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Using present-day architectural design concepts to drive forward the design of next-generation large-scale systems is an attractive 
approach but is inherently misguided; today’s methods simply do not scale to tomorrow’s sizes, and no amount of forcing will 
cram that square peg into a round hole. Nowhere is the mismatch more apparent than in the memory system, because the 
memory system constitutes a majority of the silicon in a large-scale system. The following points illustrate just a few of the 
engineering challenges facing us:

•• Power. Power per node in large-scale systems is on the order of 100 W, a conservative number, roughly half of which is 
dissipated in the memory system (DIMMs dissipate roughly 20 W when in use, which means 20 W per channel; today’s 
systems often have three or more DRAM channels per CPU socket). Future installations are expected to have hundreds of 
thousands of nodes. Multiplying the two yields power requirements in the 10–100 MW range per installation, roughly half 
of which will be dissipated by memory. With electricity costing USD 1 million per megawatt-year, following the current 
design trend will cost tens of millions of dollars per year per installation, just for the electricity to compute, never mind the 
cost of cooling.

•• Reliability. Memory chips comprise the largest number of chips in a typical system. For instance, in a typical drawer one will 
find on the order of 10 CPU chips, 100 supporting chips (I/O, administrative and monitoring, and other glue), and 1000 
DRAM chips. For a medium- to large-scale system (10–100 racks of 10–100 drawers each), this would imply something on 
the order of 1 million DRAM chips system-wide. Reliability in such a system becomes a significant issue: even with DRAM 
hard-error FIT rates better than 10, this yields a statistically guaranteed hard-error device failure somewhere in the memory 
system every few days. Soft errors are generally one to two orders of magnitude more frequent than hard errors, meaning that 
transient errors will occur at the rate of once every few hours.

•• Volume. One of the more significant costs of a computing installation is the physical plant, which scales with the physical 
volume of the computing circuitry needed (that is, how much space it takes up). Simply put: more computing performance 
requires more computing circuitry, which requires a larger building. Figure out a way to reduce the volume of the circuitry 
required—in particular, the volume of the memory system required (see previous point)—and you can reduce the size of the 
physical plant needed. Note that there are a handful of obvious ways to reduce the volume of the memory system, including 
reducing the total number of bits (not particularly appealing while the number of cores is increasing), reducing feature 
size (the present approach), or changing to another memory technology with significantly different density characteristics. 
Note also that, besides reducing the cost of construction, reducing the physical size can also reduce the cost of cooling 
the computing circuitry (for example, by reducing the number of chillers and air handlers needed), a cost that typically 
represents half the overall power budget.

It should be clear from this brief look at the challenges facing us that moving forward in large-scale system design will require 
significant work at the memory-system level. Because the memory system imposes such significant limitations (including 
performance, power, reliability, and space), we cannot move forward without understanding these limitations and fixing them, 
which is likely to require a redesign of memory systems in general.

These are challenges of efficiency and reliability. One way to look at large-scale installations (supercomputers, and most 
enterprise-computing systems as well) is that they are the world’s highest-performance embedded systems. Most embedded 
systems are only valuable if they are efficient (for example, when they run on a battery charge all day long) and reliable (work 
correctly and require little system maintenance). Like embedded systems and unlike typical general-purpose systems, large-scale 
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installations tend to run the same software 24x7. Like embedded systems and unlike typical general-purpose systems, users 
of these installations will go to great lengths to optimize their software and often write their own operating systems for the 
hardware. And, most importantly considering the focus of the special issue you are reading, like embedded systems, efficiency 
and reliability in large-scale systems is now (or now has become) the key point. In the design of tomorrow’s large-scale systems, 
people care more about efficient and reliable solutions than high-performance solutions—not because they want to, mind you, 
but because they have to. Whereas in the past, performance or capacity sometimes came at a high price in power or reliability, 
today that is no longer an acceptable tradeoff. The best solutions for tomorrow’s systems will be the ones that promise reliability 
and efficiency, even if at a modest cost in performance or capacity. 

The articles in this special issue of ITJ address precisely these problems and from precisely this perspective. The articles in the 
Low Power Cache/Memory section trade off cache/memory capacity for reliability and lower power. The articles in the Error-
Correcting Codes section provide advanced reliability techniques wherein reliability is ensured through redundancy. The Invited 
Academic articles address reliability and lifetime concerns of flash memory. Last, the Evaluation and Infrastructure article describes 
a new simulation framework for accurately evaluating memory-system designs that integrate nonvolatile technologies directly 
into the memory hierarchy.
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Introduction
Resiliency is an important attribute of a system. It enables a system to continue 
to function correctly, sometimes in a degraded fashion, in the presence of 
faults, errors, or other variation. There are many ways to increase the resiliency 
of a system. A simple way to increase resiliency is by over-designing. That 
is, we include additional margins in the design specification to account for 
variations, and cover all possible variations or failure scenarios a system may 
encounter in its expected lifetime. The added margin enables the system to 
remain robust and fault-free. Obviously, over-design is not the most efficient 
way to make a system resilient because not all variations or scenarios will 
occur at the same time. In order to ensure the correct operation, we must 
design the system for the worst-case combination of all variations while it 
may be very rare that all these variations happen at the same time. Moreover, 
it may also be very difficult to anticipate all possible scenarios or variations a 
system may encounter in its lifetime at the design phase. Resiliency is a design 
methodology to manage risks through design tradeoffs and is more efficient 
than over-design.

Memory is a necessary part of any computing system as it is used to store data 
as well as programs. The amount of memory used has been increasing for all 
segments of computing devices to accommodate ever-increasing application 
usages and data. Memory is not only used at the instruction set architecture 
level; the amount of memory circuits at the microarchitectural level to 
enhance performance or power has been increasing as well. For example, 
the amount of cache on a microprocessor chip has been increasing steadily 
in the last few decades. With the increased amount of memory circuits in a 
computing system, the chance of a memory-related failure for a system will 
also increase. Thus, making the memory subsystem resilient will contribute 
directly to the overall resiliency of any computing system. The computing 
community possesses a great wealth of knowledge on techniques for designing 
resilient memory. With continued scaling and new memory technologies 
emerging, it is timely to examine recent challenges and research results on 
memory resiliency.

To provide context for the articles in this issue, in this overview we first discuss 
different abstract error types and general mitigation strategies for them. When 
then discuss the memory subsystem and review the different types of memory 
technologies used in a memory subsystem along with the types of errors 
specific to each memory technology as it is scaled. Some discussion of how to 
mitigate these errors is also provided. Finally we introduce articles in this issue 

James P. Held  
Intel Fellow, Intel Labs,  
Director, Microprocessor  
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of the Intel Technology Journal (ITJ) and explain the related memory errors each 
of them is addressing.

Types of Memory Errors
It is essential to understand the types of errors that may occur in memory 
in order to come up with efficient management techniques. We can classify 
memory bit failures into two broad categories: persistent and non-persistent 
failures. Persistent failures, such as stuck bits caused by manufacturing defects, 
remain at fault once they occur. Persistent bit failures can be detected through 
testing and they contribute to the majority of bit failures. Persistent failures 
reduce yield and increase cost. 

Non-persistent bit failures are bits that exhibit sporadic failing behavior  
(soft errors). Many times these bits are marginally functional to begin with 
and failure can be triggered by environmental changes. Failures resulting from 
radiation particle strikes are a classic example of this category of failures. Since 
these failures are non-persistent and occur randomly, they cannot be effectively 
identified with testing. As a result, these failures do not directly contribute to 
yield loss and instead they affect a unit’s failure-in-time (FIT) rate.

Failure Mitigation Techniques
As mentioned, persistent failures can usually be reliably identified using 
standard memory testing methods. Testing can be done statically or 
dynamically. Static testing halts the system’s normal operation and puts the 
memory in a separate testing mode. Dynamic testing allows the system to 
operate normally but is able to isolate faults at the same time. Failures that 
cannot be discovered through testing require a mechanism to detect the error. 
Once failures are detected, mitigation techniques can be employed to correct 
the faults. 

All failure mitigation techniques will incur overhead. In general, the more 
information we know about the failures, the easier we can mitigate the 
problem. 

Resilient techniques fall into two categories. The first category is effective 
with testable failures. Methods in this category include sparing and disabling. 
Sparing is a well-known technique for increasing the yield of memory.  
It consists of designing with spare rows, columns, and blocks that are switched 
to replace faulty bits. Disabling is another way to increase the yield. Instead 
of switching the spares to cover the faulty elements, disabling removes the 
elements from the active list to allow the system to operate at the  
degraded mode. 

The second category utilizes information redundancy to detect random errors 
and correct them. This category includes all kinds of error correcting codes 
(ECCs), and they have been shown to be effective in recovering from  
non-persistent failures. 
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The Memory Subsystem and Research Issues
Computing systems have evolved rapidly both in their capability and 
complexity due to the advancement of semiconductor technology in the last 
few decades. Every component of a system must advance relatively to each 
other to keep the system balanced including the memory subsystem. 

In the recent decades, the CPU performance has increased at the rate of 
roughly 50 percent per year, while the speed of main memory has improved 
at a rate of only 7 percent per year. Several architectural techniques were 
employed to mitigate the gap between memory and processors, including 
caching. 

Additionally, increasing complexity of applications is putting pressure on the 
amount of memory needed for a system. We must ensure we can continue to 
scale memory process technology for greater capacity just as we continue to 
improve processors through CMOS scaling. 

There are many challenges in continuing the scaling of memory. First, as we 
scale memory cells, the storage node becomes smaller and it is more and more 
difficult to detect what information is stored. As cells become smaller the 
distance between cells is shortened as well. Cells tend to disturb each other due 
to the close proximity. All these lead to the need for better resiliency techniques 
for memory. 

In the next section we will briefly introduce types of memory and then discuss 
some of the issues facing each type. Finally, we will then discuss tradeoffs must 
be made among several parameters to meet the requirements for the memory 
subsystem.

Types of Memory
There are many types of memory available for use in a computing system. 
These memory types can be classified based on their characteristics and 
functionality. From the functionality point of view, memory can be classified 
in two broad categories: RAM (random access memory) and ROM (read 
only memory). These names are somewhat misleading and we will discuss the 
differences later. We can also characterize memory types according to their 
characteristics both physically and logically. A memory type with the physical 
property of retaining its content without power supply is called nonvolatile 
memory. Memory that loses its content without a power supply is called volatile 
memory. Volatility is really not precisely defined and is commonly used quite 
loosely. Many nonvolatile memory types are volatile as well. They just have a 
very long retention time, for example in the range of years. 

A memory type that should retain its content indefinitely is called persistent 
memory. For example, in a computing system we assume files will retain their 
contents indefinitely. Memory that is not intended to retain its content in a 
system is called non-persistent memory. For example, main memory in a current 
computing system is non-persistent.
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We now come back to the functionality of memory and how various types of 
memory are implemented physically. RAM stands for random access memory, 
which can be read and written by users. There are two common types of RAM: 
static RAM (SRAM) and dynamic RAM (DRAM). They are different in that 
DRAM loses its content if it is not periodically “refreshed” by rewriting the bits 
(thus the name dynamic) while SRAM retains its contents as long as the power 
supply is on. 

A typical SRAM cell is formed by two cross-coupled inverters, each with two 
transistors locked together and two access transistors. It is usually referred to 
as the 6-T SRAM because of the six transistors used. There are other memory 
types built with cross-coupled inverters but with different access port circuit 
structures. These are usually called register file memory. Conversely, a typical 
DRAM cell is constructed from a capacitor along with a single access transistor. 
The capacitor is used to store an electrical charge that determines the data 
content. We call this type of memory more specifically 1T-1C DRAM. 

Figure 1(a) and (b) depict the circuit structure of an SRAM and DRAM cell, 
respectively. These are single ported memory cells. A port is an access point 
into the memory content. Ports for SRAM and DRAM cells in Figure 1 are 
both readable and writeable. As we scale SRAM and lower the supply voltage, 
the inherent conflict for read and write will surface and cause either write 
instability or read instability, for example. 

As we scale DRAM, the capacitor used to store information becomes smaller 
as well. It is harder to detect the charge when it becomes too small. Also, when 
DRAM cell capacitance is small, even a small amount of charge lost due to 
leakage may cause the data stored to be lost.  

(a)

Bit Line

W
or

d 
Li

ne

(b)

BLB

WLWL

BL

Figure 1: (a) SRAM and (b) DRAM circuits
(Source: Intel Corporation, 2013)

There are other types of RAM with various numbers of transistors and circuit 
elements depending on how the access ports are constructed and what circuit 
element is used to store the data. For example, a general type of RAM based 
on resistance switching is called resistive RAM or R-RAM. R-RAM uses a 
variable resistance circuit element instead of a capacitor to store the data 
content. Figure 2 illustrates the circuit structure of a resistive memory or 
R-RAM cell. There are different types of R-RAM depending on how the 
circuit element R is implemented. The article titled “STTRAM Scaling and 
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Retention Failure” in this issue will discuss one type of R-RAM that readers 
can learn more from. STTRAM stands for Spin Transfer Torque Random 
Access Memory (STTRAM) and it belongs to the “magnetic tunnel junction” 
family of R-RAM. Another popular type of R-RAM that has attracted much 
attention is phase change memory (PCM). PCM relies on the fact that some 
materials have different resistivity when they are in crystalline or amorphous 
forms (phases). There are other types of R-RAM. They fall into a few families 
depending on the way their storage elements are built. There is also the 
R-RAM based on interfacial switching caused by oxygen vacancy drift. All 
R-RAM memory types are memristors, a type of general circuit element 
proposed by Chua.[1][2]

ROM stands for read-only-memory. It can also be accessed randomly with an 
address but it is set once, usually at design or manufacturing time, and can 
only be read thereafter. There is also programmable ROM (PROM), which 
can be programmed in the field but sometimes with limited programmability 
frequency. For example fuses can be considered as a one-time programmable 
ROM. A large group of PROMs is erasable and can be reprogrammed multiple 
times. Depending on how they are erased they are called EPROM (erased 
with ultraviolet light) and EEPROM (erased electrically). Since erasing takes 
a long time for EEPROM, it is inefficient to erase a small chunk first and 
then program it with new data. A novel design was made to erase a large 
block of cells at the same time in a “flash” and later program the erased part 
in smaller chunks thus aggregating the erase time by operating on many bits 
in parallel. This type of EEPROM is called flash memory. Depending on the 
way circuits for the storage nodes are organized, flash memory can be divided 
in two types: NOR and NAND flash. NAND flash memory is very popular 
now due to its density and has wide usage in many consumer products. It 
has also revolutionized the storage industry with solid-state drives (SSDs). 
The number of times a memory cell can be programmed and erased is usually 
called endurance in the community. Flash has limited endurance, and when it is 
used to build SSDs, wear-leveling algorithms are used to distribute the number 
of reprogramming operations to satisfy the endurance limit requirement. 
The articles “Improving Error Correction in NAND with Dominant 
Error Pattern Detection” and “Error Analysis and Retention-Aware Error 
Management for NAND Flash Memory” in this issue discuss different ways to 
mitigate possible endurance failures.

Tradeoffs of Memory Parameters
As mentioned briefly previously, another way to classify memory is by its 
device characteristics. One particular characteristic is the ability to retain 
memory content when power is removed from the circuit element. We 
call these memory types nonvolatile memory (NVM). For examples, flash 
memory, EEPROM, and STTRAM are all nonvolatile memory types. DRAM 
and SRAM are volatile memory types. It turns out the volatility is not a 
binary parameter. We really cannot say a memory is absolutely nonvolatile 
because all memory has a limited retention time. Moreover, retention time 
can be adversely affected by how often a cell is erased and programmed, or 

PLBL

WL

R

Figure 2: An R-RAM memory cell
(Source: Intel Corporation, 2013)
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cycled. For example a typical NAND flash memory cell can be erased and 
reprogrammed in tens of thousands of times only. Cells that are infrequently 
cycled have longer retention time while frequently cycled cells have shorter 
retention time on average. Similarly, STTRAM cells can trade off physical size 
for better retention ability. A larger STTRAM cell will have more magnetic 
energy stored, which will reduce the probability of having the cell flipped.

Of course each memory type will differ in other characteristics such as 
access time, density, and power. Some even have different read and write 
access times. These characteristics are all interrelated. Usually a less dense 
memory technology will have better access time. For example SRAM is faster 
than DRAM in general. System architects take advantage of these different 
characteristics to optimize for performance, power, and cost by using a 
memory hierarchy. Some levels of the hierarchy may be on the same chip as 
the processing units. We call these levels embedded memory. There is a trend to 
include more and more levels of memory on the same chip or the same package 
of the processing unit to improve efficiency because going out of a chip tends 
to increase power and cost with a corresponding impact on performance. 
In general, smaller amounts of a faster memory are used as caches for larger 
amounts of a slower storage; for example, solid state disks (SSDs) based on 
NAND flash are often used as a cache for rotating disks.

The speed of a memory cell can also be traded off with size for the same 
memory. An SRAM cell with larger transistors tends to be faster than another 
SRAM cell that is implemented with smaller transistors, but the larger 
transistors will lead to a larger array area. The larger physical size also enhances 
reliability. For example an SRAM cell with larger transistors will have less 
sensitivity to variations and thus give better tolerance to supply noise. In 
general we need to address two issues with memory: retention of data content 
and endurance due to repeated access. There are many parameters that can vary 
and we must consider the tradeoffs. 

The Articles in This Issue
This issue of the Intel Technology Journal is grouped into four sections. The first 
section covers embedded memory. It starts with an interesting article titled 
“Scaling the Memory Reliability Wall,” which begins with a general review of 
the causes of memory failures and then argues that any resiliency mechanism 
adopted by a system must be adaptive to minimize overhead. It then presents 
two example techniques used to gain power efficiency without sacrificing 
much performance for designs where reduced power is the main objective. 
The second article in this section presents an innovation using non-uniform 
cells to improve reliability, power, and performance. It is based on the fact 
that larger cells have better reliability but shows that we don’t need to make all 
cells large; we only need to make sure large cells are used to store information 
that must be more reliable. The third article presents the opportunities and 
challenges of using STTRAM, an emerging memory technology, for embedded 
memory. It describes this relatively new technology, which utilizes spin-transfer 
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torque (STT) to store information. Since this technology is compatible with a 
standard CMOS process[3], it has the potential to be the technology to replace 
SRAM as the future embedded memory technology. However, the retention 
stability of a STTRAM cell is proportion to the magnetic energy stored. The 
energy is a function of the material as well as the volume. If the height of the 
junction also scales with the length and width, then the volume is reduced as 
well, causing it to be less stable. This article presents a detailed model of the 
scaling impact on reliability and examines many approaches to address the 
issues resulting from scaling.

The second section of this issue also contains three articles on the topic of 
error correction codes (ECCs). Due to access latency differences of different 
types of memory, different types of ECC can be employed that are tailored 
to the memory. The number of check bits required for ECC is related to the 
correction ability and the information length. Theoretically, for binary coded 
information the number of checks bits is proportional to t × ceiling[log(n)+1] 
where t is the number of bits the code can correct and n is the number 
of information bits. It is more efficient, in terms of number of check-bits 
required, to protect a larger information word with higher number of 
correctable bits coverage. For example, it only needs 104 extra bits to protect 
512 bytes of data with 8-bit correction capability. It will need 576 extra bits 
(more than 5 times) to protect 16 segments of data each with 32 bytes of 
data with 4-bit correction capability. These two schemes satisfy certain error 
coverage given a fixed bit error rate. However, more correction capability 
with longer data length means more complex decoding logic. One can trade 
off logic complexity with multiple cycle decoding. Multiple cycle decoding 
means greater latency overhead due to ECC. Certain memory has longer 
access latency and adding some extra latency for ECC may not cause any 
performance issue. The first article in this section provides some new error 
correcting codes for short latency memories. The main insight of this article 
is to arrange the generation and decoding matrix in a certain way to cover 
adjacent errors. The second article of this section is trying to take advantage of 
the error characteristics and try to tailor the ECC in a way to cover dominate 
error patterns. In general the more we know about the error behavior and 
probability the better we can cover the error with more efficient codes. The 
third article of this section describes needed modifications for a memory 
controller to provide Chipkill*[4] support for memory technologies that 
inherently have no RAS support for memory contents protection. Chipkill is an 
ECC technique to cover DRAM memory device failures. Modern systems use 
DRAM DIMMs to implement their main memory. Each DIMM is made out 
of several individual DRAM chips. Chipkill can recover a single device failure 
on a DIMM. Specifically, this article focuses on how to provide single device 
Chipkill support for GDDR5 memories. 

The third and fourth sections of the issue contain four articles from academia. 
The university authors are recipients of either Intel sponsored research funding 
or Intel Young Faculty Awards. All of them are doing active research on 
memory architecture and memory resiliency. They bring different perspectives 
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on how to address issues related to memory resiliency. The first three articles 
propose error management techniques for different types of memory. 
We appreciate their participation in this special issue and look forward to 
continued collaboration on this research topic. Finally, we conclude with 
an important article on simulation infrastructure. Any proposed solution 
to this critical topic must be validated through simulations. The University 
of Maryland has taken an existing full system simulation infrastructure and 
extended it to include memory simulation models from cache to disk. It allows 
researchers to evaluate tradeoffs with good accuracy. 
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Technology scaling reduces the size of memory cells, continuing to deliver 
dramatic improvements in memory density. Increasing memory density, however, 
also increases susceptibility to known failure types. Furthermore, each new 
process technology introduces the potential for new, unanticipated failures. In 
this article, we highlight some of the common failure modes in today’s memory 
technologies as well as uncommon failure modes that may grow in significance 
on future technology nodes. We describe a number of approaches to efficiently 
compensate for failure-prone memory, and argue that a key ingredient in resilient 
systems is the ability to compensate for unanticipated memory failures.

Introduction
Technology continues to scale, driving dramatic improvements in memory 
density. With decreasing geometries and increasing capacities, ensuring reliable 
operation of the memory system becomes a greater challenge. The industry’s 
prescription for reliable memory has three components:

●● Predicting the locations of failing bits, typically through testing.
●● Removing failing bits, typically through the application of some type of 

redundancy. 
●● Compensating for unpredictable bit failures.

Memory testing is typically the first step after manufacture of most high 
volume memory technologies, such as NAND flash, DRAM, and SRAM. 
Many of the tested memories include small numbers of bad bits. These failures 
may be clustered due to a marginality in a shared structure such as a sense 
amp (column failures), or a row. Or these bits may be randomly scattered 
throughout the array due to random defects in the bit cell. To maximize yield, 
memory is designed with redundant rows and columns, allowing the repair 
of clustered bit failures along a row or a column, or even the repair of a few 
isolated bit cell failures. Finally, after the memory is shipped and assembled in 
the system, additional unanticipated failures may emerge. These failures may 
have escaped tests for a number of reasons: 

●● Pattern sensitivity: the bit failures may be due to cell to cell coupling 
activated only the in context of very specific data patterns not exercised 
during memory testing.

●● Aging: over time, reliable structures (bit cells, sense amps, and so on) may 
have degraded to the point that previously reliable bits begin to fail. 

●● Change in conditions: conditions may have changed relative to those 
anticipated during test. 
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operation of the memory system 
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“These failures may have escaped tests 

for a number of reasons.”

Scaling the Memory Reliability Wall

Chris Wilkerson  
Intel Labs

Alaa Alameldeen 
Intel Labs

Zeshan Chishti 
Intel Labs



Intel® Technology Journal | Volume 17, Issue 1, 2013

Scaling the Memory Reliability Wall   |   19

●● Erraticism/variability: the physical mechanism that results in cell failure 
may only manifest from time to time. As a result, identical testing 
conditions may vary in their ability to expose failures. 

Resiliency 
In this article, we examine some of the challenges that occur in embedded 
CPU memory. Although the bulk of the discussion focuses on CPU caches 
implemented using SRAM, the techniques we described are broadly applicable 
to a variety of different memory types. We begin with a discussion of low 
voltage and its impact on SRAM error rate in CPU caches. Next, we introduce 
the concept of adaptivity and how it can be exploited to reduce overhead in the 
context of two different test-based repair mechanisms, bit-fix and word-disable. 
In the section “Reducing the Need for Tests,” we describe MS-ECC, a third 
technique that exploits adaptivity and reduces the need to rely on memory 
tests to identify bit errors. The section “Optimizing for the Common Case” 
introduces this concept and shows this approach can be used to minimize 
overhead in two different mechanisms, VS-ECC and Hi-ECC. The first of 
these mechanisms, VS-ECC, is noteworthy for the additional flexibility it 
allows the system in performing tests. The second, Hi-ECC, minimizes the 
reliance on testing by constructing an ECC safety net that continuously checks 
for bit errors during use. The final section summarizes our conclusions.

SRAMs and Vmin
Small signal arrays (SSAs), such as static RAM (SRAM), are probably the most 
common embedded memory type, due to their compatibility with typical logic 
manufacturing process. SSAs typically suffer from variations induced during 
the manufacturing process, making them unreliable at low voltages. Intra-die 
random dopant fluctuations (or RDFs) play a primary role in cell failure by 
arbitrarily impacting the number and location of dopant atoms in transistors, 
resulting in different voltage thresholds (Vths) for matched SRAM devices.[1][2] 
These variations can cause adjacent devices in a single SRAM cell to have different 
strengths, reducing the stability of the cell. These defective cells, randomly 
distributed throughout large memory structures may prevent caches from 
operating below a minimum voltage often called Vmin (or Vccmin). 

Voltage scaling is one of the most effective ways to reduce the power consumed 
by a microprocessor since dynamic power is a quadratic function of voltage. 
Voltage scaling can also effectively reduce static power due to leakage since leakage 
is an exponential function of voltage. As a result, Vmin is a critical parameter 
that constrains our ability to reduce a particular design’s power consumption. 
Overcoming Vmin allows designs to operate at lower voltages, improving energy 
consumption and battery life for handheld and laptop products. Figure 1 shows 
the probability of failure (Pfail) of an SRAM cell (pfail bit) and a number of 
multi-bit structures as a function of voltage. As one expects, as the probability of 
failure for a single bit increases (X-axis), the probability of failure for structures 
that consist of these bits (Y-axis) also increases. Each line depicts a single structure 
such as a single byte (8-bit), or a single cache line (512-bit). As the number of bits 
in a structure increases, so does the probability of at least one of those bits failing. 

“SSAs typically suffer from variations 

induced during the manufacturing 

process, making them unreliable at low 

voltages.” 

“…Defective cells, randomly distributed 

throughout large memory structures may 

prevent caches from operating below a 

minimum voltage…”



Intel® Technology Journal | Volume 17, Issue 1, 2013

20   |   Scaling the Memory Reliability Wall

Bit Probability of Failure
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Figure 1: Probability of a failure for different structures as a function of 
single bit failure probability.
(Source: Intel Corporation 2013)

A number of circuit techniques have been proposed to improve SRAM 
reliability at low voltages.[3][4][5] These typically involve upsizing devices or 
employing multiple voltages. Recent work has also identified a number of 
promising architectural approaches. These typically attack the Vmin problem by 
augmenting memory with the ability to adapt in the presence of bad bits. One 
of the key advantages of architectural approaches is that they can be adaptive, 
incurring additional overhead only when operating conditions demand it. 

Adaptivity
Adaptivity minimizes the overhead of resiliency when conditions preclude the 
possibility of bit errors. The system can customize the strength of the repair 
mechanism to its operating conditions, incurring the highest overhead during 
the worst-case operating conditions. In previous work[6], we attacked the Vmin 
problem in SSAs using an adaptive approach, reconfiguring cache resources 
depending on operating conditions. 

We observed that operating modes that require the minimal voltage (and power) 
may be willing to reduce cache capacity in exchange for reduced voltage. In light 
of this, we proposed two ways to design a cache to operate at both high and 
low voltage. These schemes exploit this by incurring the overhead of repairing 
defects only at low voltage. With minimal overhead, both schemes significantly 
reduce the Vmin of a cache in low-voltage mode while reducing performance 
marginally in high-voltage mode. Both schemes achieve a significantly lower 
overhead compared to ECC-based defect tolerance schemes at low voltage. 
Both mechanisms trade off cache capacity at low voltages, where performance 
(and cache capacity) may be less important, to gain the improved reliability 

“Adaptivity minimizes the overhead of 

resiliency when conditions preclude the 

possibility of bit errors.”
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required for low voltage operation. At high voltages where performance is critical, 
both mechanisms have minimal overhead maximizing the availability of cache 
resources. We observed a 10-percent performance loss when operating at low 
voltage when compared to an ideal cache that achieves the same voltage with 
no overhead. The adaptivity of these techniques avoids the overhead and the 
performance penalty it applies when operating at high voltage. 

To support different operating modes, our adaptive approach repurposed cache 
resources depending on the operating mode. The mechanisms described in 
this work rely on memory tests to identify defective portions of the cache and 
reconfigure the cache to ensure running programs avoid those portions. 

After using memory tests to identify defective portions of the cache, two 
schemes identify and disable defective portions of the cache at different 
granularities: individual words or pairs of bits. One scheme, called word-
disable, disables 32-bit words that contain defective bits. 

Disabling Words
In the word disable scheme, defective words are simply disabled and physical 
lines in two consecutive cache ways combine to form one logical line where 
only non-failing words are used. This cuts both the cache size and associativity 
in half in low-voltage mode. Each line’s tag includes a defect map (one bit 
per word, or 16 bits per 64-byte cache line) that represents which words are 
defective (0) or valid (1). 

The word-disable mechanism isolates defects on a word-level granularity and 
then disables words containing defective bits. Each cache line’s tag keeps a defect 
map with one bit per word that represents whether the word is defective (1) or 
valid (0). For each cache set, physical lines in two consecutive ways combine 
to form one logical line. After disabling defective words, the two physical lines 
together store the contents of one logical line. This cuts both the cache size and 
associativity in half. Figure 2 illustrates how this works in more detail. 

Word0 – Word7 Word8 – Word15

Words (0–3)

Stage 0 shifter (7wds/3def)

Stage 1 shifter (6wds/2def)

Stage 2 shifter (5wds/1def)

Stage 3 shifter (4wds/0def)

Words (4–7)

Stage 0 shifter (7wds/3def)

Stage 1 shifter (6wds/2def)

Stage 2 shifter (5wds/1def)

Stage 3 shifter (4wds/0def)

32 byte (8-word) aligned data

Each shifting
stage removes
a defective
word.

Figure 2: Word disable combines working words from two lines
(Source: Chris Wilkerson, et al., 2008[6])

“To support different operating modes, 

our adaptive approach repurposed 

cache resources depending on the 

operating mode.”

“The word-disable mechanism isolates 

defects on a word-level granularity and 

then disables words containing defective 

bits.”



Intel® Technology Journal | Volume 17, Issue 1, 2013

22   |   Scaling the Memory Reliability Wall

Assume you have an 8-way cache containing 32-byte lines. For each cache 
set, eight physical lines correspond to four logical lines. We use a fixed 
mapping from physical lines to logical lines: Lines in physical ways 0 and 1 
combine to form logical line 0, lines in physical ways 2 and 3 combine to 
form logical line 1, and so on. A single logic cache line is divided into two 
halves, split between the two physical lines each with a maximum of four 
defective words. The first physical line in a pair stores the first four valid 
words, and the second stores the next four valid words of the logical line for a 
total of eight 32-bit words.

To obtain the 32-byte data in aligned form, we use two four-stage shifters to 
remove the defective words and aggregate working words as shown in Figure 3. 
As a result, in low-voltage mode, the capacity of each set is effectively halved to 
4-ways.

Figure 3 illustrates the logic used to disable and remove a single defective 
word from a group of words. Starting with the defect map, we extract a 
1-hot repair vector identifying the position of a single defective word. 
In the figure, the vector “0010” identifies the third word from the left as 
defective. The decoder converts the 1-hot vector into a Mux-control vector 
containing a string of 0s up to (but not including) the defective position 
followed by a string of 1s. This has no effect on the words to left of the 
defect, but each of the words to the right of the defective word shifts to 
left, thereby “shifting-out” the defective word. Since each level of muxes 
eliminates a single defective word, we require four levels to eliminate four 
defective words.

0… 0… X 1… 1.
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0 1
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Decoder converts
1-hot to mux
control bits.   

160-bit bit vector divided up into 5 32-bit words. X marks a defective word.

0… 0… 1… 1…

0
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1

Mux control bits
from the decoder

1-hot repair
vector extracted
from defect
mask: 0010   

3
3

3
3

3

33

New 128 bit defect-free bit-vector is produced.

Figure 3: Removing bad words from a cache line
(Source: Chris Wilkerson, et al., 2008[6])
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Fixing Bits
The bit-fix mechanism differs from the word-disable mechanism in three 
respects. First, instead of disabling at word-level granularity, the bit-fix 
mechanism allows groups of two bits to be disabled. These defective pairs 
are groups of two bits in which at least one bit is defective. Second, for each 
defective pair, the bit-fix mechanism maintains a 2-bit patch that can be 
used to correct the defective pair. Third, the bit-fix mechanism requires no 
additional storage for repair patterns, instead storing repair patterns in selected 
cache lines in the data array. This eliminates the need for the additional tag 
bits required to store the defect map in the word-disable mechanism. In 
high performance mode when the bit-fix algorithm is unnecessary, the repair 
pointers must be stored in memory. 

To illustrate how bit-fix works, consider an 8-way set associative cache with 
64-byte lines. The bit-fix scheme organizes the cache into two banks, each 
containing four ways. The repair patterns for three cache lines fit in a single 
cache line; therefore, we maintain a single fix-line (a cache line storing repair 
patterns) for every three cache lines. A fix line is assigned to the bank opposite 
to the three cache lines that use its repair patterns. This strategy allows a cache 
line to be fetched in parallel with its repair patterns without increasing the 
number of cache ports. 

Figure 4 contains a high level depiction of how bit-fix works. On a cache hit, 
both the data line and a fix line are read. In this figure, we fetch the data line 
from Bank A and the fix line from Bank B. The data line passes through n bit 
shift stages, where n represents the number of defective bit pairs. Each stage 
removes a defective pair, replacing it with the fixed pair. Since the fix line 
may also contain broken bits, we apply SECDED ECC to correct the repair 
patterns in the fix line before they are used. After the repair patterns have been 
fixed, they are used to correct the data line. Repairing a single defective pair 
consists of three parts. First, SECDED ECC repairs any defective bits in the 
repair pattern. Second, a defect pointer identifies the defective pair. Third, after 
the defective pair has been removed, a patch reintroduces the missing correct 
bits into the cache line. 

Bit shift logic fix 1..

Bank A Bank B

Cache line w/data Cache line w/fix bits

Bit shift logic fix 0

ECC Fix bits in repair pattern

Decode fix pointers/swap in patches. Bit shift logic fix n

Repaired cache line

Figure 4: Applying repair patterns in bit-fix
(Source: Chris Wilkerson, et al., 2008[6])
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Since bit-fix stores the repair pointers in the cache, all reads and writes to the 
cache are coupled with a request for repair patterns. Reads rely on the repair 
patterns to repair broken bits.  For writes, repair patterns indicate broken bits, 
ensuring they are avoided during the write. Patches must be extracted during 
writes and written into fix lines for use in future reads. When the system 
operates in modes where bit errors are unlikely, the repair capability provided 
by bit-fix will be superfluous and the cache capacity should be reclaimed to 
maximize performance. In these modes, bit-fix requires storage elsewhere in the 
system (main memory, for example) to hold repair pointers while they are not 
in use. 

Figure 5 compares the probability of failure for a 32-MB cache augmented 
with the bit-fix and word-disable schemes. The dotted line indicates a 
hypothetical target for the probability of failure for the whole 32-MB cache; 
this can also be thought of as yield loss. We’ve chosen 1/1000 as a target for 
the comparisons we make in this article, although in an actual design the target 
will depend on a number of factors including the overall yield target of the 
product and the likelihood of other structures failing. As shown in Figure 5, 
bit-fix and word-disable both dramatically improve the ability of cache to 
tolerate bit errors. A conventional 32-MB cache could meet our hypothetical 
target of 1/1000 with a bit error rate of about one failure for every 1012 bits. In 
contrast, both word-disable and bit-fix tolerate much higher bit error rates of 
about one failure for every 1000 bits. 
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Figure 5: Bit-fix and word-disable compared to baseline
(Source: Intel Corporation, 2013)

Reducing the Need for Tests
The approaches described in previous sections suffer from a reliance on 
testing to identify defective bits. As technology scales, memory may become 
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more difficult to test reliably for a number of reasons. First, the time to 
run memory tests typically grows as a function of the number bits in the 
memory. Simple tests may grow as a linear function of the memory capacity 
while more sophisticated tests designed to screen for pattern sensitivity can 
be much more complex. Second, increasing density may make it harder to 
isolate bit cells, resulting in more pattern-sensitive failures. Third, memory 
circuits may become more susceptible to aging-related failures that occur after 
the part has been tested and shipped. Finally, bit cells implemented in future 
technologies may be subject to erratic changes in device characteristics that can 
intermittently change the characteristics of the bit cell even after the product 
has been shipped.[7] 

To address this, we developed Multi-bit Segmented Error Correcting Code 
(MS-ECC)[8], an adaptive approach that minimizes the role of testing. In 
place of tests, MS-ECC relies on error correcting codes (ECCs) to identify 
and correct bit errors after they occur. Encoding and decoding multi-bit 
error correcting codes can require complex logic and MS-ECC introduces 
two techniques to reduce this overhead. First, it applied a class of simple but 
costly error correcting codes called orthogonal Latin square codes (OLSCs). 
Second, it used segmentation to allow processing of different portions of 
a cache line in parallel. We describe these in more detail in the following 
section. 

Reducing Complexity of Error Correcting Logic
MS-ECC strives to provide an architecture that uses codes to correct several 
bits per cache line, without incurring the high logic overhead of multi-bit 
BCH codes. To do this we rely on a simple class of error correcting codes 
called orthogonal Latin square codes (OLSCs). Although OLSCs require more 
storage than BCH codes, the use of OLSCs minimizes the cost of the coding/
decoding logic. We also employ segmentation, dividing the cache line up into 
8-byte segments and providing separate codes for each segment. Both the use 
of OLSCs and segmentation reduce logic overhead at the cost of increased 
storage cost for the code itself. 

Orthogonal Latin Square Codes
Conventional ECC implementations are based on BCH codes and are 
tailored to fix one (SECDED) or two errors (DECTED). BCH codes 
optimize storage overhead (that is, number of check bits) at the cost of logic 
complexity. The complexity and latency of these codes grow rapidly with the 
increase in the number of error corrections. To minimize the logic required 
for multi-bit error correction, MS-ECC needs to use an error correction 
code whose complexity scales well with the number of error corrections. 
Hsiao et al.[8] proposed a coding methodology called orthogonal Latin 
square codes (OLSCs) to correct multi-bit errors. While OLSCs require 
more check bits than traditional ECCs, they have modular correction 
hardware, lower logic complexity, As a consequence, OLSCs can be encoded 
and decoded faster than traditional ECCs implementations using BCH 
codes.[8]

“MS-ECC relies on error correcting 

codes (ECCs) to identify and correct 

bit errors after they occur.”
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OLSCs use the general principle of a redundant system based on majority 
voting, such as triple modular redundancy (TMR). TMR “votes out” any 
incorrect behavior by having three copies of the design and adopting the results 
from two out of the three modules as the correct one. Instead of duplicating 
each data bit three times, an OLSC encodes “orthogonal” groups of bits to 
form check bits. At decoding time, each data bit generates the final value 
through a voting process from a group of orthogonally coded data and check 
bits. Thus, an OLSC does not need to generate a syndrome but can “correct” 
errors directly from majority voting.

