocating the entries in proportion to the number of
faults in the line. Based on this key insight, our article makes the following
contributions:

●● We propose Pay-As-You-Go (PAYG), an efficient hard-error–resilient
architecture that allocates error correction entries on-demand, as and when
errors occur.

●● We propose a storage-efficient, low-latency organization for searching
through large number of global error correction (GEC) entries.

●● We reduce the latency for accessing error correction entries further by
allocating a small amount of Local Error Correction (LEC) per line. Our
analysis shows that one bit of LEC per line is sufficient to balance the
tradeoff between storage overhead and latency impact.

PAYG can be implemented with any hard-error correction technique and is
highly effective compared to line sparing. While we have evaluated the concept
of nonuniform fault tolerance in the context of PCM systems, this concept is
applicable to other memory technologies as well.

Intel® Technology Journal | Volume 17, Issue 1, 2013

182 | A Case for Nonuniform Fault Tolerance in Emerging Memories

References
[1]	 Int’l Technology Roadmap for Semiconductors (ITRS). http:

//www.itrs.net/Links/2008ITRS/Home2008.htm.

[2]	 E. Ipek et al. “Dynamically replicated memory: building reliable
systems from nanoscale resistive memories.” ASPLOS-15, 2010.

[3]	 M. Qureshi et al. “Scalable high performance main memory system
using phase-change memory technology.” In ISCA-36, 2009.

[4]	 M. K. Qureshi et al. “Enhancing lifetime and security of pcm-based
main memory with start-gap wear leveling.” In MICRO-42, 2009.

[5]	 S. Schechter et al. “Use ECP, not ECC, for hard failures in resistive
memories.” In ISCA-2010.

[6]	 N. H. Seong et al. “SAFER: Stuck At Fault Error Recovery for
Memories.” In MICRO-2010.

[7]	 N. H. Seong et al. “Security refresh: Prevent malicious wear-out
and increase durability for phase-change memory with dynamically
randomized address mapping.” In ISCA-37, 2010.

Author Biography
Moinuddin Qureshi is an Associate Professor in the School of Electrical
and Computer Engineering at Georgia Institute of Technology. His research
interests include computer architecture, scalable memory systems, fault-
tolerant computing, and analytical modeling of computer systems. Prior to
joining Georgia Tech, he was a research staff member at IBM T.J. Watson
Research Center from 2007 to 2011. He was awarded the IBM outstanding
technical achievement award for his studies on emerging memory technologies
for server processors. He received his PhD (2007) and MS (2003), both in
Electrical Engineering, from the University of Texas at Austin, and Bachelor
of Electronics Engineering (2000) degree from University of Mumbai. He is
a recipient of the NetApp Faculty Fellowship (2012) and Intel Early Career
Faculty Award (2012). He can be reached at moin@ece.gatech.edu.

Intel® Technology Journal | Volume 17, Issue 1, 2013

A Case for Nonuniform Fault Tolerance in Emerging Memories | 183

184 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

Contributors

Intel® Technology Journal | Volume 17, Issue 1, 2013

As computer systems evolve towards exascale and attempt to meet new
application requirements such as big data, conventional memory technologies
and architectures are no longer adequate in terms of bandwidth, power,
capacity, or resilience. In order to understand these problems and analyze
potential solutions, an accurate simulation environment that captures all
of the complex interactions of the modern computer system is essential. In
this article, we present an integrated simulation infrastructure for the entire
memory hierarchy, including the processor cache, the DRAM main memory
system, and nonvolatile memory, whether it is integrated as hybrid main
memory or as a solid state drive. The memory simulations we present are
integrated into a full system simulation, which enables studying the memory
hierarchy with a faithful representation of a modern x86 multicore processor.
The simulated hardware is capable of running unmodified operating systems
and user software, which generates authentic memory access patterns for
memory hierarchy studies. To demonstrate the capabilities of our infrastructure
we include a series of experimental examples that utilize the cache, DRAM
main memory, and nonvolatile memory modules.

Introduction
The rise of multicore systems has shifted the primary bottleneck of system
performance from the processor to the memory hierarchy, accelerating the
gap that had already existed between processor and memory performance
(the memory wall). Previously, the memory wall problem was the result of the
increasing frequencies of CPUs relative to the latency of the memory system,
which meant that CPUs were losing more processing time waiting on memory
accesses. However, as processor frequency improvements stalled and with the
introduction of multicore systems, a more urgent problem was created since the
current memory system cannot scale at the same rate as the number of cores.
Therefore, in modern systems there is actually much less bandwidth and capacity
per core than there was a few years ago. This trend can be seen in Figure 1. This
problem, combined with the existing operating frequency problem, has led to the
memory hierarchy becoming the dominant source of slowdown in the system.
To address the increased need for capacity, systems are now relying more on solid
state drives and other high performance storage systems, exacerbating the latency
problem of the memory system due to the increased frequency of references to
the slower storage system. Finally, since multicore systems are running threads
in different address spaces with different access patterns, there is less locality of
reference for the cache hierarchy to exploit. This implies that overcoming the
multicore memory wall problem requires examining the entire memory hierarchy
from the cache system down to the storage system.