Although OLSCs provide a number of benefits for implementing logic, their use 
requires many more bits to provide a particular level of error correction relative 
to alternatives such as BCH codes. For conventional BCH codes, correcting a 
single bit error in a 512-bit cache line requires t × log(n) bits; where t is equal 
to the number of bits to correct, 1 in this case; and n is equal to the number of 
data bits, 512 in this case. In contrast, an OLSC requires 2 × t × sqrt(n) bits, 
growing as the square root of the number of data bits rather than the log. In this 
case, this means a typical BCH code would require 9 bits and the OLSC would 
require 2 × 1 × 24, or 48 bits to repair a single bit error. 

Segmentation
Generating each check bit for an OLSC requires computing a parity for 
orthogonal groups of sqrt(n) data bits. As a result, we can further simplify 
the encoding and decoding logic by reducing the size of data word through 
segmentation. Figure 6 shows an example of multi-bit segmented ECC 
with eight 64-bit segments in each 512-bit line. On a read hit, as shown in 
Figure 6(b), we fetch both the data line and the corresponding ECC line. 
There are separate ECC decoders for each of the eight segments that decode 
segments in parallel by using information from both the data and ECC 
ways. The decoded segments are then concatenated to obtain the entire 
512-bit line.
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Figure 6: H matrix for a 16-bit OLSC
(Source: Zeshan Chishti, et al., 2009[8])
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Segmentation reduces latency through the use of parallel decoders and 
reduces logic cost by reducing the number of inputs to each check bit 
parity tree. But these benefits also come with additional costs. In general, 
smaller segments increase the cost of storing the codes. Figure 7 compares 
the bit overhead of protecting a 512-bit line with both OLSC and BCH 
codes. The cost varies depending on size of the segments each code 
protects. A single code protecting the entire 512-bit word minimizes cost. 
The smallest segment results in the highest cost. Although it’s true that 
segmentation also increases the level of protection (a code that allows 4-bit 
errors for every 512-bit line offers less protection than a code that corrects 
4-bits for every 32-bit segment), the additional protection segmentation 
offers is minimal. This is illustrated in more detail in Figure 8, where you 
can compare the probability of failure of a 32-MB cache with a single 
SECDED code for each cache line and a second with a SECDED code 
for each 8-byte segment. Figure 8 also depicts the ability of MS-ECC 
to tolerate bit errors. MS-ECC succeeds in tolerating very error rates, as 
high as 1 bit error in every 1000 bits, like the mechanism discussed in the 
previous section. It achieves this while avoiding the need for extensive tests 
to identify bit errors but also with a significant cost of 50 percent of the 
total cache capacity. 

Smaller segments mean more bits for storing the code

OLSC requires
more bits for a
similar level of
protection vs BCH
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Compensating for Increased Code Storage
MS-ECC mitigates the increased cost of code storage through the use of adaptivity 
similar to what’s described in [3]. As in [3], MS-ECC makes the entire cache 
capacity available at high voltage, but the use of cache resources to store repair 
information reduces cache capacity at low voltage. To better understand how this 
approach works, consider an 8-way set associative cache with 64-byte lines. 

When using the codes, we divide the eight physical ways in each set amongst 
data and ECC ways. The ratio of data ways to ECC ways depends on the 
desired reliability level. If the operating system chooses to improve reliability 
it could adjust this ratio to increase redundancy at the cost of cache capacity. 
In this case, we assume each data way comes with a corresponding way storing 
error correcting codes. We use a fixed mapping to associate data ways with their 
corresponding ECC ways, as shown in Figure 9(a): physical way 1 stores the 
ECC for physical way 0, physical way 3 stores the ECC for physical way 2, and 
so on. Thus, when using the codes, cache capacity and associativity are halved, 
resulting in a reduction in from eight ways to four ways per cache set. On a 
write hit to the L2 cache, shown in Figure 9(c), we first use the ECC encoders 
to obtain the ECC for the data line. Like the ECC decoders, there are separate 
encoders for each segment that perform ECC encoding in parallel. We then 
write the new data to the data line and the new ECC to the corresponding 
ECC line. A similar encoding is performed when a new line is brought into 
the L2 cache upon a cache miss. We note that when using ECC, each cache 
access requires both the data and ECC ways to be read. In light of this, the best 
performance would be achieved if the cache was banked with data and ECC 
placed in opposite banks, allowing both to be read simultaneously. 

“MS-ECC mitigates the increased 

cost of code storage through the use of 

adaptivity…”
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The MS-ECC approach favors simple, high-overhead codes under the 
assumption that the high cost of code storage will have little impact when 
operating at low voltage. This makes sense for systems where memory reliability 
doesn’t present a problem in typical operating conditions. 

However, the role of adaptivity is diminished in systems that spend the he bulk 
of their time operating in modes that require the use of MS-ECC without 
adaptivity to mitigate the high cost of storing the codes, the overhead of  
MS-ECC becomes unacceptable. In light of this, we examine other approaches 
to reduce the overhead of coding. 

Optimizing for the Common Case
The mechanisms reviewed so far represent two extremes: the first two approaches 
(bit-fix and word-disable) relying solely on testing to identify bit errors, the 
second (MS-ECC) relying solely on high strength codes. Although memory 
testing may suffer from a number of challenges, it remains a valuable way of 
locating bit errors. Ideally, we’d construct a system that could benefit from the 
information testing provides, while protecting against errors that testing fails to 
capture. Such a system could rely on memory tests to characterize memory and 
rely on error correcting codes to compensate for test escapes. VS-ECC, Variable-
Strength ECC, proposed by Alameldeen et al.[9] is one such approach. 

Optimizing Protection Strength with VS-ECC
VS-ECC combines the use of ECC and memory tests. The architecture exploits 
the observation that although a few cache lines exhibit multi-bit failures, the 
vast majority of cache lines contain one or fewer failures. Unlike prior solutions 

“…the high cost of code storage will 

have little impact when operating at 

low voltage.”
“…without adaptivity to mitigate 

the high cost of storing the codes, 

the overhead of MS-ECC becomes 

unacceptable.”
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that use fixed-strength mechanisms to mitigate the impact of cache failures on 
Vmin, we propose mechanisms that only allocate strong protection to cache 
lines that need such protection. Figure 10 plots the probability of having one, 
two, three, and four errors in a 64-byte cache line. Note that the probability 
of a single bit error exceeds that of a double bit error by about two orders of 
magnitude. This implies that, in a typical cache, single bit errors should be 
about one hundred times more common than double bit errors. It follows, 
therefore, that while many cache lines might require SECDED protection, 
only a very small subset of the failing cache lines require stronger multi-bit 
ECC. This suggests a variable-strength technique, VS-ECC, where the check 
bit budget is allocated judiciously only to the lines that require multi-bit 
protection.
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To implement a VS-ECC architecture, we begin with a cache that supports 
SECDED protection for each cache line, then we augment each set with four 
extended ECC (eECC) fields; these enable the cache to use a strong ECC code 
for any four of the 16 ways in each cache set. To distinguish lines that use 
multi-bit correction from lines that use SECDED ECC, we add an extra status 
bit to each tag, called “Extended ECC bit” or E-bit. If a cache line is classified 
as having multi-bit failures, the E-bit is set to 1; otherwise it is reset to 0. Each 
cache access first reads the E-bits with the tag to determine the type of ECC 
(SECDED or 5EC6ED) protecting the line. Depending on the strength of the 
code, we forward the cache data to one of two blocks of ECC processing logic: 
a simple logic block designed for SECDED, or a more complex block designed 
for multi-bit ECC processing.

Figure 11 shows the efficacy of VS-ECC on a 32-MB cache. It depicts seven 
different configurations, including three baseline configurations: “32MB,” 
a 32-MB cache with no ECC protection, “SECDED,” the same cache with 

“…the check bit budget is allocated 
judiciously only to the lines that 
require multi-bit protection.”
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a SECDED code for each cache line, and finally “5EC6ED,” a 32-MB 
cache with a 5-bit error correcting code protecting each cache line. The 
curves labeled “VS-ECC-1,” “VS-ECC-2,” “VS-ECC-3,” and “VS-ECC-4,” 
depict four different VS-ECC implementations, with the ability to provide 
a 5ED6ED code for one, two, three, or four cache lines, respectively. It’s 
worth noting that three of the VS-ECC implementations are virtually 
indistinguishable from our 5EC6ED baseline, illustrating our earlier point 
that we need very few 5EC6ED codes to approach the performance of the 
5EC6ED baseline. 
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(Source: Intel Corporation, 2013)

VS-ECC and Runtime Testing
The variable application of ECC protection in VS-ECC allows us to harvest the 
benefit of very strong ECC codes while minimizing overhead. Realizing this 
benefit, however, relies on prior knowledge of which lines require additional 
error correction. Since VS-ECC customizes the strength of the ECC depending 
on the presence or absence of bit errors, it requires tests to identify cache lines 
that contain bit errors. The strength of the VS-ECC approach, however, is that 
these VS-ECC tests can potentially be run while the system is active. Typically, 
memory tests must be run while the system is placed in marginal state, without 
voltage or timing guard-bands, to increase the likelihood of exposing bit errors. 
In conventional system designs, removing these guard-bands places any data 
stored in memory at risk. VS-ECC, however, can be used to provide stronger 
protection to the parts of the memory that contain live program data, while 
the rest of memory is tested. After each test phase, we move live data from the 
active to the inactive portion, activate the latter, and start testing the previously 
active region.

“…three of the VS-ECC 

implementations are virtually 

indistinguishable from our 5EC6ED 

baseline…”

“…VS-ECC tests can potentially be 

run while the system is active.”
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Since VS-ECC allows the system to take advantage of spare cache cycles to test 
the cache, it can reduce the impact of testing on the user. This, in turn, opens 
up the possibility of using more complex, time-consuming tests. In addition, 
it facilitates intermittent testing that would help identify failures due to aging 
that may emerge after shipping a product. 

The primary benefit of VS-ECC is the additional flexibility it allows in testing, 
including runtime testing and the ability to compensate for testing failures 
through the universal application of minimal ECC. The primary drawback 
of the VS-ECC approach is that apportioning the ECC strength relies on the 
ability of tests to identify locations of bit errors. Although VS-ECC ultimately 
relies on testing, the flexibility it provides can make tests cheaper and less 
intrusive. We could improve on VS-ECC, however, by further minimizing its 
reliance on testing. 

Error Correcting Codes as a Safety Net
One way to minimize a systems vulnerability to testing escapes is to construct 
a “safety net” for memory using ECC. If the overhead of the codes could be 
reduced sufficiently we could always rely on the ECC to identify and repair bit 
errors regardless of when they occurred. Hi-ECC[10] describes an approach to 
building such a system. 

Hi-ECC relies on a low cost multi-bit error correcting code to identify bit 
errors. To reduce the storage costs of the code, Hi-ECC takes the opposite 
approach of MS-ECC. Instead of reducing logic costs through the use of 
large codes, Hi-ECC minimizes storage costs through the use of larger 
segments and dense but logically complex BCH codes. Typically, these 
tradeoffs would dramatically increase logic complexity; however, Hi-ECC 
avoids this by taking an approach similar to that of VS-ECC and optimizing 
for the common case.

Recall that VS-ECC minimized overhead by providing two mechanisms to 
handle errors, a low-cost mechanism for the common case with few or no 
errors, and a high-cost mechanism for multi-bit errors. In the case of VS-ECC 
the two mechanisms were different strength codes, low-cost SECDED codes 
for the majority of the lines in the cache, high-cost 5EC6ED codes for lines 
that were identified as being prone to failure. Like VS-ECC, the Hi-ECC 
approach offers two mechanisms to handle errors. In contrast, however, the 
two mechanisms provided in Hi-ECC don’t differ in the level of protection 
they offer but in the latency they incur and the resulting performance impact. 

A key insight offered in Hi-ECC is that the ECC “check” (checking for bit 
errors) can be separated from the ECC “correct” (correcting the bit errors). 
The vast majority of the data is error free and only needs to be checked. Hi-
ECC exploits this through the use of high-speed ECC checking logic (Quick 
ECC). Quick ECC (Figure 12) forwards lines that are either error-free or easily 
corrected to the processor with minimal additional latency. The remaining 
lines, which require additional processing, are sent to slow but relatively cheap 
ECC correcting logic. 

“The primary benefit of VS-ECC is 

the additional flexibility it allows in 

testing…”

“…Hi-ECC takes the opposite 

approach of MS-ECC.”
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(Source: Chris Wilkerson, et al., 2010[10])
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Hi-ECC minimizes the cost of the ECC correction at the expense of increased 
latency. In fact, correcting a multi-bit error in Hi-ECC may take tens or hundreds 
of cycles. We argue that since bit errors are rare, the high latency of the correcting 
logic will have little impact on performance. To ensure this and to avoid pathologic 
cases such as repeated accesses to particularly error-prone lines, Hi-ECC removes 
bit errors as they are identified by ECC either through disabling the cache lines that 
contain them or removing the offending bits through techniques like bit-fix. 

Conclusion 
In this article, we’ve highlighted some emerging challenges in memory resiliency. 
We’ve described five mechanisms to handle very high error rates. Three 
mechanisms minimized the performance overhead of correcting errors through 
adaptivity, incurring overhead when the performance cost of the overhead 
was minimized. The other two, VS-ECC and Hi-ECC, minimize overhead 
by providing two mechanisms to handle errors, a low-cost mechanism for the 
common case with few or no errors, and a high-cost mechanism for multi-bit 
errors. Adaptivity and optimizing for the common case are both approaches that can 
help us design more resilient memory systems while minimizing the overhead. 

Although testing continues to play an important role in managing memory 
reliability, future technologies may introduce new failure mechanisms, which 
must be handled in new innovative ways. In light of this uncertainty, a memory 
resiliency architecture that scales with advancing technology must not rely 
on the physics of today’s failures but must be flexible enough to adjust to the 
unanticipated failures of future technologies. The approaches taken in VS-ECC 
and Hi-ECC are noteworthy for the way they integrate multiple resiliency 
techniques. VS-ECC integrates testing and codes, while Hi-ECC supplements 
codes with additional repair. Future work in this area will extend this integration, 
combining error correcting codes, testing, and supplemental repair. Testing is likely 
to be a continuous process, combining information collected from ECC during 
use as well as from intermittent tests run throughout the lifetime of the system. 
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Many enterprise and mobile systems attempt to maximize energy-efficient 
performance, dynamically trading off performance and power to have the best 
performance while keeping power within specified limits. Cache and memory 
system behavior plays a large role in this tradeoff, since power optimizations 
may jeopardize memory cell reliability. 

In this article, we show that mixed-cell memory designs could play a key role 
in achieving the right balance between performance, power, and reliability for 
single-core and multi-core systems. In such designs, part of the memory structure 
is built with cells that are more robust and failure-resistant, while the rest is 
designed using traditional cells. Robust cells ensure resiliency under low-voltage 
conditions to protect the most vulnerable data, while the rest of the memory 
structure could be used to store redundant data to improve performance. We 
demonstrate this concept using two specific examples: (1) A cache system that 
only turns on the robust portion at low-voltage, achieving good reliability and 
power savings while providing high-voltage performance improvements; (2) A 
cache system that uses the whole cache (including the non-robust portion) at low 
voltage, achieving good performance and reliability while not exceeding power 
limits. While the specific examples we explore in this article are cache-related, the 
same concept could be used throughout the entire memory hierarchy to improve 
memory resiliency without sacrificing performance or energy efficiency.

Introduction
Power is a key design constraint for modern multiprocessors used across market 
segments, from mobile systems to servers. In mobile systems, thermal design 
power (TDP) plays a key role in determining the form factor of the mobile 
device, and therefore optimizing processor power is critical. Likewise, data 
centers are built with fixed power and cooling capabilities, and improving 
processor performance within a given power budget yields direct economic 
benefits by increasing the compute capability supported by a fixed investment 
in data center infrastructure. 

To address these power constraints, new processor generations have provided 
improvements in core performance and efficiency and have also increased the 
number of cores on a die. Today, state-of-the-art server processors may contain 
tens of cores, and even mobile products, including tablets and smart phones, 
have more than one core. Increasing core counts, in the context of fixed power 
budgets, is a key challenge for future systems. 

In today’s TDP-limited systems, the voltage of active cores has to decrease as 
the number of active cores increases.[6] Conversely, as cores become inactive, 
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the voltage of the remaining cores is raised to maximize performance. 
Changing the voltage in response to changes in core activity allows the 
power budget of these systems to remain constant regardless of the number 
of active cores. 

Voltage reduction, however, comes at the cost of dramatically reducing 
reliability for memory cells that operate at a low voltage. To circumvent this 
problem, prior work has explored using separate voltages for the core logic 
and caches. This captures most of the power benefits by reducing the core 
voltage, while ensuring reliable cache operation at a higher voltage. However, 
separate voltage domains greatly increase design complexity.[13] This added 
complexity can be avoided by building memories with robust cells better suited 
for low voltage operation (using larger cells with upsized transistors or more 
transistors). Unfortunately, robust cells significantly increase power and area for 
a memory structure.

The high overhead of cell upsizing has led architects to propose mixed 
(heterogeneous) cell cache architectures, consisting of traditional cells and 
robust cells[4][5][8], with the goal of minimizing the use of expensive, robust 
memory cells, while continuing to harvest their low voltage benefits. Mixed-cell 
cache architectures achieve this by implementing a small portion of the cache 
with robust cells that can operate reliably at low voltage, and the remainder 
with non-robust cells. When operating at a high voltage, both portions would 
be used to maximize cache capacity and performance. When operating at 
low voltage, the failure-prone non-robust cells would be turned off, reducing 
cache capacity by up to 75 percent.[4][5] Conversely, the non-robust cells can be 
turned on but are only used to store noncritical data.[8] 

We advocate using mixed (heterogeneous) cell cache architectures to build 
reliable and scalable memory structures. Memory structures do not need to be 
uniformly reliable. With careful design mechanisms, a robust (reliable) portion 
can be used to store critical data, while the non-robust portion can be power-
gated or used for noncritical data. 

In the remainder of this article, we demonstrate how mixed-cell architectures 
help achieve memory resiliency at low voltage. We highlight two examples for 
cache hierarchies designed with mixed cells:

●● In the first design[5], a last-level cache is designed with a fraction of all cells 
built with robust cells, while the rest are built using standard cells that 
are power-gated at low voltage. Such a system helps maintain low-voltage 
cache reliability while allowing the whole cache to be active at high voltage/
frequency to maximize performance.

●● In the second design[8], both robust and non-robust cells are enabled at low 
voltage, but special logic needs to be implemented to ensure critical data 
(that is, the only copy in the system) is stored in robust cells. Such a design 
helps maximize performance for a multi-core system where all cores could 
be active only at low voltage.

“Voltage reduction, however, comes 

at the cost of dramatically reducing 

reliability for memory cells that 

operate at a low voltage.”

“We advocate using mixed 

(heterogeneous) cell cache architectures 

to build reliable and scalable memory 

structures.”



Intel® Technology Journal | Volume 17, Issue 1, 2013

38   |   Improving Memory Reliability, Power and Performance Using Mixed-Cell Designs 

Background
Achieving the highest possible density is a main design goal for different 
memory technologies. SRAM bit cells, for example, generally employ 
minimum-geometry transistors, which are susceptible to systematic as well 
as random process variations such as random dopant fluctuations (RDF) 
and line edge roughness (LER). Process variations produce VT (threshold 
voltage) mismatch between neighboring transistors, resulting in asymmetric 
bit cell characteristics, and making bit cells susceptible to failure at low 
voltage. DRAM cells are also designed with minimum-sized transistors in a 
given process technology, making some cells less reliable when power-saving 
optimizations are used (such as lower refresh frequency). We’ll use SRAM 
caches as the main topic of discussion in this article, but similar tradeoffs could 
also apply to other memory technologies.

With bit cells susceptible to failure, large memory structures in the core, such 
as caches, become unreliable at low voltage. This limits voltage and frequency 
scaling for the cores, which must operate at a minimum voltage (Vmin) to 
ensure reliable operation. Reducing cache Vmin has become an area of active 
research. Prior work in this area fits into two broad categories: circuit solutions 
and architectural solutions. 

Circuit Solutions 
Circuit techniques generally aim to reduce Vmin by improving the bit 
cell. One approach is to reduce the voltage for the core logic and use a 
separate (higher) voltage for caches. Unfortunately, a partitioned power 
supply increases power grid routing complexity, reduces on-die decoupling 
capacitance, increases susceptibility to voltage droops, and may require 
level shifters that add latency to signals that cross voltage domains. [13] 
Most commercial processors use multiple voltages generated off-chip by 
high-efficiency off-chip voltage regulators (~95-percent efficiency). As the 
number of cores increases, providing multiple voltages for each core becomes 
increasingly impractical. A four-core system with separate voltages for the 
core and its private L1/L2 caches would require three voltage domains per 
core (a total of 12 power supplies), in addition to those needed for other 
system components. 

Another way to improve bit cell Vmin involves upsizing its constituent devices. 
Threshold voltage (VT) variation depends inversely on the transistor gate area.[9] 
Consequently, upsizing devices can dramatically reduce variations and improve 
Vmin. Zhou et al.[22] designed and optimized six different 6T SRAM cells 
(C1-C6 cells), and analyzed the failure probabilities of the cells due to process 
variations in a 32 nm technology. These analyses demonstrated that increasing a 
cell’s size can reduce its failure probability by orders of magnitude. 

Unfortunately, the Vmin benefits of upsizing a typical 6T bit cell diminish 
as device size increases. Figure 1 compares the Vmin for four different caches 
implemented in a 65 nm technology. Each cache is implemented using one 
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of four different 6T cells. [11] We set Vmin at the point when the cache failure 
probability is 1/1000.[20] The figure depicts the probability (y-axis) that the 
cache will contain a single failing bit as a function of voltage (x-axis). A 4-MB 
cache constructed with a minimum-sized 6T cell, 4M-min, exhibits very high 
failure rates (~30 percent) even at high voltages (>900 mV). The 4M-2X 
implementation of a 4-MB cache doubles the device sizes in each memory cell, 
increasing cell area by 33 percent. 4M-4X quadruples the size of the devices, 
doubling the size of the cell. The 4M-8X implementation uses the most robust 
cell with devices that are eight times as large and a 233 percent larger cell size 
than 4M-min. Increasing cell sizes initially yields dramatic improvements over 
minimum-sized cells (note the 275 mV improvement moving from 4M-min 
to 4M-2X). But further size increases yield smaller benefits, 60 mV and 55 mV 
for the 4M-4X and 4M-8X, respectively.
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Figure 1: Vmin improvements with bit cell upsizing
(Source: Khan et al., 2013[8])

Cell upsizing also causes increases in static and dynamic power. Static power 
(leakage) varies linearly as a function of transistor dimensions, therefore 
increasing with larger cells. Larger cells also add switching capacitance on 
the word lines (WL) and bit lines (BL) increasing dynamic power. Upsizing 
from the minimum cell to the 2X cell yields a substantial benefit since the 
reduction in Vmin (275 mV) more than compensates for the additional 
power introduced by larger devices. Further upsizing, however, increases 
power since the costs of larger devices outweigh the savings from voltage 
reductions (-60 mV, -55 mV).[8]

Architectural Solutions
Another approach to reducing Vmin uses failure-prone cells with smaller 
devices, but augments the memory array with the capability to repair bit 
failures. Prior work introduced many repair mechanisms that depend on 
memory tests to identify bad bits.[17][18][20] Relying on memory tests limits the 
applicability of these approaches when memory tests are expensive or failures 
are erratic.[1] Other repair mechanisms rely on coding techniques, such as 
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error-correcting codes (ECC), to autonomously identify and repair defective 
bits.[3][10]

Fundamentally, each of these approaches trades off the repair mechanism 
overhead for the ability to compensate for defective bits. For memory designs 
with very high failure rates, this tradeoff may be unattractive.

To address the high overhead of operating at low voltage, Wilkerson et al.[20] 
improve Vmin by storing error-correction patterns in cache resources, trading off 
cache capacity for low voltage operation. Chishti et al.[3] identify the limitations 
of testing-based implementations and propose to provide error correction 
capability using orthogonal Latin square codes. Chakraborty et al.[2] also trade 
off cache capacity for lower voltage. A multi-copy cache stores two copies of 
each clean datum and three copies of each dirty datum to allow detection and 
correction of corrupted bits, respectively. 

More recently, designs with mixed (heterogeneous) cell designs have been 
proposed to achieve low voltage with modest area cost. Dreslinski et al.[4] 
propose to combine the low voltage benefits of robust upsized cells and the 
cost benefits of smaller cells by building caches with a mixture of cell types. 
Cache lines consisting of robust cells operate at low voltage, while a separate 
power supply provides a higher voltage to less robust cells. By moving recently 
accessed data to the low voltage cache lines, Dreslinksi et al. service the 
majority of requests using low voltage cache lines, and reduce active power in 
the L1 cache. 

While using mixed cell architectures could help achieve reliable low voltage 
operation, it is important to ensure that such design has a minimal impact on 
high-voltage performance (for a single-core system) or low-voltage performance 
(for a multi-core system). In the next two sections, we highlight two mixed-cell 
cache architectures we explored in our prior work. The first architecture[5] is 
tailored towards high-performance systems, where high-voltage performance 
is critical but we need to maintain reliability at low voltage using robust cells. 
The second architecture[8] targets multi-core TDP-limited systems, where the 
highest performing point is when all cores are active at low voltage, so low-
voltage performance is critical. 

A Mixed-Cell Architecture for  
High-Performance Systems
A typical last-level cache (LLC) consists of hundreds or thousands of 
SRAM sub-arrays. We proposed an architecture for a single-core system 
that uses multiple cell sizes in a single LLC.[5] When high performance 
is needed, the processor runs at high voltage/frequency states where even 
small (non-robust) cells can operate reliably. As supply voltage is lowered, 
the failure rate of small cells increases exponentially, so we disable ways 
or sets one after another beginning with those consisting of the smallest 
SRAM cells. Ways or sets implemented with large cells remain active  
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(and reliable) at lower supply voltage, providing the needed LLC capacity. 
To avoid failures, a uniform implementation of the cache using only 
robust cells would significantly decrease cache capacity for the same area, 
therefore hurting high-voltage performance. Alternatively, we propose 
a heterogeneous-cell architecture to avoid low-voltage failures without 
hurting high-voltage performance. 

LLC Implementation Using Heterogeneous Cell Sizes  
to Support Low Vmin
Consider a four-way set-associative cache. Figure 2 illustrates an example of 
building a four-way set-associative LLC, where each group of sub-arrays is 
associated with a cache way and has a different cell size. In this illustration, 
the total number of sub-arrays is divided into four groups where each 
group represents a particular way with a particular cell size; the sub-arrays 
with larger cells become taller since the cell size increases in the horizontal 
direction.[22] In this example, the processor and LLC are operating at 0.7 V. 
Thus, the LLC sections corresponding to ways three and four are disabled at 
0.7 V since they are comprised of small cells, many of which will fail at such 
a voltage.

0.9V

0.8V

0.7V

VDDMIN

0.6V

WAY

2 (active) 

1 (active)

LOCAL LLC
CNTR 1 ROUTER 

C2C INTERCONNECT

CORE

Figure 2: An example four-way LLC, where each way uses a different 
cell size and is active at a different voltage. The processor runs at 0.7 V, 
so only ways 1 and 2 are active
(Source: Ghasemi et al., 2011[5])

Consider an 8-MB LLC comprised of C5 and C3 cells[22] where each cell size 
provides 4-MB capacity. The cell failure probability of these cells is presented 
in Table 1. In this particular architecture, we can reduce the total cell area by 
15 percent, that is, the total LLC area by 13 percent considering SRAM array 
efficiency equal to 85 percent.[26] When the voltage (frequency) is higher than 
0.8 V (1.6 GHz), the processor is able to use the full 8-MB LLC capacity. If 
the voltage (frequency) is below 0.8 V (1.6 GHz), the 4-MB section of the 
LLC consisting of the smaller C3 cells will be disabled. However, the 4-MB 
section consisting of the larger C5 cells will operate reliably in the whole 
voltage range from 0.7 V to 0.9 V. 
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C1 C2 C3 C4 C5 C6

Relative Cell Size 1.00 1.12 1.23 1.35 1.46 1.58

Pfail at 0.90 V 3.2 × 10−7 2.5 × 10−9 7.0 × 10−11 4.5 × 10−12 5.1 × 10−13 1.2 × 10−13

Pfail at 0.85 V 5.4 × 10−7 1.0 × 10−8 3.1 × 10−10 1.6 × 10−11 3.8 × 10−12 1.0 × 10−12

Pfail at 0.80 V 1.0 × 10−6 3.0 × 10−8 1.5 × 10−9 7.6 × 10−11 2.9 × 10−11 9.0 × 10−12

Pfail at 0.75V 2.0 × 10−6 8.1 × 10−8 7.4 × 10−9 4.1 × 10−10 2.2 × 10−10 7.9 × 10−11

Pfail at 0.70V 4.1 × 10−6 2.1 × 10−7 3.7 × 10−8 2.2 × 10−9 1.6 × 10−9 7.0 × 10−10

Table 1: Cell Size and Voltage vs. Probability of Cell Failure at Voltages from 0.9 V to 0.7 V
(Source: Ghasemi et al., 2011[5])

To minimize the LLC area further, we can design a more heterogeneous LLC 
composed of C5, C4, C3, and C2 cells (Table 1) where each cell size gives  
2 MB of capacity (for compactness of notation we refer to this as a 2-MB/2-MB 
/2-MB/2-MB C5/C4/C3/C2 LLC). As the voltage is decreased from  
0.9 V to 0.8 V, to 0.75 V, and to 0.7 V, the LLC capacity is reduced from 8 MB 
to 6 MB, to 4 MB, and to 2 MB. In this architecture, the full 8-MB capacity 
operates reliably at 0.9 V. As the voltage decreases to 0.8 V, 0.75 V, and 0.7 V,  
each 2-MB section consisting of C2, C3, and C4 cells will, respectively, be 
disabled in turn. Within their range of valid operating voltages the resulting 
cache failure probability of each of the 6-MB, 4-MB, and 2-MB sections of 
the LLC is acceptable. Using this architecture, we can reduce the total area 
dedicated to SRAM cells by 18 percent, and therefore, the total LLC area by 
16 percent if we assume 85-percent array efficiency. We also explored two other 
LLC architectures: (1) a 4-MB/2-MB/2-MB LLC consisting of C2/C3/C4 
cells, and (2) a 2-MB/2-MB/4-MB LLC consisting of C1, C2, and C4 cells. 
These two additional LLC architectures satisfy the yield target for the given 
voltage range, 0.7–0.9 V as long as the proper section of the LLC is shut down 
for each voltage down-transition. Figure 3 shows the total LLC cell area and 
the operating voltage range of each section for four different LLC architectures 
relative to the baseline 8-MB one.

A C5:2M:0.7V

C5:4M:0.7V

C4:2M:0.75V

C4:2M:0.75V C3:2M:0.8V

C3:2M:0.8V C2:2M:0.9V

C2:2M:0.9V

C6:8M:0.7V

C3:4:0.8V

C3:4:0.8VC5:2M:0.7V

C5:4M:0.7V

Baseline

LLC Arch. Capacity, VDDMIN and relative area associated w/each cell type in LLC Rel. tot. area

1.00

0.81

0.85

0.83

0.83

B

C

D

Figure 3: Total LLC cell area for different LLC configurations relative to the baseline. In 
each colored box whose area is proportional to the total cell area for a given cell size 
X:Y: Z represents cell size capacity and minimum operating voltage
(Source: Ghasemi et al., 2011[5])
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Microarchitecture Techniques for LLC Way Shutdown
In our example in Figure 2, as supply voltage decreases, one LLC way 
after another will be disabled in ascending order of cell size; a cell size is 
associated with an LLC way. When a voltage/frequency down-transition is 
triggered by dynamic voltage and frequency scaling (DVFS), an LLC way 
that cannot operate reliably at the new voltage is shut down. In such a case, 
the dirty LLC lines in the LLC way must be written back to main memory. 
The mechanism for shutting down a subset of LLC is already available in 
commercial multi-core processors to reduce leakage power consumption.[15] 

Once the DVFS controller decides to decrease the operating voltage/
frequency of the processor, each local LLC controller shown in Figure 2 
examines each line in the way that is being shut down. If the line is dirty, it 
is either (a) written back to the memory controller queue (cache to memory 
or C2M) or (b) moved to another way after evicting a least recently used 
clean line in the same set (cache to cache or C2C). The next line is then 
examined after the status bit of the dirty line is set to the “invalid” state. 
This process is repeated until all lines are examined in the way that needs 
to be shut down. Note that a way shutdown process using option (a) may 
increase the traffic between on-chip cores and off-chip memory (and thus 
power consumption). On the other hand, the LLC can still service read/
write requests to minimize the performance impact associated with the 
shutdown operations. 

Performance and Power Impact 
Mixed-cell LLC architectures may impact performance and power both 
positively and negatively. First, the leakage power remains significant due 
to the use of larger cells. However, our heterogeneous LLC architectures 
can reduce a substantial amount of the LLC leakage power since some 
LLC ways are automatically disabled at low voltage/frequency operating 
states. Second, the heterogeneous LLC architectures require significantly 
less die area for the same capacity (Figure 3) compared to a cache with 
all-robust cells. This freed-up die area can, in turn, be used to increase the 
LLC capacity, providing higher peak performance at the highest voltage/
frequency state. 

On the downside, two factors contribute to increasing memory traffic and 
higher power consumption. First, the flushing operations required before 
reducing voltage/frequency and disabling LLC ways increases memory traffic. 
Second, the reduced LLC capacity at low voltage causes more misses and 
therefore more memory traffic. These effects reduce overall performance and 
increase memory system power consumption. However, one should note 
first that workloads that need high performance would spend a substantial 
fraction of their runtime at the high voltage/frequency states. Furthermore, 
the interval of voltage/frequency changes is often longer than 10 milliseconds 
in a commercial operating system, mainly due to the performance penalty 
associated with PLL re-locking time (tens of microseconds) for changing 
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frequency.[16] This makes the overall performance impact of the flushing 
operations quite small; on average, the performance degradation is less than  
0.5 percent even with the 1ms voltage/frequency change interval when 
combined with the C2C scheme.

Evaluation Summary
We evaluated our architecture using Simics[12] augmented with GEMS[14] 
running four commercial workloads and two memory-intensive SPEC[19] 
workloads. A more detailed analysis of our results is presented in.[5] Our 
proposed LLC architecture reduces the LLC total cell area by 15–20 percent 
without impacting high-voltage performance, compared to an all-robust 
LLC. Comparing the same cache area as an all-robust LLC, our architecture 
provides a higher cache capacity, leading to an average 15 percent higher 
peak performance. The performance impact of the proposed architecture is 
negligible when various voltage/frequency states are explored by DVFS as a 
function of changing performance and power demands. The proposed LLC 
architecture reduces their leakage power due to way disabling at low voltage. 
Overall energy consumption is reduced by 5–10 percent even though extra 
energy consumption is required to support the slightly longer runtimes and 
more frequent accesses to the LLC and off-chip memory. 

A Mixed-Cell Architecture for Multi-Core Systems
The motivation for our second mixed-cell cache architecture[8] is to enable the 
whole cache at low voltage, and therefore avoid a higher cache miss rate and 
improve low-voltage performance. This is needed for TDP-limited multi-core 
architectures where all cores can only be active at low voltage. To achieve 
this goal, we need to protect modified lines by storing them in robust cells, 
while using the remainder of the cache for clean lines. We use simple error 
detection and correction mechanisms to detect errors in clean lines, allocate 
write misses to robust lines, and read misses to clean lines. On a subsequent 
write to a clean line, we examined three alternatives to ensure modified data 
is not lost. 

Cache Hierarchy with Mixed-Cell Support
Figure 4 shows all three levels of our cache hierarchy with support for robust 
cells. Our baseline cache hierarchy uses a 32-KB 8-way L1 cache, 256-KB 
8-way L2 cache, and a 4-MB 16-way LLC (L3). For each level in the cache 
hierarchy, we implement two ways with robust cells, while the remaining ways 
use standard (non-robust) cells. This adds an area overhead of 25 percent  
(L1 and L2) and 12.5 percent (L3) for the cache data array. We add a status bit 
associated with each tag indicating whether the associated line is a robust way 
or a non-robust way. We don’t necessarily need this extra bit if the robust ways 
are fixed to two specific ways (Way 0 and Way 1 in Figure 4). We also add an 
extra LRU bit since we implement a different replacement algorithm in the 
low-voltage mode.
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(a) Heterogeneous Cell Design in the 8-way L1 Data Cache. Shaded Ways 0 and 1 Use Robust Cells.   
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(b) Heterogeneous Cell Design in the 8-way L2 Cache. Ways 0 and 1 Use Robust Cells.
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Figure 4: A Mixed-cell cache hierarchy: L1 cache uses parity, while the L2 and L3 use SECDED ECC
(Source: Khan et al., 2013[8])

Each cache level has a different requirement for error detection and correction. 
Since the L1 cache is byte-accessible and extremely latency sensitive, we 
use a parity bit for each byte in the L1, similar to many Intel® AtomTM and 
Intel CoreTM processors. We use simple SECDED ECC for each line in the 
L2 and L3 caches. We provide this protection for both robust and non-robust 
lines to account for soft errors as well as voltage-dependent failures. In general, 
detectable errors in clean data are recoverable from the next cache level or from 
memory. However, detectable errors in dirty lines may not be recoverable. 
To minimize detectable unrecoverable errors (DUEs), we handle modified data 
differently from unmodified data.
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If an error is detected in a clean line, it is treated like a cache miss and is 
obtained from the next cache/memory level. For modified data, however, we 
must ensure a very low probability of failure, which we achieve through the 
use of robust cells. This is particularly true in the L1, where parity is unable to 
correct bit errors and the increased robustness of the cell allows us to minimize 
the likelihood of bit errors. 

To simplify our L1 cache implementation, we handle all accesses to failing 
lines as cache misses. Since the number of such lines is small, this has little 
impact on performance. For the L2 and L3 caches, SECDED ECC corrects 
most errors. Errors that are detected but not corrected (for example, lines with 
two errors) are handled as cache misses and obtained from the next cache level 
or from memory. L2 and L3 lines that incur double-bit errors can be disabled 
to avoid undetectable errors, that is, silent data corruption (SDC), when soft 
errors hit the same line. Our analysis shows that the probability of failures in 
robust cells is extremely low at the voltages we consider. For example, we find 
that 99.9 percent of the L3 caches will suffer failures in less than 1 percent of 
all lines at low voltage.[8]

Our mixed-cell cache handles writes differently from reads. We need to satisfy 
the condition of storing modified data only in robust ways. To achieve this 
objective, we modify the cache replacement policy to handle write misses 
differently from read misses, and also need to handle subsequent writes to non-
robust lines, as we explain in the next two subsections.

Changes to Cache Replacement Policy 
We assume the baseline caches implement a least recently used (LRU) 
replacement policy to simplify our explanation, though the proposed 
mechanism could be applied to other replacement policies. In our mixed-cell 
cache architecture, we allocate write misses only to robust ways and read misses 
to non-robust ways. 