“…overcoming the multicore memory

wall problem requires examining the

entire memory hierarchy…”

An Integrated Simulation Infrastructure for the Entire
Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

Jim Stevens
University of Maryland

Paul Tschirhart
University of Maryland

Mu-Tien Chang
University of Maryland

Ishwar Bhati
University of Maryland

Peter Enns
University of Maryland

James Greensky
Intel Labs

Zeshan Chisti
Intel Labs

Shih-Lien Lu
Intel Labs

Bruce Jacob
University of Maryland

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 185

Intel® Technology Journal | Volume 17, Issue 1, 2013

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2000 2002 2004 2006 2008 2010 2012

M
B

/M
IP

S

Year

DRAM (MB)/MIPS

Figure 1: DRAM capacity (MB)/processor speed(MIPS)
per core for a typical system
(Source: University of Maryland, 2013)

In addition to the strain on memory system capacity and bandwidth that
has been introduced by multicore chips, memory system capacity is also
limited by scaling problems at the device level. For DRAM, as the memory
cells shrink, the charge that can be stored on the capacitor becomes very
small and the pass transistor leakage increases, which reduces the retention
time of the cell and requires more complex peripheral circuitry to detect
the smaller charge. For flash memory, as the dielectric of the floating gate
shrinks, the amount of damage during program-erase cycles that can be
tolerated decreases and the cells wear out faster.[1] Additionally, since control
circuitry has analog components that are difficult to scale down, as the
DRAM and flash cell size decreases, the control circuitry takes up a larger
percentage of the chip area relative to the memory array. Architects have
attempted to address device scaling problems by adding more devices with
technologies like FB-DIMM and Buffer on Board, as well as technologies
in currently development like the Hybrid Memory Cube.[2] However, these
solutions require additional hardware to be designed and added to the
memory system, making them currently prohibitively expensive for most
applications. New memory technologies have also been suggested that might
eventually provide a solution to the capacity problem but these technologies
are not yet competitive with existing technologies in terms of cost or
capacity.[17] Meanwhile, software is not helping to alleviate the situation,
because application working sets continue to increase in size. In recent
years, big data applications such as bioinformatics and graph analytics
have only accelerated the increasing demand for faster and more scalable
storage systems. This has also contributed to the rapid adoption of solid
state drives. However, much of the storage system’s software and hardware
infrastructure was constructed around assumptions of millisecond access
latencies and, as a result, fails to efficiently utilize the new high performance
storage solutions being implemented. In order to meet the new challenges
posed by big data applications, the storage system needs to be reworked
from the OS file system down to the hardware interfaces. Finally, as the

“…big data applications such as

bioinformatics and graph analytics

have only accelerated the increasing

demand for faster and more scalable

storage systems.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

186 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

community pushes towards exascale computers, the power and resilience
limitations of the current memory system are becoming more pronounced.
[3] If an exascale-sized main memory system were constructed using today’s
technology, then just that component alone would consume the entire
system power budget. Furthermore, given the current probability of failure
in memory system components, as the number of components approach
the numbers needed for exascale, the probability of a failure somewhere in
the system approaches 1. This means that if an exascale computer were built
with today’s memory technology, not only would it use too much energy, it
would also be breaking constantly. Therefore, to enable the push to exascale
it is imperative that new, more energy-efficient and resilient memory
technologies and architectures be developed.

In order to overcome these problems, new architectures and software need
to be developed and evaluated. Since the new solutions will involve multiple
aspects of the system, the feedback between the various components of the
system is vital to understanding performance. For example, many researchers
are studying how to integrate nonvolatile memory into the system as a first
class citizen, which involves both the hardware and the software. Trace-based
simulation has been used in the past to study these kinds of architecture
problems. Unfortunately, trace-based simulation does not capture the feedback
loops between software and hardware. One way to produce these feedback
loops is to build a real-world prototype. However, due to the engineering effort
required, real-world prototypes are impractical and costly for studying large
design spaces. Full system simulation models those complex interactions and
can provide valuable insights into the dynamic behavior of a variety of system
designs. Previously, no full system simulator existed that could study all levels
of the memory and storage hierarchy. In this article, we describe our simulation
infrastructure that addresses this need by providing a full system simulator
capable of modeling the entire processor and memory hierarchy, including the
storage system.

Simulator Description
Our memory hierarchy simulation infrastructure is an extension of the
MARSSx86 full system simulation environment[4] developed at SUNY
Binghamton. We utilize MARSS to simulate the microprocessor and other
non-memory hierarchy components of the system. The memory infrastructure
builds on top of the prior MARSS memory hierarchy and incorporates
detailed simulations of every level of the hierarchy including the cache, the
main memory system, and the storage system. The cache simulator is an
extended version of the existing cache simulation in MARSS that allows for
heterogeneous technologies at different levels of the cache hierarchy. For
traditional DRAM-based main memory systems, our simulation environment
uses DRAMSim2, which is a detailed, cycle-accurate DRAM memory system
simulator developed by our lab[13]. For nontraditional hybrid nonvolatile/
DRAM memory systems our simulation environment uses two modules,
HybridSim and NVDIMM, which simulate the memory controller and

“…the feedback between the various

components of the system is vital to

understanding performance.”

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 187

Intel® Technology Journal | Volume 17, Issue 1, 2013

nonvolatile DIMMs that would be used by such a system. The hybrid
memory components can also be reconfigured to simulate solid state drives.
Figure 2 shows the overall structure of our simulation environment, including
its constituent modules and how they communicate with one another.