The flowchart in Figure 5 demonstrates changes we made to the cache 
replacement policy. On a read miss, we choose a replacement victim, 
NR_LRU, only from non-robust ways based on LRU bits. On a write miss, 
we choose a victim, GLOBAL_LRU, which is the LRU line among all ways of 
the set (both robust and non-robust). If the victim line is robust, we trigger a 
writeback for modified data and allocate the new line in its place. If the chosen 
victim is in a non-robust way, we choose the LRU line from the two robust 
ways (RB_LRU), trigger a writeback for modified data to convert the RB_LRU 
line to a clean line, move the RB_LRU line to use the GLOBAL_LRU line’s 
storage, and allocate the new line to the RB_LRU line. 

An alternative implementation we investigated was to implement LRU for two 
disjoint groups of lines for each cache set: robust lines and non-robust lines. 
However, some benchmarks, where writes represent a significant fraction of 
all misses, suffered significant performance losses when write-allocates were 
limited to choose a victim only from robust ways. We still observed significant 
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performance losses even when the number of L3 robust ways increased from 
two to four or eight. This motivated our modified algorithm that chooses a 
GLOBAL_LRU victim on a write miss. While some benchmarks are affected 
due to limiting victim selection for read misses to only non-robust ways, the 
performance losses are small since each cache set has many more non-robust 
lines than robust lines (6 out of 8 for the L1 and L2 caches, and 14 out of 16 
for the L3 cache).

Write

Choose Victim GLOBAL_LRU
from all lines in set 

Victim Type
Robust Non-Robust

Choose Victim RB_LRU from
robust lines in set 

Read

Choose Victim NR_LRU from
non-robust lines in set 

Allocate New Line in
NR_LRU’s location, Update

status bits

Cache Miss Type

Writeback Data in the
RB_LRU Line 

Move RB_LRU line to
GLOBAL_LRU’s location,

Update status bits 

Allocate new line in
RB_LRU’s location,
Update status bits  

Writeback Data in the
GLOBAL_LRU Line 

Allocate new line in
GLOBAL_LRU’s location,

Update status bits  

Figure 5: Changes to cache replacement policy
(Source: Alameldeen et al., 2013)

Handling Writes to Non-Robust Lines 
Our mixed-cell cache architecture needs to prevent DUE and SDC for 
modified data. It is straightforward to implement this for lines allocated on 
a write miss, since the cache replacement algorithm would allocate them to 
robust cells. However, for lines that were allocated to non-robust ways on a 
read miss, we explore different alternatives to prevent failures.

Writeback 
We handle the write to a non-robust line like we would for a write-through 
cache. We store modified data in the same non-robust line, but convert it 
to a clean line by writing back the data immediately to the next cache level. 
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This writeback traffic causes significant network congestion, as well as power and 
latency overhead. A write to the L1 cache can trigger cascading writes all the way 
to memory if the L2 and L3 caches allocated the same line to non-robust ways. 

Swap 
We observe that a write to a cache line is often followed by more writes to the 
same cache line. To reduce writeback traffic, we handle a write to a non-robust 
line by swapping with the LRU way of robust lines in the set, RB_LRU. 
The RB_LRU line triggers a writeback to convert to a clean line. The RB_LRU 
line is then swapped with the written line. The status and LRU bits are also 
swapped between the two cache tags. This approach reduces traffic as it is more 
likely to write to the most recently written line than it is to write to the LRU 
robust line. We model this mechanism’s overhead by blocking access to the 
cache for three cycles (L1) or six cycles (L2 and L3 that have 32-byte accesses) 
to account for using the cache read and write ports to perform the swap. 

Duplication 
To avoid writeback traffic and the additional swap latency, we explore trading 
off capacity to save this overhead. In this mechanism, we assign each two 
consecutive non-robust lines as “partner lines” similar to. [21] For example, in 
Figure 5’s L1 cache, the line in way 2 is a partner line to that in way 3, the line 
in way 4 is a partner line to that in way 5, and the line in way 6 is a partner 
line to that of way 7. When a write occurs to a non-robust line, we evict its 
partner line and write the data to both lines, using two extra cycles. We modify 
the replacement algorithm so that the partner line is always invalid and not a 
candidate for replacement. This duplication causes losing some cache capacity, 
but avoids writeback traffic and swap overhead. When writing to a duplicate 
line, we perform the write to both the original line and its partner. When 
reading from a duplicate line, we check parity (L1) or ECC (L2/L3), and 
trigger a read from the partner line if an error is detected.

Evaluation Summary
We evaluated a power-constrained system with the ability to operate one, two, 
and four cores within the same power budget using CMP$im[7] and SPEC 
benchmarks.[19] A more detailed analysis of our results is presented in.[8] To 
support four active cores, our hypothetical system used a mixed-cell cache 
architecture to operate at 590 mV. In this mode, the 75 percent capacity loss 
experienced by our baseline mixed-cell cache architecture resulted in a  
12 percent performance loss. Our proposal delivers a 9.5 percent performance 
benefit relative to a non-mixed cell baseline using only robust memories, which 
is similar to the performance improvement for our mechanism in the section 
“LLC Implementation Using Heterogeneous Cell Sizes to Support Low Vmin.” 
However, our design avoids significant reductions in cache size at low voltage, 
improving multi-core performance by up to 17 percent on average and saving  
50 percent of the L1 dynamic power compared to using only robust cells. 
While the writeback mechanism incurs significant overheads, both swap and 
duplication achieve significant performance improvements and power reductions.
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Conclusions
In this article, we showed that mixed-cell memory designs could play a key 
role in achieving the right balance between performance, power, and reliability 
for single-core and multi-core systems. For mixed-cell designs, part of the 
memory structure is built with cells that are more robust and failure-resistant, 
while the rest is designed using traditional cells. Robust cells ensure resiliency 
under low-voltage conditions to protect the most vulnerable data, while the 
rest of the memory structure could be used to store redundant data to improve 
performance. 

We showed how this concept works using two specific examples. First, our 
heterogeneous LLC system only turns on the robust portion at low voltage, 
while using the whole cache at high voltage. This mechanism achieves significant 
power savings at low voltage and significant performance improvements at high 
voltage compared to a uniformly robust cache design. Second, our multi-core 
mixed cell architecture uses the whole cache (including the non-robust portion) 
at low voltage while ensuring modified data is not lost. This mechanism enables a 
multi-core system where all cores are active in a TDP-limited design and achieves 
significant performance improvements and power savings at low voltage. The 
same concept could be used throughout the entire memory hierarchy to improve 
memory resiliency without sacrificing performance or energy efficiency.
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Ever larger on-die memory arrays for future processors in CMOS logic 
technology drive the need for dense and scalable embedded memory 
alternatives beyond SRAM and eDRAM. Recent advances in nonvolatile 
spin transfer torque (STT) RAM technology, which stores data by the spin 
orientation of a soft ferromagnetic material and shows current induced 
switching, have created interest for its use as embedded memory. Any attractive 
memory technology would be a viable solution if it could scale well for a few 
generations. We study the STTRAM scaling roadmap for last level cache 
(LLC) and how much dimensional scaling is feasible with this technology. This 
article will show that the main limitation on STTRAM dimensional scaling 
will be posed by retention time failure. When an STTRAM cell is scaled, 
the thermal stability factor (D) scales down linearly with the area, and causes 
unreliability due to retention failure. Today manufacturing techniques can 
fabricate nonvolatile STTRAM cells (with D ≥ 60 kT). Researchers are actively 
working at two fronts to pave the STTRAM scaling path for a few generations:  
1) Novel manufacturing techniques that can facilitate fabrication of non-
volatile STTRAM cells (with D ≥ 60 kT), 2) Architecture solutions that can 
relax the non-volatility condition and drop the required lower bound of 60 kT.

In this article, we focus on the solutions in the second category, that is, relaxing 
the nonvolatility condition to allow lower bound on D. Although there have 
been an extensive number of publications on dramatically relaxing the D, we 
believe these solutions alone can lower the bound on the thermal stability down 
one more generation before they become too costly. Beyond one more generation 
scaling, the dimensional scaling would depend on new manufacturing techniques 
to fabricate STTRAM cells with high thermal stability at scaled dimensions. 

Introduction
As the number of cores in a chip continues to increase linearly, the demanded 
on-die memory capacity is expected to grow linearly as well. The limited power 
envelope of the future embedded and general-purpose systems makes emerging 
memory technologies, like spin transfer torque (STT) RAM technology, with 
zero-static power very attractive solutions in the cache hierarchy. STTRAM 
stores data by the spin orientation of a soft ferromagnetic material and 
shows current induced switching. When the spin-polarized current passes 
through a mono-domain ferromagnet, the ferromagnet absorbs some of the 
angular momentum of the electrons. It creates a torque that causes a flip in 
the direction of magnetization in the ferromagnet. This is used in magnetic 
tunneling junction (MTJ) based STTRAM cells where a thin insulator (MgO) 
is sandwiched between a fixed ferromagnetic layer (polarizer) and the free 
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layer (storage node). Depending on the direction of the current flow, the 
magnetization of the free layer is switched to a parallel (P: low resistance state) 
or antiparallel (AP: high resistance state) state. 

STTRAM has the potential to replace the conventional on-die memory 
because of its zero standby power, high density, competitive read performance, 
and CMOS compatibility. Alongside the above attractive features, a viable 
new technology has to demonstrate a clear path to move to smaller technology 
nodes as the underlying CMOS technology scales down. STTRAM technology 
scaling is challenging with the nonvolatility condition. As the STTRAM 
cell scales down, assuming a volumetric dependence of thermal stability, the 
thermal stability factor (∆) scales down linearly with the area. Thermal stability 
factor is the core feature of STTRAM cell. It identifies how much stability the 
MTJ has against thermal noise, which directly impacts the data retention time. 
The higher the thermal stability factor is, the longer the data is retained in the 
cell. A nonvolatile STTRAM cell (retaining data 10+ years) requires ∆ ≥ 60 kT. 
Although cells with ∆ ≥ 60 kT are fabricated today, fabricating nonvolatile 
STTRAM cells with practical write performance is not guaranteed at deeply 
scaled dimensions. The scaling of STTRAM cells every generation with ∆ ≥ 60 
and practical write performance requires novel manufacturing approaches or 
materials.

Using STTRAM in the last level cache (LLC) brings up an interesting 
opportunity. The data in LLC does not require 10+ years of retention time; 
hence the condition on high ∆ can be relaxed. The purpose of this article is to 
provide a realistic assessment of relaxing the thermal stability in STTRAM cells 
in LLC. The notion of scaling ∆ to support dimensional scaling and also lower 
WRITE current has been published quite extensively[1][2][3][4][5][6] and seems to 
provide a scaling path beyond what technology can provide. Our aim in this 
article is to understand the realistic limits of ∆, and how many generations of 
scaling will such change in the nonvolatility condition provide. To formulate 
this problem and allow the readers to follow our method of evaluation, we 
provide a detailed description of our numerical and analytical simulators, 
which have been built bottom-up. In conclusion we will show that, contrary 
to what has been previously published, with a true assessment with realistic 
process parameter variations, relaxing nonvolatility condition by the means of 
architectural solutions do assist dimensional scaling (and the scaling of ∆), but 
the advantage is limited. 

In the rest of this article, we start by reviewing STTRAM through coupled 
transport and LLG solvers in the section “Basics of STTRAM with Magnetic 
Tunneling Junction (MTJ).” This section will continue with read, write, and 
retention failure of STTRAM. Then we review our study of retention failure 
as the technology scales well as architectural solutions to facilitate scaling ∆ in 
the section “Retention Failure and Scaling.” Then we complete our retention 
failure study by including device variations and the challenges of retention time 
testing in the section “Process Variation and Retention Time Testing,” followed 
by an article summary.
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Basics of STTRAM with Magnetic Tunneling  
Junction (MTJ)
Here we provide a detailed description of the bitcell, its READ and WRITE 
circuits, and the principle technology/material parameters that need to be 
considered. The background material will also provide someone unfamiliar 
with the operation of an STTRAM cell a basic understanding of the cell 
behavior and the rigorousness required to perform a reasonable assessment of 
the bitcell. 

It is a known fact that when a spin-polarized current passes through a 
mono-domain ferromagnet, it attempts to polarize the current in its 
preferred direction of magnetic moment. As the ferromagnet absorbs some 
of the angular momentum of the electrons (spin transfer effect or STT), it 
creates a torque that causes a flip in the direction of magnetization in the 
ferromagnet. The application of spin transfer effect in a memory device 
was enabled with a structure termed magnetic tunneling junction (MTJ). 
MTJ consists of two ferromagnetic layers separated by a tunneling barrier 
(such as Al2O3 or MgO) as shown in Figure 1(a) and Figure 1(b). The first 
ferromagnetic layer is fixed in magnetization and acts as a polarizer and the 
second layer orientation can be altered with the help of spin transfer torque 
and is referred to as a free layer. The resistance difference in this structure 
is termed tunneling magneto resistance (TMR = [RAP-RP]/RP) due to the 
tunneling phenomenon. Switching of Al2O3-based MTJ was experimentally 
shown in 2004 and it was replaced by MgO-based MTJ to support better 
readability with TMR as high as ~200 percent at room temperature.[19] 
TMR improvement in MgO-based MTJs can be attributed to coherent 
spin-polarized tunneling. 

MTJ stacks can be integrated with an access transistor to realize a bitcell 
structure 1T-1MTJ as shown in Figure 1(c). Figure 2 illustrates the 1T-1MTJ 
memory bitcell schematic and the voltage polarities for read (RD) and write 
(WR). The bitcell is read by precharging the BL to VRD and allowing it to 
decay through the cell. A reference BL, which is simultaneously drained using 
a reference cell, acts as the sense amplifier reference. Both the reference and 
the accessed BLs are clamped using a PMOS current source, so that a constant 
differential is maintained at the sense amplifier input even for very long access 
times. On the other hand a bidirectional writing scheme is used for writing 
into the bitcell. For writing “1”, BL is charged to VWR and SL is connected 
to VSS. For opposite direction switching, SL is biased at VWR and BL at VSS. 
Figure 3 shows the characteristics of MTJ during read and write operations. 
Write voltages for P-to-AP (VWR

P→AP) and AP-to-P (VWR
AP→P) switching and 

read voltage (VRD) are indicated in the diagram. 

To simulate transport and magnetization dynamics in multilayer magnetic 
tunnel junctions (MTJs) we have developed a self-consistent simulation 
framework based on non-equilibrium Green’s function (NEGF) formalism 
and Landau-Lifshitz-Gilbert (LLG).[25][26] NEGF can numerically estimate 
the spin current flowing through the MTJ structure and LLG can 

Figure 1: An MTJ stack with (a) parallel spin 
configuration (b) antiparallel spin configuration and 
(c) integration with the CMOS access transistor 
in the metal stack, showing Bit Line (BL), Source 
Line (SL) and Word Line (WL)
(Source: Intel Corporation, 2013)
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comprehend the dynamics of the free layer ferromagnet under spin current/
spin torque. NEGF and LLG are coupled together for a self-consistent 
simulation framework[28][31] and are experimentally calibrated with material 
parameters reported in [27].

STTRAM Failure Analysis 
Due to aggressive scaling of STTRAM cell structures, process variations 
and thermal disturbances can negatively impact the memory performance. 
The process variation and thermal disturbance causes three main failure 
modes: 1) Read failure, 2) Write failure, and 3) Retention failure. In our 
analysis of these failure modes we considered the following variation 
parameters.

In this analysis we have considered variations both in the access transistor 
and in the MTJ. Variations in the MTJ can be due to five major parameters, 
which are:

(a) � systematic lithographic variation of critical dimensions of feature size 
F with s  = 10 percent

(b) � normally distributed localized fluctuation of magnetic anisotropy, 
K(K = MSHk)

[22]

(c) � thermally activated initial angle of precession [P(q ) ≈ 2(K/kBT)
exp(−Ksin2q /kBT)]

(d)  thermal component of internal energy with s ~kBT

(e)  variation in MgO thickness

For the access transistor we have considered variations in threshold voltage Vth. 
Using the response surface technique[30], we formulate read (RD) and write 
(WR) failure probabilities, as well as retention failure rate for the bitcell and for 
a memory array.

Read Failure (RD Failure)
During reading bitcell value is identified using the reference current IREF. 
When IRD > IREF, the bitcell state is P and when IRD < IREF , the state is AP. 
Read failures in a bitcell can be either due to distinguishability of states 
(P and AP) or due to read-disturb. In the first failure mechanism the states are 
sense limited where IRD[AP state] > IREF or IRD[P-state] < IREF , or they can be 
time limited where not enough bit-line (BL) differential has been developed 
in the given read cycle time TRD. In the second failure mechanism (read-
disturb), we accidentally write into the cell while reading the cell due to larger 
read current IRD > IC (IC = JCA). Since WR is bidirectional and RD is single 
directional, only one type RD disturb (either P-to-AP or AP-to-P) can be 
present during bitcell reading. 

Figure 4 illustrates the probability density function (PDF) of IRD variation from 
a typical Monte-Carlo run considering variations described above. The figure 

Figure 3: V-J characteristics of 
the MTJ. For symmetric JC, the 
preferred RD direction is identical 
to the WR direction for AP→P 
transition. RD is performed at a 
constant voltage VRD
(Source: Intel Corporation, 2013)
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shows the different modes of RD failure, namely distinguishability of states 
and RD disturb (IRD(P) > IC). 

Write Failure (WR Failure)
Figure 5 shows the switching of MTJ under both positive (AP→P 
switching) and negative currents (P→AP switching) and associated 
resistance changes. Write failure in a bitcell is the inability to write a 
specific value into cells. It can be either due to higher JC or due to lower 
access transistor current for a target write time TWR. As a result, either 
IWRAP→P< ICAP→P or IWRP→AP< ICP→AP or both can happen. Figure 6 shows the 
IWR variation in a typical Monte-Carlo run and WR failure is present when 
IWRAP→P is lower than ICAP→P.

Retention Failure
Retention failure occurs when the content of an idle cell flips due to the 
thermal noise. The thermal activation model of STTRAM suggests that a bit 
flip has a Poisson distribution with time characteristic of te∆. Therefore the 
probability that a bit flips n times in the unit of time t is:

Pflip(n) = ​ ​λ​n​​e​−λ​ ____ n!  ​� (1)

where , λ = ​  t ___ 
τe∆ ​ and τ is 1ns. The probability that a cell fails during time t is 

the sum of the probability that it switches an odd number of time. Since the 
first switching probability (Pflip (1)) is the dominating factor, the accumulated 
probability of odd number of switching is very close to the accumulated 
probability of the total number of switching. So we approximate the 
retention failure probability with the probability of total number of flips. 
Following the Poisson distribution this probability is:

Pret-fail  ≅ ​Σ​n =1​ 
∞  ​ Pflip (n) = 1− exp(−t/exp(∆))� (2)

The retention failure rate is exponentially dependent on the thermal stability 
factor (∆). As the STTRAM cell and the MTJ device scales down, assuming 
a volumetric dependence of ∆, the thermal stability factor ∆ scales down 
linearly with the area, causing exponentially increase in the retention failure 
rate.

Figure 7 shows all the failure rates as the technology scales, for a 32-MB cache. 
You can see that the retention failure will be the dominating source of error 
as the technology scales. This graph shows that retention failure can stop 
STTRAM scaling, and it needs to be addressed before any other issue. In the 
following sections we review the effect of retention failure on scaling in more 
detail, and propose solutions.

Figure 5: Normalized RMTJ as a 
function of injected current density  
(JC = 1.1 × 106 A/cm2)
(Source: Intel Corporation, 2013)

J [106A/cm2]

R
 [

N
o

rm
al

iz
ed

]

1.5

2

2122 0 1

1

2

RAP     P

RP     AP

RAP

RP

JCJC

TMR

Figure 6: PDF of WR current 
for a default Monte-Carlo run 
(JC = 106A/cm2; RAPA = 50Ω − um2) 
showing the WR failure modes
(Source: Intel Corporation, 2013)

106

0

# 
O

cc
u

re
n

ce
s

22 21 0 1 2

Normalized IWR

P     AP AP    P
WRI

WRI

WR

Failure

ICIC

Figure 7: The trends of the type 
of failure
(Source: Intel Corporation, 2013)

PFAIL WR

PFAIL RD

PRET FAIL

PFAIL TOTAL

P
FA

IL
 C

H
IP

 [3
2M

B
]

100

1022

1024

Technology Node [nm]

8 11 15 22



Intel® Technology Journal | Volume 17, Issue 1, 2013

STTRAM Scaling and Retention Failure   |   59

Retention Failure and Scaling
The stochastic process of retention failure resembles the well-known failure 
behavior of soft errors induced by cosmic rays. Soft error mitigation has been 
studied for decades, and the outcome of these studies can very well be applied to 
STTRAM as well or at least has to be taken into consideration to find a solution 
for STTRAM retention failure. The stochastic nature of error occurrence both in 
the soft errors and in STTRAM retention failure can flip the bit content with no 
warning or detectable signal. Therefore to ensure the data integrity by first, detect 
whether an error has happened and second, correct it; we need to incorporate 
some information redundancy in the array. The most efficient way of including 
the redundant information is to use error correcting codes (ECC). Each cache 
line is encoded separately with a number of code bits. Assuming a cache line 
has 64 bytes (plus c bits of code), the failure probability of a line with an ECC 
correcting e errors is a binomial cumulative distribution:

Pline-fail = 1 - ​Σ​i = 0​ 
e  ​ Pfail 

i(1 − Pfail)
512 + c − i � (3)

This is the probability that more than e errors happen in a line and it either 
goes undetected, or it is corrected to an incorrect value. Both of these two cases 
fall under the Silent Data Corruption or SDC. As the name suggests these 
are the types of errors that corrupt the data without being detected. When 
designing a reliable system, an SDC budget is allocated to each part of the 
system. Each part of the system has to be designed in a way that stays below 
its SDC budget. The LLC array is allocated an SDC budget, which will be 
divided equally among all the cache lines. To ensure the reliability of an array, 
each cache line has to follow its SDC budget. Below we explain the expected 
reliability failure of an array and how it is measured.

The SDC is measured in the number of failures in 1 million hours, which 
is called FIT rate. The target SDC FIT rate of a system is picked based on 
the sensitivity of the application. The SDC FIT rate of a CPU in today’s 
supercomputer is expected to be around 10 (that is, 10 failures in 1 million 
hours).[33] Since most of the CPU area is occupied by the LLC, the LLC will be 
the main contributor to the CPU SDC FIT rate. So we assume the LLC SDC 
FIT rate to be close to 10 as well. To ensure this SDC FIT rate for the array, 
the cache line SDC has to be bounded by 10/N, where N is the number of 
cache lines. Obviously the bound becomes tighter as the cache capacity grows. 
Figure 8 shows the SDC FIT rate bound of a 64-byte cache line in LLC, 
assuming linear cache capacity scaling. Any reliability measure for a cache line 
has to ensure that the SDC FIT rate of a line falls below this curve. Therefore 
the value of Pfail-line from Equation 4 has to stay below the red curve of Figure 
8 to guarantee the 10 SDC FIT rate for the whole array structure. In the next 
section we evaluate how ECC can guarantee this bound and what are the 
associated costs.

“The stochastic process of retention 

failure resembles the well-known failure 

behavior of soft errors induced by 

cosmic rays.” 
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Figure 8: Maximum cache line SDC FIT rate with the 
technology and capacity scaling
(Source: Intel Corporation, 2013)
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ECC and Scrubbing
The cost and complexity of error detection and correction circuitry of ECC 
increase rapidly for larger ECCs. The higher the bit failure rate is, the stronger 
code and more code bits are required. A large number of ECC bits take up 
array size and detecting and correcting strong ECCs with a large number of 
bits is a costly process from a performance and power point of view, which 
adds unwanted latency and power usage to access the array. In order to balance 
the number of ECC bits, one well-known technique is scrubbing.[8] During the 
scrubbing process, each cache line is read periodically and checked for errors. If 
there is an error, the line is corrected and written back. If the scrubbing process 
is done at the right frequency, it prevents the accumulation of error bits in a 
line; hence with the right scrubbing rate in place, we can achieve the target 
SDC rate with smaller ECC. 

We did our analysis on BCH codes (Bose and Ray-Chaudhuri code) that are 
widely used in the memory architectures.[32] The detection and correction 
latency of BCH code grows with the error correcting capability of the codes. 
The access latency to an array is very critical, so we bound the ECC detecting 
latency to 1 clock cycle (1 ns). This bound includes ECCs with up to 5-error 
correcting capabilities.[10] So in this article we look at the codes up to 5-error 
correcting, which includes: SECDED (single error correction and double error 
detection), DECTED (double error correction and triple error detection), 
3EC4ED, 4EC5ED, and 5EC6ED codes. For a 64-byte cache line, a code 
with e error correction and e + 1 error detection capability requires 10e + 1 
ECC bits.
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Besides the ECC costs, there are also costs associated with scrubbing as 
well. Too frequent scrubbing consumes power and performance. During 
the scrubbing process, lines are read one by one. After each line is read it is 
checked using the ECC bits. If an error is detected then it is corrected and 
written back to the array. If no error is detected, then there is no need to 
rewrite the correct line. We use the timing model in [23] where the read access 
is 3 ns, and it is constant with the technology scaling. The ECC checking 
and correction takes one cycle, and write access takes 10 ns. Correction 
and writing back happens rarely, since an error occurs rarely. Therefore the 
scrubbing time is mainly reading and checking the lines. By using the read 
buffer and pipelining the reading and checking process, the checking latency 
is also hidden during scrubbing, and the main portion of the scrubbing is the 
time to read all the lines one by one. 

We bound the scrubbing performance overhead by 5 percent. With 
5 percent performance overhead limit and read latency of 3ns, we ran 
scrubbing experiment on SPEC CPU 2006 benchmark[34] that resulted 
the following scrubbing rates of 11.5 Hz, 5.8 Hz, 1.9 Hz, 0.7 Hz , and 
0.25 Hz for 64-MB (at 32 nm) array, 128-MB (at 22 nm) array, 256-MB 
(at 15 nm) array, 512-MB (at 11 nm) array, and 1-GB (at 8 nm) array 
respectively. The last two scrub rates are extrapolated from the simulation 
data. Figures 9, 10, and 11 show the detail performance overhead of 
scrubbing for 64-Mb single core, 128-MB double core, and 256-MB quad 
core environment, respectively.
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(Source: Intel Corporation, 2013)
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Figure 10: Scrubbing overheads of 128-MB cache with dual core processor at 5.8 Hz
(Source: Intel Corporation, 2013)
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Figure 11: Scrubbing overheads of 256-MB cache with quad core processor at 1.9 Hz
(Source: Intel Corporation, 2013)

Based on the derived scrubbing rates, the new lower bound on the value of ∆ is 
presented in Table 1. The ∆ value in Table 1 is generated in such a way that it 
follows the SDC rate of Figure 8.
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Here we implemented a simple scrubbing algorithm. It simply blocks the 
cache with the scrubbing frequency for the period of time that takes to read 
all the cache lines. Of course, performing smarter scrubbing algorithm and 
parallelizing the process can potentially facilitates higher scrubbing rates and 
hence smaller lower bounds on ∆.

ECC type 64 MB 128 MB 256 MB 512 MB 1 GB

No ECC 60.0 60.0 60.0 60.0 60.0

SECDED 47.3 48.1 48.7 49.4 50.1

DECTED 39.8 40.5 41.2 41.9 42.5

3EC4ED 35.9 36.6 37.3 38.0 38.7

4EC5ED 33.6 34.2 35.0 35.6 36.3

5EC6ED 32.0 32.6 33.3 34.0 34.7

Table 1: Highest thermal stability scaling available with ECC, as the 
technology and capacity scales 
(Source: Intel Corporation, 2013)

In the next section we evaluate the power overheads of ECC and scrubbing. 
We investigate the costs of adding ECC bits and scrubbing and the benefit of 
lower write power as the result of scaled thermal stability.

Power Analysis
Here we first review our power model, and then explain the scrubbing costs. 
The write power scales with the technology and the thermal stability.[23] The 
read power at the first order is independent of the thermal stability factor and 
stays constant in this analysis. We assume 3-to-1 read/write ratio for typical 
operation. We assume 64-MB cache at 32nm and linear capacity increase at 
every generation. We assume maximum LLC bandwidth usage in our analysis. 
The array structure and power model follow the model in [23]. 

The goal of this power analysis is to show how much power saving is gained by 
lower write power and how much power is consumed by ECC and scrubbing 
process. Figure 12 summarizes the power analysis. The power numbers for 
each array size and technology node are relative to the base case, which is at 
32nm with ∆ = 60 kT and no scrubbing. For each array size and technology 
node we evaluated 5 different ECC strengths. The lower bounds on the ∆ of 
each of the ECCs and array sizes are available from Table 1. The relative power 
consumption trend for each ECC and technology node is illustrated with one 
bar in Figure 12. 

The graph shows the scaled thermal stability reported in Table 1 that facilitate 
close to one more dimensional scaling  can save up to 5% in power by using 
ECC and scrubbing. 

“The graph shows the scaled 

thermal stability reported in Table 

1 that facilitate close to one more 

dimensional scaling  can save up 

to 5% in power by using ECC and 

scrubbing.”
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DRAM-Style Refresh vs. ECC and Scrubbing
The idea of scaling ∆ to support lower power consumption has been widely 
applied. Then to address the increased retention failure due to the scaled 
∆, there are number of publications proposing DRAM-style refresh.[1][2][6][5] 
DRAM-style refresh though popular and low cost, cannot provide any reliability 
for STTRAM technology. Below we explain the details, starting by reviewing 
the DRAM or eDRAM retention failure mechanism and how the refresh 
process can boost the DRAM or eDRAM retention time, but not the STTRAM 
cell retention time.

The data in DRAM cells is represented by the amount of charge on the 
DRAM cell capacitor. As soon as the data is written into the DRAM cell, 
the cell capacitor starts discharging gradually, and hence losing its state value 
slowly. Figure 13 shows the discharge process and the retention failure as the 
function of time for different cell capacitors. Note that the failure probability 
is a sharp function. When the capacitor charge gradually reaches the set 
threshold, the probability of a failure increases sharply (the figure shows 
the success probability). Hence any time before the charge drops to the set 
threshold the DRAM cell value can be read and the lost charge of the capacitor 
can be restored. Figure 14 shows how the refresh process restores the charge 
periodically and hence the retention failure is kept low by refreshing.

In STTRAM the retention failure is a stochastic process. A bit flip happens 
due to the thermal noise and it happens almost instantly. So there is no gradual 

“…DRAM-style refresh though 

popular and low cost, cannot 

provide any reliability for STTRAM 

technology.”

“In STTRAM the retention failure is 

a stochastic process. A bit flip happens 

due to the thermal noise and it 

happens almost instantly.”
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degradation process similar to DRAM capacitor. Reading and writing back 
like DRAM-style refresh will not improve reliability. It just reads corrupted bit 
values and rewrites corrupted values.
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Figure 13: This graph shows the discharge process of DRAM cell 
capacitor and the retention failure probability of a DRAM cell. We 
assumed Vth is 40% of VDD and 10% random process variation
(Source: Intel Corporation, 2013)
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Since there is no way to predict or sense whether the bit is going to fail 
in STTRAM, we need to add some way of redundancy to protect the 
information, like ECC, and in order to prevent error accumulation in the 
codewords, every line has to be scrubbed frequently, as it was explained earlier 
in this section.

Process Variation and Retention Time Testing
The above analysis on thermal stability scaling is done with zero variation. 
Later in this section we evaluate the effect of scaling with process variation. 
Since the MTJ fabrication process is compatible with CMOS, we expect 
that STTRAM will have the same variation as the CMOS process. We 
make conservative assumption and assume the cell features have a normal 
distribution with a standard deviation of s  = 10 percent m.[35]

Here we evaluate three commonly used approaches to address process 
variation. The most common approach is designing with guardband. In this 
approach the system is overdesigned or made to underperform to make the 
weak bits functional. The other commonly used approach is to detect bad bits 
and isolate them. The detect-and-isolate technique can use spare bits or ECC 
to replace the isolated bits. The last approach is to design for the average case, 
by adjusting the design values such that the average value matches the nominal 
value. Below we evaluate the cost and reliability of these three approaches for 
STTRAM.

Designing with Guardband
Guardbanding is the most common solution to address variation. We start 
with a simple review of how it works. Assume a device parameter is required to 
be above a certain threshold t, and it has variation s with normal distribution. 
If the nominal feature value is targeted for t, then 50 percent of the cells have 
lower than the threshold value, and are considered broken. However if the 
nominal feature is targeted for a value higher than t, for example t + 3s, only 
0.1 percent of the cells are bad and if it is targeted for t + 6s, then only one 
cell in every one billion cells is bad. So guardbanding the feature value t with 
6s improves the BER (bit error rate) to 1 per billion. Even with this low BER, 
the chip yield will be very low (58 percent for 64MB array). For more practical 
chip yield, e.g. 99.99 percent, the nominal Δ should be 103.6 kT for 64 MB 
array. Using the guardbanding approach, the whole chip has to be tested to 
detect any bad bits with low Δ, and if a bad bit is detected the chip will be 
discarded. Detecting cells with low Δ is not an easy process (details in the 
section “Retention Time Testing”).

Detect-and-Isolate
Unlike guardbanding which discards a chip with any detected bad bits, the 
detect-and-isolate approach can tolerate limited number of bad bits (about 
0.1 percent [11]), and require small area and performance costs. Consider the 

“Since there is no way to predict or 

sense whether the bit is going to fail 

in STTRAM, we need to add some 

way of redundancy to protect the 

information, like ECC…”

“The last approach is to design for the 

average case, by adjusting the design 

values such that the average value 

matches the nominal value.”
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STTRAM example from the previous section, with a s  = 10 percent, and 
∆ ≥ 60 kT. Since detect-and-isolate can tolerate limited BER, in this case 0.1 
percent, we have to guardband ∆ by 4s to get to the low BER of 0.1 percent. 
This requires nominal ∆ = 80.4 kT,

Similar to guardbanding, detect-and-isolate requires retention time testing to 
identify the bad bits.

Designing for the Average Case
Both of the previous approaches depend on retention time testing and since 
it is a costly process, here we look at another solution that does not require 
testing and detecting bits with low ∆. 

It is important to note that the variation caused weak bits in MTJ fails 
differently than the weak bits in SRAM or capacitance-based cells. The 
capacitance-based weak cells tend to behave as permanently broken or 
intermittently broken bits. The weak MTJ cells with lower thermal stability 
follow the same stochastic bit flip process as the strong cells, except with 
higher probability, so even the weak bits work most of the time. With this 
understanding of the retention failure process, we can keep the weak bits 
and just add more ECC the same way that we added ECC earlier to address 
retention failure with no variation, in the section “ECC and Scrubbing.”

We calculated the retention failure of an array in the average. Then we calculate 
the effective ∆ based on this average value; that is, if there were no variation 
and all the cells have the same thermal stability factor, how much would have 
been the value of ∆, so that the array has the same failure rate as the array with 
the variation. First we calculate the average failure probability as:

Pfail_avg = ​∫​0​ 
+∞

​ f (∆) × Pret-fail(∆)� (4)

Where Pret-fail(∆) is the retention failure of STTRAM cell with thermal stability 
factor ∆ from Equation 3, and f (∆) is the normal distribution. We used 
trapezoid numerical solution to solve the above equation.

Then we calculate the value of Δeffective such that:

Pfail-avg = 1 − exp(−t/exp(∆effective))� (5)

Table 2 summarizes the minimum nominal delta required for each of the 
above approaches with the presence of 10 percent variation. For example, using 
DECTED on a 64-MB array requires nominal ∆ of 54.3 kT. We can see that 
the architectural solutions the ECC plus scrubbing  can support scaling the 
thermal stability factor down to 44 for 1-GB array size. Depending on the 
application any one of the above solutions could be used by using the nominal 
thermal stability value from Table 2. Since the first two solutions depend on 
the retention time testing, for the sake of completeness we review the cost of 
performing retention time testing next.
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Solutions 64 MB 128 MB 256 MB 512 MB 1 GB

Design 
for 

average

NO ECC 113.5 113.5 113.5 113.5 113.5

SECDED 73.9 75.9 78.0 80.0 82.1

DECTED 54.3 55.7 57.2 58.6 60.0

3EC4ED 46.6 47.8 49.1 50.3 51.6

4EC5ED 42.4 43.5 44.7 45.8 47.0

5EC6ED 39.6 40.7 41.8 42.9 44.0

Guardbanding (99.99% 
yield)

103.6 104.2 104.7 105.3 105.9

Detect-and-isolate 80.4 80.4 80.4 80.4 80.4

Table 2: The thermals stability scaling available with the process variation
(Source: Intel Corporation)

Retention Time Testing
MTJ characteristic is determined by two figures of merit, the thermal stability 
factor (∆) and the intrinsic switching current (Jc0). Retention time testing 
therefore boils down to determining the value of these two features. The key 
model to obtain these values is based on the thermal activation model: 

Psw 5 1 2 exp Ic

Ic0
1 2

exp

2 t
D

�

(6)

This function and the functions derived from it are commonly used to fit 
experimental data in order to obtain the values of Ic0 and ∆.[12][13][14][15] Since 
this model is a stochastic model, all the retention time test approaches require 
a large number of experimental data to obtain statistically significant result (for 
example, 1e5 to 1e7 experiments per data point[12]). Additionally, the simple 
thermal activation model is most accurate in the low switching current and long 
pulse width (100 ns[12][13][14][15][16]). The combined large number of experimental 
data with long pulse width makes the retention test time very long. 

The retention test can be set up in various ways depending on how to use the 
thermal activation model. Here we look at one of such approaches from [12]. 
Other approaches are similar. 

Starting from the thermal activation model and with

​ 
tp ___________  

τ0exp ​( ∆​( 1 -  ​ Ic __ Ic0

 ​ )​ )​
 ​<<1� (7)

performing a Taylor expansion, results in the following expression:

In ​( PSW​( ​ Ic __ 
Ic0

 ​ )​ )​ = In ​( ​ tp __ t0
 ​ )​ − ∆​( 1 - ​ Ic __ Ic0

 ​ )​� (8)
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As we mentioned, the thermal activation model is most accurate for long pulse 
width and small switching current. Experimental data from [12] and [13] 
suggests switching pulse width of tp = 100ns and switching current ratio of 
Ic/Ic0 ≤ 0.80 are reasonable values, which results in Psw ≤ 1E−3. For this small 
switching probability, in order to have a statistically significant result we need 
more than 1E+5 experimental data for each data point on the curve.[17] Testing 
the hypothesis of expected probability of 1E-3 with ±1 percent error margin 
and 99 percent confidence requires 5E+5 number of experiments.[17] We need 
multiple points on the curve to be able to fit the curve accurately. Assuming 
we need 10 points, if multiplied by 100ns pulse width, it takes about half a 
second to test one cell (we neglected the one-nanosecond read time after each 
100-nanosecond write pulse). Assuming that the cells of a line can be tested in 
parallel, then testing a 64-MB array, line-by-line, takes more than five days. This 
is obviously not practical. We need to parallelize the test process with multiple 
built-in self-test (BIST) structures embedded in the array. We show below that 
parallelizing the test process can improve the test time to 16 minutes.

Test Algorithm and Structure
Figure 15 demonstrates the BIST structure to test a subarray. For simplicity it 
only shows one line of the subarray. The test pattern is first scanned in to the 
test flip-flips (FF). Then we follow the test process of Figure 16. First the test 
pattern is written to the line under the test. Then a weak current, Ic, is applied 
for tp (that is, 100 ns). Then the value of the line is read. If there is a mismatch 
between the value of the FFs and the read value, then the error counter will 
increase. The error counter will help identify the switching probability. If the 
total number of failures during testing a line for an Ic/Ic0 value is Nfail , dividing  
Nfail by the total number of experiments, N, is the estimated switching 
probability of that cell 

Psw ​( ​ Ic __ 
Ic0

 ​ )​ ≈ ​ 
Nfail

 ___ N ​� (9)

The value of the counters will be scanned out after N rounds of disturb and 
read. The inner loop rotates N times. Then this process is repeated for M times, 
the number of required points on the curve for curve-fitting. Once all the M 
values of Ic/Ic0 are tested, the pairs of

​( Psw ​( ​ Ic __ Ic0

 ​ )​, Ic/Ic0 )​� (10)

are used for curve fitting to Equation 8 and identifying ∆ and Ic0. This process 
will be repeated for each line in the subarray (and other subarrays that share the 
same tester). Assuming each subarray has one thousand lines, and every other 
subarray has one BIST. The total test time is:

Number of Lines  × N × M × tp = 2000 × 5E + 5 × 10 × 100ns ≈ 16min� (11)

Although this is still very long test time, we cannot increase the parallelism due 
to the limit on the amount of current that the system can draw. In [12] the 
switching current is about 0.23mA. In a 64-MB array, writing 512 bits per line 
and testing 500 lines in parallel draws 60 A. This is about the upper bound of 
the current that the array can draw.
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The retention time testing is mainly challenging due to its lengthy process. 
We should expect 16 minutes to test an array of size 64MB. Due to current 
limitations it is not possible to test more than 500 subarrays in parallel. 
Therefore the test time grows as the cache size grows. 

Based on the above analysis, testing a 128-MB, 256-MB, 512-MB, and 
1-GB array takes half an hour, one, two, and three hours, respectively. So any 
variation tolerance solutions that rely on retention time testing will suffer from 
very long test time.
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Figure 15: Test structure for retention time testing of an array
(Source: Intel Corporation, 2013)

Summary
STTRAM has many attractive features to be considered for replacing the 
capacitance-based cache or main memory technology. In order to have spin-
based memory technology scalable to future technologies it has to sustain 
its reliability requirement. We showed that the dominating source of failure 
is the retention failure, and a key contributing factor is the thermal stability 
factor scaling. Assuming volumetric dependence for ∆, the thermal stability 
factor scales linearly with the technology nodes, sustaining high ∆ despite the 
dimensional scaling demands, application of novel manufacturing solutions, 
or new material with higher coercivity at each generation. The alternative, 
as many have tried to show, is to use an architectural solution to relax the 
nonvolatility and the bound on the thermal stability. Unlike the claims of 
many previous publications, we showed that this alternative cannot facilitate 
continues linear scaling. It can accommodate only modest scaling. The result is 
summarized in Figure 17. 

The green curve in Figure17 shows the required thermal stability for 10SDC 
FIT rate as the technology scales, with SECDED. This curve assumes the 
thermal stability for nonvolatile cells can be achieved at scaled dimensions. The 
blue line shows the scaling that can be supported with ECC plus scrubbing 
proposed in this article. The red curve shows the volumetric scaling of MTJ 
and ∆ assuming consistent coercivity.
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Figure 16: Retention time testing algorithm
(Source: Intel Corporation, 2013)
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The gap between the red and the blue curve has to be closed by either system level 
reliability solutions or by manufacturing innovations and high coercivity material.
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Figure 17: Thermal stability scaling trend with technology scaling
(Source: Intel Corporation, 2013)
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Error correcting codes (ECCs) are widely used to provide protection against 
data integrity problems in memory. With continue scaling of technology and 
lowering of supply voltage, failures in memory are becoming more prevalent. 
Moreover, the usage and organization of DRAM have also been expanded. 
Integrating a large-scale DRAM cache is a promising solution to address the 
memory bandwidth challenge, and this is becoming more compelling with 
3D-stacking technology. To enable a high-performance DRAM cache, previous 
works have proposed storing a tag array off-chip with data in DRAM. The 
tag-and-data access inevitably changes the traditional access pattern to memory 
and brings new challenges to ECC schemes due to the granularity of the 
data access. How to design efficient ECC for new memory usage within the 
restrictions of commercial DIMMs has emerged as a new challenge. 

In this article, we propose two new ECC techniques, Hybrid ECC and Direct 
ECC Compare. Hybrid ECC is a linear ECC that uses the same bit overhead 
as a Double Error Correction, Triple Error Detection (DEC-TED) ECC, 
but provides error correction for more frequent burst error patterns. Direct 
ECC Compare eliminates the delay and gate overhead caused by comparing 
multiple encoded words in parallel. The design for off-chip tag storage falls 
into two major categories, distributed and continuous. For distributed tag 
storage, we propose to store tags in the ECC chip, protected by Hybrid ECC. 
For continuous tag storage, we propose separate ECCs for each individual tag 
to reduce the bandwidth overhead for tag update and the use of Direct ECC 
Compare to improve the matching latency of encoded tags. A design based on 
16-way set associative cache shows that a 30-percent gate count reduction and 
a 12-percent latency reduction are achieved. 

Introduction
Errors in dynamic random access memory (DRAM) devices have always been 
a concern in modern computing systems. Memory errors have many possible 
causes: for example, electrical or magnetic interference such as cosmic rays can 
spontaneously flip a bit to the opposite state, hardware defects can result in 
a cell being permanently damaged, and any problem along the data path can 
corrupt the value reading out of or writing into a bit. Due to continued scaling 
of technology and lowering of supply voltage, memory faults are becoming 
more prevalent.[17] 

Error correcting codes (ECCs) are used to provide protection against data 
integrity problems in memory. The most commonly used technique is Single 
Error Correction, Double Error Detection (SEC-DED), which uses extra 8-bit 
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sets of ECC bits to protect 64 bits of data.[5] For mission-critical commercial 
systems, advanced reliability features are supported, such as Chip-Kill*[1][4][6] 
or Single Device Data Correction (SDDC)[2][8], which can protect data against 
single x4 or x8 DRAM device failure. More advanced technology called 
Enhanced Double Device Data Correction (DDDC)[2] even allows recovery 
from two sequential DRAM chip failures. 

ECC design for memory is restricted to a limited bit overhead due to the 
fixed DRAM chip organization. Unlike normal DIMM, an ECC DIMM 
usually has 18 rather than 16 × 4 chips or 9 × 8 chips. The extra chips store 
the redundancy information used for detection and/or correction. The ratio 
between data bits and ECC check bits is 8:1. To enable stronger protection, 
smaller devices and wider access are preferred. For example, DDDC can only 
be enabled on x4 devices under double channel lockstep mode.[2] Therefore, 
changes to memory data organization may require changes to the ECC 
technology.

Recent work[9][11][12][13][16] has proposed using DRAM as an off-chip cache to 
address the memory bandwidth problems. Die-stacking and System-in-Package 
(SiP) technologies enable multiple layers of DRAM to be integrated with 
processors[14][15], which makes the DRAM cache a more compelling idea. A key 
challenge for enabling high-performance DRAM cache is how to efficiently 
manage the tag array. As it’s impractical to put the whole tag array in SRAM, a 
lot of research has been conducted on architecting the tag array off-chip. Based 
on the manner tags are organized in a DRAM row, most of the solutions fall 
into two categories, continuous[11][13] or distributed[16][12]. In continuous tag 
stores, one DRAM row is partitioned into two segments, one for a set of cache 
lines and the rest for their tags. In distributed tag stores, the tag is placed next 
to its cache line. The nature of cache involves reading both tag and data for 
each access. A tag is usually shorter than the memory bus width; checking and 
recalculating ECC for tags is neither straightforward nor convenient in either 
tag store scheme.

In this article, we propose two ECC technologies that were invented at Intel, 
and one for each tag store scheme. For distributed tag stores where the tag 
is associated with its own data entry, we show that storing the tag on the 
ECC chip by occupying part of reserved ECC bits is feasible. To maintain 
the reliability feature with reduced check bits, we propose a new ECC called 
Hybrid ECC. This new code can correct both random errors and burst errors. 
Random errors are mostly introduced by soft errors such as cosmic rays. Local 
burst errors can be attributed to device failure or pin/channel fault. With only 
19 bits, Hybrid ECC can correct 2-bit random errors or 4-bit burst errors for 
bit-interleaved 4 transfers (half cache line and a total of 288 bits), leaving  
26 bits for tags per cache line. 

For continuous tag stores, we propose to have individual ECC protection 
for each tag entry. Since multiple tags are packed into a few lines, updating 
a single tag and recalculating ECC require a read-modify-write to the 
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entire line, which increases the memory bandwidth overhead. In addition, 
we propose a “Direct ECC Compare” to speed up the address matching 
for encoded tags. Since the incoming address is always correct, the Direct 
ECC Compare performs approximate matching for encoded tags, instead 
of strict matching for decoded tags. It also saves energy by encoding only 
one incoming tag other than decoding all encoded tags in the same set. 
We compare two types of tag array designs based on a 16-way set associative 
cache. The results show a 30-percent gate count reduction and a 12-percent 
latency reduction. 

The rest of the article is organized as follows. The next section, “Background,” 
reviews the memory error mechanisms and ECC algorithm. The section 
“DRAM Cache Tag Arrays” discusses the tradeoff of two tag store schemes and 
high-level architecture of our two proposed ECC technologies. The Hybrid 
ECC for distributed tag stores is described in the section “ECC Technology I:  
Hybrid ECC.” The continuous tag store with separate ECC and Direct 
ECC Compare is detailed in the section “ECC Technology II: Direct ECC 
Compare.” This is followed by a section that summarizes the article and draws 
some conclusions.

Background
Errors in DRAM are a common cause for system failure. Researchers have 
observed that about one third of the machines and 8 percent of DIMMs in 
the study were affected by correctable errors each year, and the per DIMM 
correctable error rate is approaching 4000 per year.[17] When the number of 
affected cells exceeds the correction limit of the ECC, a machine shutdown is 
forced. If an uncorrectable error misses detection, it leads to applications using 
corrupted data or even system crash. 

Hardware errors generally fall into two categories: soft (or transient) errors and 
hard errors. Soft errors mostly occur due to electrical or magnetic interference, 
such as cosmic rays or alpha particle strikes. Such events change the logical 
state of one or multiple bits, and cause incorrect data reading. They occur 
randomly and disappear when the bits are rewritten. Hard errors are related to 
permanent device damage, which cause a memory bit to return incorrect values 
consistently, such as a “stuck-at” fault. The faulty devices are usually replaced 
once detected. There is one kind of error that only lasts for a while or occurs 
only under certain conditions (such as with low voltage). Unlike hardware 
errors, they are not permanent. Such intermittent errors are sometimes counted 
as soft errors.

Memory ECC
The industry standard for DRAM protection is SEC-DED, which is 8 ECC 
check bits for each 64 bits of data. The check bits are stored in one extra x8 
ECC chip or two x4 chips, as illustrated in Figure 1.

“…an uncorrectable error misses 

detection, it leads to applications using 

corrupted data or even system crash.”
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Figure 1: DDR DIMMS with x8 and x4 devices
(Source: Intel Corporation, 2013)

Servers have more critical reliability requirements and stronger protection is 
provided. For example, the Chip-Kill technology by IBM [6] can correct 4-bit 
errors in the same nibble. The code requires 16 ECC check bits on 128 bits 
of data. Intel has similar technology called Single Device Data Correction 
(SDDC)[2], which protects against single x4 or x8 DRAM device failure. 
Equivalent technologies are provided by other vendors with different names, 
such as Chip Sparing or Advanced ECC.[5] Recently, Intel® Xeon® system 
supports an even more advanced correction technology called Enhanced 
Double Device Data Correction (DDDC)[8], which allows recovery from two 
sequential DRAM device failures as well as one more single-bit soft error. 

To enable stronger protection, smaller devices and more independent chips 
are preferred. As illustrated in Figure 1, the ratio between data and check bits 
is always 8:1. With fixed bus width, smaller device means more independent 
chips. Advanced ECC technologies have to pay extra bandwidth or capacity 
for stronger protection. That’s why DDDC is only naturally supported on 
x4 devices. But to enable DDDC or SDDC on x8 devices, lockstep memory 
mode is mandatory, which requires two memory channels working as a 
single channel. It reduces the total system memory capacity by one third in a 
3-channel system. 

Unlike commercial DRAM chips, on-chip caches are usually custom-designed. 
This provides more flexibility in choosing ECC protection schemes and 
granularity. For example, in OpenSPARC*, L2 cache has SEC-DED on a word 
(32-bit) basis. In AMD Opteron*, both L1 and L2 have 8 ECC check bits for 
each 64 bits of data. In Intel Xeon, L2 cache is protected by 10-bit SEC-DED 
while L3 has in-line DEC-TED. 

Linear Block Code
All memory ECCs, including SEC-DED, DEC-TED and the Chip-Kill 
type of symbol correction code, belong to the family of systematic linear 
block code. The two ECC technologies we propose in this article are based 
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on the same type of code, and more specifically, the BCH.[7] In this section, 
we explain some coding basics and properties that will be used in the 
following sections.

An [n, k, d] code is a linear block code with block length n, information length 
k, and Hamming distance d. Let D[k] be the k-bit information. The codeword 
V [n] is the multiplication of D and encoding matrix G. 

D[k] * G[k, n] = V [n]� (1)

As a systematic code, the information bits (D) are retained in the codeword 
V, that is, V = [D, C ], while C is the set of ECC check bits. During error 
decoding, a parity-matrix, which is often referred to as the H-matrix, is 
multiplied by the codeword. The result is error syndrome, shortened as S.

V [n] × H [n, n - k] = S[n - k]� (2)

The H- and G-matrices are designed in such a way that any valid codeword 
must have its syndrome equal to zero, and a nonzero syndrome is essentially 
the footprint of errors. The distributive property of a linear code ensures that a 
corrupted codeword V  ′ = V + E has its syndrome only determined by errors E:

V  ′ × H = (V + E ) × H = V × H + E × H = E × H� (3)

For a single-bit error, the syndrome equals the value in the corresponding 
H-matrix column. For multi-bit errors, the syndrome is the sum of all 
corresponding columns.

Each ECC is uniquely defined by its H-matrix, since the H-matrix (more 
specifically, the columns) determines the error syndrome’s composition, and 
thus the error correction and detection capability. For a binary [n, k, d] code, the 
H-matrix is a binary matrix of the form n by (n − k). However, to facilitate the 
study, the binary columns are often noted by the Galois Field (GF) elements, 
that is {1, a, a2, ..., an-2}. For example, H1 is a binary form of (7, 4, 3) Hamming 
code; it can also be represented by GF(23) primitive element a as in H2.

H1 = 
1  1  0  1  1  0  0
1  0  1  1  0  1  0
0  1  1  1  0  0  1

            H2 = [a6a5a4a3a2a1]

The two matrices are totally equivalent, but symbol and polynomial form is 
more convenient in studying the code properties and will be used instead of 
the binary form in the following sessions.

DRAM Cache Tag Arrays
Recent work has proposed using DRAM as an off-chip cache to address 
the memory bandwidth problems. It is desirable to organize the DRAM 
caches at cache line granularity, because larger page granularity requires too 
much memory bandwidth, and the miss rate is not low enough to overcome 
the bandwidth increase. At cache line granularity, the key challenge is the 
placement of the huge tag array. Storing the tag array on-chip in SRAM is 
impractical. For example, a 256-MB DRAM cache would require 24 MB of 
tag storage, which is larger than on-chip LLC.
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To avoid SRAM overhead, the alternative is placing the tags in DRAM. Most prior 
hardware-based approaches toward fine-grain DRAM caches have either stored tags 
in a continuous region[11][13] or stored with each single cache block[12][16]. We note 
them as continuous tag store and distributed tag store, as illustrated in Figure 2.
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Figure 2: Two trends of placing tags in DRAM cache
(Source: Intel Corporation, 2013)

A cache access must obtain both tag and data, either sequentially or together. 
Naively placing the tags might result in two full memory accesses. Prior 
architecture optimizations have been focused on improving the performance, 
especially the DRAM cache access latency. For example, Loh and Hill[13] 
proposed reducing the access penalty by locating the tags and data for the 
entire set in the same row, such that the second access for data is guaranteed to 
hit in the row buffer. This is a typical continuous tag-store configuration, as we 
show in Figure 2(A). A recent work from Qureshi[16] eliminates the delay due 
to tag serialization by streaming data and tag together in a single burst. The 
design is based on a distributed tag store as shown in Figure 2(B) and it serves 
the DRAM cache hit much faster.

However none of the works about tag array placement considered the 
potential effect to the error protection scheme. The bit length of a single tag is 
obviously smaller than the memory bus width (64 bits). DRAM ECC is not 
designed for such fine-grain access. Updating a single tag entry would result 
in a read-modify-write of a whole encoded word, which is at least 72 bits. For 
advanced ECC technologies, the entire codeword is even longer and equal to a 
burst of 4 or 8 transfers. 

In this article, we propose two ECC technologies, one for each tag store 
configuration. The base case ECC is an 8b SEC-DED for 64 bits of data.

Distributed Tag Store
For distributed configuration, the tag is stored with data locally. To save 
bandwidth and avoid the partial write problem during tag updates, we propose 
merging the data and tag into one “real” single burst; that is, by hiding the tag 
bits into reserved ECC check bits. By storing tag bits on the ECC chip, data, 
tag, and check bits will all be transferred together. However, with reduced space 
for ECC bits, the original code cannot be applied. 

“…we propose merging the data and 
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To enable the ECC with reduced check bits, we propose a new ECC algorithm, 
Hybrid ECC. As advanced ECC technologies for servers have implied, stronger 
error correction capability can be achieved by combining the check bits from 
multiple transfers. The Hybrid ECC uses all partial check bits collected from 
four data transfers. It corrects both local burst errors and random global 
errors. The detailed code design and results are presented in the section “ECC 
Technology I: Hybrid ECC.”

Continuous Tag Store
In this configuration, tags are stored in a continuous region. Any tag 
update would require a full access and recalculate the check bits for entire 
64 bits. To reduce the ECC recalculation and entire codeword access 
overhead during tag update, we propose having separate ECC protection 
for each tag entry such that each tag entry is independent and can be 
accessed directly.

At the memory controller side, prior to the tag matching, error detection and 
potential correction are required for encoded tags. We propose a Direct ECC 
Compare to reduce the address matching latency. The key observations are: the 
incoming address is always correct, and a codeword within a certain Hamming 
distance to a valid codeword is guaranteed to be correctable. We eliminate the 
multiple copies of the decoding circuit for tags and replace them with a single 
encoder logic circuit for the incoming address. The result shows a 30-percent 
gate count reduction and a 12-percent latency reduction. The details of this 
fast matching scheme are discussed in the section “ECC Technology II: Direct 
ECC Compare.” 

ECC Technology I: Hybrid ECC
Most ECCs previously considered in the literature have the property that 
their error-correction capabilities target a specific type of error, either 
random, burst, or symbol error. For example, a symbol error correction 
code cannot correct a burst error that ranges across the symbol boundary, 
and a burst-2 correction code cannot correct two errors that are not 
adjacent. 

In this section, a new code called Hybrid ECC is investigated in which the 
codeword is protected against two types of errors, both random and burst 
errors. In a DRAM system, the random error is mostly due to soft errors, and 
local burst errors are attributed to device-level failure or pin/channel fault. 
Based on the error coverage, we also denote it as tEC-bBEC, which means the 
code can correct either t-bit random errors or b-bit burst errors, where b is 
greater than t. 

The proposed Hybrid ECC is constructed based on regular BCH, and 
more specifically DEC-TED BCH. The goal is to redesign the DEC-TED 
H-matrix, reuse the same check bits overhead, maintain the 2-bit random error 
correction, and at the same time maximize the correctable burst error length. 

“…we propose having separate ECC 

protection for each tag entry such 

that each tag entry is independent 

and can be accessed directly.”

“…the codeword is protected against 

two types of errors, both random and 

burst errors.”



ECC Techniques for Enabling DRAM Caches with Off-Chip Tag Arrays   |   83

Intel® Technology Journal | Volume 17, Issue 1, 2013

We have a main observation for standard BCH H-matrix that the matrix 
columns naturally form a geometric sequence. In the rest of the section, we 
present this observation and related properties. Then we show how to utilize 
these properties to quickly evaluate the correction capability for a given 
H-matrix. We also present a systematic column permutation method such 
that the new matrix can remain the column properties. Combining the quick 
evaluation and column permutation, we can easily find the H-matrix that can 
correct a large number of burst errors. Last, we show some results.

Observations for Standard BCH Code
BCH code is a family of linear block codes. Its SEC-DED and DEC-TED 
forms are widely used in current computer systems.[7] Let α be a primitive 
element of GF(2m) of order n, where  n = 2m−1 and a n = 1. A standard 
DEC-TED matrix Hstd is defined as:

Hstd = 
1	1	 1	 1	 ...	 1	 ...	1
1	a	 a 2	a 3	...	a i	 ...	a (n - 1)

1	a 3	a 6	a 9	...	a 3i	...	a 3(n - 1)
� (4)

The first row has all 1s, which is an overall parity. The rest of the rows are 
comprised of the first n powers of consecutive powers of a. Let hi denote the 
ith column. It’s obvious that each column is proportional to its previous one 
with a fixed ratio:

hi + 1 = K × hi,  where  K = diag [1, a, a 3]� (5)

Since K is a constant, the columns are in fact a geometric sequence. 
Recursively, the whole H-matrix can be represented by K and h0 only:

Hstd = [1, K, K  2, K  3, ... , K n - 1] · h0� (6)

It’s easy to prove that the syndrome of any burst error is a multiple of the 
syndrome of its first error bit; the multiplier is a constant solely determined by 
the error pattern. For example, the syndrome for a burst -3 at bit i, i + 1, and 
i + 2 is: 

S(bi, bi + 1, bi + 2) = hi + Khi + K  2hi = (1 + K + K  2) × S(bi)� (7)

The coefficient (1 + K + K  2) is fixed and independent of the starting bit 
position. Similarly, for a burst-4 error with pattern “1101” the syndrome 
multiplier would be (1 + K + K  3). Each pattern has its own multiplier.

Fast Evaluation for Burst Error Correction Capability
A correctable error means the syndrome of this error is nonzero and distinct 
from all other correctable errors and detectable errors. To evaluate the 
correction capability for a given code (that is, H-matrix) by enumerating 
all possible error patterns and syndromes would be too expensive. An n-bit 
binary codeword has n single errors, C(n, 2) double errors and (n − d) 
instances for each burst error of length d. The computation complexity 
for cross-comparing all syndromes at all possible bit locations is  
(n - d ) × (n + C(n, 2)) = O(n3). 
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As burst errors with the same pattern share a common multiplier, a group of 
syndromes can be represented by a single coefficient. Combined with other 
BCH algebraic properties, the evaluation can be much simplified. 

Let Parity be the part of syndrome that corresponds to the first row in 
H-matrix, let S1 be the part to the second row, and let S3 be the third row. 
We define the normalized syndrome factor for each syndrome as x = (S1

3/S3). 

Single Bit Error: a single error at the ith bit and the syndrome is denoted as 
S(bi), which equals the ith column of H-matrix. According to the definition, 
the syndrome must have:

Parity = 1 &&    S1
3/S3 = 1� (8)

Obviously, the normalized syndrome factor x for all single error is 1.

Burst Errors: for given burst pattern e, the syndrome can be represented as

S(e) = (1, K1, K3) × S(bi)

where i is the location of first error bit, and (1, K1, K3) is determined by the 
burst pattern e. It’s easy to prove that all burst errors with pattern e share a 
common normalized syndrome factor, that is x = K1

3/K3. 

Double Bit Error: given a pair of error bits at position i and j, the 
syndrome is 

S(bi + bj) = 
1
a i
a 3i

 + 
1
a j
a 3j

 = 
0

1 + a d
1 + a 3d

 *S(bi),  where  d = i - j,  and  x = ​ (1 + a d  )3

 _______ 1 + a 3d  ​� (9)

The factor x is determined by the first bit (i) and the relative bit distance (d). 
Since the finite field elements are cyclic, the maximum relative distance is 
no longer than half the loop, that is n/2. There are n/2 different normalized 
syndrome factors for all double-bit errors.

Two syndromes that have different x values must be different. Two syndromes 
that share a same x value but different start bits are also different, since they 
have distinct S(bi). Now the problem of comparing all syndromes becomes 
comparing all normalized syndrome factors x. Odd errors can be distinguished 
from even errors by simply checking the overall parity. Then, all odd burst 
errors must have x other than 1, that is, a single-bit error. And all even burst 
errors must have different x from any random double error. The total number 
of comparisons for b burst errors is only O(n): 

# odd burst + # Even Burst * # Random double = ​ b __ 2 ​ + ​ b __ 2 ​ * ​ n __ 2 ​ = ​ b __ 
4
 ​ * (2 + n) = O(n)

Finding the Best H-Matrix 
The burst error correction capability of the standard H-matrix may not be as 
much as user requires. An easy way to construct a new H-matrix is to rearrange 
the H-matrix columns. However, the nice property of geometric sequence will 
be lost if columns are arbitrarily permuted. 
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The rearrangement property of Fermat’s Little Theorem in number theory says, 
if p and a are co-prime positive integers, then {a, 2a, 3a, ... , (p - 1)a} when 
reduced modulo p, becomes a rearrangement of the sequence {1, 2, 3, ... , p - 1}. 
Based on this property, we rearrange the H-matrix column by picking one 
column every L columns, where L and n are co-prime, and n is the degree of the 
finite field GF(2m) as we defined in previous section. We called L the step size of 
rearranged H-matrix. The modified H-matrix will be as the following, where the 
standard H-matrix is a special case with step size equals to 1:

HRearranged = [h0hLh2Lh3L ... hiL ... h(N - 1)L]

Galois Field elements are cyclic, so hi = hi%n. The above matrix is equivalent 
to Hstd, only that the column orderings are changed. But all the columns still 
form a geometric sequence, such that the normalized syndrome factor and fast 
evaluation method can still be applied. The search space is well controlled, and 
the best H-matrix can be quickly identified. 

Results 
The system configurations for one complete code word are: burst length of 4, 
total transfer of 288 bits, including 32 bytes of data (half cache line), 13 bits 
of tag and 19 bits of check bits (the same as DEC-TED). Hybrid ECC can 
correct any one of the three errors illustrated in Figure 3:

x x x x x x x x

b0

Neighborhood bit
failure

Bits are interleaved

Data_0

Single wire failure
Random bit failure

Data_1

Data_2

Data_3

b1 b2 b3 b4 b71

b71b0 b1 b2 b3 b4

b0 b1 b2 b3 b4

b0 b1 b2 b3 b4

b71

b71

Figure 3: Data bursts per half cache line. The bits of four bursts are 
interleaved. Three error patterns are popular: 1) random bit error;  
2) wire fault; 3) device-level (neighborhood bit) failure
(Source: Intel Corporation, 2013)

With frequent memory scrubbing, the possibility of having two types of error 
together is very low and can be neglected. 

The Hybrid ECC is adapted from conventional DEC-TED and retains the 
capability of correcting two random-bit errors. The remainder of the multi-bit 
patterns are listed in Table 1. Two-bit burst errors are not included, since they 
are special case of 2-bit random errors. Remember that the four transfers are 
bit-interleaved to form the half cache line data. A single wire fault will manifest 
as an error in four adjacent bits. The neighborhood bit fault in a same transfer 
will be separated in a distance of four. The exact number of bit flips depends on 
the stored bit values.

“Hybrid ECC can correct any one  

of the three errors illustrated in  

Figure 3.”
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Pattern Num. Bit Pattern Error Source weight

1 111 Single 

Wire Fault

Odd

2 1101 Odd

3 1011 Odd

4 1111 Even

5 1– – –1– – –1– – – Neighborhood

Bits Fault

Odd

6 1– – –1– – –0– – –1– – – Odd

7 1– – –0– – –1– – –1– – – Odd

8 1– – –1– – –1– – –1– – – Even

Table 1. Correctable burst error patterns with bit interleaving of four data 
bursts. “1” means bit-failure, “0” means valid bit, and “-” stands for a valid bit 
from a different data burst. 
(Source: Intel Corporation, 2013)

A qualified H-matrix should have all burst patterns in Table 1 detectable 
and correctable. As a result, the syndromes must meet the following 
requirements:

●● R1: All burst error syndromes are nonzero. 
●● R2: All burst error syndromes are distinct from each other.
●● R3: All odd burst error syndromes are different from any single-bit error.
●● R4: All even burst error syndromes are different from any double-bit error.

R1 is always true, because DEC-TED has a Hamming distance of 6, which 
means to have an error alias to a valid word requires at least 6 bits of difference. 
The maximum burst pattern has bit weight of 4. Therefore none of the 
syndromes would be zero.

Given the number of bits for this specific problem, we need GF(29) to cover all 
272 bits. The degree of field is 29 − 1 = 511, and the total number of co-primes 
for 511 is 432. So there are a total of 432 varieties of the H-matrix that we can 
test. Let the GF generator be x9 + x4 + 1; we find a working H-matrix to match 
all the requirements where L equals 47. 

ECC Technology II: Direct ECC Compare
The data comparison circuit is usually in the critical path of a pipeline stage 
because the result of the comparison determines the flow of the succeeding 
operations. The common way of comparing two pieces of data with one or 
both protected by ECC is to retrieve the correct data first by running error 
check and perform the comparison later. The decoding stage exacerbates 
the latency criticality. In this section, we present a direct ECC compare 
technique [18], with which the encoded word can be compared with an 
incoming data without decoding it first. Direct ECC Compare reduces the 
critical latency and power consumption due to ECC decoding. The saving 
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is more significant for situations with multiple data comparison in parallel, 
such as cache tag match.  

For cache tag match, the tag is accessed first, then it must go through ECC 
decoding and correction before the comparison operation can be performed. 
In the meantime, the corresponding data array is waiting for the comparison 
result to decide which way in the set to load the data from. In the DRAM 
cache, the latency of comparing tags is small compared to the long memory 
access latency. However, the direct compare technology would still be valuable 
for reducing total gate count and power consumption. 

In Direct ECC Compare, instead of decoding the codeword prior to 
the comparison, we propose comparing the codeword with the encoded 
incoming address. By doing so, we replace the tag decoding latency by 
address encoding latency, which resides at the incoming data side and is 
less critical. This approach relies on one condition: one of the compare 
data must be known and valid. For tag match, the incoming address is 
believed to be valid since it is newly generated and has not been stored in 
a memory array. 

In the rest of the section, we first review the Hamming distance property 
of linear ECC codes. Then, we show how these properties can be utilized 
to compare a codeword (that potentially has an error) with a known valid 
codeword directly without decoding and correction.

Distance Metrics for Linear ECC Code
The minimum distance gives a measure of how strong a code is in detecting and 
correcting errors. Given a code that is capable of correcting any combination of 
t-bit errors and detecting up to r-bit errors, the minimum Hamming distance d 
equals (t + r + 1). In other words, given a code with minimum distance d, the 
maximum number of correctable errors is: tmax = (d - 1)/2 . The corresponding 
detectable distance rmax is less than d - tmax = (d + 1)/2 . If d is an odd number, 
rmax = tmax; if d is an even number, rmax = tmax + 1.

Codeword Direct Compare
The key idea of Direct ECC Compare is to utilize the information carried by 
the valid incoming data (referred to as input) to circumvent the necessity of 
decoding and correction of the stored codeword, which may or may not have 
errors. For information protected with ECC, in most scenarios, the corrupted 
codeword is the only copy that contains the original information. Without 
redundancy provided by ECC there is no other way to retrieve it. However, 
for data comparison, the absolute values of the stored information are not 
that important, but rather the relative value to the incoming data is important 
for deriving the comparison result. In the following, we show that as long as 
we can determine if it is a match or mismatch, the absolute value itself is not 
required. 

The stored codeword matches the input as long as the Hamming distance is equal to 
or less than tmax. 
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If the stored codeword is error-free, then two codewords match each other 
only when they are exactly the same, that is, the Hamming distance between 
two codewords is zero. If the stored codeword is not valid, a potential match 
implies two facts: the error must be correctable in the first place, and the 
data recovered from ECC correction should be equal to the input. In other 
words, this erroneous codeword is within the correctable distance (tmax) of the 
input data. If the Hamming distance falls in the annulus for detectable but 
uncorrectable errors, the original data cannot be resumed, and this indicates a 
system fault. 

We enumerate the four possibilities below. Given an input data v, let the 
encoded word be V, and the retrieved codeword from storage be U. The 
Hamming distance is d = dist (V,U ). Then the direct compare between V and 
U has four possible outcomes:

1.	 d = 0: U is valid and is equal to V

2.	 d ≠ 0 and d ≤ tmax: U is equal to V  but with errors

3.	 tmax < d ≤ rmax: U has an uncorrectable error

4.	 d > rmax: U is not equal to V

Hardware Design
Figure 4 shows the data flow of conventional tag matching. The encoded tags 
go through ECC decoders and ECC correction logic before they are compared 
with the tag field of the incoming address. If the incoming address does not 
match to any of the stored tags, a “cache miss” happens. The incoming tag is 
encoded by the “ECC Gen” logic (encoder) and will replace one out of the 
16 ways in the set just referenced.
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Figure 4: Original tag matching flow with encoded tags
(Source: Intel Corporation, 2013)

Figure 5 illustrates the data flow using the proposed fast compare approach. 
Information retrieved from the tag directory is compared directly with the 
incoming tag field of the address after it is encoded. Note that the encoding of 
the incoming tag can be performed during with tag access, since the memory 
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access latency is long enough. The decoding and correction time has been 
removed from the access time.  
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Figure 5: The data flow for Direct ECC Compare
(Source: Intel Corporation, 2013)

In both Figure 4 and Figure 5, the MCA signal refers to the Machine Check 
Architecture in which the microprocessor has detected an uncorrectable 
error and the system needs to take action. In general, there are a total of four 
possible outcomes:

1.	 Zero bit difference: two encoded tags match exactly and is a cache hit; there 
is no error in the stored tags.

2.	 Differ by one bit: A cache hit with correctable errors. The incoming address 
can be used for correction.

3.	 Differ by two bits: this is a fault. An uncorrectable error has been detected, 
MCA generated, and the machine will go into the special handling routine. 

4.	 Differ by more than two bits: this is a mismatch. There are multiple causes 
of this mismatch. First, the tag address (with or without errors) read differs 
from the incoming address tag. Second, two address tags are supposed 
to be the same but with undetectable errors. However, there is no means 
to distinguish these two cases with the conventional ECC correction 
technique either. With the first case, detection and correction will be 
done when the matching address is probed. If it is never probed again, the 
potential error will be detected and corrected at replacement.

The “Tag + ECC Compare” block is implemented as a summing logic. One 
possible design is to use a parallel counter that counts the total number of 
different bits. The logic can be optimized by truncating higher significant bits 
in the carry propagation circuit, since the accurate sum is not required but the 
relative value is compared to tmax and rmax.

Results
We assume a 16-way set associative cache and the tag has 25 bits. With 
SEC-DED protection, the total length of the encoded tag is 31. Table 2 
lists the logic implementation cost and latency estimate for each function 
unit. 

“The decoding and correction time has 

been removed from the access time.”

“…detection and correction will be 

done when the matching address is 

probed.”
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DC-1 and DC-2 are two compare logic designs. DC-1 uses half adders and 
DC-2 uses full adders for partial sum calculation. Compared to the traditional 
correction-based design, both approaches have lower gate count. Regarding 
the latency, DC-1 is about the same as the original decoding-based design, and 
DC-2 is better than both by 12.5 percent, assuming equal latency for each gate. 

The gate count for original decoding-based design is 4.8K. For direct compare 
design, the numbers are 3K and 3.4K, respectively. The new approach saves 
roughly 35 percent and 30 percent in total gate counts. With lower gate 
count and less area, the routing and interconnect complexity should be lower, 
resulting in smaller routing area and shorter routing latency. Since both designs 
are implemented in combinational logic, power will be proportional to the 
total gate count. We expect an approximately 30-percent power reduction.

Conclusion
There are two tag storage methods in architecting DRAM caches with tag array 
off-chip. Architecture optimizations that don’t take error protection overhead 
into consideration could result in read or write bandwidth overhead. To address 
the problem, we proposed two ECC technologies. One is for continuous tag 
storage. We suggested that individual tag protection is more efficient and a fast 
tag matching method is provided to reduce latency and power cost. The other 
is distributed tag storage. For such a tag store, a new ECC code called Hybrid 
ECC is presented. Hybrid ECC utilizes multiple transfers to provide similar 
error coverage with a reduced number of check bits.
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With technology scaling, NAND devices suffer from high raw bit error rate 
(RBER) incurred by device physics variations at sub-20nm. At the same time, 
their error patterns also exhibit unbalanced characteristics. Circuit techniques 
have been explored to overcome the unbalanced error behaviors. However 
they cannot fully purge them and these techniques require extra overhead on 
the device side. On the other hand, the ECC engine usually treats the errors 
in NAND devices as random errors, which is not true in real NAND devices. 
This article proposes to fully utilize the error pattern characteristics abstracted 
from the NAND device to facilitate ECC decoding, so that we can simplify 
the NAND device design to reduce cost and/or improve the system’s overall 
reliability. We describe the ECC engine process flow. We also show decoding 
gains under various flipping asymmetric bits. 

Introduction
The continuous bit cost reduction of NAND flash memory mainly relies on 
aggressive technology scaling. Besides technology scaling, multi-level per cell 
(MLC) technique has been widely used to further improve effective storage 
density and hence reduce bit cost of NAND flash memory. Because of its 
obvious bit cost advantage, MLC NAND flash memory has been increasingly 
dominating the global flash memory market. In current design practice, most 
MLC NAND flash memories store 2 bits per cell, while 3-bit-per-cell NAND 
flash memories have been recently reported.[1]

RBER in NAND continues to increase as industry is pushing technology 
scaling and storing more than one bit into a single cell. Currently, errors 
are usually assumed to be randomly distributed, and error patterns are 
independent of pre-stored values. However, due to various physical phenomena 
such as program disturb, single bit charge loss (SBCL), intrinsic charge loss 
(ICL), and electron trap effect, the NAND device tends to suffer from certain 
specific error patterns.[2][3] For example, for the voltage of LSB cell in 3-bit-per 
cell(3bpc) NAND, the L0 cell in a “7-0-7” pattern write sequence is more 
likely to move upward because of program disturb. Also, because of the 
iterative program-verify algorithm for NAND programming, the cell has much 
larger probability of experiencing a lower state to higher state misplacement 
than a higher state to lower state misplacement. Additionally, with ICL and 
SBCL, the distribution of Vt tends to move downward.

In current NAND devices, people adopt circuit techniques to reduce these 
unbalanced cell effects as much as possible; however, it’s not only expensive to 
take time and money to design, tune, and optimize the circuits but this strategy 
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also sacrifices performance in the NAND device itself due to the extra processing. 
At the same time, even with the help of these circuits, from the system side, we 
still observe unbalanced error patterns due to device inherent characteristics, and 
the NAND has to reserve a large read window budget for them.