Functional CPU
Emulation

Disk
Interface

Peripheral
Device

Emulation

Detailed CPU
Timing Simulation

Memory
Interface

PTLSim

MARSSx86

QEMU

PTLSim QEMU

IRQ
Handler

MARSSx86

Functional CPU
Emulation

Disk
Interface

Peripheral
Device

Emulation

Detailed CPU
Timing Simulation

Memory
Interface

IRQ
Handler

HybridSim

DRAMSim2 PCI_SSD

HybridSim

NVDIMM DRAMSim2

NVDIMM DRAMSim2

Figure 2: Block diagram of simulation environment for
hybrid memory (top) and SSD (bottom)
(Source: University of Maryland, 2013)

MARSS
MARSS is designed to simulate a modern x86 computer system. MARSS utilizes
PTLSim to simulate the internal details of the processor. PTLSim is capable of
simulating a multicore processor with the full details of the pipeline, micro-op
front end, reorder buffers, trace cache, and branch predictor. In addition, PTLSim
also simulates a full cache hierarchy and can implement several cache coherency
protocols. For the hardware that is not explicitly simulated, such as disks or the
network card, MARSS uses the QEMU emulation environment. MARSS is
able to boot full, unmodified operating systems, such as any Linux distribution,
and then run unmodified benchmarks. We selected MARSS as the basis for our
memory hierarchy simulation infrastructure because of its ability to simulate

“We selected MARSS as the basis for

our memory hierarchy simulation

infrastructure because of its ability

to simulate both the user programs

and the operating system

functionality…”

Intel® Technology Journal | Volume 17, Issue 1, 2013

188 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

both the user programs and the operating system functionality, while most other
simulation environments are only capable of simulating user-level instructions.
Therefore, in addition to being the most realistic simulation environment possible,
MARSS can be used to study the behavior of the operating system, which we view
as vital to solving the problems of future memory and storage systems.

Cache Simulation
While PTLSim already provides an SRAM-based cache simulation, studying
other technologies is vital because of the power, bandwidth, and capacity
problems that arise in the design of the memory hierarchy for future
systems. Memory technologies such as SRAM, STT-RAM, and eDRAM
have been considered for implementing on-die LLCs. Though they all
have low read latency and high write endurance, they can be very different
for other performance characteristics. For instance, SRAM is low density
and has high leakage current, STT-RAM has high write latency and write
energy consumption, and eDRAM requires refresh. Additionally, due to the
very different inherent characteristics of each of the memory technologies,
researchers have proposed various power and performance optimization
techniques. Therefore, in order to make useful comparisons between SRAM,
STT-RAM, and eDRAM LLCs, we expand MARSS with the following:

1.	 We integrate a refresh controller into MARSS to support eDRAM LLCs.

2.	 In addition to the parameterized cache access time, we expand MARSS
with parameterized cache cycle time, tag access latency, and refresh period.
Separating cycle time and tag access latency allows the user to evaluate
pipelined caches and sequentially accessed caches (such as when data array
access is skipped on a tag mismatch). We also modify MARSS to support
asymmetric cache read and write latencies. This property is required to
evaluate STT-RAM caches realistically.

3.	 We integrate dead line predictors to enable low power modes for SRAM
and eDRAM caches.

These changes allow our environment to investigate future cache designs
incorporating new technologies and techniques.

DRAM Main Memory Simulation
Since the DRAM-based main memory system has a large number of
configuration and timing parameters, such as the command and data queues,
address mappings, refresh timings, low power modes, activate and pre-charge
periods, and so on, choice of one or another scheme could have drastically
different power or performance implications.[14] Therefore, DRAMSim2, a
cycle-accurate JEDEC DDRx memory system simulator, was developed.[12][13]
It models the memory controller, memory channels, DRAM ranks, and banks.
The DRAMSim2 timing behavior has been compared and validated against
Verilog-based device models published by DRAM vendors.

Recently, JEDEC published the next generation DDR4 standard.[15] DDR4
devices could operate at double the speed of previous generation DDR3 chips,

“These changes allow our environment

to investigate future cache designs

incorporating new technologies

and techniques.”

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 189

Intel® Technology Journal | Volume 17, Issue 1, 2013

and moreover DDR4 will have additional features enabling low power and
high memory capacity. DDR4 devices will have banks separated into multiple
bank-groups to facilitate higher bandwidths and greater bank-level parallelism.
However, since banks within a bank-group share some peripheral circuitry,
requests to banks of the same bank-group takes longer time than banks on
different bank-groups. We modified the DRAMSim2 memory controller to
incorporate these DDR4 specific changes.

Power dissipated due to DRAM represents a substantial portion of the total
system power budget, as the main memory capacity and bandwidth increases
to satisfy requirements of the current and future data-intensive applications.
Therefore, to study the tradeoffs involved with switching to various DRAM
low power modes, such as active, power-down, self-refresh, and deep power-
down , requires accurate switching time as well as the current drawn during
each mode. Furthermore, refresh command scheduling could also potentially
affect the switching to low power modes. We have augmented DRAMSim2
with detailed low power modes and a range of refresh policies, allowing users
to study the performance and power tradeoff when using different low power
modes and refresh methods.