Dominant error pattern detection in read channels has been proposed to 
facilitate the detector and ECC decoding.[4] In NAND, dominant error 
patterns vary through its whole lifetime, due to aging (program/erase cycle). 
They are also changing with NAND’s retention and read/write disturb. 
Therefore, we propose to have a dominant error pattern list; the ECC engine 
can use a trial-and-error decoding until it goes through all patterns on the list 
or decoding succeeds. Such an error pattern list can be pre-established when 
the device is manufactured, or we can also store it in the controller. Although 
it is not mandatory, for efficient operation, the controller may also keep 
tracking the age of the NAND and data retention time so that more accurate 
error patterns are selected for ECC engine. Once the NAND logic is equipped 
with ECC designed for unbalanced errors, it is there in digital circuits. The 
error list may require updates but the ECC circuit doesn’t need the extra effort 
to tune and optimize in each generation that the current NAND device does. 
Also, the overall performance overhead is small, because ECC is triggered 
based on need, unlike the circuit-level change in the device, which will be in 
function all the time. 

BCH codes with classical hard-decision decoding algorithms[5] are being 
widely used in current NAND controllers. As the industry continues 
to push the technology scaling envelope and pursue aggressive use of 
multi-level per-cell storage, raw storage reliability of NAND flash memory 
inevitably continues to degrade, which quickly makes current design practice 
inadequate and hence naturally demands more powerful ECCs. Because 
of their well-proven superior error correction capability with reasonably 
low decoding complexity, advanced ECCs, such as low-density parity-
check (LDPC) code with soft-decision decoding algorithms, appear to be 
promising candidates. Due to the sparse nature of its parity check matrix, 
we can further use the built-in parity checks in LDPC to help us identify 
error candidates without adding extra parity check bits as people normally 
do in the read channel. 

Dominant Error Detection and Decoding in NAND
In this article, we propose to feed the information of dominant error 
patterns in NAND devices into the ECC engine at the SSD controller so 
that ECC is more informed about the NAND channel and able to use this 
extra information to improve its error correction capability. For example, 
once we have an ECC decoding failure, we can try to flip candidate bits 
based on the parity check failure and the dominant error patterns and try 
decoding again. In order to detect the dominant error pattern, we can add 
a weak parity on top of the existing ECC. However this will reduce the 
coding gain.

“In NAND, dominant error patterns 

vary through its whole lifetime…”

“…ECC is more informed about 

the NAND channel and able to use 

this extra information to improve its 

error correction capability.”
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Dominant Error Pattern Detection
Most recently, due to its superior error correction capability, LDPC is 
attracting more and more interest in the most recent SSD applications.[6][7][8] 
The sparse parity check matrix in LDPC gives us an opportunity to avoid 
adding any coding overhead to detect error patterns. For an LDPC code with 
parity check matrix H, X is a codeword if H · X = 0. Therefore, “1” entries in 
each row of H check the parity of their corresponding bits in a codeword. For 
example, as Figure 1 shows, the fourth and fifth “1” entries in the second row 
of H check the fourth and fifth bits in a codeword respectively. If there is an 
error in one of the fourth and fifth bits (for example, the fourth bit becomes 
1 because of noise in NAND), the parity check results will be nonzero. In 
conventional ECC decoding, it decodes based on the assumption that all errors 
are random, which is not true in NAND-based systems. 

=.

1 1

1 1

H

1 1 0

0 0

0

0

0 0

0 0 0

0 0

0

0

0

1

0

0

1

1

0

Figure 1: Parity Check in LDPC
(Source: Ningde Xie, 2013)

Based on the dominant error patterns in NAND and combining this parity 
check information provided by the sparse parity check matrix H, we are able 
to flip some suspicious error bits during decoding. For example, if the current 
dominant error pattern is “1” to “0”, then the ECC engine will be told that 
bit “0” that violates parity check is a high risk candidate and it can flip it on 
purpose to help the decoding. 

Decoding with Dominant Error Patterns 
Figure 2 shows the ECC engine process flow when a decoding failure happens. 
Whenever an ECC decoding fails, ECC engine checks those bits where their 
parity checks are nonzero. Then based on the dominant error pattern list, it 
starts to search for the error pattern on the top of the list. Whenever there is 
a match, it intentionally forces these bits to the value they are supposed to be. 
In order to increase the chance to flip the “right” error bits, this error pattern 
information should be combine with the “bit flipping”[9] decoding process in 
LDPC hard decoding.

NAND Channel Modeling
In order to quantitatively verify the effectiveness of the above proposed method, 
a mathematical channel that takes into account program method and common 
noise in NAND is developed according to the method proposed in [10].  
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Each NAND flash memory cell is a floating gate transistor whose threshold 
voltage can be configured (or programmed) by injecting a certain amount of 
charges into the floating gate. Before a flash memory cell is programmed, it 
must be erased (that is, all the charges from the floating gate must be removed, 
which sets the gate’s threshold voltage to the lowest voltage window). It is well 
known that the threshold voltage of erased memory cells tends to have a wide 
Gaussian-like distribution.[11] Hence, we can approximately model the threshold 
voltage distribution of erased state as a Gaussian distribution function.

During NAND programming, threshold voltage control is typically realized by 
using an incremental step pulse program (ISPP).[12] With such a program-and-
verify strategy, each programmed state (except the erased state) associates with 
a verify voltage that is used in the verify operations and sets the target position 
of each programmed state threshold voltage window. Denote the verify voltage 
of the target programmed state as Vp, and program step voltage as ΔVpp. The 
threshold voltage of the programmed state tends to have a uniform distribution 
over [Vp, Vp + ΔVpp] with the width of ΔVpp. 

Flash memory program/erasure (P/E) cycling causes damage to the tunnel 
oxide of floating gate transistors in the form of charge trapping in the oxide 
and interface states, which directly results in threshold voltage shift and 
fluctuation, and hence gradually degrades memory device noise margin. Major 
distortion sources include

●● Electrons capture and emission events at charge trap sites near the interface 
developed over P/E cycling directly result in memory cell threshold voltage 
fluctuation, which is referred to as random telegraph noise (RTN).

●● Interface trap recovery and electron detrapping gradually reduce memory 
cell threshold voltage, leading to the data retention limitation.

RTN causes random fluctuation of memory cell threshold voltage, where the 
fluctuation magnitude is subject to exponential decay. Hence, we can model 
the probability density function of RTN-induced threshold voltage fluctuation 
as a symmetric exponential function. 

In NAND flash memory, the threshold voltage shift of one floating gate transistor 
can influence the threshold voltage of its neighboring floating gate transistors 
through parasitic capacitance-coupling effect.[13] This is referred to as cell-to-cell 
interference, which has been well recognized as the one of major noise sources in 
NAND flash memory. Threshold voltage shift of a victim cell caused by cell-
to-cell interference can be estimated by adding all weighted neighbor threshold 
voltage shift of interfering cells that are programmed after the victim cell. Each 
weighting factor, which is also called coupling ratio, can be estimated by the ratio 
of parasitic capacitance between the interfering cell and the victim cell.[10]

Simulation Results 
As a case study of this proposed work, we use the above channel model to show 
the improvement in NAND. For simulation setup, we follow the parameters 
in [10] where the most popular MLC NAND is used and carefully selected 
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cell-to-cell coupling factors; P/E cycles affects and retention time according to 
real-life NAND.

We first simulate the case where program disturbance is the dominant error 
source. It is a very common scenario for a user to program more than tens 
of pages of NAND and then come back to read the data back immediately. 
Therefore, we set up the simulation model by programming cells with random 
bits, which randomly disturb victim bits with various strengths. We also 
assume the retention time and P/E cycle to be 0 to simulate the almost new 
NAND. In this case, because of the program disturbance, we will see bit errors 
are mostly “1” to “0” misplacements. We implemented a hard decoding LDPC 
decoder using a bit flipping algorithm. (Note that although soft decoding 
brings the largest coding gain, it requires a very large read latency overhead in 
NAND; therefore we normally try hard decoding first whenever hard sensing 
results are available to the LDPC decoder). In this implementation, when a 
normal decoding fails, it will try to decode again by randomly flipping some of 
“0” bits that violate most parities. 

Figure 3 shows the simulation results for the proposed ECC decoding with 
dominant error flipping and conventional ECC decoding without dominant 
error flipping. We can see very obvious coding gain in this case.
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Figure 3: Simulation results for write disturb dominated errors
(Source: Ningde Xie, 2013)

As discussed above, after NAND is cycled towards its end of life, combing 
the data retention, we will see more “0” to “1” bit errors. To simulate this 
scenario, we set the channel model to be cycled at 5000 and adjust the retention 
time to three months to simulate the charge loss. This is also a very common 
phenomenon in real life after the NAND has been used for a long time and the 
user tries to read data that was stored a while ago. Figure 4 shows the simulation 
results for the proposed ECC decoding with dominant error flipping and 
conventional ECC decoding without dominant error flipping. Again, with 
dominant error detection in ECC decoding flow, we get significant coding gain. 
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Figure 4: Simulation results for retention dominated errors
(Source: Ningde Xie, 2013)

Comparing Figure 3 and Figure 4, we noticed that the coding gain is much less 
in Figure 4. It is because when we set larger P/E cycle and retention time, we 
actually mix all noises together, which include program disturbance as well. We 
also see the coding gain tends to increase with lower RBER in both cases. This 
is because with lower RBER, dominant error detection used in the simulation 
can more accurately detect error locations. This also explains why at very high 
RBER, we see no gain at all. 

The above implementation is very simple and effective. It can be further 
optimized by utilizing other information in NAND. For example, we may 
use neighbor cell values to help the ECC decide if a bit needs to be flipped 
or not. Of course, this requires the knowledge of how the device does the 
interleaving internally so that we can locate the real neighbors bits of a 
victim cell.

Conclusions
With this proposed method, we can either simplify the process at the 
device level to reduce design cost and time to market without sacrificing 
the overall system reliability (for example, delivering the NAND devices for 
SSD employing this proposed method without adding peripheral circuits to 
mitigate program disturb, ICL, and SBCL can be faster than normal release 
of the NAND devices with those circuits ready in the device). Alternatively, 
we can also leave the NAND device as is and improve the overall system 
reliability by taking advantage of this information enhanced ECC correction 
capability. Since ECC has already been used in any NAND-based system, 
it requires very little hardware overhead to include this extra information. 
Also, the normal hard decoding failure works for the majority of the errors, 
so this extra effort is only triggered when normal decoding doesn’t succeed 
the first time, which further reduces its impact on the overall system 
performance.

“The above implementation is 
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Memory Controller–Level Extensions for GDDR5 Single 
Device Data Correct Support

Support for Reliability, Availability, and Serviceability (RAS) is one of the 
quintessential features of computing systems targeting the server and mission-
critical markets. Among these RAS features, Chipkill* stands out as the most 
crucial for main memory protection. IBM Chipkill protects the main memory 
from the failure of an entire memory chip, as well as multi-bit faults from any 
portion of a memory chip. Similar technologies from other vendors are Single 
Device Data Correction (SDDC) from Intel, Sun Extended ECC* and HP 
Chipspare*.

However, some advanced memory technologies (such as GDDR5) do not 
allow traditional SDDC implementation, since their specification does not 
include extra devices to store error correction codes (ECC codes).

Some future high performance computing products hitting the server market 
will be based on these advanced memory technologies. In this article we 
propose a method to provide SDDC (single device data correct) support at 
the memory controller level for memory technologies that inherently have no 
RAS support for memory contents protection. Specifically, we focus on how 
to provide single-device SDDC support for GDDR5 memory. The technique 
allows the failure of 1/8 of the memory devices to be tolerated by using 25 
percent of the memory to store error correction codes.

We also describe how the technique can be implemented for RAS-less memory 
technologies feeding a wider data bus than GDDR5 (such as DDR3, which in 
fact uses narrower devices). This opens the possibility to offer high reliability 
with cheap DIMM devices. We also describe how to provide SDDC support 
without the use of lockstepped memory channels.

Introduction
Advanced memory technologies post-DDR3 provide very high memory 
bandwidth with low implementation costs and high capacity. This is the case 
for GDDR5 with multiple memory channels. These features make these 
memory technologies very suitable not only for graphics cards but also for high 
performance computing (HPC) systems. Some HPC Intel products, such as 
the prototype product codenamed Knights Ferry (KNF) and the commercial 
product Intel® Xeon Phi™ (formerly codenamed Knight’s Corner, or KNC), 
are based on these or similar advanced memory technologies, and they are also 
targeting the server segment. 

Targeting the server segment inevitably implies offering memory-level 
RAS techniques, such as SECDED (single error correction / double error 

“…we propose a method to provide 

SDDC (single device data correct) 

support at the memory controller level 

for memory technologies that inherently 

have no RAS support for memory 

contents protection. Specifically, we 

focus on how to provide single-device 

SDDC support for GDDR5 memory.”
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detection), memory mirroring, memory sparing, and memory migration. 
However, there are several road-blocking issues related to these advanced 
memory technologies.

First, some memory technologies do not provide extra devices to protect 
memory contents. This is the case of the GDDR5 standard.[1] As a 
consequence, there is no native support to build these RAS techniques on top 
of GDDR5-based products. Second, due to cost, energy overhead, memory 
capacity restrictions or vendor strategies, the type of available memories may 
not include RAS features. 

IBM Chipkill and related techniques allow the correction of errors 
resulting from the failure of one or several memory devices.[12] As an 
example, dual device data correction (DDDC[2]) memory controllers allow 
correcting two failing x4 DRAM devices provided the failures are separated 
in time out of a set of thirty-six x4 devices. Devices with more output 
pins tend to be more power efficient than those with fewer pins because 
the energy per memory access can be amortized over more output bits.[10] 
This is the reason why other Intel products, such as the Intel® Xeon® 5500 
family and the Intel Xeon 6500/7500 series, also extend their protection to 
DDR x8 devices.

However, supporting wide devices comes with an increase either in the code 
overhead with respect to the protected word, an increase in the word size, or an 
increase in the access granularity (amount of data obtained from the memory). 
Clearly, for wide memory devices such as GDDR5 (two x16 devices per 
memory module), SDDC support represents a challenge. 

To our knowledge, there is no previous solution addressing the problem of 
device error detection and/or correction for advanced memory with no RAS 
support. Yoon and Erez[3] propose using address virtualization in order to 
store the codes in regular memory devices. However, this technique requires 
microarchitectural changes in the core and OS modifications as well. Also, the 
paper targets regular DDR2 memories.

Background Information
In this section we first give a general description of existing memory RAS 
techniques for tolerating failures of memory chips. We then describe the 
high-level architecture of GDDR5 memory. 

Implementation Examples
Several products have hit the market offering RAS capabilities for surviving to 
failures of an entire memory chip. We present some of them.

Oracle Sun UltraSPARC* T1/T2 and AMD Opteron*
Some products provide SSC-DSC (single symbol correct – double symbol 
detect) protection for x4 DDR2 DIMMs devices. This is the case of the 
Oracle Sun UltraSPARC T1/T2 and AMD Opteron systems.[4][5] Memory 

“…some memory technologies do 

not provide extra devices to protect 
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RAS support is constructed by using b-adjacent error correction codes.[7] 
These two products use the 4-check-symbol error code.[8] In these cases, the 
four 4-bit adjacent check symbols protect thirty-two 4-bit data symbols. This 
allows a simple implementation when using two x4 DDR2 DIMMS residing 
on two different channels working in lockstep mode. With a burst size of 4, 
a whole cache line is accessed within the 4 accesses of a DDR2 burst. 
Specifically, in every access of a burst, one data word of 128 (16 data devices 
per DIMM × 2 DIMMs × 4 bits per device) bits is obtained and is protected 
with a code of 16 bits (2 RAS devices per DIMM × 2 DIMMs × 4 bits per 
device). Clearly, this allows recovering the failure of one x4 device, out of a 
set of 36 devices. 

Intel’s DDDC
Some Intel products improve memory reliability by providing dual-device data 
correction (DDDC) in lockstep mode for x4 DRAM chips, and additional 
single-bit error correction[2] (correcting two failing x4 DRAM devices “provided 
the failures are separated in time” out of a set of thirty-six x4 devices). DDDC 
was initially implemented on the Intel® Itanium™ 9300 series (IPF) and on the 
Intel Xeon E7-x8xx series (x86). At a high level, DDDC is implemented by 
using two x4 ECC-DIMMS in two channels working in lockstep mode with 
DDR3 burst chop mode (forced burst of 4). 

DDDC is supported for x4 devices by means of lockstepped channels. 
However, SDDC (single device data correction) is supported for x4 and for x8 
devices. Whereas SDDC for x8 devices also requires two lockstepped channels, 
SDDC for x4 devices can work on independent memory channels. 

IBM Blue Gene/P*
In the IBM Blue Gene/P system every memory controller communicates 
through DDR2 protocol via a 160-bit-wide bus.[6] Of these bits, 128 are user 
data and 32 bits are devoted for RAS purposes. This represents an overhead of 
25 percent. However, this redundancy allows storing address parity bits, spare 
bits, and enhanced ECC protection data. Overall, it can detect/correct up to 
six adjacent bits and tolerate the failure of two x8 DRAM chips. However, no 
details on the implementation are available.

GDDR5 Basics
Before describing our technique, it is first necessary to understand the basics 
of the GDDR5 internal architecture.[1] GDDR5 uses a burst size of 8 (8n 
prefetch scheme) to achieve high-speed bus operation while decreasing the 
internal memory core frequency for power savings. The data input/output bus 
consists of 32 data pins (as opposed to the 64 bits of DDR3), and in every bus 
clock cycle 4 chunks of 32 bits are transmitted. Hence, an access with a burst 
size of 8 provides 256 bits over two clock cycles. There is no support for burst 
chop of 4, as opposed to DDR3 memory. The data bus is logically split into 
4 bytes, and two extra signals are added to each byte: the data bus inversion 
signal (to reduce the noise on the high-speed interface and power dissipation) 
and an error detection and correction signal (to catch errors in the data transfer 

“GDDR5 uses a burst size of 8…”

“The data input/output bus consists  

of 32 data pins…”

“…every bus clock cycle 4 chunks  
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“…an access with a burst size of  
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through the bus). Moreover, partial writes where individual bytes are excluded 
from write operations are also supported through the use of an extra data 
mask pin associated with each data byte. This avoids costly read-modify-write 
operations.

The link between the memory controller and GDDR5 is protected by means of 
a cyclic redundancy check (CRC) code. This CRC code allows the detection of 
all single and double bit faults occurring in the bus for data and bus inversion 
signals, as well all bursts errors of length no bigger than 8. Upon error 
detection, the command that caused the error should be repeated and also a 
retrain of the transmission line can be performed to adapt to varying operating 
conditions on such a high-bandwidth bus.

According to the standard[1], GDDR5 memories run with two different 
clocks: commands and addresses are referenced to the differential clock 
(CK and /CK). Commands are registered at every rising edge of CK, 
whereas addresses are registered at the rising edge of CK or /CK. Read 
and write data are referenced to both edges of a free-running differential 
forwarded clock (WCK, /WCK), which replaces the pulsed strobes used in 
previous DRAMs. This relation between clocks and data rates is depicted 
in Figure 1. This means that there is a x4 relationship between data rate 
and CK clock, as opposed to the x2 relationship in DDR3. Differential 
clocking allows a more precise communication and this is the reason of the 
dramatic increase in bandwidth provided by GDDR5 (it allows between  
4 and 8 Gbps).

Figure 1: GDDR5 clocks and data rates
(Source: Intel Corporation, 2013)

Address

WCK, /WCK

Data

CK, /CK

Command

On top of this, the GDDR5 standard supports a new mode of operation called 
2x16 clamshell mode. Basically, as Figure 2 shows, this feature allows doubling 
the memory capacity by adding an extra GDDR5 module on every existing 
memory channel, at the expense of a decrease in the bus clock frequency. The 
data travelling through the bus is provided by the two memory modules at the 
same time, each of them providing 16 bits. Every pair of 16 bits is provided by 
one of the two devices in a module. Note that during clamshell mode, we have 
four x16 devices per memory channel.
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Figure 2: Two channel memory controller working in clamshell mode.
(Source: Intel Corporation, 2012)

SDDC Proposal
Our approach to provide SDDC support is to use b-adjacent error detection-
correction codes.[7][3] Given that multi-bit errors typically affect contiguous bit 
locations, computing systems can exploit this fact and use error correction 
codes for adjacent faulty locations. This includes the b-adjacent error 
detection-correction codes, where a word is divided in chunks of b bits, and 
codes can correct any number of bit flips in at least one of these chunks. The 
different adjacent codes differ in the maximum size of the word they can 
protect, the code overhead, and the number of faulty chunks they can detect 
and/or correct. 

Given that GDDR5 does not provide extra devices or storage to accommodate 
error detection-correction codes, we use the existing data devices for keeping 
error correction codes. In order to do so, we propose stealing memory and 
devoting it to RAS purposes. Our technique is implemented at the memory 
controller level (this does not require cooperation among memory controllers) 
and is transparent to the OS. Also, it works by using the two memory channels 
of a memory controller in lockstep mode, hence 8 x16 devices are available 
for SDDC purposes. We propose using regular x16 devices to store the error 
correction codes. As an implementation example and because of its low 
overhead, we show how to obtain SDDC support with 2-redundant b-adjacent 

“…we use the existing data devices for 

keeping error correction codes.”
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devoting it to RAS purposes. Our 
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Bossen’s codes.[7] However, other codes with similar overheads could also be 
used in a similar fashion.[8][9] Specifically, 2-redundant b-adjacent Bossen’s 
codes allow detecting and correcting a maximum of b-adjacent errors of a 
data word with a maximum length of b × b bits and an overhead of 2b bits. 
We propose a new way to map data and codes to devices that minimizes the 
amount of sequestered memory. Moreover, we propose several enhancements 
to deal with the performance problems that this data layout induces. 

Data Mapping to x16 Devices
For GDDR5 memory, a device is connected to 16 data input/output pins 
(that is, a x16 device), and hence Bossen’s codes would allow the protection 
of a maximum of 256 data bits with 32 bits of overhead (b = 16), as long as 
each one of the sixteen chunks of 16 bits (256 bits) is stored in a different x16 
device. Otherwise, if we were to store 256 bits in less than 16 devices, it would 
imply that at least one device would be providing 32 bits or more of the word. 
In case that device was faulty, we could not correct the data word when using 
an adjacent error detection/correction code for b = 16.  

However, two lockstepped channels cannot form a word of 256 bits, because 
there are 8 available x16 devices when working in clamshell mode. Our intra-
memory controller SDDC technique is based on protecting 96 bits of data 
with 32 bits of code. This is done by using 25 percent of the memory to store 
the codes. Regarding recovery, our technique allows recovering 1 out of 8 
failing devices, whereas DDDC can recover 2 nonadjacent devices out of 36, 
when using x4 DDR3 DIMMs. 

Figure 3 shows an example on how cache lines can be stored across the different 
eight devices in the two memory channels. For clarification purposes, Figure 2 
depicts the different devices and their names connected to a memory controller 
through two channels working in clamshell mode. However, it would be possible 
to assign the chunks of data and codes to the existing devices in different ways. 
From now on, we will assume the layout depicted in Figure 2.

Cache line data (512 bits long) is scattered across six x16 devices and across 
the two memory channels. Two devices are devoted to store the codes. It is 
interesting to note that contiguous cache lines start at different devices, and the 
pattern repeats after three cache lines. 

In order to access a cache line, two bursts of eight accesses are performed. 
The two consecutive bursts allow activating the four different devices in every 
channel. A simple way to achieve this is to use the most significant bit of the 
column address to select the device within a GDDR5 module. Therefore, 
two consecutive bursts will have the most significant bit with opposite values. 
The memory controller determines the device where a cache line begins, the 
starting column, and what columns to skip. Given that the cache lines layout is 
regular and repeats every three cache lines, the memory controller just needs to 
perform fixed modulo 3 operations.
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Figure 3: Example of data and codes layout. Three cache lines are shown
(Source: Intel Corporation, 2012)

Figure 4 shows an access example where the yellow cache line is accessed. 
The two access bursts allow providing 1024 bits of data. Of these, 512 bits of 
data correspond to the cache line, the excess data corresponds to a partially 
prefetched cache line (half of the blue one in the example) and the codes of the 
partially prefetched cache line.
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Figure 4: Acceses to obtain the yellow line. Partial prefetch of the blue 
cache line is achieved
(Source: Intel Corporation, 2012)
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Enhancements
In order to avoid wasting memory space, cache lines start at different device 
boundaries, and as a consequence, there are column addresses that can store 
segments of two different cache lines (column 5 and 10 in Figure 3 are two 
examples). For the blue cache line in Figure 5, chunks 31 and 32 do not constitute 
a part of the blue cache line, but these fragments must be read and written along 
with the blue cache line, since they are involved in the code C6 and C6’. We refer 
to these two data chunks as the preamble of the blue cache line. Similarly, the same 
happens for chunks 65 and 66, and we refer to these fragments as the postamble of 
the blue cache line. Despite the fact that preambles and postambles are read/written 
upon the blue cache line request, unless no enhancement is introduced at the 
memory controller they do not represent useful data for the request being serviced. 

Similarly, these columns (preambles/postambles) are problematic during cache line 
writes because without extra optimizations, it would be necessary to read the cache 
line again to obtain the preamble and postamble data (see Figure 5) so that the 
codes could be computed. This implies that a total of the request would be satisfied 
after three bursts (one parallel burst across the two channels to obtain the preamble 
and postamble, and two parallel bursts across the two channels to accomplish the 
write request), incurring important performance overhead on writes.

Preamble is 31.31
Line L is 33 … 64 Postamble is 65.66

31 32 33 34 C6 C6'

37 38 39 40 C7 C7'

43 44 45 46 C8 C8'

49 50 51 52 C9 C9'

55 56 57 58 C10 C10'

61 62 63 64 C11 C11'

67 68 69 70 C12 C12'

73 74 75 76

35

41

47

53

59

65

71

77

36

42

48

54

60

66

72

78 C13 C13'

Preamble and postamble used to optimize writes. If preamble and postamble were
not cached, we would have to read the line L again in order to determine 31.32 and
65.66 because they are part of codes C6.C6' and C11.C11'. 31.32 and 65.66 etc
would not be modified during writes (using write masks)   

Figure 5: Preamble and postamble example
(Source: Intel Corporation, 2012)

Caching and Prefetching Optimizations
As a way to speed up writes, we “cache” in the memory controller the preamble 
and postamble (if any) as well as the cache line address of the last read cache 
line(s). If a cache line write matches the address of the last read line(s), there is 
no need to perform a read to obtain the preamble and/or postamble to compute 
the codes for overlapping columns. This can be generalized to “cache” any 
number of preambles/postambles. Also, since GDDR5 supports write masks, 
there is no need to write again the data that has not been touched. Every cache 
line has a maximum of 64 bits for preamble and postamble, hence introducing 
a low overhead. Since a GDDR5 page is 2 KB long, and we use 4 GDDR5 
modules in a lockstepped and clamshell manner upon a cache request, it means 

“If a cache line write matches the 

address of the last read line(s), there is 

no need to perform a read to obtain the 

preamble and/or postamble to compute 

the codes for overlapping columns.”
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that there are globally 96 cache lines (data) in all the row buffers of the eight 
devices (for a single bank). The cache lines layout follows a repetitive pattern, 
which indicates that in order to store all the preambles/postambles in a page 
of a bank, roughly 768 bytes of data are needed plus 96 × 2 bits (24 bytes) to 
indicate whether the preamble/postamble data is valid (has been cached). To 
implement this feature, a direct access memory is the simplest option: the cache 
line ID is used to access one of the 96 entries, where each entry holding 8 bytes 
for preamble/postamble. Upon a cache line write request, first this information 
is obtained in order to compute the codes for the columns holding the preamble 
and postamble. Just in case neither the preamble nor the postamble is available 
in the memory, an additional read request will have to be performed. After that, 
and in parallel to the cache line writing, a maximum of two entries (adjacent 
cache lines) are accessed to update their information. However, since four cycles 
are needed to perform the writing of a cache line, enough timing is provided for 
the update, as well as for previous preamble/postamble query.

Regarding the excess data obtained during a cache line access, we manage this 
data as prefetched data. To improve performance, this prefetched data is kept 
at the memory controller level so that subsequent read requests arriving to the 
memory controller check if part of the information to be retrieved is already 
“cached.” This cached data allows advancing the column address to be read 
and as a consequence, prefetching more data. Overall, sequential (forward or 
backward) reads of three cache lines can be satisfied with an average cost of four 
groups of bursts across two channels. As an example, Figure 6 shows a forward 
read access of the yellow, blue, and green cache lines. The first request, as 
previously commented, returns the yellow cache line and prefetches half of the 
blue cache line. Afterwards, when there is a request for the blue cache line, the 
column address will be moved to column 8 and the whole green cache line will 
be prefetched in the memory controller. This allows that the future request for 
the green line can be satisfied with no access to the GDDR5 modules.

To implement that, whenever a cache line is being read from the main memory, 
the memory controller groups together the data and code chunks that come 
from the same column address and identifies whether they correspond to the 
cache line being requested, it is a column where two different lines reside, or it 
is a column from another different line. This can be easily inferred because the 
cache lines layout follows a repetitive pattern. Once a read has been completed, 
the above-mentioned preamble and/or postamble “direct access memory” is 
filled. As commented, the entire last read data (potentially for every bank) is kept 
in a buffer in the memory controller along with the starting column address. 

For the next read request the memory controller will determine the number of 
overlapping column addresses that overlap with the previous cached information. 
If there is some overlap, the read column address can be moved forward (or 
backward) as many columns as the number of overlapping columns with respect 
to the previous cached information. The new read data belonging to the requested 
cache line is merged with the data coming from the last request (the one cached) 
and returned to the requesting agent. The same caching process starts again.
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Figure 6: Example of cost amortization
(Source: Intel Corporation, 2012)

Other Implementations
Several implementations of the proposed idea are possible. As commented, the 
assignment of data chunks to devices is arbitrary. Also, other kinds of adjacent 
error detection/correction codes with different amounts of overhead are also 
possible. 

On another axis, in order to avoid overlapping cache lines, an alternative solution 
may simply waste the extra space at the end of a cache line. This simplifies the 
write method, because there is no need to keep preambles or postambles, but it 
comes at a cost in extra space (33.33 percent or 16/48 of the memory is lost). 
Also, the prefetching optimization is for performance purposes so designers may 
want to drop this feature for simplicity and less hardware overhead.

Applications to Other Memory Technologies
The same idea can be applied to other types of memory technologies where 
devices are grouped to feed a wider data bus. For example, common DDR, 
DDR2, and DDR3 modules (as well as other future memory technologies) 
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feed a bus of 64 data bits. Normally, this modules come prepackaged in the 
form of four x16 devices, eight x8 devices, or sixteen x4 devices. 

Table 1 briefly lists possible applications of the proposed implementation to 
this kind of memory modules. Notice that the list of possible implementations 
is not exhaustive. 

As an example, the very same idea presented for GDDR5 can be applied 
to x4 DIMMs that have no RAS support (no extra devices to store ECCs), 
and output 64 bits per each access of every burst. We can even apply the 
technique to achieve SDDC support by using just one DIMM and avoiding 
lockstepped channels. This can be achieved with the same overhead of 
25 percent of sequestered memory by using a 2-redundant b-adjacent Bossen 
code for b = 8, or by using a 4 check symbol code[8] for b = 4. Specifically, 

Device Size #DIMMs Error Detection Code Area Cost Access granularity (bits)

x4 1 2-redundant b-adjacent Bossen code (b = 8) or

4 check symbol code (b = 4)

4/16 768 (burst of 4)

1024 (burst of 8)

2 4 check symbol code (b = 4) 4/32 1024 (burst of 4)

1024 (burst of 8)

4 4 check symbol code (b = 4) 4/64 1024 (burst of 4)

2048 (burst of 8)

x8 1 2-redundant b-adjacent Bossen code (b = 8) 2/8 768 (burst of 4)

1024 (burst of 8)

2 4 check symbol code (b = 8) 4/16 1024 (burst of 4)

1024 (burst of 8)

4 4 check symbol code (b = 8) 4/32 1024 (burst of 4)

2048 (burst of 8)

n ≤ 1024, 

n power of 2

4 check symbol code (b = 8) 4/8n n × 4 × 64 (burst of 4)

n × 8 × 64 (burst of 8)

x16 2 2-redundant b-adjacent Bossen code (b = 16) 2/8 1024 (burst of 4)

1024 (burst of 8)

4 2-redundant b-adjacent Bossen code (b = 16) 2/16 1024 (burst of 4)

2048 (burst of 8)

4 4 check symbol code (b = 16) 4/16 1024 (burst of 4)

2048 (burst of 8)

n ≤ (64 × 1024 
× 1024) − 1, 
n power of 2

4 check symbol code (b = 16) 4/4n n × 4 × 64 (burst of 4)

n × 8 × 64 (burst of 8)

Table 1: Possible SDDC implementations on RAS-less memory technologies with a 64-bit bus
(Source: Intel Corporation, 2012)
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4 check symbol codes allow protecting 22b + 1 – 4b bits against b-adjacent 
faults with 4b bits of code.[8] This means that for b = 4, b = 8, a maximum 
word of 241, and 65505 bits can be protected with an overhead of 16 and 
32 bits, respectively.

For the x4 case where one DIMM is used, in order to obtain a cache line (given 
a burst size of 8), two consecutive accesses are necessary. This allows obtaining 
a cache line and prefetching half of another one. The cache lines layout pattern 
stays unchanged with respect to the GDDR5 SDDC implementation (so MC 
address determination is simple). The same happens for the x8 implementation 
using one DIMM.

Since only one bank is accessed and only one DIMM is required to provide 
the requested cache lines, several benefits can be obtained from this lockstep-
free implementation. First, the number of devices activated is reduced to 
the bare minimum of 16 chips for a x4 DIMM. A reduction in the active 
power consumption can also be achieved because fewer devices are activated 
to satisfy a cache line request. Regarding performance, despite an access to a 
cache line is served (in the worst case when there is no previous prefetching) 
using an additional burst (hence, increasing the read latency), performance 
can also be boosted because there is an increase in bank-level and rank-level 
parallelism (no interlocked channels/ranks/banks). Given the expected low 
row locality for future multi-threaded tera-scale processors[11], a SDDC 
solution using a single memory module is more desirable in terms of power 
and performance.

Summary
We have presented a memory controller level solution to provide SDDC 
support for memory technologies with no RAS support. The technique can be 
applied to several types of memory, such as GDDR5 or common memory with 
no special devices for ECC. Our proposal allows recovering failures in one out 
of eight devices with a memory capacity cost of 25 percent.

Additionally, we have shown that this SDDC technique can be implemented 
for memory technologies feeding a wider data bus (such as DDR3, not 
GDDR5) without the use of lockstepped channels (see Table 1). 

It is also worth noting that this way of implementing SDDC opens the 
possibility to offer high reliability with cheap DIMM devices. 
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Off-chip memory systems are currently designed to present a uniform interface 
to the processor. Applications and systems, however, have dynamic and 
heterogeneous requirements in terms of reliability and access granularity because 
of complex usage scenarios and differing spatial locality. We argue that memory 
systems should be proportional, in that the data transferred and overhead of error 
protection be proportional to the requirements and characteristics of the running 
processes. We describe two techniques and specific designs for achieving aspects 
of proportionality in the main memory system. The first, dynamic and adaptive 
granularity, utilizes conventional DRAM chips with minor DIMM modifications 
(along with new control and prediction mechanisms) to access memory with 
either fine or coarse granularity depending on observed spatial locality. The 
second, virtualized ECC, is a software/hardware collaborative technique that 
enables flexible, dynamic, and adaptive tuning between the level of protection 
provided for a virtual memory page and the overhead of bandwidth and capacity 
for achieving protection. Both mechanisms have a small hardware overhead, can 
be disabled to match the baseline, and provide significant benefits when in use.

Introduction
With increasing levels of system integration, the need to improve power and 
energy efficiency is paramount. With voltage scaling leveling off, process 
technology alone cannot provide the necessary sustained improvements in 
efficiency. An attractive alternative to improving performance is to waste 
less power when resources are not fully utilized. This idea of proportionality, 
where the resources consumed are proportional to actual requirements, is thus 
key to achieving necessary efficiency, and hence, necessary performance 
improvements. In this article we argue the importance of proportionality in 
the memory system and describe two mechanisms that enable it. The discussed 
research was conducted at the University of Texas at Austin with support from 
the Intel URO Memory Hierarchy Program.

The memory system continues to consume significant power and energy resources 
as available computation increasingly outpaces memory bandwidth. At the same 
time, the need for increasing memory capacity and the inherent error sensitivity 
of memory devices require hardware error protection for high reliability. Existing 
systems attempt to manage these bandwidth and reliability issues by using coarse-
grained (CG) memory accesses and by applying error checking and correcting 
(ECC) codes uniformly across all memory locations. Large granularity accesses 
reduce cache miss rates and amortize control for spatially local requests and 
can thus maximize peak bandwidth. Coarse-grained ECC codes provide low-
redundancy error tolerance enabling strong protection with acceptable overhead.
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While the coarse-grained approach can maximize peak bandwidth with required 
reliability levels, it is ill-suited for many applications and scenarios. The optimal 
memory access granularity and error detection and correction schemes are, by 
nature, application specific. When a program lacks spatial locality, CG accesses 
waste power, memory bandwidth, and on-chip storage. Furthermore, protecting 
all data to the same degree carries either a large associated cost, forces CG 
accesses, or carries a hidden risk of silent data corruption. This one-size-fits-all 
approach is inherently not proportional, in that it does not account for specific 
needs and usage. Thus, CG accesses waste the scarcest resources: off-chip (or 
off-package) bandwidth, power and power. As a result, it is unlikely that uniform 
granularity and protection will provide adequate system efficiency and reliability 
for future workloads and system scales.

In contrast to uniform schemes, we advocate a cooperative and flexible memory 
system that transfers data and protects it from error in a manner that is 
proportional to the requirements and characteristics of the running processes. This 
work describes two techniques for achieving proportionality in the main memory 
system. Our techniques are unique in that they do not target low-utilization phases 
or background power. Instead, by taking into account application-specific memory 
access properties, these techniques provide scalable, efficient, and reliable operation 
for a wide range of demanding applications and operating environments. While 
adding significant flexibility and enabling new levels of performance and efficiency, 
our proposed mechanisms have only a small hardware overhead and may provide 
benefits even without the support of the application developer.

In the rest of this article we explain the importance of proportionality in the 
memory system, describe our two proportional mechanisms, and discuss their 
potential future applications and impact. The first of the two mechanisms, the 
dynamic granularity memory system (DGMS) enables memory to be accessed 
with granularity that can vary dynamically to maximize utilization of off-chip 
links, performance, and efficiency. In our experiments, DGMS is able to improve 
performance by up to 180 percent in a bandwidth-constrained environment 
and power efficiency by an even higher 280 percent over a CG-only system. The 
second mechanism, virtualized ECC (VECC), decouples ECC information from 
the data it protects and enables ECC schemes that are dynamic, adaptive, and 
proportional. With VECC, each memory page can receive its own ECC scheme 
from an available palette, thus eliminating the waste associated with a uniform 
error code. Furthermore, VECC relaxes many design constraints by storing 
ECC information as data. We show that this design flexibility offers significant 
efficiency advantages—memory protection can be increased with a stronger 
ECC code while at the same time improving system energy-delay product over a 
system with conventional uniform error codes.