Nonvolatile Memory Simulation
Recently many designs have been proposed that utilize nonvolatile device
based DIMMs to address the capacity issues of the main memory system. For
DIMMs that are not made using DRAM parts, we use NVDIMM, which is
capable of simulating DIMMs made from a wide variety of technologies. This
is possible because most nonvolatile technologies share many common features
and differ in only a few parameters. For instance, both flash and Phase Change
Memory (PCM) feature asymmetric reads and writes. To allow for these
differences, NVDIMM has a wide variety of options that can be used to shape
the behavior of the system. Some technology-specific options include access
latencies, device interface widths, address mapping policies, and wear leveling
policies. For example, in flash a dynamic mapping scheme is used so that dirty
pages can be set aside to be erased during idle cycles by a garbage collection
process, enabling faster modifications of existing data. This scheme was chosen
because the erase time for flash is prohibitively long even for basic storage
applications. Early architectures for PCM, on the other hand, have been
designed with a simpler static mapping scheme that does not require a garbage
collection process because its erase is considerably faster than flash’s.

In addition, other options have been included in NVDIMM to enable
investigations into the effects of organization, scheduling, and timing. A
good example of such a study is to determine how many devices of a given
type can be included on a DIMM before the host interface channel (such
as DDR3 or SATA) is saturated. By enabling both device and architecture
level investigations, NVDIMM allows our memory hierarchy simulation
infrastructure to study different methods for integrating nonvolatile memory
into a computer system.

“We have augmented DRAMSim2

with detailed low power modes and

a range of refresh policies,”

“…NVDIMM allows our memory

hierarchy simulation infrastructure to

study different methods for integrating

nonvolatile memory into a computer

system.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

190 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

Nonvolatile Memory Integration
There are two primary ways to integrate nonvolatile memory into a computer
system below the cache level, as illustrated in Figure 3. The first method is
the traditional storage route, which uses the same software and hardware
abstractions and protocols as hard disk drives. The second method is to tie
the nonvolatile memory directly into the memory controller. Our memory
hierarchy simulation infrastructure is designed in such a way that you can
utilize a common set of modules to simulate both integration methods, which
enables the ability to make fair comparisons between the two.

PCle
Controller

Memory
Controller

Core i7 CPU

X86
Core

X86
Core

X86
Core

X86
Core

Shared Last
Level Cache

PCle Lanes

SSD
Controller

DRAM
NAND Devices

PCle Solid State Drive

DRAM DIMM

ONFi

ONFi

DDR3
Channel

Hybrid
Memory

Controller

Core i7 CPU

X86
Core

X86
Core

X86
Core

X86
Core

Shared Last
Level Cache

Buffer
Channel

NV
Controller

DRAM
NAND Devices

NV DIMM

DRAM DIMM

ONFi

ONFi

DDR3
Channel

Figure 3: System design for SSD (top) and hybrid memory (bottom)
(Source: University of Maryland, 2013)

In both disk-like and memory-like integration methods, since the nonvolatile
memory typically has long latencies, a faster memory such as DRAM or SRAM
is utilized as a buffer or cache. We provide the HybridSim module to simulate
this aspect of the system. HybridSim uses NVDIMM as its backing store and
DRAMSim2 as its cache. HybridSim’s features enable the study of a variety
of cache replacement policies, prefetching policies, and hardware/software co-
design (for example, having the memory controller and operating system work
together to manage nonvolatile memory).

When HybridSim is simulating a memory-like integration method for
nonvolatile memory, also known as a hybrid main memory, it interacts with
the memory controller of the base MARSS system to capture addresses and
bypass its simpler memory model. HybridSim then performs its caching
functions and sends requests to DRAMSim2 or NVDIMM to implement
requests. When the requests complete, HybridSim sends callbacks to the
MARSS memory controller to indicate that a request is done and allow the
processor to make progress at the appropriate clock cycle.

“HybridSim’s features enable the

study of a variety of cache replacement

policies, prefetching policies, and

hardware/software co-design…”

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 191

Intel® Technology Journal | Volume 17, Issue 1, 2013

When HybridSim is simulating a disk-like integration method, it receives
disk requests from MARSS and then later raises an I/O interrupt to indicate a
request is complete. This works exactly like a modern solid state drive. We also
provide an additional module called PCI_SSD to simulate the host interface for
a modern SATA or PCIe SSD and to allow the user to configure various options
including the number of lanes, half or full duplexing, an optional two-level
interface (such as Intel Direct Media Interface to SATA), frequency, and protocol
overhead. Our SSD simulation also ties in with our DRAMSim2 main memory
simulation to perform direct memory access operations to DRAM before or
after a disk request occurs. This process of disk simulation is also compatible
with simulators for conventional hard disk drives like DiskSim[5] and HDD
simulation could be achieved by simply modifying the PCI_SSD module.

Simulation Variability and Warm-Up
Full system simulation introduces some additional sources of complexity
and nondeterminism that can lead to inaccurate results if they are not dealt
with properly. In particular, just as in a real system, the OS introduces
nondeterminism into the simulation as a result of timing variation (for
example, interrupt arrival time) from run to run. This problem can be reduced
by utilizing checkpoints of the system state, which MARSS enables using the
QEMU snapshot mechanism. Another source of complexity is how to properly
warm up the caches and other state (such as NVDIMM’s address mapping)
for novel memory hierarchy architectures. We provide a generic mechanism
for warm-up utilizing state files that can be saved during a warm-up period
or generated by scripts and then restored at the beginning of the region of
interest. An example of this warm-up process can be seen in Figure 4.