The Need for Proportional Memory Systems
While proportionality is an appealing approach to improve efficiency, and 
hence, performance, much of the work on proportionality has been on the 
processor side. Advanced power management features, such as flexible and 
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hardware-managed DVFS and both coarse- and fine-grained clock and power 
gating minimize wasted power when the full compute capabilities are not 
needed.[6][17] The memory system, despite consuming a large and (in servers at 
least) growing fraction of overall consumed power, has received less attention 
with respect to proportional mechanisms. Similar to compute-oriented 
techniques, the little memory proportionality research that exists focuses on 
times when the memory system is not fully utilized. At these times, devices can 
be placed in a low power mode, DVFS can be applied to links and potentially 
even memory arrays, and refresh periods can be extended.

We argue that the importance of main memory provides sufficient motivation 
to develop fine-grained proportional mechanisms that can be used not just 
when utilization is low. Specifically, new mechanisms are needed that minimize 
unnecessary data transfers and wasted storage resources. As explained earlier, 
memory systems currently favor coarse-grained accesses to amortize control 
and uniform ECC redundancy, thus maximizing peak bandwidth when spatial 
locality is high. When a program lacks spatial locality, however, CG accesses 
waste power, memory bandwidth, and on-chip storage. Uniform ECC wastes 
both capacity and bandwidth when protection needs are variable. We explain 
the need for proportionality of granularity and ECC in the subsections below. 

Accesses Granularity
Figure 1 shows the spatial locality of various benchmarks by profiling the 
number of 8-byte words accessed in each 64-byte cache line before the line 
is evicted (in a 1-MB cache). Most applications touch less than 50 percent 
of each cache line. For these applications, a CG-only memory system wastes 
off-chip bandwidth and power by fetching unused data. A memory system that 
makes only a fine-grained (FG) access eliminates this minimum-granularity 
problem and may achieve higher system throughput than a CG-only memory 
system. An FG-only memory system, however, incurs high ECC (error 
checking and correcting) overhead since every FG data block needs its own 
ECC. High-end vector processors (such as Cray’s Black Widow[2]) often use 
the FG-only approach but relinquish the benefits of CG accesses when spatial 
locality is high.
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Figure 1: Number of touched 8-byte words in a 64-byte cache line before the line is evicted
(Source: University of Texas at Austin, 2011)
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Unlike CG and FG memory systems, our dynamic-granularity DGMS is 
proportional. It amortizes overhead and uses CG accesses when spatial locality 
is high, while enabling FG accesses when spatial locality is lacking. In the 
section “Dynamic and Adaptive Granularity,” we describe two variants of this 
system. The first relies on software to adapt granularity and the second is a 
pure-hardware microarchitectural approach.

Memory Error Protection
The traditional approach for memory error protection applies error checking 
and correcting (ECC) codes uniformly across all memory locations, potentially 
resulting in system inefficiency or at the risk of data corruption. With uniform 
ECC, each memory access is extended to also include redundant information 
that is used to detect and correct potential errors. Memory protection is 
necessary because memory capacity requirements dictate both denser and 
more memory chips. Unfortunately, this increase in capacity comes with a 
corresponding increase in memory failures.

Currently, uniform ECC is typically implemented by adding additional 
memory chips to each memory rank or DIMM. ECC DIMMs are most often 
used to provide single-bit error correction and double-bit error detection 
(SEC-DED) for each DRAM rank, which does not reduce memory system 
performance. Tolerating failures of entire DRAM chips requires the use of 
Chipkill correct, which “spreads” a DRAM access across multiple chips and 
uses a wide ECC to allow high error tolerance.[9] While this conveniently 
provides a fixed level of error tolerance, uniform ECC cannot efficiently 
provide the error tolerance levels that will be required in future computing 
platforms without a significant increase in cost. The reason is that the 
increasing granularity, DRAM interface width, and burst length necessitates 
either a corresponding increase in memory access granularity or an increase in 
redundancy. Increasing granularity is undesirable for the reasons mentioned 
earlier. Increasing redundancy may be even more costly because it requires both 
additional storage resources and additional I/O pins to communicate more 
redundant information with each access. For example, providing Chipkill with 
current DRAM packaging technology is best when x4 DRAMs are used, which 
have a 4-bit interface width. These narrow chips consume roughly 30 percent 
more energy for a given total DIMM capacity with respect to the more efficient 
x8 configurations.[5] This extra overhead is required for all the memory, which 
may be multiple terabytes in large-capacity systems.

To complicate and constrain designs even further, the error tolerance level, 
hence the cost of reliability, must be determined at design time based on a 
“worst-case” scenario of error propensity. This worst case may never arise 
in many systems, but may actually be exceeded in others. This is a poor 
combination that results in the overprovisioning of reliability techniques in 
most environments and a potential compromise to reliable operation in others. 
We present a proportional alternative to uniform ECC. Virtualized ECC is 
a general scheme for virtualizing memory error correction to provide design-
time flexibility and runtime adaptivity. Virtualized ECC maps the redundant 
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information needed to correct errors into the memory namespace itself. This 
mechanism enables flexible memory protection, as opposed to the fixed error 
tolerance level of uniform ECC. Furthermore, Virtualized ECC enables error 
correction mechanisms that adapt to user and system demands.

Dynamic and Adaptive Granularity
We describe two variants of DGMS that proportionally adapt memory 
access granularity. Both variants use a similar overall design and differ in how 
granularity information is obtained and communicated and in how data 
and ECC information are laid out across memory chips. An overview of the 
design is shown in Figure 2. DGMS uses sectored caches[14] with eight 8-byte 
subsectors to maintain FG information in the on-chip memory hierarchy, 
a modified memory controller that can schedule FG and CG requests, and 
a sub-ranked memory DIMM design that we leverage to enable low-cost 
independent access to each DRAM chip in a rank[3][29]. In a sub-ranked 
DIMM, a register or demux chip can decouple a rank of DRAM chips and 
direct memory command signals to only sub-ranks of one or more chips, while 
the datapath is still dedicated to each chip as in a regular memory module.
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Figure 2: Overview of DGMS design, which uses sectored caches throughout the 
hierarchy, identifies FG/CG accesses either with information communicated from software 
through the TLB or with a spatial pattern predictor (SPP), and uses a modified memory 
controller that is aware of mixed granularity and controls a sub-ranked memory module
(Source: University of Texas at Austin, 2012)

Our first variant, the adaptive granularity memory system (AGMS)[27] relies 
on software to communicate a static granularity for each memory page. 
AGMS enables the processor to selectively use FG accesses only when software 
determines FG to be beneficial and still maintains the efficiency of CG accesses 
by default. The information for determining whether an access is FG or CG is 
provided at page granularity and is communicated by the operating system (OS) 
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through the page table and is stored in the TLB. With AGMS, each memory 
page is assigned an access granularity when it is allocated. An important 
reason for using this static approach is to enable different layouts of data and 
ECC information that are better tuned for CG and FG accesses. Figure 3 
compares the data layouts for CG and FG pages. An FG access can achieve high 
throughput when spatial locality is low, but pays with increased ECC overheads.
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Figure 3: CG and FG accesses in AGMS. (a) Coarse-grained: Bx represents 
the xth byte in a 64-byte block, and Ey-z is 8-bit SEC-DED ECC for data By to 
Bz. (b) Fine-grained: Bx represents the xth byte in a 64-byte block, and Ex is 
8-bit SEC-DED ECC for data Bx
(Source: University of Texas at Austin, 2012)

Due to the different data and ECC layouts for CG and FG, AGMS requires 
changes to (and collaboration between) all system levels, from the memory 
system to user-space applications: the application dictates the preferred 
granularity during memory allocation; the OS manages per-page access 
granularity by augmenting the virtual memory interface; a sector cache 
manages fine-grained data in the cache hierarchy; and a sub-ranked memory 
system and mixed granularity memory scheduling handle multiple access 
granularities within the off-chip memory system.

Our second variant extends AGMS with dynamic mechanisms that offer 
numerous and substantial benefits. We refer to the resulting system as the 
Dynamic Granularity Memory System (DGMS).[28] DGMS supports both 
CG and FG accesses to a single, uniform memory space. Eliminating the strict 
separation of CG and FG data pages enables true dynamic adaptivity and has 
the potential to simplify the implementation of an AGMS system.

The data layout of DGMS shares the same memory, including ECC, between CG 
and FG accesses. This allows FG accesses to benefit from the same low-redundancy 
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error tolerance as CG accesses, eliminating the 100-percent FG ECC overhead 
required for the original AGMS design. This reduction in error-protection overhead 
affects the capacity, bandwidth, and power efficiency of FG accesses.

We encode the data within each 64-byte data chunk such that each 8-bit 
SEC-DED ECC protects the eight bytes transmitted out of a single DRAM 
chip over all bursts. The eight bytes of DGMS ECC protect the full 64-byte 
data chunk with the same redundancy as the conventional CG-only system. 
Since each 8-bit SEC-DED ECC protects an independent DRAM chip, the 
layout supports both CG and FG accesses. Figure 4(a) illustrates how an FG 
request is serviced with the proposed data layout. To avoid contention in the 
ECC DRAM chip, we spread ECC blocks across sub-ranks in a uniform, 
deterministic fashion, as shown in Figure 4(b), similar to RAID-5.
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Figure 4: The data layout used by DGMS to support multiple access granularities 
and the method used to lessen bank conflicts in the ECC DRAM chip. (a) Proposed 
data layout: Bx represents the xth byte in a 64-byte block, and Ey-z is 8-bit SEC-DED 
ECC for data By to Bz. (b) Spreading ECC locations in sub-ranks (SR: sub-rank)
(Source: University of Texas at Austin, 2012)

Because the layout of DGMS permits pages to service both CG and FG 
accesses, it enables the dynamic prediction of access granularities and does not 
need predetermined per-page granularity information and complicated virtual 
memory mechanisms. Dynamic locality and granularity speculation allows 
DGMS to operate as a hardware-only solution, without application knowledge, 
operating system support, or the need for programmer intervention. DGMS 
modifies previously proposed spatial pattern predictors[7][11] to operate at the 
main memory interface of a multi-core CPU, and adds layers to account for 
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memory scheduling and the interactions between cores. This study shows 
dynamic granularity adjustment to be an effective method for improving 
performance and system efficiency. Hardware-only DGMS provides comparable 
performance to software-controlled AGMS and demonstrates superior DRAM 
traffic and power reductions. Our ISCA paper describes more details in hardware 
granularity prediction in the context of chip-multiprocessors.[28]

DGMS Evaluation
We use cycle-based simulation and multi-programmed workloads to evaluate 
DGMS. The detailed evaluation methodology can be found in our ISCA 
paper.[28]

Figure 5 compares the system throughput of the CG baseline, AGMS, and 
DGMS, with and without ECC. AGMS improves the system throughput by 
20–220 percent in many applications with low spatial locality. In general, the 
performance of DGMS is very close to that of AGMS, with the exception of 
some outliers. The performance of DGMS suffers slightly with respect to AGMS 
due to increased bank conflicts from accessing the randomly distributed ECC 
information—with ECC disabled, DGMS outperforms AGMS. AGMS avoids 
bank conflicts by using a separate memory layout for FG pages, but does so at 
the cost of memory capacity, increased memory traffic, and increased energy 
spent accessing memory. Note that DGMS, with the proposed unified data/ECC 
layout, also does not require any changes in the OS, the virtual memory interface, 
compiler, or application. DGMS is a hardware-only solution, yet it achieves 
almost the same advantages of AGMS with “expert” program annotations.1 In 
addition, we believe a better granularity prediction and multigranularity memory 
scheduling can improve the performance of DGMS in the future.
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Figure 5: System throughput of AGMS and DGMS with and without ECC
(Source: University of Texas at Austin, 2012)

Virtualized ECC
To achieve proportionality of memory protection overhead, we offer a 
fundamentally different approach to storing and manipulating redundant 
DRAM storage, which brings flexibility to memory error protection. 

1 Extracted from dynamic memory profiling information.
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The Virtualized ECC architecture has four important advantages over 
uniform ECC. First, VECC[26] is a general OS/architecture mechanism 
for virtualizing DRAM ECC protection and decoupling the mapping of 
redundant information from the mapping of data. Second, with VECC we 
enable two-tiered protection for DRAM and show how to improve reliability 
guarantees and reduce the power consumption of the DRAM system by using 
wider-access configurations. Third, combining virtualization and multiple tiers, 
VECC can adapt error protection levels to match application, user, and system 
needs. Fourth, VECC can provide ECC protection for systems with standard 
non-ECC DIMMs without requiring changes to data mapping. We describe 
the VECC architecture and how it achieves these advantages below.

Virtualized ECC Architecture
The main innovation of Virtualized ECC is that it offers great flexibility in 
the method and level of memory protection. This flexibility allows Virtualized 
ECC to dynamically tune the memory protection scheme based on system 
configurations, environmental conditions, and application needs. In this way, 
Virtualized ECC can avoid the need to uniformly pay the overhead for the 
worst-case operating scenario, increasing system efficiency.

There are two basic mechanisms underlying Virtualized ECC: an augmented 
virtual memory (VM) interface that allows a separate virtual-to-physical 
mapping for data and for its associated redundant ECC information, and 
a generalization of DRAM ECC into a two-tiered protection mechanism, 
inspired by prior research.[18][24] Virtualized ECC uses a tier-one error code 
(T1EC) to detect errors on every access and a tier-two error code (T2EC) to 
correct the (rare) occurrence of an error.[25] Figure 6 compares a traditional VM 
ECC mapping with the decoupled two-tiered approach of Virtualized ECC. 
The traditional VM mapping, shown in Figure 6(a) translates a virtual address 
from the application name space to a physical address in DRAM. A DRAM 
access then retrieves or writes both the data and the ECC information, which is 
stored in alignment with the data in dedicated ECC DRAM chips.

Figure 6(b) gives an example of a flexible mapping enabled by Virtualized ECC 
in which a portion of the redundant information, the T1EC, is aligned with 
the data, but the T2EC part is mapped to a different physical address.

The data and the T2EC share the same physical address space and storage 
devices, and the OS and hardware memory management unit ensure that data 
and ECC are always matched and up to date. Less total data is accessed on a 
read in Virtualized ECC than in the conventional approach because T2EC is 
only read on the very rare event of an error. Data writes, however, may have 
higher corresponding overhead because all ECC data needs to be updated, 
requiring a second DRAM access. To mitigate the potential degradation in 
performance, we utilize the processor cache to reduce the amount of ECC 
traffic and discuss this in detail in the following subsection. Another advantage 
of the decoupled mapping and two-tiered approach is that different memory 
pages can have different protection types. For example, clean pages do not 
require any T2EC storage, potentially increasing the effective memory capacity.

“Virtualized ECC can dynamically 
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environmental conditions, and 

application needs.”
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and Virtualized ECC with a two-tiered flexible 
protection scheme; (a) conventional architecture 
(b) Virtualized ECC architecture
(Source: University of Texas at Austin, 2010)
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Cache-DRAM Interface
The cache filters requests from the core to DRAM and can also help improve 
the performance of Virtualized ECC. Because we store redundant information 
in the same physical namespace as data, we can cache ECC information on 
chip and can improve ECC access bandwidth using the same principles that 
make caches advantageous for data. Unlike application data, however, ECC 
is only accessed by the memory controller when it needs to address off-chip 
DRAM and is not shared among multiple processor cores. Thus, the redundant 
information is stored in the cache level to which the memory controller has 
direct access—the last-level cache (LLC) bank to which it is attached. Due 
to this arrangement, ECC information does not participate in any coherence 
protocol and is kept up to date by the memory controller. Virtualized ECC 
does not require significant changes to the existing cache interface; the only 
exceptions are the additional hardware for ECC address translation and the 
ability to maintain and write back partially valid cache lines. The latter is 
necessary because the cache has up-to-date ECC information only for data that 
is generated on chip (in two-tiered DRAM ECC). We describe this in detail 
below and address the different operations needed for two-tiered protection 
and for ECC with Non-ECC DIMMs.

Two-Tiered DRAM ECC
Figure 7 shows two-tiered Virtualized ECC on top of a generic memory system 
configuration with the LLC connected to two ranks of DRAM with dedicated 
ECC chips. We use the ECC chips to store T1EC, which can detect all errors 
of interest but cannot correct them without the additional T2EC information. 
The T2EC is mapped to the data DRAM chips such that data and its 
associated T2EC are in two different ranks.

The numbers in the text below refer to operations shown in Figure 7. 
Handling a fill into the LLC on a cache miss follows the same operations 
as in a conventional system; a data burst and its aligned T1EC are fetched 
from main memory, and error detection is carried out (1). This differs from 
a conventional system only insomuch that any detected errors cannot be 
immediately corrected. Evicting a dirty line and writing it back to DRAM (2), 
however, requires additional operations when compared to a conventional 
memory hierarchy. The memory controller must update the T2EC information 
associated with the evicted line, which starts with translating the data address 
to the location of the ECC address (EA) (3 and 4). If the translated EA is 
already in the LLC, it is simply updated in place. Otherwise, we allocate an 
LLC line to hold the T2EC. We do not need to fetch any information from 
memory because T2EC is only read when an error is detected, and any writes 
render the prior information obsolete. Thus, we compute the new T2EC and 
write it into the LLC along with a mask that indicates what portion of the LLC 
line contains valid T2EC information. As we explain later, our coding schemes 
use T2ECs that are 16–128 bits long and thus require very few valid bits. 
Depending on the exact ECC used to protect the LLC itself, it may even be 
possible to repurpose the LLC ECC bits to store the valid mask. We can ignore 
errors in a T2EC line in the LLC because there is no need to add a third level 
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of redundancy and protect T2EC information from errors. This mask is used 
when a T2EC LLC line is evicted back to DRAM (5) as invalid portions of the 
line must not overwrite T2EC data in DRAM.
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Figure 7: Operations of DRAM and LLC for accessing a two-tiered Virtualized 
ECC configuration
(Source: University of Austin, 2010)

When an error is detected by T1EC, correction is carried out using the 
corresponding T2EC. If the T2EC is not in the cache, correction requires an 
additional DRAM access to fetch the redundant information. This additional 
latency, however, does not significantly impact performance because errors in a 
particular memory channel are very rare. Frequent errors indicate a hard fault 
and can be mitigated by data migration, as suggested by Slayman.[19]

Virtualized ECC Interface with Non-ECC DIMMs
Even if physical memory does not provide ECC storage, we can use Virtualized 
ECC to protect memory. In the non-ECC DIMM configuration, we cannot 
store an aligned T1EC; therefore we place all the redundant information in the 
virtualized T2EC instead (we still refer to this as T2EC to keep the notation 
consistent). When data is read from main memory, we use the ECC address 
translation unit to find its EA. A T2EC LLC miss will fetch the T2EC from 
main memory because without ECC DIMMs, the information is required for 
error detection, and not just for correction. Unlike the two-tiered scenario, 
we fetch an entire cache-line’s worth of T2EC data on a miss to amortize 
the DRAM access, and expect spatial locality to reduce the cost of following 
memory accesses. We only return data to the cache controller after the ECC 
information is fetched, and the data is verified. On a dirty write-back, the PA 
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is translated to an EA, and a T2EC is fetched from main memory if the EA is 
not already cached.

Virtualized ECC Protection Schemes
We now discuss possible DRAM configurations for Virtualized ECC, assuming 
a memory system that is representative of servers requiring Chipkill correct 
error protection. The baseline memory system is composed of a 128-bit wide 
DDR2 DRAM channel with an additional 16 bits of dedicated ECC. Our 
techniques work as well, or better, with DDR3 because it uses longer bursts 
and limits use of traditional Chipkill techniques.[3]

Virtualized ECC with ECC DIMMs
While traditional Chipkill uses a 4-check-symbol error code, Virtualized ECC, 
with two-tiered protection and T2EC virtualization, enables a more efficient 
3-check-symbol error code.[8] In two-tiered error protection, the first two check 
symbols of the 3-check-symbol code construct a T1EC that can detect up to 
two symbol errors, while the T2EC is the third check symbol. If the T1EC 
detects a single symbol error, it is corrected using all three check symbols of 
both tiers. Our scheme uses 8-bit symbols for x4 and x8 DRAM configurations 
and 16-bit symbols with x16 chips. In the x4 system, we use two consecutive 
transfers of 128 bits so that we have an 8-bit symbol from each DRAM chip 
for the 8-bit symbol based error code. This effective 256-bit access does not 
actually change the DRAM access granularity, which is still 64 bytes as in the 
baseline system. The Virtualized ECC configurations using ECC DIMMs are 
summarized in Table 1, which also presents the details of the baseline Chipkill 
technique.

ECC x4 uses x4 chips, but utilizes the two-tiered approach to improve energy 
efficiency. We store two 8-bit check symbols in two ECC DRAM chips (in an 
ECC DIMM) to serve as a T1EC that can detect up to two chip failures. The 
third check symbol is the T2EC, which is stored in the data chips. Thus, ECC 
x4 only requires two ECC chips instead of the four chips of the conventional 
approach, saving eight pins and the associated costs of storage, power, and 
bandwidth. 

ECC x8 is an efficient scheme for Chipkill protection using ECC DIMMs 
with x8 chips. We use the two ECC chips in a rank for the 2-symbol 
T1EC and store the third check symbol in data memory as the T2EC. 
Thus, we access 16 x8 data chips and two additional ECC chips on every 
read for the same 64-byte access granularity and redundancy overhead of 
the conventional Chipkill approach. Without virtualizing the T2EC, an 
additional DRAM chip to hold the third symbol would be touched on every 
access, increasing power and pin redundancy to a fixed 18.5 percent[3] as well 
as requiring nonstandard DIMMs.

Virtualized ECC with Non-ECC DIMMs
Another advantage of Virtualized ECC is the ability to add ECC protection to 
systems that use non-ECC DIMMs. We suggest schemes that are based on a 
2-check-symbol Reed Solomon (RS) code[16], which can detect and correct one 
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symbol error—in our case, a code that can tolerate any number of bit errors as 
long as they are confined to a single chip. The details for this scheme using x4, 
x8, and x16 DRAM chips are also summarized in Table 1. All three non-ECC 
DIMM configurations have the same protection capability, but the access 
properties differ. The wider symbols needed for x16 DRAMs imply that fewer 
T2EC words fit into an LLC line.

Flexible Protection Mechanisms
Virtualized ECC allows error protection levels and overhead to be 
proportional to dynamic application, user, and system needs. A single 
processor with virtualized ECC can support different levels of error tolerance 
by varying the T2EC size (see “T2EC per cache line” columns in Table 1). 
Supporting flexible protection tuning requires that the memory controller 
be able to compute and decode different codes as well as select which ECC 
technique to use for any given DRAM access. One elegant method to achieve 
the latter is to augment the OS page table and the TLB to include protection 
information for each page. We do not explore the benefits of protection 
tuning in this article but list two potential scenarios that we will explore in 
future work. The first is an opportunity to reduce system power by protecting 

“A single processor with virtualized 

ECC can support different levels of 
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size...”

Table 1: DRAM configurations for Chipkill correct of the baseline system and Virtualized ECC
(Source: University of Texas at Austin, 2010)

DRAM 
type

# Data 
DRAMs 
per rank

# ECC 
DRAMs 
per rank

Rank 
Organization

T2EC 
access T2EC per cache line

read write
No 
Protection

Chipkill 
detect

Chipkill 
correct

Double 
Chipkill 
correct

Baseline Chipkill Correct

Baseline x4 x4 32 4 2 ECC 
DIMMs

N N N/A N/A N/A N/A

Virtualized ECC

ECC x4 x4 32 2 1 ECC 
DIMM and 
1 Non-ECC 
DIMMM

N Y N/A 0 B 2 B 4 B

ECC x8 x8 16 2 2 ECC 
DIMMs

N Y N/A 0 B 4 B 8 B

Non-ECC x4 x4 32 N/A 2 Non-ECC 
DIMMs

Y Y 0 B 2 B 4 B 8 B

Non-ECC x8 x8 16 N/A 2 Non-ECC 
DIMMs

Y Y 0 B 4 B 8 B 16 B

Non-ECC 
x16

x16 8 N/A 2 Non-ECC 
DIMMs

Y Y 0 B 8 B 16 B 32 B
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more critical data with stronger codes and potentially leaving some data 
unprotected. Another potential use is to adapt the protection level to the 
changes in environmental conditions, such as higher temperature or a higher 
energetic particle flux (while on an airplane, or if the system is located at a 
high altitude).

Evaluation
We evaluate the impact of Virtualized ECC on performance and energy 
efficiency relative to the baseline Chipkill system. The details of our evaluation 
methodology are available in our ASPLOS paper.[26]

Chipkill Performance and Energy
Figure 8 presents the execution time and system energy-delay product 
(EDP) of the Virtualized ECC configurations described in Table 1 
normalized to those of the baseline x4 Chipkill ECC. For system EDP, we 
calculate system power consumption as the sum of processor core power, 
LLC power, and DRAM power. Virtualized ECC with ECC DIMMs has 
a very small impact on performance. With the exception of the PARSEC 
canneal workload, all applications have lower than 0.5-percent performance 
difference. This very low penalty is a result of effective T2EC caching 
and the fact that the additional DRAM traffic for writing out T2EC 
information is not on the computation critical path. Even the write-
intensive GUPS microbenchmark that has no T2EC locality and very low 
arithmetic intensity only suffers a 10-percent reduction in performance. 
ECC x4, unfortunately, has little positive impact on EDP. ECC x8, on the 
other hand, shows a significant improvement in energy efficiency. DRAM 
power is reduced by an average of almost 30 percent, and EDP is improved 
by an average of 12 percent. EDP improvement is consistent using x8 
DRAMs, with only two outliers: mcf and STREAM have a 20-percent and 
18-percent improvement respectively. Both benchmarks place significantly 
higher pressure on the memory system, thus benefiting more from 
increased memory power efficiency. GUPS demands even higher memory 
performance. While the EDP of GUPS is improved by 10 percent in ECC 
x8 with more energy-efficient x8 DRAMs, it is degraded by 23 percent 
in ECC x4, mainly due to the increase in DRAM power consumption (7 
percent). Note that supporting Chipkill with x8 DRAMs in conventional 
systems is not possible unless custom-designed DIMMs with higher 
redundancy or increased access granularity are used.

Virtualized ECC can also bring DRAM error tolerance to systems that use 
non-ECC DIMMs. The extra DRAM accesses required for every read (and not 
just for writes) result in a larger impact on performance. Even with this extra 
traffic, however, application performance is degraded by 3 percent, 6 percent, 
and 9 percent using x4, x8, and x16 chips, respectively, on average. While the 
x4 configuration slightly degrades EDP, wider DRAM configurations improve 
EDP by 5 percent (x8) and 12 percent (x16) when compared to a standard 
Chipkill that uses ECC DIMMs.
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Figure 8: Performance and system EDP for baseline and Virtualized ECC Chipkill correct
(Source: University of Texas at Austin, 2010)
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Flexible Protection
Virtualized ECC enables flexibility in choosing the error protection level based 
on dynamic application, user, and system needs. To assess the new tradeoff that 
Virtualized ECC enables, we evaluate the effect of different T2EC sizes, which 
are summarized in Table 2. The detailed evaluation of individual applications 
can be found in our ASPLOS paper.[26]

Table 2: Summary of flexible error protection results with Virtualized ECC. The x4 configurations are omitted since they do not 
show significant gain
(Source: University of Texas at Austin, 2010)

ECC x8 Non-ECC x8 Non-ECC x16

Chipkill 
detect

Chipkill 
correct

Double 
Chipkill 
correct

No 
protection

Chipkill 
detect

Chipkill 
correct

Double 
Chipkill 
correct

No 
protection

Chipkill 
detect

Chipkill 
correct

Double 
Chipkill 
correct

Performance 
penalty

    0% 0.7%   1%   0%   3.4% 5.8%    8.9%   0%     5.8%     8.9% 12.8%

DRAM 
power 
reduction

       29% 27.8% 27.2% 37.1% 32.6% 30.1% 26.7% 59.5% 53.4% 50.1% 46.2%

System EDP 
gain

14.6%     12% 11.2% 17.3% 10.4% 5.6% -0.9% 27.8% 17.8% 12.1% 4.9%

As expected, increasing the protection level increases EDP and execution time. 
The impact of adding the capability to tolerate a second dead chip, however, 
has a fairly small overhead overall when using ECC DIMMs. Double Chipkill 
correct increases execution time by at most 0.3 percent relative to single 
Chipkill correct, and system EDP is still 10–20 percent better than that of 
conventional x4 Chipkill.

“...increasing the protection level 

increases EDP and execution time. 

The impact of adding the capability to 

tolerate a second dead chip, however, 

has a fairly small overhead overall...”
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Significance and Potential Impact  
of Proportional Memory
We have shown that DGMS and VECC offer substantive advantages for 
current systems and technologies through memory proportionality. Trends 
in computer architectures, workloads, and memory technologies will make 
proportional memory systems even more valuable in future systems.

DGMS
The idea of dynamic, hardware-only, multigranularity memory access has 
great potential to improve system efficiency in current and future architectures 
where off-chip bandwidth is scarce. We describe both near-term and long-term 
potential impacts of DGMS in detail below.

Memory I/O Power
Recent advances in off-chip interconnect technology enable high-speed I/O 
in DRAM: DDR3 and DDR4 use sophisticated I/O signaling to overcome 
signal integrity issues, at the cost of increased I/O power. For instance, on-die 
termination used in DDR3 burns out static power on the terminating pins 
when transferring data. By transferring only useful data over I/O pins, DGMS 
can reduce the static power burnt in terminating I/O pins.

DGMS for SIMD and Vector Architectures
Wide SIMD architectures have been gaining popularity, as seen in GPUs and 
increasing SSE operand widths. Utilizing wide SIMD for complex algorithms 
frequently requires non-unit stride and indexed gather/scatter memory 
operations. Such SIMD architectures will suffer from poor effective throughput 
with conventional coarse-grain-only memory systems. DGMS has great 
potential to achieve higher throughput for non-unit stride and indexed gather/
scatter operations. In addition, the notion of vector memory operations can 
help to predict memory access granularities more accurately.

Emerging Applications
Emerging workloads (such as social network services, data analytics, and 
data-intensive computing) frequently leverage graph structures. Our initial 
evaluation indicates that graph applications (such as SSCA2) benefit 
significantly from DGMS due to their pointer-chasing intensive memory-
access patterns. We believe that DGMS can provide the high graph-
traversal rates demanded by emerging systems without sacrificing efficiency. 
Furthermore, the higher fine-grained access throughput of DGMS may allow 
software engineers to rethink the data structures used for graph storage and 
sparse matrices. With DGMS, a more intuitive data structure using pointer 
operations can perform comparable to (or may even outperform) a cache-
conscious data structure such as a compressed-sparse-row based approach.

Bandwidth Scaling
Chip multiprocessor (CMP) architectures are ubiquitous, and trends 
indicate rapidly increasing numbers of integrated cores and threads. Off-chip 
bandwidth scaling, on the other hand, is limited because of scarce pins and 

“The idea of dynamic, hardware-

only, multigranularity memory 

access has great potential to improve 

system efficiency in current and 

future architectures where off-chip 
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power. As a result, most applications, if not all, will become bandwidth-
limited, and efficient utilization of the finite off-chip bandwidth is key to 
continued performance scaling.

DGMS judiciously applies fine-grained accesses to boost the available 
effective bandwidth when spatial locality is low. DGMS is unique in that it 
is orthogonal to other circuit-level techniques (such as high-speed signaling 
or optical communication) and in that it reduces power consumption at the 
same time as it improves throughput (unlike other bandwidth-enhancing 
techniques). As such, DGMS is a cost-effective way to scale memory 
throughput and efficiency.

DGMS for Emerging Memory Technologies
Recently, new memory technologies have emerged that can revolutionize 
memory systems by providing new capabilities and significantly increased 
capacity: nonvolatile memory (NVRAM) including phase-change memory 
and memristors; and Micron’s hybrid memory cube (HMC) with 3D stacking. 
Unfortunately, the interface bandwidth connecting these off-chip components 
to the processor will scale much more slowly than potential capacities. 
Thus, compared to current systems, the ratio of capacity to bandwidth of 
main memory is expected to get worse, necessitating better utilization of 
available bandwidth. DGMS offers an effective solution for accessing only the 
required data without sacrificing transfer efficiency. We believe the dynamic 
tradeoff between amortizing control bandwidth, ECC overhead, and fine-
granularity accesses will increase in importance once NVRAM and HMC are 
commoditized.

DGMS for Mass Storage
The underlying idea of DGMS can help improve any system where the 
interface bandwidth is constrained. Memory architectures such as disaggregated 
memory[13], Violin memory[22], Fusion I/O[10], or PCIe-attached PCRAM[4] are 
of great interest commercially and improve database performance by orders 
of magnitude. However, these memory architectures have a relatively low-
bandwidth interface; as such, a technique similar to DGMS can better utilize 
the limited channel in such emerging memory systems.

Virtualized ECC (VECC)
VECC is a general scheme for virtualizing the memory error tolerance 
mechanisms. Virtualized ECC is based on two key ideas: (1) decoupling 
data from its ECC-redundant information; and (2) virtualizing the 
redundant information to allow it to share space with the data in both 
memory and caches. This unique combination enables new tradeoffs 
between cost, error protection, and performance. More importantly, 
these new tradeoffs can be tuned at runtime to meet dynamically changing 
reliability needs while simultaneously relaxing DRAM system design 
constraints. We believe that these capabilities will have a lasting and 
important influence on memory error protection, and we discuss the 
potential for other impact below.

“Virtualized ECC ...”

“...enables new tradeoffs between 

cost, error protection, and 
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Double Chipkill and More
Even though the cost of providing Chipkill protection is high, the industry is 
offering even stronger memory reliability for high-end servers. Implementing 
schemes such as the double device data correction (DDDC) of Itanium® 2 and 
new Intel® Xeon® based systems, however, requires more redundancy and 
constrains the design space of the memory system. This results in less energy-
efficient memory system configurations, such as requiring the use of x4 DRAM 
chips. Configurations with more energy-efficient x8 DRAMs are highly 
desirable; our system provides a cost-effective way to provide strong protection 
is such systems. Moreover, Virtualized ECC can apply the stronger and more 
costly protection only to memory pages that actually require it, minimizing the 
cost of double Chipkill correct.

Protection for Low Power and Stacked DRAM
Recent research has offered new solutions for better energy efficiency by 
avoiding DRAM “overfetch,” where a large DRAM page is activated but only 
a fraction is actually transferred to the processor. These proposals include 
MC-DIMM[3] as well as more recent research that redesigns the DRAM array 
itself [20]. These designs achieve energy efficiency through a narrow data path 
and through the activation of fewer bits in DRAM; however, such techniques 
make memory protection difficult. Contrary to conventional reliability, 
Virtualized ECC can effectively protect such systems from memory errors. 
Recent work has picked up on some of the ideas of VECC and extended 
aspects of the design to stacked memories and memory cubes, showing the 
versatility of this approach.[21]

Tunable/Adaptive Reliability
We are excited about the potential of using Virtualized ECC as the basis 
of a tunable/adaptive reliability framework. Such a dynamically adaptive 
paradigm is presented in recent cross-layer reliability[1] collaborative efforts 
in academia and industry and is discussed in papers such as “Mixed-Mode 
Multicore Reliability”[23]. To the best of our knowledge, Virtualized ECC was 
the first mechanism to enable tunable and adaptive memory protection. A 
recently proposed mechanism offers an alternative design for adapting memory 
protection, where access granularity can be dynamically increased rather than 
adapting capacity overhead.[12] Such a design offers a tradeoff between capacity 
and granularity and may offer interesting interactions between VECC and 
DGMS.

GPU Memory Protection
Graphics processing units (GPUs) are already being used as compute 
accelerators, and memory protection is essential for integrating GPUs in 
larger high-end systems. GPU memory systems use high-bandwidth memory 
products (such as GDDR5), where the dedicated storage for ECC is not 
available. Virtualized ECC for non-ECC DIMMs can be straightforwardly 
applied and enable memory protection in GPU systems. At the moment, 
NVIDIA’s latest GPUs[15] support SEC-DED protection with GDDR5 
memory, and we believe their mechanism is quite similar to the technique 

“Virtualized ECC can apply stronger 
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we presented (but without adaptivity). We argue that SEC-DED (and static 
in-memory ECC) is not enough for GPU systems. Unlike general purpose 
systems, GPUs do not utilize memory modules so the entire card needs to 
be replaced if only a single memory device fails (or manifests any intolerable 
hard failures). In future systems, a more stringent protection mechanism 
(such as Chipkill) will be required. The flexible memory protection enabled 
with Virtualized ECC can allow GPU systems to proportionally support 
the required error tolerance level. In essence, the cost of Chipkill will only 
be incurred after a memory device fails, enabling graceful performance 
degradation at low cost. 

Emerging NVRAM
Virtualized ECC can also protect emerging nonvolatile memory (NVRAM) 
such as phase-change memory (PCRAM). This new memory technology has 
finite write-endurance so tolerating hard errors is a challenge. With Virtualized 
ECC, we can adapt error tolerance levels to NVRAM wear-out status, 
increasing error tolerance levels as NVRAM devices wear out.

Conclusions
Conventional memory system techniques will not be able to satisfy the 
dynamic and heterogeneous requirements of future workloads with scarce 
available off-chip bandwidth. To provide efficient and reliable operation across 
diffing applications and usage scenarios, future memory systems must transfer 
and protect data in a manner that is proportional to application, system, and 
environmental needs. This article describes two mechanisms that offer such 
memory proportionality. The first, DGMS, is a minimally intrusive hardware-
only mechanism that transfers data from off-chip memory at a granularity 
appropriate for the spatial locality of running programs. The second, VECC, 
allows the level of error protection to be dynamically tuned and adapted. These 
mechanisms offer performance, power, and reliability advantages in current 
systems, and will become necessary in future systems given computing trends.
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With continued scaling of NAND flash memory process technology and multiple 
bits programmed per cell, NAND flash reliability and endurance are degrading. 
In our research, we experimentally measure, characterize, analyze, and model error 
patterns in nanoscale flash memories. Based on the understanding developed 
using real flash memory chips, we design techniques for more efficient and 
effective error management than traditionally used costly error correction codes.

In this article, we summarize our major error characterization results 
and mitigation techniques for NAND flash memory. We first provide a 
characterization of errors that occur in 30- to 40-nm flash memories, showing 
that retention errors, caused due to flash cells leaking charge over time, are 
the dominant source of errors. Second, we describe retention-aware error 
management techniques that aim to mitigate retention errors. The key idea is 
to periodically read, correct, and reprogram (in-place) or remap the stored data 
before it accumulates more retention errors than can be corrected by simple 
ECC. Third, we briefly touch upon our recent work that characterizes the 
distribution of the threshold voltages across different cells in a modern 20- to 
24-nm flash memory, with the hope that such a characterization can enable the 
design of more effective and efficient error correction mechanisms to combat 
threshold voltage distortions that cause various errors. We conclude with a brief 
description of our ongoing related work in combating scaling challenges of 
both NAND flash memory and DRAM memory.

Introduction 
During the past decade, the capacity of NAND flash memory has increased 
more than 1000 times as a result of aggressive process scaling and multilevel 
cell (MLC) technology. This continuous capacity increase has made flash 
economically viable for a wide variety of applications, ranging from consumer 
electronics to primary data storage systems. However, as flash density 
increases, NAND flash memory cells are more subject to various device and 
circuit level noise, leading to decreasing reliability and endurance. The P/E 
cycle endurance of MLC NAND flash memory has dropped from ∼10K for 
5x-nm (that is, 50- to 59-nm) flash to around ∼3K for current 2x-nm (that 
is, 20- to 29-nm) flash.[1][5] The reliability and endurance are expected to 
continue to decrease when 1) more than two bits are programmed per cell, 
and 2) flash cells scale beyond the 20-nm technology generations. This trend 
is forcing flash memory designers to apply even stronger error correction 
codes (ECC) to tolerate the increasing error rates, which comes at the cost of 
additional complexity and overhead.[4]
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In our research at Carnegie Mellon University, we aim to develop new 
techniques that overcome reliability and endurance challenges of flash memory 
to enable its scaling beyond the 20-nm technology generations. To this end, we 
experimentally measure, characterize, analyze, and model error patterns that 
occur in existing flash chips, using an experimental flash memory testing and 
characterization platform we have developed.[2] Based on the understanding 
we develop from our experiments, we aim to develop error management 
techniques that aim to mitigate the fundamental types of errors that are likely 
to increase as flash memory scales. Our goal is to design techniques that are 
more effective and more efficient than stronger error correction codes (ECCs), 
which has been the traditional way of improving endurance and reliability 
of flash memory. In this article, we provide an overview of the results of 
our recent error characterization experiments[3][6] and describe some error 
mitigation techniques.[4]

In particular, we have recently experimentally characterized complex flash 
errors that occur at 30- to 40-nm flash technologies[3], categorizing them 
into four types: retention errors, program interference errors, read errors, and 
erase errors. Our characterization shows the relationship between various 
types of errors and demonstrates empirically using real 3x-nm flash chips that 
retention errors are the most dominant error type. Our results demonstrate 
that different flash errors have distinct patterns: retention errors and program 
interference errors are program/erase-(P/E)-cycle-dependent, memory-
location-dependent, and data-value-dependent. Since the observed error 
patterns are due to fundamental circuit and device behavior inherent in flash 
memory, we expect our observations and error patterns to also hold in flash 
memories beyond 30-nm technology node.

Based on our experimental characterization results that show that the retention 
errors are the most dominant errors, we have developed a suite of techniques 
to mitigate the effects of such errors, called Flash Correct-and-Refresh (FCR).[4] 
The key idea is to periodically read each page in flash memory, correct its 
errors using simple ECC, and either remap (copy/move) the page to a different 
location or reprogram it in its original location by recharging the floating gates 
before the page accumulates more errors than can be corrected with simple 
ECC. Our simulation experiments using real I/O workload traces from a 
variety of file system, database, and search applications show that FCR can 
provide 46x flash memory lifetime improvement at only 1.5 percent energy 
overhead, with no additional hardware cost.

Finally, we also briefly describe major recent results of our measurement 
and characterization of the threshold voltage distribution of different 
logical states in MLC NAND flash memory.[6] Our data shows that the 
threshold voltage distribution of flash cells that store the same value can 
be approximated, with reasonable accuracy, as a Gaussian distribution. The 
threshold voltage distribution of flash cells that store the same value gets 
distorted as the number of P/E cycles increases, causing threshold voltages of 
cells storing different values to overlap with each other, which can lead to the 
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incorrect reading of values of some cells as flash cells accumulate P/E cycles. 
We find that this distortion can be accurately modeled and predicted as 
an exponential function of the P/E cycles, with more than 95-percent 
accuracy. Such predictive models can aid the design of more sophisticated 
error correction methods, such as LDPC codes[7], which are likely needed 
for reliable operation of future flash memories. Even though we will not 
describe these models in detail in this article, the interested reader can refer 
to Cai et al.[6] for more detail. 

As flash memory continues to scale to smaller feature sizes, we hope that the 
characterization, understanding, models, and mechanisms provided in this 
work (and in our aforementioned previous works[3][4][6]) would enable the 
design of new and more effective error tolerance mechanisms that can make 
use of the observed characteristics and the developed models.

Flash Memory Background
NAND flash memory can be of two types: single level cell (SLC) flash and 
multilevel cell (MLC) flash. Only one bit of information can be stored in an 
SLC flash cell, while multiple bits (2 to 4 bits) can be stored in an MLC flash 
cell.[8][9][10] MLC flash represents n bits by using 2n non-overlapping threshold 
voltage (Vth) windows. The threshold voltage of a given cell is mainly affected 
by the number of electrons trapped on the floating gate. Figure 1 shows the bit 
mapping to Vth and the relative proportion of electrons on the floating gates of 
a 2-bit MLC flash.

L1 L2 L3L0

11 10 01 00

Erased Partially programmed Fully programmed

Vth

LSB/MSB REF1 REF2 REF3

2 2 2 2 2 2 22 2 2

Figure 1: Threshold voltage distribution example of 2-bit 
MLC flash
(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu,  
and Ken Mai, 2012[3])

A NAND flash memory chip is composed of thousands of blocks. Each block 
is a storage array of floating gate transistors. A flash block usually has 32 to 64  
wordlines. The cells on the same wordline can be divided into two groups: 
even and odd, depending on the physical location. For SLC flash, each group 
corresponds to just one logical page, that is, even pages and odd pages. As an 
MLC flash cell stores multiple bits, the bits corresponding to the same logical 
location of a cell in a group form one logical page. For example, all the most 
significant bits (MSBs) of the cells of an even group form one MSB-even 
page. Similarly, other types of pages are MSB-odd page, LSB-even page, and 
LSB-odd page. The page number assignments for each bit of the flash memory 
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are shown in Figure 2(a), ranging from 0 to 127 for the selected flash in this 
article. The size of each page is generally between 2 KB and 8 KB (16k and 
64k bitlines). The stack of flash cells in the bitline direction forms one string. 
The string is connected to a bit line through SGD (the select gate at the drain 
end) and connect to the common source diffusion through SGS (the select gate 
at the source end) as shown in Figure 2(b). Flash memories generally support 
three fundamental operations as follows: 
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Figure 2: NAND flash organization and operations: (a) Partial block organization and 
program operation on page 118; (b) Read operation
(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 2012[3])

Erase
During the erase operation, a high positive erase voltage (for example, 20V) is 
applied to the substrate of all the cells of the selected block and the electrons 
stored on the floating gate are tunnelled out through Fowler-Nordheim (FN) 
mechanisms.[9] After a successful erase operation, all charge on the floating 
gates is removed and all the cells are configured to the L0 (11) state. The erase 
operation is at the granularity of one block.

Program
During the program operation, a high positive voltage is applied to the 
wordline, where the page to be programmed is located. The other pages 
sharing the same wordline are inhibited (from being programmed) by 
applying 2V to their corresponding bitlines to close SGD and boost the 
potential of corresponding string channel. The voltage bias for programming 
page 118 is shown in Figure 2(a) as an example. The programming process 
is typically realized by the incremental step pulse programming (ISPP) 
algorithm.[11] ISPP first injects electrons into floating gates to boost the Vth of 
programmed cells through FN mechanisms and then performs a verification 
to check whether the Vth has reached the desired level. If Vth is still lower 
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than the desired voltage, the program-and-verify iteration will continue 
until the cell’s Vth has reached the target level. Note that the NAND flash 
program operation can only add electrons into the floating gate and cannot 
remove them from the gate. As a result, the threshold voltage can only shift 
toward the right in Figure 1 during programming. The program operation is 
executed at page granularity.

Read
The read operation is also at the page granularity and the voltage bias is shown 
in Figure 2(b). The SGD, SGS, and all deselected wordlines are turned on. 
The wordline of selected read page is biased to a series of predefined reference 
voltages and the cell’s threshold voltage can be determined to be between the 
most recent two read reference voltages when the cell conducts current.

Flash Memory Error Classification
We test the NAND flash memory using the cycle-by-cycle programming model 
shown in Figure 3. During each P/E cycle, the selected flash block is first 
erased. Then data are programmed into the block on a page granularity. Once 
a page has been programmed, it cannot be reprogrammed again unless the 
whole block is erased for the next P/E cycle. The stored data will be alive in the 
block until it becomes invalid. Before the stored data becomes invalid, it can 
be accessed multiple times. Once a page is programmed, we can test how long 
it retains data by reading the data value of the page after a retention interval, 
and comparing it to the original programmed value. Whether or not the data 
is retained correctly between two accesses depends on the time distance of 
two consecutive accesses. We repeat the above per-P/E-cycle procedure for 
thousands of cycles until the flash memory block becomes unreliable and 
reaches the end of its lifetime. Errors could happen in any stage of this testing 
process. We classify the observed errors into four different types, from the flash 
controller’s point of view:

Start

P/E cycle 0

P/E cycle i

P/E cycle n

End of life

Retention1
(t1 days)

Read
Page

Erase
Block

Program
Page (Page0–Page 128)

Retention j
(tj days)

Read
Page

Figure 3: NAND flash programming model for error 
characterization
(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu,  
and Ken Mai, 2012[3])
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●● An erase error happens when an erase operation fails to reset the cells to 
the erased state. This is mainly due to manufacturing process variations or 
defects caused by trapped electrons in the tunnel oxide after stress due to 
repeated P/E cycles.

●● A program interference error happens when the data stored in a page changes 
(unintentionally) while a neighboring page is being programmed due to 
parasitic capacitance-coupling.

●● A retention error happens when the data stored in a cell changes over time. 
The main reason is that the charge programmed in the floating gate may 
dissipate gradually through the leakage current.

●● A read error happens when the data stored in a cell changes as a neighboring 
cell on the same string is read over and over. 

Error Characterization Methodology
The following section describes the error characterization methodology.

Experimental Hardware
To characterize the error patterns, we built a hardware test platform that 
allows us to issue commands to raw flash chips without ECC.[2] The test 
platform mainly consists of three components: a HAPS–52 board with Xilinx 
Virtex-5 FPGAs used as NAND flash controller, a USB daughter board used 
to connect to the host machine, and a custom flash daughter board. The 
flash memory under test is a 2-bit MLC NAND flash device manufactured 
in 3x-nm technology. The device is specified to survive 3000 P/E cycles stress 
under 10-year data retention time if ECC with 4-bit error correction per 
512 bits is applied. Details of the experimental flash test platform we use to 
collect our data are provided in [2]. 

Flash Error Testing Procedure
To test the P/E-cycle-dependence of errors, we stress-cycle flash memory blocks 
up to a certain number of erase cycles and check if the data is retained. This is 
achieved by iteratively erasing a block and programming pseudorandom data 
into it at room temperature. 

We test whether the data is retained after T amount of time, to characterize 
retention errors. T is called the retention test time and is varied in the range of 
1 day, 3 days, 3 weeks, 3 months, 1 year, and 3 years. We consider T = {1 day, 
3 days} to be short-term retention tests, while the remaining values of T are 
long-term retention tests. Short-term retention errors are characterized under 
room temperature. Long-term retention errors are characterized by baking the 
flash memory in the oven under 125° C. According to the classic temperature-
activated Arrhenius law[12], the baking time at 125° C corresponds to about 
450 times of the lifetime at room temperature (25° C). 

We refer the reader to Cai et al.[3] for our testing and characterization 
methodology for program interference and read errors.
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Error Characterization Results
We provide our experimental measurements of the errors in the state-of-the-art 
3x-nm MLC NAND flash memory we have tested using our infrastructure. 
NAND flash errors show strong correlation with the number of P/E cycles, 
location of the physical cells, and the data values programmed into the cells. 
The following subsections analyze detailed error properties and briefly describe 
the causes of the observed phenomena. Our main focus in this article is 
retention errors, but our previous work analyzes all types of errors in detail[3], 
and we refer the reader to [3] for characterization and analysis of program 
interference, read, and erase errors.

Error Rate Analysis for Different Error Types
Figure 4 shows the bit error rate due to various types of NAND flash errors. 
The x-axis shows the number of P/E cycles and the y-axis depicts the raw 
bit error rate. Error rates are obtained characterized from the beginning of 
the flash chip’s life until the region of >100x times of its specified lifetime 
(3000 P/E cycles for the chips we tested). We make several observations about 
error properties. 

First, all types of errors are highly correlated with P/E cycles. At the beginning 
of the flash lifetime, the error rate is relatively low and the raw bit error rate 
is below 10-4, within the specified lifetime (3K cycles). As the P/E cycles 
increase, the error rate increases exponentially. The P/E cycle-dependence 
of errors can be explained by the deterioration of the tunnel oxide under 
cycling stress. During erase and program operations, the electric field strength 
across the tunnel oxide is very high (for example, several million volts per 
centimeter). Such high electric field strength can lead to structural defects 
that trap electrons in the oxide layer. Over time, more and more defects 
accumulate and the insulation strength of the tunnel oxide degrades. As a 
result, charge can leak through the tunnel oxide and the threshold voltage of 
the cells can change more easily. This leads to more errors for all types of flash 
operations.

Second, there is a significant error rate difference between various types of 
errors. The long-term retention errors are the most dominant; their rate is 
highest. The program interference error rate ranks the second and is usually 
between error rates of 1-day and 3-day retention errors. The read error rate is 
slightly less than 1-day retention error rate, while the erase error rate is only 
around 7 percent of the read error rate.

Third, retention error rates are highly dependent on retention test time. If 
the time before we test for retention errors is longer, the floating gate of flash 
memory is more likely to lose more electrons through leakage current. This 
eventually leads to Vth shift across Vth windows and causes errors (see [6] for 
more detail). From our experimental data, we can see that the retention error 
rate increases linearly with the retention test time. For example, the 3-year 
retention error rate is almost three orders of magnitude higher than one-day 
retention error rate. 
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(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 2012[3])

Retention Error Analysis
Value dependence of retention errors: We find that the retention errors are value 
dependent; their frequency is asymmetric with respect to the value stored in 
the flash cell. Figure 5 demonstrates this asymmetric nature of retention errors 
by showing how often each possible value transition was observed due to an 
error. We characterized all possible error transitions, in the format AB→CD, 
where AB are the two bits stored in the cell before retention test, while CD are 
the two bits recorded in the cell after retention test. If the errors are not value 
dependent, the fraction of erroneous changes between each of the different 
value pairs should be equal. But, we find that this is not the case. The most 
common retention errors are 00→01, 01→10, 01→11 and 10→ 11, with 
their relative percentage over all retention errors being 46 percent, 44 percent, 
5 percent, and 2 percent, respectively. The relative percentages among various 
error transitions are almost constant for different P/E cycles. 

To understand the reasons for value dependence, we need to observe Figure 
1 in conjunction with the value transition observed in the most common 
retention errors. We find that the most common retention errors (00→01, 
01→10, 01→11, and 10→ 11) are all cases in which Vth shifts towards the left 
(see Figure 1). This can be explained by an understanding of the retention error 
mechanisms. During retention test, the electrons stored on the floating gate 
gradually leak away under stress induced leakage current (SILC). When the 
floating gate loses electrons, its Vth shifts left from the state with more electrons 
to the state with fewer programmed electrons (as seen in Figure 1, states to 
the left have fewer electrons trapped on the gate than states to the right). It 
is significantly less likely for the cells to shift right in the opposite direction 
because this requires the addition of more electrons. As the states of 00 and 01 
hold the largest number of electrons on the floating gates, SILC is higher in 
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these states and therefore it is more likely for the Vth of the cells in these two 
states to shift left, which leads to the observation that most common errors are 
due to shifting from these states (00→01, 01→10, 01→11). 
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Figure 5: Value dependence of retention errors
(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 2012[3])

Location dependence of retention errors: We also characterized the relation between 
retention errors and their physical locations. The experimental results are shown 
in Figure 6. The x-axis shows the wordline number of a block and the y-axis 
shows the bit error rates of pages on the corresponding wordline (observed after 
50K P/E cycles). Each wordline contains four pages, including LSB-even, LSB-
odd, MSB-even, and MSB-odd. The bit error rates of these four types of pages 
are shown in Figure 6. Several major observations are in order.
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Figure 6: Retention error rate vs. physical location
(Source: Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 2012[3])
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First, the error rate of the MSB page is higher than that of the corresponding 
LSB page. In our experimental data, the MSB-even page error rate is 
1.88 times higher than the LSB-even page error rate and the MSB-odd page 
error rate is 1.67 times higher than the LSB-odd page error rate on average. 
This phenomenon can be explained by understanding the bit mapping within 
the flash memory. Dominant retention errors are mainly due to the shifting 
of Vth between two adjacent threshold voltage levels, that is shifting of Vth 
from the ith level to the (i–1)th level. From the bit mapping in Figure 1, 
we can see that such a Vth  shift can cause an LSB error only at the border 
REF2 between state L2 (01) and state L1 (10) because these are the only 
two adjacent threshold voltage levels where LSB differs. On the other hand, 
such a Vth shift can cause an MSB error on any border (REF1, REF2, REF3) 
between any two adjacent states because MSB differs between all possible 
adjacent threshold voltage levels. Hence, since the likelihood of a change 
in MSB when a Vth shift happens between adjacent states is higher than the 
likelihood of a change in LSB, it is more common to see retention errors in 
MSB than in LSB.  

Second, the retention error rate of odd pages is always higher than that 
of the corresponding even pages. For example, the error rate of MSB-odd 
pages is 2.4 times higher than that of MSB-even pages, and the error rate of 
LSB-odd pages is 1.61 times higher than that of LSB-even pages, on average. 
This result can be explained by the over-programming introduced by inter-
page interference. Generally, the pages inside a flash block are programmed 
sequentially, and a block is programmed in order, that is, from page 0 to 
page 127. For the same wordline, even pages are programmed first followed 
by odd pages. When odd pages are programmed, a high positive program 
voltage is applied to the control gates of all the cells on the wordline, 
including the cells of the even page, which has already been programmed. 
Thus, the even page comes under programming current disturbance and 
some additional electrons could be attracted into the floating gates of the 
even page. As a result of this, the Vth of cells of the even pages shift slightly to 
the right. Consequently, the cells of the even pages hold more electrons than 
the cells of the odd pages, even if they are programmed to the same logic 
value and are in the same threshold voltage window (in some sense, the cells 
of the even pages are thus more resistant to leakage because they hold more 
electrons). When electrons leak away over time during the retention test, as 
a result, it is more likely for the cells of even pages to still keep their original 
threshold voltage window and hold the correct value. In contrast, since the 
cells of the odd pages hold fewer electrons, they are more likely to transition 
to a different threshold voltage window and hence acquire an incorrect value 
as electrons leak over time. 

Third, the bit error rates of all the four types of pages have the same trend related 
to physical wordlines. For example, the error rates of the four types of pages are 
all high on wordline #31 and are all low on wordline #7. We conclude that error 
rates are correlated with wordline locations. This could possibly be due to process 
variation effects, which could be similar across the same wordline.

“...the error rate of the MSB page is 

higher than that of the corresponding 

LSB page.”

“...the retention error rate of odd 

pages is always higher than that of the 

corresponding even pages.”



Intel® Technology Journal | Volume 17, Issue 1, 2013

150   |   Error Analysis and Retention-Aware Error Management for NAND Flash Memory

The major takeaway from our measurement and characterization results is that 
the rate of retention errors, which are the most common form of flash errors, 
is asymmetric in both original cell value and the location of the cell in flash bit 
organization. This observation can potentially be used to devise error protection 
or correction mechanisms that have varying strength based on cell value and 
location. 

Mitigating Retention Errors:  
Flash Correct-and-Refresh
We describe a set of new techniques, called Flash Correct-and-Refresh 
(FCR), that exploit the dominance and characteristics of retention errors to 
significantly increase NAND flash lifetime while incurring minimal overhead. 
The basic idea of the FCR schemes is to periodically read, correct, and refresh 
(reprogram or remap) the stored data before it accumulates more retention 
errors than can be handled by ECC. Thus, we can achieve a low uncorrectable 
bit error rate (UBER) while still using a simple, low-overhead ECC. Two 
key questions central to designing a system that uses FCR techniques are: 
(1) how to refresh the data in flash memory and (2) when to refresh the data. 
We address the first question with two techniques for how to refresh the 
data: remapping (in the section “Remapping-based FCR Mechanisms”) and 
reprogramming in-place (in the section “In-Place Reprogramming-based FCR 
Mechanisms”). We then tackle the second question with two techniques for 
when to refresh: periodically and adaptively based on the number of P/E cycles 
(Section 6.3).

Remapping-based FCR Mechanisms
Unlike DRAM cells, which can be refreshed in-place[13], flash cells generally 
must first be erased before they can be programmed. To remove the slow erase 
operation from the critical path of write operations, current wear-leveling 
algorithms remap the data to another physical location rather than erasing the 
data and then programming in-place. The flash controller maintains a list of 
free blocks that have been erased in background through garbage collection 
and are ready for programming. Whenever a write operation is requested, the 
controller’s wear-leveling algorithm selects a free block and programs it directly, 
remapping the logical block address to the new physical block.

The key idea of remapping-based FCR is to leverage the existing wear-
leveling mechanisms to periodically read, correct, and remap to a different 
physical location each valid flash block in order to prevent it from 
accumulating too many retention errors. Figure 7 shows the operational flow 
of remapping-based FCR: (1) During each refresh interval, a block with 
valid data that needs to be refreshed is selected. (2) The valid data in the 
selected block is read out page by page and moved to the SSD controller. 
(3) The ECC engine in the SSD controller corrects all the errors in the read 
data, including retention errors that have accumulated since the last refresh. 
After ECC, the data are error free. (4) A new free block is selected and the 
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error free data are programmed to the new location, and the logical address 
is remapped. Note that the proposed address remapping techniques leverage 
existing hardware and software of contemporary wear-leveling and garbage 
collection algorithms.

Unfortunately, periodic remapping of every block introduces additional 
erase cycles. This is because after the flash data are corrected and remapped 
to the new location, the original block is marked as outdated. Thus, 
the block will eventually be erased and reclaimed by garbage collection. 
The more frequent the remap operations, the more the additional erase 
operations, which wears out flash memory faster. As such, there might be 
an inflection point beyond which increasing the refresh rate in remapping-
based FCR can lead to reduced lifetime. To avoid this potential problem, we 
next introduce enhanced FCR methods, which minimize unnecessary remap 
operations.

In-Place Reprogramming-based FCR Mechanisms
To reduce the overhead associated with periodic remapping, we describe a 
technique for periodic in-place reprogramming of the block most of the time, 
without a preceding erase operation, which can greatly reduce the overhead of 
periodic remapping. This in-place reprogramming takes advantage of the key 
observation that retention errors arise from the loss of electrons on the floating 
gate over time and the flash cell with retention errors can be reprogrammed to its 
original correct value without an erase operation using the incremental step pulse 
programming (ISPP) scheme used to program flash memory. We first provide 
background on ISPP.

ISPP
Before a flash cell can be programmed, the cell must be erased (that is, 
all charge is removed from the floating gate, setting the threshold voltage 
to the lowest value). When a NAND flash memory cell is programmed, 
a high positive voltage applied to the control gate causes electrons to be 
injected into the floating gate. The threshold voltage of a NAND flash cell 
is programmed by injecting a precise amount of charge onto the floating 
gate through ISPP.[11] During ISPP, floating gates are programmed iteratively 
using a step-by-step program-and-verify approach. After each programming 
step, the flash cell threshold voltage is boosted up. Then, the threshold 
voltage of the programmed cells are sensed and compared to the target 
values. If the cell’s threshold voltage level is higher than the target value, 
the program-and-verify iteration will stop. Otherwise the flash cells are 
programmed once again and more electrons are added to the floating gates 
to boost the threshold voltage. This program-and-verify cycle continues 
iteratively until all the cells’ threshold voltages reach the target values. Using 
ISPP, flash memory cells can only be programmed from a state with fewer 
electrons to a state with more electrons and cannot be programmed in the 
opposite direction.
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Retention Error Mechanisms
Retention errors are caused by the loss of electrons from the floating gate 
over time. As such, a cell with retention errors moves from a state with 
more electrons to a state with fewer electrons. Figure 8(a) shows the relative 
relationship between the stored data value and its corresponding threshold 
voltage distribution for a typical MLC flash storing 2-bits per cell. The leftmost 
state is the erased state (state 11) with the smallest threshold voltage, and there 
is no charge on the floating gate. The states located on the right in Figure 
8(a) are programmed with more electrons and have higher threshold voltages 
than the states located relatively to the left. Over time, as the electrons on 
the floating gate leak away, the threshold voltage of a cell shifts to the left, as 
shown in Figure 8(b). If the threshold voltage of a cell shifts too far to the left 
(that is, it loses too many electrons from the floating gate), it will cross the read 
reference voltage between adjacent states and can be misinterpreted during a 
read as the wrong value. 

In-Place Reprogramming Can Fix Retention Errors
A cell with a retention error can be reprogrammed to the value it had 
before the floating gate lost charge by recharging additional electrons onto 
the floating gate through ISPP, as shown in Figure 8(c). Note that this does 
not require an erase operation because the only objective is to add more 
electrons (not to remove them), which can be accomplished by simple 
programming. 

(a) Threshold voltage distribution vs number of electrons in flash cell

11 10 01 00

VT

REF1 REF2 REF3

2 2 2 2 2 2 22 2 2

(b) Retention errors cause threshold voltage shift to the left

11 10 01 00

VT

REF1 REF2 REF3

(c) ISPP shifts threshold voltage to the right and can fix retention errors

VT

11 10 01 00

Figure 8: Retention errors are caused by threshold voltage 
shift to the left and can be fixed by programming in-place 
using ISPP
(Source: Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, 
Adrian Cristal, Osman Unsal, and Ken Mai, 2012[4])

“Over time, as the electrons on the 

floating gate leak away, the threshold 

voltage of a cell shifts to the left...”
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6.2.4  Basic In-Place Reprogramming-based FCR Mechanism
A basic FCR mechanism that uses in-place reprogramming works as follows. 
Periodically, a block is selected to be refreshed and read page-by-page into 
the flash controller. By selecting a suitable refresh interval, we can ensure 
that the total error number is below the correction capability of the ECC. 
Then we can reprogram the flash cells in the same location with the error-
corrected data, without erasing the whole block. If the new corrected value 
corresponds to a state with more charge than the old value, then the cell can 
be in-place reprogrammed to the correct value. If the corrected value is exactly 
the same as the original value, in-place reprogramming will not change the 
stored data value, as ISPP will stop programming the cell as soon as it detects 
that the target value has already been reached. Note that most of the cells are 
reprogrammed with exactly the same data value as error rates are generally 
significantly below 1 percent. 

Problem: Accumulated Program Errors
While this basic mechanism can effectively fix retention errors, it introduces 
a problem because there is another error mechanism in flash cells that is 
caused by program operations, which are required to perform in-place 
reprogramming. When a flash cell is being programmed, additional electrons 
may be injected into the floating gates of its neighbor cells due to coupling 
capacitance.[14] The threshold voltage distribution of the neighbor cells will 
shift right as they gain more electrons, as shown in Figure 9(a). If the threshold 
voltage shifts right by too much, it will be misread as an error value that 
represents a state located to the right. This is called a program interference error 
(or simply a program error). Although it is a less common error mechanism 
than retention errors as we have shown in Figure 4, periodic reprogramming 
can exacerbate the effects of program errors. 

Two potential issues are: (1) As ISPP cannot remove electrons from the 
floating gate, program errors cannot be fixed by in-place reprogramming; 
(2) Reprogramming of a page can introduce additional program errors due to 
the additional program operations. Figure 9(b) illustrates both issues in the 
context of in-place programming. First, the original data is programmed into 
the page. This initial programming can cause some program errors (for example, 
value 11 is programmed as 10 on the second cell from the left). After some 
time, retention errors start to appear in the stored data (for example, the first 
cell changes from state 00 to 01). Note that there are generally many more 
retention errors than program errors. When the page is reprogrammed in-place, 
it is first read out and corrected using ECC. The error-corrected data (which is 
the same as the original data) is then written back (programmed) into the page. 
This corrects all the retention errors by recharging the cells that lost charge. 
However, this reprogramming does not correct the program error (in the second 
cell) because this correction requires the removal of charge from the second cell’s 
floating gate, which is not possible without an erase operation. Furthermore, 
additional program errors can appear (for example, in the sixth cell) because the 
in-place program operation can cause additional disturbance. 

“When a flash cell is being 

programmed, additional electrons 

may be injected into the floating gates 

of its neighbor cells due to coupling 

capacitance.”
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(a) Program interference causes threshold voltage shift to the right

(b) Example of reprogramming a page with retention and program errors

11 10 01 00

VT

REF1 REF2 REF3

Original data to
be programmed

Program errors after
initial programming

Retention errors
after some time

Errors after in-place
reprogramming

00 11 01 00 10 11 00

00 10 01 00 10 11 00

01 10 10 00 11 11 01

00 10 01 00 10 10 00

Figure 9: In-place reprograming can correct retention 
errors but not program errors because in-place 
programming can only add more electrons into the floating 
gate and cannot remove them. Note that red values with 
dotted circles are retention errors and blue ones with solid 
circles are program errors 
(Source: Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, 
Adrian Cristal, Osman Unsal, and Ken Mai, 2012[4])

Hybrid FCR
To mitigate the errors accumulated due to periodic reprogramming, we 
propose a hybrid reprogramming/remapping-based FCR technique to control 
the number of reprogram errors. The key idea is to monitor the right-shift 
error count present in each block. If this count is below a certain threshold 
(likely most of the time) then in-place reprogramming is used to correct 
retention errors. If the count exceeds the threshold, indicating that the block 
has too many accumulated program errors, then the block is remapped to 
another location, which corrects both retention and program errors. In our 
evaluation, we set the threshold to 30 percent of the maximum number of 
errors that could be corrected by ECC, which is conservative. Figure 10 
provides a flowchart of this hybrid FCR mechanism. Note that this hybrid 
FCR mechanism greatly reduces the additional erase operations present in 
remapping based FCR because it remaps a block (requires an erase operation) 
only when the number of accumulated program errors is high, which is rare 
due to the low program error rate. 

“To mitigate the errors accumulated 

due to periodic reprogramming, 

we propose a hybrid reprogramming/

remapping-based FCR technique 

to control the number of reprogram 

errors.”



Error Analysis and Retention-Aware Error Management for NAND Flash Memory   |   155

Intel® Technology Journal | Volume 17, Issue 1, 2013

Choose a block to
be refreshed

Yes

No

No

Yes

# Right shift errors
,Threshold

Last LSB/MSB
page pair?

Read LSB and
MSB page pair

Error
Correction

Cell threshold
voltage comparison

Reprogram
in-place

LSB/MSB
page pair num11
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Figure 10: Hybrid FCR workflow: if reprogramming error count is less 
than a threshold, in-place reprogram the block; otherwise, remap to a 
new block
(Source: Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian 
Cristal, Osman Unsal, and Ken Mai, 2012[4])

Adaptive-Rate FCR
So far we assumed that FCR mechanisms, be it based on in-place reprogramming 
or remapping, are invoked periodically. This need not be the case. In fact, we 
observe that the rate of (retention) errors is very low during the beginning 
of flash lifetime, as shown in Figure 4. Until more than 1000 P/E cycles, the 
retention error rate is lower than the acceptable raw BER that can be corrected 
by the simplest BCH code (not shown, but described in detail in [4]), which 
is a commonly used ECC type in flash memories. Hence, at the beginning of 
its lifetime, flash memory does not need to be refreshed. Retention error rate 
increases as the number of P/E cycles increases. We leverage this key observation 
to reduce the number of unnecessary refresh operations. 

The main idea of adaptive-rate FCR is to adapt the refresh rate to the number 
of P/E cycles a block has incurred. Initially, refresh rate for a block starts out 
at zero (no refresh). Once ECC becomes incapable of correcting retention 
errors, the block’s refresh rate increases to tolerate the increased retention error 
rate. Hence, refresh rate is gradually increased over each flash block’s lifetime 
to adapt to the increased P/E cycles. The whole lifetime of a flash block can 
be divided into intervals with different refresh rates ranging, for example, 
from no refresh (initially), yearly refresh, monthly refresh, weekly refresh, to 
daily refresh. The frequency of refresh operations at a given P/E cycle count 
is determined by the acceptable raw BER provided by the used ECC and 
the BER that corresponds to the P/E cycle count (which can be known by 
the controller[4]). Note that this mechanism requires keeping track of P/E 
cycles incurred for each block, but this information is already maintained to 
implement current wear-leveling algorithms.

“...refresh rate is gradually increased 

over each flash block’s lifetime to adapt 

to the increased P/E cycles.”
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Additional Considerations 
We briefly discuss some additional factors that affect the implementation and 
operation of the proposed FCR mechanisms. 

Implementation Cost
The FCR mechanisms do not require hardware changes. They require 
changes in FTL software/firmware to implement the flowcharts shown in 
Figures 7 and 10. FCR can leverage the per-block validity and P/E cycle 
information that is already maintained in existing flash systems to implement 
wear leveling.

Power Supply Continuity
To perform a refresh, the flash memory must be powered. As FCR is 
proposed mainly for enterprise storage applications, these systems are typically 
continuously powered on. Our proposed techniques use daily, weekly, or 
monthly refresh and it is rare for a server to be powered off for such long 
periods.

Response Time Impact
Refresh may interfere with normal flash operations and degrade the response 
time. To reduce this penalty, we can decrease the refresh priority, making it 
run in the background. The SSD can issue refresh operations whenever it is 
idle, and refresh operations can be interrupted to avoid the impact on the 
response time of normal operations. Unlike DRAM, where refresh is triggered 
frequently (for example, every 64 ms) to maintain correctness[13], the refresh 
period of FCR is at least a day, and the SSD can finish refresh operations 
within the refresh period. Recent work has shown that the response time 
overhead is within a few percent for daily refresh.[15] Note that our hybrid and 
adaptive FCR techniques have much lower overhead for refresh operations 
than periodic remapping based FCR.

Additional Erase Cycles
FCR introduces additional erase operations. Our evaluations take into 
account the impact of additional erase operations on flash lifetime and energy 
consumption.

Adapting to Variations in Retention Error Rate
Note that retention error rate is usually constant for a given refresh rate and 
P/E cycle combination. However, there are environmental factors, such as 
temperature, that can change this rate. For example, retention error rate 
would be dependent on temperature. To adapt to dynamic fluctuations in 
retention error rate, our hybrid FCR and adaptive-rate FCR mechanisms 
monitor the changes in the retention error rate at periodic intervals, and 
increase or decrease the refresh (that is, FCR) rate if the error rate in the 
previous interval is greater or less than a threshold. These mechanisms are 
similar in principle to what is employed in DRAM to adapt refresh rate to 
temperature changes.[13]

“The FCR mechanisms do not require 

hardware changes.”

“Unlike DRAM, where refresh is 

triggered frequently (for example, 

every 64 ms) to maintain correctness, 

the refresh period of FCR is at least a 

day...”
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Evaluation of Flash Correct-and-Refresh
We evaluate FCR using Disksim[20] with SSD extensions[21]. All proposed 
techniques are simulated using various I/O traces from real workloads: 
iozone[22], cello99[23], oltp, postmark[24], MSR-Cambridge[25] and a web search 
engine[26]. We configure the simulated flash-based SSD with four channels. 
Each channel has eight flash chips. Each flash chip has 8,192 blocks containing 
128 pages. The page size is 8 KB. The total storage capacity is 256 GB. 
The energy of flash read, program, and erase operations are collected from 
our experimental flash memory platform[2], and are used in the simulation 
infrastructure to obtain the overall energy consumption. The details of 
our experimental evaluation methodology, workloads, and our method for 
estimating lifetime are described in our previous work[4]. We present the major 
results showing the effect of our mechanisms on flash lifetime and energy 
consumption in this article. Much more detailed analyses of our individual 
techniques, analysis of sensitivity to refresh interval length, and results on 
individual workloads are provided in [4].

Effect on Flash Memory Lifetime 
Figure 11 shows the lifetime improvement provided by three different versions 
of FCR compared to the baseline with no refresh. The adaptive-rate FCR 
mechanism is implemented on top of the hybrid FCR substrate. Flash lifetime 
is evaluated under various ECC configurations, ranging from weak 512-bit 
to strong 32-kb BCH codes (described and evaluated in detail in [4]). The 
refresh period of each periodic mechanism is chosen on a per-workload basis 
such that the lifetime provided for a workload by the mechanism is maximized 
(more analysis on the refresh period can be found in [4]). Adaptive-rate 
FCR, which adaptively and realistically chooses the refresh period, provides 
the highest lifetime improvement over the baseline as it corrects retention 
errors while avoiding unnecessary refreshes. The improvements are especially 
significant in read-intensive workloads since these workloads do not have 
high P/E cycles, causing the adaptive-rate FCR to keep the refresh rate very 
low. On average, adaptive-rate FCR provides 46.7x, 4.8x, and 1.5x higher 
flash lifetime compared to no-refresh (on the baseline system using 512-bit 
ECC), remapping-based FCR, and hybrid FCR, respectively. Note that the 
lifetime improvement provided by the much stronger 32-kb ECC is only 
four times that of the lifetime provided by the baseline 512-bit ECC, yet the 
implementation of the former, stronger ECC, requires 71 times the power 
consumption and 85 times the area of the latter, weaker ECC.[4] Contrast this 
with the 46.7x lifetime improvement provided by adaptive-rate FCR on the 
system with 512-bit ECC. Thus, improving lifetime via FCR is much more 
effective and efficient than doing so by increasing the strength of ECC. We 
conclude, based on these results, that adaptive-rate FCR implemented over 
the hybrid FCR mechanism is a promising mechanism for significant lifetime 
enhancement of flash memory at low cost.

“...adaptive-rate FCR provides 46.7x, 

4.8x, and 1.5x higher flash lifetime 

compared to no-refresh”...

“...improving lifetime via FCR is 

much more effective and efficient than 

doing so by increasing the strength of 

ECC.”
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Figure 11: Lifetime improvement provided by different FCR techniques in comparison to 
systems employing varying strength ECC (BCH) codes. Data normalized to lifetime with 
no refresh on a system with 512-bit ECC
(Source: Onur Mutlu, 2012)

P/E Cycle and Energy Overhead Analysis
FCR techniques can introduce two main overheads: (1) additional P/E cycles 
due to remapping; (2) additional energy consumed by refresh operations. 
A detailed evaluation of the former is provided in [4]. Note that all P/E cycle 
overheads have already been accounted for in the collection of the flash lifetime 
results.

Figure 12 shows the additional flash energy consumption of remapping-based 
FCR and hybrid FCR averaged over all workloads compared to a system 
with no FCR. The refresh energy is estimated under the worst-case scenario 
that all data are to be refreshed. Even if we assume we must refresh the 
entire SSD each day, the energy overhead is only 7.8 percent and 5.5 percent 
for remapping-based FCR and hybrid FCR respectively. When the refresh 
interval is three weeks, the energy overhead is almost negligible (less than 
0.4 percent). We also observe that hybrid FCR has less energy overhead than 
remapping based FCR mainly because hybrid FCR reduces the high-energy 
erase/remap operations by performing in-place reprogramming most of the 
time. 

We also evaluate the energy overhead of adaptive-rate FCR and find that it is 
only 1.5 percent (not shown in the figure). Recall that adaptive-rate FCR starts 
out with no refresh and gradually increases the refresh rate up to daily refresh 
as the P/E cycles accumulate. Yet its energy overhead is significantly lower than 
periodic daily refresh. We conclude that adaptive-rate FCR is the most superior 
of flash correct-and-refresh mechanisms in terms of both lifetime and energy 
consumption.  