Baseline Configuration
The baseline configuration for the following experiments is a quad-core, out-of-
order system, with cache organization similar to the Intel® Core™ i7. The cache
experiments below use this processor with a modified LLC to incorporate new
memory technologies. The cache experiments also utilized the baseline DRAM
main memory configuration. These baseline configurations are shown in Table 1.

Processor 4-core, issue width = 4, 2 GHz

L1I (private) 128 KB, 8-way, 64-B block size

L1D (private) 128 KB, 8-way, 64-B block size

L2 (private) 2 MB, 8-way, 64-B block size

L3 (shared) (if present) 8 MB, 16-way, 64-B block size

DRAM (if used as cache) 512 MB, 64-way, 4-KB page size

DRAM (if used as main memory) 1 GB, DDR3-1333

Nonvolatile main memory 8 GB, 4-KB page size, PCIe 3.0 16 Lane equivalent bandwidth

Table 1: Baseline Configuration
(Source: University of Maryland, 2013)

“Our SSD simulation also ties in

with our DRAMSim2 main memory

simulation to perform direct memory

access operations…”

Workload

Saving memory states
Restoring memory states and
performing detailed simulation

Custom binary trace file

HybridSim

re
st

or
e

Trace file
translator

Modified
QEMU

HybridSim readable
memory trace

1) DRAM cache state
2) NVM main memory state

Simulation results

MARSS +
HybridSim +

DRAMSim2 +
NVDIMMSim

Figure 4: An example of a complete warm-up
(Source: University of Maryland, 2013)

Intel® Technology Journal | Volume 17, Issue 1, 2013

192 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

The DRAM examples also utilize the baseline processor and cache shown in
Table 1.

For the hybrid and SSD experiments, an 8-GB NVM is considered, with a
512-MB DRAM cache in front of it. The nonvolatile DIMM organization
has 1 channel, 64 dies per channel, 2 planes per die, 4,096 blocks per plane,
64 pages per block, and each page is 4 KB. All transfers between the NVM
and the DRAM occur at the page granularity. The timing parameters for
the nonvolatile memory are based on MLC flash numbers.[6] The DRAM
cache, also in the form of a DIMM, is organized as 1 channel, 1 rank per
channel, 8 banks per rank, 8,192 rows per bank, and 1,024 columns per row.
All transfers between the DRAM and the L2 cache occur at the L2 cache
line granularity (64 B). DRAM timing parameters are based on a Micron
datasheet.[7] All devices are 8 bits wide.

For these experiments we use the GUPS benchmark and a random access
micro-benchmark called mmap developed by our lab as well as selected
benchmarks from the NAS benchmark suite, the SPEC benchmark suite,
and the PARSEC benchmark suite.[8][9][10][11] These benchmarks were selected
because they have a large working set size and are memory intensive.

Experiments
The following experiments demonstrate examples of the wide variety of studies
that can be performed using the various modules of our environment. For the
processor cache, we present energy and execution time data for last-level caches
constructed using different memory technologies for a several benchmarks. To
demonstrate the capabilities of the DRAM system portion of the simulator,
we have included power and instructions-per-cycle data for similar sets of
several benchmarks. Finally, we exhibit the features of the nonvolatile memory
portions of our environment with data showing the effects of additional
bandwidth, prefetching, working set size, and memory system traffic volume on
system performance. Table 1 contains the baseline configuration details that are
common to all of the experiments.

Caches
As a case study, we compare the LLC energy consumption and system
performance when using SRAM, STT-RAM, and eDRAM. The LLC is a
32-nm, 32-MB, 16-way write-back cache that is partitioned into 16 banks
and uses 64-byte blocks. It is also pipelined and sequentially accessed.

Figure 5 illustrates the normalized energy breakdown of LLCs based on SRAM,
STT-RAM, and eDRAM. We include the results for “regular” implementations
(without power-optimization) and “low power” implementations. For instance,
“regular” SRAM uses high performance transistors to implement the entire
cache without power gating; “regular” STT-RAM uses storage-class STT-RAM
technology, which has a long retention time but requires high write energy;
and “regular” eDRAM uses the conventional periodic refresh method. On

“…we compare the LLC energy

consumption and system performance

when using SRAM, STT-RAM,

and eDRAM.”

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 193

Intel® Technology Journal | Volume 17, Issue 1, 2013

the other hand, low power SRAM uses dead line prediction[18], power gating,
and low leakage CMOS for the memory cells[19] to reduce leakage power; low
power STT-RAM uses device optimization techniques to reduce write energy
by sacrificing data-retention time[17]; and low power eDRAM uses dead line
prediction to reduce the number of refresh operations. The impact of different
memory technologies and implementations on system performance is shown in
Figure 6.

0

Lo
w

 p
ow

er
 S

R
A

M

N
o

rm
al

iz
ed

 L
L

C
 E

n
er

g
y

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

0.05

0.1

0.15

0.2

0.25

0.3

0.35

bodytrack canneal facesim freqmine

Dynamic Leakage Refresh

Figure 5: Normalized LLC energy breakdown with respect to various memory
technologies. The results are normalized to regular SRAM (not shown). Note
that regular SRAM dissipates 5x more power on average
(Source: University of Maryland, 2013)

0.9

Lo
w

 p
ow

er
 S

R
A

M

N
o

rm
al

iz
ed

 S
ys

. E
xe

. T
im

e

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

Lo
w

 p
ow

er
 S

R
A

M

R
eg

ul
ar

 S
T

T
-R

A
M

Lo
w

 p
ow

er
 S

T
T

-R
A

M

R
eg

ul
ar

 e
D

R
A

M

Lo
w

 p
ow

er
 e

D
R

A
M

0.95

1

1.05

1.1

bodytrack canneal facesim freqmine

Figure 6: Normalized system execution time with respect to various memory
technologies. The results are normalized to regular SRAM (not shown)
(Source: University of Maryland, 2013)

Intel® Technology Journal | Volume 17, Issue 1, 2013

194 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

DRAM
As an interesting case study of a DRAM-based main memory system, we
show the impact of refresh when device size is increased from small 1-Gb to
future big 32-Gb chips. We simulated few SPEC2006 benchmarks in region
of interest (RoI) for 1 billion instructions, assuming both with and without
refresh enabled. Figure 7 presents the energy contribution separated for each
type of operation, that is: read and write, activate and pre-charge, background
and refresh operations. The Y-axis representing energy is normalized to the
corresponding 1-Gb device values for each benchmark. The background and
refresh energy portion increases for higher density devices, because of the
greater number of peripheral circuitry and cells to be refreshed as device size
increases. Since with DRAM density, the number rows also increases, this
leads to more frequent refresh commands to be scheduled, and therefore leads
to a degradation of the memory performance and latency. Figure 8 shows the
percentage degradation of system performance (IPC) and the average latency
increase due to refresh operations as the size of DRAM devices vary.

0

1g
b

2g
b

hmmer namd milc

Energy contributions normalized to 1gb device

gromacs GemsFDTD libquantum mcf mix2mix1

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb

1

2

3

4

5

6

7

ref rd/wr bgact/pre

Figure 7: Energy contributions separated for each operation type normalized to the 1-Gb DRAM device size. Refresh
and background energy consumption increases when DRAM density gets higher
(Source: University of Maryland, 2013)

0

1g
b

2g
b

hmmer namd milc

Percentage performance impact of refresh operations

gromacs GemsFDTD libquantum mcf mix2mix1

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb 1g
b

2g
b

4g
b

8g
b

16
gb

32
gb

10%

20%

30%

40%

50%

60%

ipc avg_lat

Figure 8: Percentage of refresh penalty measured using Instructions Per Cycle (IPC) of the entire system and average
latency of the memory system. For higher density devices, the performance penalty increases sharply
(Source: University of Maryland, 2013)

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 195

Intel® Technology Journal | Volume 17, Issue 1, 2013

Nonvolatile Memory
An important type of study for future memory systems is to understand how
the system reacts to changing the working set size and volume of accesses. This
is especially important in hybrid main memory systems because nonvolatile
memory latencies can be significantly slower than traditional SRAM and
DRAM. The Giga-Updates Per Second (GUPS) implementation from Sandia
National Laboratories is an ideal benchmark to study such access patterns since
it takes the working set size and number of accesses as parameters, unlike many
other benchmarks that assume a constant pattern for memory accesses. GUPS
creates a large table and then performs a series of updates on pseudorandom
locations within that table. In this experiment we chose table sizes of 256 MB,
512 MB and 1 GB. The DRAM cache in our test system was 512 MB. Our
choice of table sizes allows us to see the effect on system performance when the
table fits in the DRAM cache easily, when the table is approximately the same
size as the DRAM cache to cause some swapping between the DRAM cache and
the nonvolatile backing store, and when the table is two times the size of the
DRAM cache to cause a significant number of DRAM cache misses. We also
vary the number of updates from 1000 to 5000 in increments of 1000 to show
the effect of different volumes of memory traffic on system performance. Finally,
we included data for systems that incorporate the nonvolatile memory as both
a hybrid memory and as a traditional SSD. From the results in Figure 9, we can
see that for the SSD configuration as the table grows larger than the 512 MB
DRAM and more accesses must go to the slower flash swap space, system
performance suffers as would be expected. However, for the hybrid memory
version, performance is not dependent on the table size. This is because Linux
sees the 8 GB backing store as the main memory address space and allocates the
entire table inside this space. Initially, this table is not present in the DRAM
cache because it has been accessed yet. When the table size is twice the size of the
DRAM, the performance of the Hybrid implementation becomes much better
than the SSD implementation. This is because the SSD has more overhead for
its accesses to the swap space than the Hybrid has for its accesses to the flash.

0.00E+00
1k 2k 3k 4k 5k 1k

Number of Updates Size of Table

2k 3k 4k 5k

1024 MB512 MB256 MB

1k 2k 3k 4k 5k

2.00E+08

4.00E+08

6.00E+08

E
xe

cu
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
et

te
r)

8.00E+08

1.00E+09

1.20E+09

1.40E+09

1.60E+09

1.80E+09

SSD Hybrid

Figure 9: Execution time of GUPS when table size and number of updates are
varied (smaller is better)
(Source: University of Maryland, 2013)

“…the SSD has more overhead for

its accesses to the swap space than the

Hybrid has for its accesses to the flash.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

196 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

Optimizing the performance of the nonvolatile backing store is another
important area of study for future memory systems. One area of potential
performance gain is the interface of the nonvolatile devices used to create
the backing store. To show the effect of improving the bandwidth provided
by these interfaces, we utilize an in-house micro-benchmark called MMAP.
MMAP works by first defining a large memory mapped file that is opened
with the mmap() system call in Linux and then it accesses this file randomly.
This benchmark is well suited to bandwidth studies because it is single
threaded and therefore provides a clear picture of the effect of a minor change
without much noise from other system threads. Additionally, since MMAP
is designed to force misses to the DRAM cache as often as possible, which
causes only one 64-byte access within each 4-KB page, it maximally stresses
the host interface and device channels in the backing store. This is a worst-case
scenario for the memory system because it generates a large volume of random
accesses that are not fully utilized by the cache. This is the reason for the low
observed IPC. For this experiment, we vary the clock rate of the interface of
a device (the amount of time it takes to transmit 8 bits of data) from 0.05 ns
to 10 ns. In addition, we also utilize a basic sequential prefetching algorithm
to generate more accesses and place greater pressure on the devices. We vary
the number of additional pages that are prefetched by our algorithm from 4 to
8 to 16. As was the case in the previous example, we also include data for
both a hybrid-style integration of the nonvolatile memory and an SSD-style
integration. In Figure 10, we can see that both faster device interfaces and
larger prefetching windows help to improve the system performance. We do
not use the prefetching in HybridSim for the SSD version of the experiment
because prefetching is performed by the operating system for disk accesses. It is
also important to note that there is less nondeterminism in these results than in
the previous example because this example is single threaded, which eliminates
nondeterminism introduced by the OS scheduler when it has to schedule
multiple threads. There is still some minor nondeterminism in this experiment’s
results, but that is what one would expect from a real system.

0

SSD Hybrid–0 Hybrid–4

Device Interface Latency (ns) Prefetching Window

Hybrid–8 Hybrid–16

10 5
2.

5 1
0.

5
0.

25 0.
1

0.
05 10 5
2.

5 1
0.

5
0.

25 0.
1

0.
05 10 5
2.

5 1
0.

5
0.

25 0.
1

0.
05 10 5
2.

5 1
0.

5
0.

25 0.
1

0.
05 10 5
2.

5 1
0.

5
0.

25 0.
1

0.
05

0.0005

0.001

0.0015

U
se

r
IP

C
 (

L
ar

g
er

 is
 B

et
te

r)

0.002

0.0025

0.003

Figure 10: Performance of MMAP with varying bandwidth and prefetching window size
(Source: University of Maryland, 2013)

“Optimizing the performance of the

nonvolatile backing store is another

important area of study for future

memory systems.”

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 197

Intel® Technology Journal | Volume 17, Issue 1, 2013

Conclusion
In this work, we have introduced a complete memory hierarchy simulation
environment that is capable of accurately simulating the processor cache,
the DRAM main memory system, and nonvolatile memory, whether it is
implemented as a hybrid memory or as an SSD. We have shown the utility of
this infrastructure for solving future memory hierarchy design problems by
presenting example experiments that demonstrated multiple last-level cache
cell technologies, DRAM refresh schemes, and nonvolatile memory integration
methods.

References
[1]	 Laura M. Grupp, John D. Davis, and Steven Swanson. 2012. “The

bleak future of NAND flash memory.” In Proceedings of the 10th
USENIX conference on File and Storage Technologies (FAST’12).
USENIX Association, Berkeley, CA, USA, 2–2.

[2]	 E. Cooper-Balis, P. Rosenfeld, and B. Jacob, “Buffer On Board
memory systems,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ser. ISCA ’12, 2012.

[3]	 US Department of Energy Office of Science. “The Opportunities
and Challenges of Exascale Computing.” Summary Report of the
Advanced Scientific Computing Advisory Committee (ASCAC)
Subcommittee. Fall 2010.

[4]	 A. Patel et al., “MARSSx86: A Full System Simulator for x86
CPUs,” in Design Automation Conference 2011 (DAC’11), 2011.

[5]	 J. Bucy et. al. “The DiskSim Simulation Environment Version
4.0 Reference Manual.” Carnegie Mellon University Parallel Data
Laboratory Technical Report CMU-PDL-08–101. May 2008.

[6]	 Micron Technology. “128Gb SLC Flash Datasheet.” 2012. [Online].
Available: http://www.micron.com/parts/nand-flash/mass-storage
/mt29f128g08akcabh2-10

[7]	 Micron Technology. “4Gb DDR3 SDRAM Datasheet.” 2009.
[Online]. Available: http://www.micron.com/parts/dram/
ddr3-sdram/mt41j256m16re-125

[8]	 Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li. 2008. “The PARSEC benchmark suite: characterization and
architectural implications.” In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques
(PACT ‘08). ACM, New York, NY, USA, 72–81.

[9]	 NASA Advanced Supercomputing Division. “NAS Parallel
Benchmarks.” 2012. [Online]. Available: http://www.nas.nasa.gov
/publications/npb.html

Intel® Technology Journal | Volume 17, Issue 1, 2013

198 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

[10]	 Standard Performance Evaluation Corporation. “SPEC2006 CPU
Benchmarks.” 2012. [Online]. Available: http://www.spec.org
/cpu2006/

[11]	 Sandia National Labs. “RandomAccess GUPS (Giga Updates
Per Second).” 2012. [Online]. Available: http://www.sandia
.gov/~sjplimp/algorithms.html

[12]	 David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Katie
Baynes, Aamer Jaleel, and Bruce Jacob. “DRAMsim: A memory-
system simulator.” SIGARCH Computer Architecture News,
Vol. 33, No. 4, pp. 100–107. September 2005.

[13]	 P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2:
A Cycle Accurate Memory System Simulator,” Computer
Architecture Letters, Vol. 10, No. 1, pp. 16–19, Jan.-June 2011.

[14]	 S. Srinivasan, L. Zhao, B. Ganesh, B. Jacob, M. Espig, and
R. Iyer. “CMP memory modeling: How much does accuracy
matter?” Proc. Fifth Annual Workshop on Modeling, Benchmarking
and Simulation (MoBS), pp. 24–33. Austin TX, June 2009.

[15]	 JEDEC, “DDR4 SDRAM Standard,” 2012. [Online]. Available:
http://www.jedec.org/sites/default/files/docs/JESD79-4.pdf

[16]	 M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High
Performance Main Memory System Using Phase-Change Memory
Technology,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ser. ISCA ’09. New York,
NY, USA: ACM, 2009, pp. 24–33.

[17]	 C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and
M. R. Stan. “Relaxing non-volatility for fast and energy-efficient
STT-RAM caches,” High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium on,
Vol., no., pp. 50–61, 12–16 Feb. 2011.

[18]	 Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. “Cache
decay: exploiting generational behavior to reduce cache leakage
power.” In Proceedings of the 28th annual international symposium
on Computer architecture (ISCA ‘01). ACM, New York, NY, USA,
240–251.

[19]	 K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand,
“Leakage current mechanisms and leakage reduction techniques in
deep-submicrometer CMOS circuits,” Proceedings of the IEEE,
Vol. 91, No. 2, pp. 305–327, Feb. 2003.

An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk | 199

Intel® Technology Journal | Volume 17, Issue 1, 2013

Author Biographies
Jim Stevens received a BS degree in computer engineering from the University
of Kansas in 2006, an MS degree in computer science from the University of
Arkansas, Fayetteville, in 2009, and is currently pursuing a PhD in computer
science at the University of Maryland, College Park. His research interests
include memory controller design and adapting operating systems for
nonvolatile memories.

Paul Tschirhart received his BS degree in computer engineering from the
University of Virginia in 2007. He is currently pursuing a PhD in computer
and electrical engineering at the University of Maryland, College Park.
His research interests include memory controller design, memory system
architecture, and SSD design.

Mu-Tien Chang received the BS and the MS in electronics engineering
from National Chiao Tung University, Hsinchu, Taiwan, in 2006 and 2008,
respectively. He is currently pursuing a PhD in electrical and computer
engineering at the University of Maryland, College Park. His research interests
include memory circuit and processor cache design.

Ishwar Bhati received B.Tech. in electronics and communication engineering
from Indian Institute of Technology, Guwahati, India, in 2005. He worked
in the VLSI/ASIC industry as design and verification engineer for five years.
He is currently pursuing a PhD in electrical and computer engineering at the
University of Maryland, College Park. His research interests include energy-
efficient memory systems and high performance computing.

Peter Enns is currently pursuing a PhD in linguistics at the University of
Maryland with a concentration in computational linguistics and natural
language processing. He received a BS in computer engineering from the
University of Maryland in 2011 with honors (summa cum laude). While he
was an undergrad, Peter studied nonvolatile memory systems with Dr. Bruce
Jacob in Maryland’s Memory Systems Research Lab.

James Greensky is currently a software engineer in the Memory Architecture
Lab (MAL) within Intel Labs. James received his BS and MS degrees in
computer science and is currently pursuing a PhD in the area of computer
architecture from the University of Minnesota.

Zeshan Chishti received the BSc (Hons) degree in electrical engineering from
the University of Engineering and Technology, Lahore, Pakistan, in 2001,
and a PhD in computer engineering from Purdue University in 2007. He is
a Research Scientist at Intel Labs, Hillsboro, Oregon. His research interests
include microarchitecture, energy-efficient memory systems, and cache
hierarchies for chip multiprocessors.

Intel® Technology Journal | Volume 17, Issue 1, 2013

200 | An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

Shih-Lien Lu received his BS in EECS from UC Berkeley, and MS and PhD
both in CSE from UCLA. He is a principal researcher and leads the memory
architecture team at Intel Labs. From 1984 to 1991 he was on the MOSIS
project at USC/ISI, which provides research and education community VLSI
fabrication services. He was on the faculty of the ECE Department at the
Oregon State University from 1991 to 2001. His research interests include
computer microarchitecture, memory circuits, and VLSI systems design.

Bruce Jacob received the AB degree in mathematics from Harvard University
in 1988 and the MS and PhD degrees in CSE from the University of
Michigan in Ann Arbor in 1995 and 1997, respectively. He also worked
for two successful startup companies: Boston Technology and Priority Call
Management; at Priority Call Management he was the initial system architect
and chief engineer. He is a professor of electrical and computer engineering at
the University of Maryland in College Park, and he is currently visiting at the
University of Siena, Italy, where he is working on memory issues for many-
core systems. He is a recipient of a US National Science Foundation CAREER
award for his work on DRAM, and he is the lead author of an absurdly large
tome on the topic of memory systems. His research interests include memory
systems, operating systems, and designing electric guitars.