“When the refresh interval is three 

weeks, the energy overhead is almost 

negligible...”
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Ongoing Work
In our comprehensive continued effort for enhancing flash memory scaling to 
smaller technology nodes, we have been characterizing the effects of different 
error mechanisms in flash memory, developing models to predict how they 
change over the lifetime of flash memory, and designing error tolerance 
mechanisms based on the developed characterization and models. 

Recently, we have also experimentally investigated and characterized the 
threshold voltage distribution of different logical states in MLC NAND flash 
memory.[6] We have developed new models that can predict the shifts in the 
threshold voltage distribution based on the number of P/E cycles endured 
by flash memory cells. Our key results, presented in [6], show that 1) the 
threshold voltage distribution of flash cells that store the same value can be 
approximated, with reasonable accuracy, as a Gaussian distribution, 2) under 
ideal wear leveling, the flash cell can be modeled as an AWGN (Additive 
White Gaussian Noise) channel that takes the input (programmed) threshold 
voltage signal and outputs a threshold voltage signal with added Gaussian 
white noise, and 3) threshold voltage distribution of flash cells that store 
the same value gets distorted (shifts to right and widens around the mean 
value) as the number of P/E cycles increases. This distortion can be accurately 
modeled and predicted as an exponential function of the P/E cycles, with 
more than 95 percent accuracy. Such predictive models can aid the design of 
much more sophisticated error correction methods, such as LDPC codes[7], 
which are likely needed for reliable operation of future flash memories. 
We refer the reader to [6] for more detail. 

We are currently investigating another increasingly more significant 
obstacle to continued MLC NAND flash scaling, which is the increasing 
cell-to-cell program interference due to increasing parasitic capacitances 
between the cells’ floating gates. Accurate characterization and modeling 
of this phenomenon are needed to find effective techniques to combat 
this program interference. In our recent work[16], we leverage the read retry 

“We have developed new models that 

can predict the shifts in the threshold 

voltage distribution based on the 

number of P/E cycles endured by flash 

memory cells.”
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mechanism found in some flash designs to obtain measured threshold voltage 
distributions results from state-of-the-art 2Y-nm (24- to 20-nm) MLC 
NAND flash chips. These results are then used to characterize the cell-to-cell 
program interference under various programming conditions. We show that 
program interference can be accurately modeled as additive noise following 
Gaussian-mixture distributions, which can be predicted with 96.8 percent 
accuracy using linear regression models. We use these models to develop and 
evaluate a read reference voltage prediction technique that reduces the raw 
flash bit error rate by 64 percent and increases the flash lifespan by 30 percent. 
We refer the reader to [16] for more detail.

Finally, apart from investigating scaling challenges in flash memory, we 
are investigating techniques to enable better scaling of DRAM. Improving 
DRAM cell density by reducing the cell size, as has been done traditionally, 
is becoming significantly more difficult due to increased manufacturing 
complexity/cost and reduced cell reliability. We are examining alternative ways 
of enhancing the performance and energy-efficiency of DRAM while still 
maintaining low cost. A key direction is to co-design the DRAM controller 
and DRAM, rethinking the DRAM interface and microarchitecture, such 
that DRAM scaling challenges are tolerated at the system level. For example, 
we have recently proposed new techniques to reduce DRAM access latency 
at low cost by segmenting bitlines and creating a low-latency low-energy 
segment within a subbank[17], to increase DRAM parallelism and locality by 
enabling pipelined access of subbanks and enabling multiple row buffers to be 
concurrently active within a bank[18], to reduce the number of DRAM refreshes 
by taking advantage of variation in retention times of DRAM rows in a low-
cost manner[13], and to accelerate bulk data copy and initialization operations 
by performing them solely in DRAM with only minor modifications to 
DRAM[19]. We have also experimentally characterized retention behavior 
of DRAM cells and rows for 248 commodity DRAM chips[27], with the 
goal of developing mechanisms that can dynamically profile retention times 
of different rows. We observed two significant phenomena: data pattern 
dependence, where the retention time of DRAM cells is significantly affected 
by the data stored in other DRAM cells, and variable retention time, where the 
retention time of some DRAM cells changes over time. We refer the reader to 
these respective works for further detail. 

Conclusion
Reliability and energy efficiency challenges posed by technology scaling are 
a critical problem that jeopardizes both flash memory and DRAM capacity, 
cost, performance, lifetime, and efficiency. In this article, we have described 
our recent error analysis of flash memory and a new method to improve flash 
memory lifetime. We hope other works by us and other researchers in the 
field collectively enable the memory and microprocessor industry to develop 
cooperative techniques to enable scalable, efficient, and reliable flash memory 
(and DRAM) that continues to scale to smaller feature sizes.

“A key direction is to co-design the 

DRAM controller and DRAM, 

rethinking the DRAM interface and 

microarchitecture, such that DRAM 

scaling challenges are tolerated at the 

system level.”
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As DRAM systems face scalability challenges, the architecture community 
has started investigating alternative technologies for main memory. These 
emerging memory technologies tend to suffer from the problem of limited write 
endurance. This problem is exacerbated because of the high variability in lifetime 
across different cells, resulting in weaker cells failing much earlier than nominal 
cells. Ensuring long lifetimes under high variability requires that the design 
can correct a large number of errors for any given memory line. Unfortunately, 
supporting high levels of error correction for all lines incurs significantly high 
overhead, often exceeding 10 percent of overall memory capacity. We propose 
to reduce the storage required for error correction by exploiting the observation 
that only a few lines require high levels of hard-error correction. Therefore, 
prior approaches that uniformly allocated a large number of error correction 
entries for all lines are inefficient, as most (more than 90 percent) of these entries 
remain unused. We propose Pay-As-You-Go (PAYG), an efficient hard-error 
resilient architecture that allocates error correction entries in proportion to the 
number of hard faults in the line. We describe a storage-efficient and low-latency 
organization for PAYG. Compared to uniform error correction, PAYG requires 
one third the storage overhead and yet provides 13 percent more lifetime.

Introduction
As DRAM-based memory systems get limited by power and scalability 
challenges, architects are turning their attention towards emerging memory 
technologies for building future systems. Phase Change Memory (PCM) has 
emerged as one of the most promising technologies suitable for incorporation 
into main memory.[3] While PCM has several desirable attributes such as 
improved scalability and nonvolatility, the physical properties of PCM dictates 
that only a limited number of writes can be performed to each cell. On average, 
PCM devices are expected to last for about 10 to the 7th and 10 to the 8th, 
writes per cell.[1] Once a cell reaches its end of life, it gets stuck in one of the 
states, manifesting itself as a hard error. The problem of limited lifetime is further 
exacerbated by the high variability in lifetime across different cells due to process 
variations. This means a small percentage of cells that have a significantly lower 
than average lifetime end up determining the overall lifetime of the system. 

Ensuring reasonable system lifetime under high variability requires that the 
design provision large amounts of error correction for PCM lines. As we 
are concerned with lifetime failures that manifest themselves as hard errors, 
we focus only on hard-error correction in this article. Recent studies have 
proposed write-efficient error correction schemes such as Error Correction 
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Pointers (ECP)[5] and SAFER[6] to tolerate a large number of hard faults in 
memory lines. While our analysis is applicable to any hard-error correction 
scheme, we discuss ECP for our studies owing to its simplicity. 

ECP corrects a failed bit in a memory line by recording the position of the bit 
in the line and its correct value. For example, a 64-byte (512-bit) line needs 
a 9-bit pointer plus 1 replacement bit resulting in a total of 10 bits for each 
ECP entry. Our evaluations show that correcting six errors per line can provide 
a lifetime of about 6.5 years for our baseline (the configuration is described 
in the section “Experimental Methodology”). Provisioning for 6 bits of error 
correction requires an overhead of 61 bits (60 bits of ECP plus one full bit 
to indicate that all ECP entries are used) per line, which translates to a total 
storage overhead of 12 percent. Note that this level of error correction would 
not be an optional feature in future PCM systems but rather something that 
would be essential to enable meaningful operation of the PCM array. Given 
that the memory market is low margin and highly cost-sensitive, it is important 
that the storage overhead of such necessary error correction be minimized, 
while retaining the desired levels of reliability. Thus, the 12 percent storage 
overhead of ECP may very well prove to be too high for wide-scale adoption 
of PCM. 

To reduce the storage overhead of error correction, we begin by pointing to 
the inefficiency with the ECP approach that uniformly allocates six ECP 
entries per line. Our analysis shows that very few lines are weak, and more 
than 95 percent of the lines require no more than one ECP entry per line. 
Therefore, we would expect that with uniform ECP-6, the majority of the ECP 
entries would remain unused. Table 1 shows the distribution of lines that use 
a given number of ECP entries at different aging levels (age normalized to the 
lifetime under ECP-6, or 6.5 years). The average number of ECP entries used 
is also shown.

Number Writes 
(Normalized Age)

Number of ECP Entries Used per Line Average Number of 
ECP Entries Used0 1 2 3–6

50% 99.02% 0.97% 0.00% 0.00% 0.010

90% 84.76%   14.02% 1.16% 0.07% 0.165

95% 79.63%   18.14% 2.06% 0.17% 0.228

  100% 73.24%   22.82% 3.55% 0.40% 0.311

Table 1: Inefficiency of Uniform ECP-6. On average, only 0.3 out of six 
entries eventually gets used 
(Source: Moinuddin K. Qureshi, 2013)

As the number of writes increase, the rate of faults increases, and hence more 
and more of the allocated ECP entries get used. However, even at the end of 
the expected system lifetime under ECP-6, less than 5 percent of the lines 
utilize more than one ECP entry. On average, only 0.3 entries out of the 
allocated six entries of ECP get used, indicating significant inefficiency with 
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uniform ECP. If we could allocate ECP entries only to lines that need those 
entries, we would reduce the required ECP entries by almost 20X. Ideally, 
we want to allocate more ECP entries to weak lines (lines with large number 
of errors) and fewer ECP entries to other lines. Unfortunately, uniform ECP 
allocates a large (and wasteful) number of ECP entries with each line a priori, 
being agnostic of the variability in lifetime of each line.

We propose Pay-As-You-Go (PAYG, pronounced as “page”), an error correction 
architecture that allocates error correction entries in response to the number of 
errors in the given memory line. To maintain low latency of error correction, 
PAYG splits the correction entries into two parts: first, a per-line Local Error 
Correction (LEC) that can correct up to one error per line and is sufficient for 
95 percent of the lines; and second, a Global Error Correction (GEC) pool that 
contains tagged ECP entries and provides error correction entries for lines that 
have more errors than can be handled by the LEC. 

We describe several versions of PAYG, each with varying effectiveness, storage 
overhead, and latency overhead. Our evaluations show that PAYG reduces the 
storage overhead of error correction by a factor of 3.1X compared to ECP-6 
(19.5 bits per line vs. 61 bits per line) while still obtaining 13 percent longer 
lifetime. Thus, PAYG obtains the best of both worlds in that it achieves the 
lifetime corresponding to strong levels of error correction while maintaining 
the low storage overhead that is sufficient for most of the lines.

Background
The problem of limited write endurance is common to many of the emerging 
memory technologies. Without loss of generality, this article analyzes Phase Change 
Memory (PCM) as an example of emerging memory technology. PCM suffers 
from the limited endurance in that the memory cells cease to have the ability to 
store data after a certain number of writes. Such cells get stuck to one of the states 
and manifest themselves as hard errors.[5] Designing a robust PCM system that can 
last for several years requires carefully architecting the system to tolerate such errors.

Problem: Variability in Lifetime
ITRS[1] projections (and various other studies) indicate that PCM cells can be 
expected to have an average endurance in the range of 107–108 writes. While 
this range of endurance is much lower than the ~1015 endurance of DRAM, 
it is still sufficient to architect a system with several (more than five) years of 
lifetime. Unfortunately, the lifetime of PCM cells is not uniform, and process 
variability results in significant variations even within adjacent cells in the same 
die.[2][5] This causes certain cells to have much lower endurance than the average 
population. Such weak cells fail much earlier than the typical cell and can 
reduce the lifetime of the system significantly to the tune of a few weeks. 

The variation in lifetime is typically expressed as normalized standard deviation 
(COV) around the mean. Previous studies on variability of PCM endurance 
have used COV values between 10–30 percent of the mean.[2][5][6] In our 
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analysis, we use a default COV value of 20 percent. With a COV of 20 percent, 
the cell failure probability at the very start is in the range of 10-6. Given that a 
typical main memory system contains tens of billions of cells, even this small 
failure probability would result in several thousand cells having bit failures, 
which in turn would result in a drastic reduction in the overall system lifetime 
because of variability.

Prior Work
The lifetime of a PCM system can be increased to a useful range if the system 
can tolerate errors. Hamming code-based error correction, which is typically 
employed in memory systems, can tolerate transient errors as well as hard 
errors. Unfortunately, such codes are write intensive and can further exacerbate 
the endurance problem in PCM. Fortunately, identifying the endurance-related 
write failures is easy as it can be done by simply performing a verify read after 
completing a write.1 If the two values do not match then the nonmatching bit 
is likely to be a hard error. 

Recent studies[5][6] have focused on developing write-efficient methods to 
provide error correction of hard faults, relying on this simple detection 
property of endurance-related failures. 

One such proposal is Error Correcting Pointers (ECP).[5] ECP performs error 
correction by logging bit errors in a given line. For example, for a line of 
64 bytes (512 bits), a 9-bit pointer is used to point to the failing bit and an 
additional bit to indicate the correct value. This scheme can correct one error 
and is referred to as ECP-1. The concept can be extended to correct multiple 
bits per line. Intelligent precedence rules allow correction of errors even in 
the ECP entries. A generalized scheme that can correct N errors per line is 
called ECP-N. A full bit per line indicates if all the ECP entries associated 
with the line are used. Thus, the storage overhead of ECP-N is (10N + 1) bits 
per line.

Need to Correct Several Errors per Line
Given that transient faults are rare, a typical memory system is designed to 
handle at most one or two transient faults per line. However, unlike transient 
faults, endurance-related hard errors accumulate over time. Therefore, we 
need to provide large amount of error correction per line in order to obtain 
reasonable system lifetime. Figure 1 shows the mean time to first uncorrectable 
error for our baseline system, where the number of ECP entries per line is 
varied from 1 to 12. All lifetime numbers are normalized to the case of zero 
variance. To show dependence of lifetime on variance, we show data for 
different COVs. For COV = 20 percent, ECP-6 obtains 35 percent of ideal 

1 If the system supports some amount of transient fault protection with each line, then we can 
identify the hard faults without performing the verify read. For example, the position of a bit that 
causes a failure with a transient fault protection mechanism can be tracked. Given that transient 
faults are rare, if the same bit position is causing frequent errors then that bit is likely to be a 
hard fault. Such a bit can then be corrected using a hard-error correction mechanism. This article 
assumes that an efficient means of detecting endurance-related failures exists and focuses only on 
correcting such failures.
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lifetime. For our baseline, this translates to a lifetime of 6.5 years, which is 
in the desired range of 5–7 years for a typical server. ECP-6 incurs storage of 
61 bits per line, which translates to 12 percent storage overhead. Given that 
memory chips are extremely cost sensitive, such overhead may be too high for 
practical use.

Inefficiency of Traditional Approach
For a memory of N lines, a PCM system would provision a total of 6N ECP 
entries to implement ECP-6. The problem with such an approach is that it 
results in significantly underutilized ECP entries. Because weak lines are few, 
only a few lines require high levels of error correction. Most of the other lines 
do not use the allocated ECP entries. Figure 2 shows the failure probability 
as the number of writes is increased (under COV = 20 percent), normalized 
to a system that has zero variance. The failure of line (or system) occurs 
when there is at least one uncorrectable error for a given amount of ECP. 
The expected time to failure is computed as the time at which the failure 
probability is 50 percent.
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(Source: Moinuddin K. Qureshi, 2013)

Given that memory has millions of lines, the line failure probability must be 
very low (much less than 10−6) to achieve a low system failure probability. 
When the system failure is expected to occur under ECP-6, the probability 
of line failure with ECP-1 is approximately 3.5 percent. This implies that 
fewer than 5 percent of the lines have more than one failed bit at the time of 
system failure, indicating significant inefficiency in the traditional approach 
that allocates six ECP entries for all lines. We note that ECP-1 is sufficient in 
the common case, and we need higher levels of ECP for very few lines. Ideally, 
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we would like to retain the robustness of ECP-6 while paying the hardware 
overhead of only ECP-1. 

We base our solution on the insight that hard errors are quite different from 
transient faults. We need to allocate the storage for the error detection of 
transient faults up-front—before the error occurs. However, for hard errors, 
we can detect the error using a separate mechanism and allocate the error 
correction entry only when the error occurs. We discuss our experimental 
methodology before describing our proposal.

Experimental Methodology
The following section describes our experimental methodology.

Baseline Configuration
We assume a memory configuration that is designed with PCM banks each with 
1 GB memory. Each bank has one write port and the write operation can be 
performed with a latency of 1 microsecond. The size of the line in the last-level 
cache is 64 bytes, which means there are 224 lines in each bank. All operations on 
memory occur at line-size granularity. Given that each bank is a separate entity 
and can be written independently, we focus on determining the lifetime of one 
bank. We assume that each line has an endurance of 225 writes. If endurance 
variance was 0 percent, we would expect the baseline to have a lifetime of 
18 years.2 ECP-6 obtains 35 percent of this lifetime, which translates to 6.5 years. 

Assumptions
We are interested in evaluating the lifetime of memory, which is typically in the 
range of several years. Modeling a system for such a long time period inevitably 
involves making some simplifying assumptions. We make the following 
assumptions in order to evaluate memory lifetime:

●● We assume the lifetime of each memory cell to follow a normal distribution 
without any correlation between neighboring cells. We assume a mean 
lifetime of 225 writes[4] and a COV of 20 percent of the mean.

●● We assume perfect wear-leveling to focus only on the impact of the error 
correction schemes. This implies that all the memory lines will receive the 
same number of writes.

●● A write request to memory is converted into a sequence of write requests 
followed by a read request to detect hard faults. We assume that this 
technique can identify hard faults with 100 percent accuracy.

Figure of Merit
The endurance-limited lifetime of the system can be defined as the number 
of writes performed before encountering first uncorrectable error. Thus, for a 
given scheme, lifetime is determined by the first line that gets more errors than 

2 Each of the 224 lines can be written 225 times, for a total of 249 writes. With write latency of 
1 microsecond, we can perform 106 writes/second or 244.8 writes per year, hence, a lifetime of  
18 years, even under continuous write traffic.
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can be corrected. ECP-6 obtains a lifetime of 6.5 years, which is in the range of 
5–7 years of lifetime for a typical server. We want a lifetime in this range; hence 
all lifetime numbers in our evaluation are normalized to ECP-6. We define 
Normalized Lifetime (NL) as follows, and use this as the figure-of-merit in our 
evaluations:

NL = ​  Total Line Writes Before System Failure × 100%
    ___________________________________    

Total Line Writes Before System Failure With ECP 6
 ​� (1)

Pay-As-You-Go Error Correction
We can architect an efficient and robust design by allocating error correction 
entries only on demand, as and when an error occurs. In fact, one can reduce 
the percentage of unused ECP entries to zero by having a fully associative 
structure where each entry contains one tagged ECP-1 unit. Unfortunately, such 
a design would incur intolerable latency as each memory access would need to 
search through hundreds of thousands of error-correction entries. Our proposed 
design, PAYG, provides storage-efficient on-demand error correction while 
incurring negligible latency overhead. In this section, we first start with a naive 
design for PAYG, identify its shortcomings, and then propose the robust design.

Architecture of Naive PAYG
When failure occurs under ECP-6, we observe that 73 percent of the lines have 
0 errors (Table 1). Hence, error correction overhead could be decreased by ~4x, 
by allocating ECP-6 only for lines that have at least one error. This simplified 
architecture is called Naive-PAYG, and is shown in Figure 3. 

Main Memory

Way (Num GEC entries per set)

Global Error Correction (GEC) Pool
GEC Entry

V TAG ECP–NSets

Memory Line (64B)OFB
O

Figure 3: Architecture of Naive-PAYG (newly added 
structures are shaded)
(Source: Moinuddin K. Qureshi, 2013)

Each line contains an overflow bit (OFB) to indicate if the line has at least one 
failed bit.3 

A Global Error Correction (GEC) pool provides error correction entries for 
such lines. Each GEC entry contains a valid bit, a tag (to identify the owner 

3 A stuck-at-zero OFB can be a single point of failure. Under COV = 20 percent, the probability 
that a bit will fail at first write is 0.3 × 10−6. Given 16 million lines in memory, 4.8 lines are 
expected to have such a failure on average. We avoid this problem by using two-way replication for 
the OFB bit. We assume that OFB is set to 1, if any of the replicated bits is 1. The probability that 
both the replicated bits of OFB are stuck-at-zero is negligible (10−13).
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line), and one or more ECP entries (ECP-6 in our case). GEC is organized 
as a set-associative structure. Given that memory designs are highly 
optimized for a given array size, we want to use a line-size granularity for 
GEC as well. Therefore one set of GEC is sized such that it fits in 64 bytes, 
translating to seven GEC entries per set. We found that such a design is 
noncompetitive compared to even uniform ECP-6 because it suffers from 
three problems:

●● The set associative organization needs a much larger number of entries 
(~8x) than a fully associative structure to reach the same level of 
effectiveness.

●● Even with the filtering provided by the OFB, 25 percent of the lines can 
still incur a latency of two accesses (one for main memory and second for 
GEC), resulting in significant slowdowns.

●● Most ECP entries remain unused as six ECP entries are allocated for lines 
with even one error.

We now describe efficient solutions to each of these problems, leading up to 
our final design.

Addressing Problem 1: Shortcoming of Set Associative Structure for 
GEC Pool
In a set-associative organization, each set has only a fixed number of 
ways, which means that the first set to exceed its allocation causes an 
uncorrectable failure. So, an important question in determining efficiency 
of the set-associative structure is to analyze the number of GEC entries 
occupied before one of the sets overflows. Given that most of the efficient 
wear-leveling algorithms[4][7] randomize the address space in PCM, we 
assume that failures occur at random lines in memory, and that any access 
pattern gets spread over the entire memory (due to remapping from 
wear leveling). Based on this randomized address space property, we can 
analyze the effective capacity utilization of a set-associative structure using 
an analogous buckets-and-balls problem, where a bucket represents one 
of the sets and a ball represents one of the occupied ways. If there are 
N buckets, each of which can hold B balls, then the collection can hold a 
maximum of NB balls. However, if balls are thrown at random, then how 
many balls can be thrown before one of the buckets overflows? Our Monte 
Carlo simulations indicate that a 7-way or 8-way GEC pool is only about 
12 percent occupied when one of the sets overflows, indicating about 
8x inefficiency with a set-associative structure. 

Ideally, we want the efficiency of a fully associative structure (where all entries 
get used) and latency of set-associative structure (single low-latency index). To 
handle these contradictory requirements, we use a hash-table-with-chaining 
structure. It consists of two tables: first, the Set Associative Table (SAT) and 
second, the Global Collision Table (GCT). SAT provides a single-index low-
latency access to the GEC pool, while GCT provides flexibility in placement. 
Both SAT and GCT are structurally identical and differ only in the way they 
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are indexed. Each GEC set (both in SAT and GCT) also contains a pointer 
(GCTPTR) that points to a location in the GCT.4 The proposed GEC 
structure is shown in Figure 4.

GEC Entry

PTR

1

0

OFB

GEC Entry

Set Associative Table (SAT)

Global Collision Table (GCT)

PTR1

OFB

GCT–Head

PTR

Figure 4: Architecture of scalable GEC pool (Set Associative Table + Global Collision Table)
(Source: Moinuddin K. Qureshi, 2013)

Reading GEC Entries
For obtaining a GEC entry, SAT is accessed first in a set that is indexed by 
some bits of the line address. If there is no tag match in the set, then the 
GCTPTR of that set identifies the GCT set that must be checked. GCT can be 
indexed only in this manner. If there is a tag match in the GCT row, then GEC 
entries can be obtained. If there is no match, the GCTPTR in that set identifies 
the next GCT set that must be checked. The traversal continues until a GCT 
entry with matching tag (or a set with OFB = 0) is found.

Allocating GEC Entries
Initially, all GCT sets remain unallocated. These sets get allocated to a set of 
SAT only on overflow. To aid this allocation, a register called GCT-Head keeps 
track of the number of GCT entries that have been allocated. When one of the 
set of SAT or GCT overflows, the GCTPTR of that set is initialized to GCT-
Head and the OFB associated with that set is set to 1. The newly allocated 
set of GCT provides as many GEC entries as the associativity of GCT. The 
GCTPTR of this newly allocated entry is marked invalid and OFB is set to 0 
(to indicate end of traversal). 

The GCT-Head is incremented after every GCT allocation. When the value 
of GCT-Head reaches the number of sets in GCT, it indicates an uncorrectable 
error. 

We use a GCT that has half as many sets as SAT. Table 2 shows the effective 
capacity if there are N sets in SAT and 0.5N sets in GCT, as the associativity of 
SAT is varied. For an 8-way SAT, our organization obtains an effective capacity 
of more than 70 percent of the allocated 1.5N entries, much higher than the 
12 percent with a set-associative structure.

4 We use two-way replication for GCTPTR for tolerating errors. We force the GCTPTR with 
a single stuck-at-bit to point to either location all-zeros or all-ones (both locations are reserved). 
On mismatch between the two copies of GCTPTR, the entry pointing to the reserved location is 
ignored. The probability of two bits stuck in GCTPTR is negligible (10−12).
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percent of the allocated 1.5N entries, 

much higher than the 12 percent with 

a set-associative structure.”
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Associativity of SAT 1 2 4 8

Effective Capacity 1.19N 1.15N 1.11N 1.08N

Table 2: Effective capacity utilization (of 1.5N entries) with proposed 
(SAT+GCT) organization
(Source: Moinuddin K. Qureshi, 2013)

In the common case, we want the access to be satisfied by SAT and not 
the GCT, as GCT incurs higher latency due to multiple memory accesses. 
Our Monte Carlo simulations show that until about half the entries in SAT 
get occupied, the probability of single GCT access remains low (less than 
1 percent). Thus, the proposed design has a good storage efficiency as well as 
low latency.

Addressing Problem 2: Local Error Correction for  
Low-Latency
One of the shortcomings of the naive design is that it accesses the GEC for 
a line with even one error. We can reduce latency and storage requirements 
for GEC by allocating a small amount of error correction with each line. 
For example, we observe that with ECP-1, the likelihood of failure is less 
than 4 percent even at the end of system lifetime. Therefore if we allocate 
ECP-1 with each line, we can reduce the GEC access rate as well as demand 
significantly. We propose to have such Local Error Correction (LEC) with 
each line. When the number of errors in the line exceeds what can be 
corrected by LEC, the OFB associated with that line is set and an entry from 
GEC is allocated. With ECP-1 in LEC, each GEC entry would need to store 
only ECP-5, which means the GEC can be an 8-way structure in a 64-byte 
space.

Addressing Problem 3: Fine-Grained On-Demand  
Allocation for Improved Efficiency
Another source of inefficiency in the naive design is that it allocates a large 
number of ECP entries for each assignment of a GEC entry. While this 
amortizes the tag overhead, it results in severe inefficiency, as most of the 
allocated ECP entries remain unused. The utilization of ECP entries can 
be increased by reducing the number of ECP entries in each GEC entry. 
For example, if each GEC entry contained only ECP-1, it would result in 
significant increase in utilization of ECP entries, even if it would mean relative 
increase in tag overhead. With ECP-1 in GEC entry, we can fit approximately 
24 entries in the space of 64 bytes, therefore the associativity of GEC (SAT as 
well as GCT) would be 24. As there can be multiple tag hits in a given GEC 
set, we use the same precedence rule as used in the ECP proposal, that is, GEC 
entries are allocated from right to left, and younger entries have precedence 
over older entries. Our design restricts that all GEC entries of a given line must 
be placed in the same set. If a line needs more GEC entries and that set is full, 
then all ECP entries of the line are invalidated from the GEC set and relocated 
into a new set in GCT.
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Proposed PAYG: Tying It All Together
PAYG obtains both high storage efficiency and low latency by leveraging the 
flexible structure for GEC, a hybrid LEC-GEC organization, and fine-grained 
allocation. Figure 5 shows the overall architecture of our proposed PAYG 
design. 

Main Memory

Memory Line (64B)O LEC
Over Flow Bit

O LECSAT

GCT

Global Error Correction (GEC) Pool

PTR

O LEC PTR

Figure 5: Proposed Architecture of PAYG
(Source: Moinuddin K. Qureshi, 2013)

The LEC handles the common case of one-or-zero errors in a line for more 
than 95 percent of the lines. The GEC provides a storage-efficient low-
latency on-demand allocation of ECP entries for lines that have more than 
one error. Each GEC entry would contain only ECP-1 for high utilization 
of ECP entries. To reduce the array design overhead, we assume the same 
memory array for GEC (SAT and GCT) as the main memory, and provision 
the LEC + OFB for GEC as well, to maintain uniformity (this also allows 
the GEC size to be changed freely at runtime by the OS). An access to main 
memory with OFB = 0 is satisfied by single access. When OFB = 1, the GEC 
is accessed, one or more memory lines are read, matching GEC entries are 
obtained, ECP information is retrieved, and the line or lines get corrected. 

Unlike uniform ECP-6, PAYG does not have to limit the maximum error 
correction allocated to a line. Thus, a weak line can use as many ECP entries 
as needed (limited only by the number of GE entries per line). This allows 
PAYG to outperform even ECP-6. The only real limiter of lifetime with PAYG 
is the number of GEC entries, as the likelihood of 24 or more errors per line is 
negligible for our system.

Results and Analysis
Our proposed design has three key components: the scalable structure for the 
GEC pool, Fine Grained Allocation (FGA), and Local Error Correction (LEC). 
In this section, we present the key results highlighting the importance of each 
of these components. We then analyze the storage and latency overheads, and 
also the impact of different variability scenarios on the effectiveness of our 
proposal.

“The LEC handles the common case 

of one-or-zero errors in a line for 

more than 95 percent of the lines. The 

GEC provides a storage-efficient low-

latency on-demand allocation of ECP 

entries…”
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Importance of Scalable GEC Pool
The key component of PAYG that provides scalability and efficiency is 
the architecture of the GEC pool. The first set of results we present are to 
emphasize the need for such a scalable structure. For this analysis, we assume 
a version of PAYG that has LEC implemented as ECP-1. The GEC does not 
have fine-grained allocation, which means each GEC entry contains ECP-5, 
and each set of GEC (in both SAT and GCT) contains 8 GEC entries. We call 
this configuration PAYG-NoFGA. Figure 6 compares the normalized lifetime 
of uniform ECP to that with PAYG-NoFGA. The left sets of bars are for ECP 
where the level of ECP is varied from 1 to 6. The middle sets of bars are for 
PAYG-NoFGA without GCT, where the number of sets in SAT is varied from 
32K to 1024K. The right sets of bars are for PAYG-NoFGA with 128K sets in 
SAT and GCT sets vary from 2K to 64K. 
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Figure 6: Lifetime of uniform ECP and PAYGNoFGA. Without GCT, PAYG-NoFGA needs 
1024 sets (6.25% storage overhead) for lifetime comparable to ECP-6. With GCT, this 
reduces to (128K + 64K = 192K), 5x lower
(Source: Moinuddin K. Qureshi, 2013)

The first observation is that ECP-6 improves lifetime compared to ECP-1 
by more than 10x. Unfortunately, ECP-6 incurs a storage overhead of 12 
percent of memory capacity. The second observation is that PAYG-NoFGA 
needs a large number of sets (1 million) to achieve the lifetime as ECP-6, 
resulting in significantly high storage overhead (6.25 percent). However, the 
presence of GCT decreases storage requirement significantly. Combining 
128K sets in SAT with 64K sets in GCT can provide a lifetime slightly 
higher than ECP-6 (this occurs because PAYG does not cap maximum 
error correction entries to six per line, so a few lines end up using ECP-7). 
The storage overhead of this combination would be 128K + 64K = 192K 
sets (1.2 percent overhead), which is 5x lower. Thus, a SAT-GCT based 
architecture is much more storage efficient than a simple set-associative 
structure. Unless specified otherwise, we will use 128K-set SAT combined 
with 64K-set GCT for the rest of the article.

“…SAT-GCT based architecture is 

much more storage efficient than a 

simple set-associative structure.”
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Importance of Fine-Grained Allocation
PAYG-NoFGA allocates five ECP entries with each GEC entry, most of which 
remain unused. FGA improves the utilization of ECP entries by reducing the 
number of ECP entries in each GEC entry. Table 3 shows the number of GEC 
entries that can be packed in one set (64 bytes), when the number of ECP entries 
in each GEC entry is varied from one to five. The tag size for our GEC structures 
is 7 bits, and we replicate the valid bit in GEC entry for fault tolerance. We also 
reserve 32 bits for GCTPTR (16 bits, 2-way replicated), which means only 480 
bits per line are available for GEC entries. As the number of ECP entries per 
GEC entry decreases, the total number of GEC entries per each set increases. 

Number of ECP in each GEC entry 1 2 3 4 5

Number of tag bits + valid bits 9 9 9 9 9

Number of bits for ECP 11 21 31 41 51

Size of 1 GEC entry (bits) 20 30 40 50 60

Number of GEC entries per set 24 16 12 9 8

Number of ECP entries per set 24 32 36 36 40

Table 3: Tradeoff between the number of ECP entries per GEC entry vs. 
ECP entries per set. Note that 24 GEC entries can be packed in one GEC 
set if each GEC entry contains ECP-1 
(Source: Moinuddin K. Qureshi, 2013)

Figure 7 shows the normalized lifetime of PAYG as the number of ECP entries 
in GEC is varied from six to one. PAYG is implemented with LEC of ECP-1, 
SAT contains 128K sets, and GCT contains 64K sets. As the number of ECP 
entries in each GEC entry is reduced, there is a gradual increase in relative 
lifetime indicating that the effective utilization of ECP entries outweighs the 
relative increase in tag-store overhead. 
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Figure 7: Effect of fine-grained allocation on effectiveness of 
PAYG. Note that having ECP-1 in GEC provides the highest 
lifetime and is the default PAYG configuration
(Source: Moinuddin K. Qureshi, 2013)

With only ECP-1 in each GEC entry, PAYG obtains a lifetime 13 percent higher 
than ECP-6, which is similar to that obtained with uniform ECP-8. Given the 
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efficiency of such fine-grained allocation, we assume that PAYG is implemented 
with ECP-1 in each GEC entry. The Default PAYG configuration used in our study 
is: 128K sets in SAT, 64K sets in GCT, LEC with ECP-1, and FGA with ECP-1 
in each GEC entry. This configuration incurs a storage overhead of 3.8 percent of 
memory capacity and provides 13 percent more lifetime than uniform ECP-6.

Importance of Local Error Correction 
The LEC provides the first line of defense for error correction in PAYG and is 
designed to handle the common case of zero or one failure per line. Figure 8 shows 
the normalized lifetime with PAYG as the level of ECP in LEC is varied from zero 
to six. Note that each ECP in LEC accounts for storage of approximately 2 percent 
of overall memory capacity, so having higher levels of ECP in each LEC entry incurs 
significant storage overhead. As expected, the lifetime increases with increasing ECP 
in LEC. A version of PAYG that has LEC containing ECP-5 has storage similar to 
uniform ECP-6 and provides a lifetime improvement of 43 percent. Thus, PAYG 
can not only be used to obtain a given amount of lifetime for reduced storage but 
can also be used to enhance lifetime at a given storage budget.

For the PAYG configuration without LEC (NoLEC), the given number of GEC 
entries are insufficient to handle the error rate, hence it obtains a lifetime lower 
than ECP-6. This can be avoided by simply increasing the number of GEC 
entries. The right set of bars in Figure 8 shows the lifetime of PAYG without 
LEC, when the GEC entries are doubled or quadrupled. We observe that simply 
doubling the entries (storage overhead of 2.4 percent) has lifetime equivalent to 
ECP-6, and when we double the GEC entries further to overhead of 4.8 percent, 
this combination can provide a lifetime significantly higher than with uniform 
ECP. However, the key problem of the PAYG configuration without LEC is the 
increased access latency. Because the line of defense of LEC is absent, all lines that 
have even a single error will experience increased latency because of GEC accesses. 
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(Source: Moinuddin K. Qureshi, 2013)

“This configuration incurs a storage 

overhead of 3.8 percent of memory 

capacity and provides 13 percent more 

lifetime than uniform ECP-6.”
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Storage Overhead of PAYG
The storage overhead of PAYG consists of two parts: LEC and GEC. The 
overhead of LEC is incurred on a per-line basis, whereas the overhead of GEC 
gets amortized over all the lines. Table 4 computes the storage overhead of 
Default PAYG, given that the bank in our baseline contains N = 224 lines. The 
LEC incurs 13 bits/line (2-way replicated OFB bits + (1+10) bits for ECP-1). 
The storage overhead of PAYG is 3.13x lower than ECP-6. On average, PAYG 
needs 19.5 bits/line vs. 61 bits/line for ECP-6. 

PAYG

LEC (2 OFB + ECP-1) 13 bits/line

SAT (217) sets 217 lines × 64 B = 8 MB

GCT (216) sets 216 lines × 64 B = 4 MB

Total overhead of LEC 13 bits (224 + 217 + 216) = 26.9 MB

Total overhead of PAYG 26.9 MB + 8 MB + 4 MB = 38.9 MB

Total overhead of ECP-6 61 bits/line × 224 = 122 MB

Ratio of (ECP-6/PAYG) 122 MB/38.9 MB = 3.13x

Table 4: Storage overhead of PAYG (PAYG obtains 13% more 
lifetime than ECP-6) 
(Source: Moinuddin K. Qureshi, 2013)

Effective Latency with PAYG
Correcting an error with PAYG may require multiple accesses to memory. The 
main access simply gets broken down into multiple memory accesses (each of 
which takes deterministic time). The structures SAT and GEC are organized 
at a granularity of memory line, and we assume that an access to them incurs 
similar latency as access to main memory. When a GEC access occurs, the SAT 
is indexed and the memory line obtained is searched for a GECP entry with 
a matching tag. This incurs one extra memory access. If a match is not found, 
then the GCT is accessed, which incurs yet another memory access for each 
GCT access. However, this occurs rarely, given that GEC access happens only 
when the number of errors in a given line exceeds what can be corrected by 
the LEC. Figure 9 shows the percentage of demand accesses that require one 
extra access (satisfied by SAT) and two extra accesses (one for SAT and one for 
GCT). The probability of one extra access remains 5 percent or less throughout 
the expected lifetime under ECP-6 (6.5 years under continuous write traffic). 
Only after that does it increase significantly, reaching 17 percent at the end 
of lifetime with PAYG. In fact, for the first five years of system lifetime there 
is on average only 0.4 percent extra access per memory access, which means 
the performance impact is negligible (less than 0.4 percent) during the useful 
lifetime. The probability of two extra accesses remains very low throughout 
the lifetime. 

“The storage overhead of PAYG is 

3.13x lower than ECP-6.”

“…for the first five years of system 

lifetime there is on average only  

0.4 percent extra access per memory 

access…”
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Summary
Emerging memory technologies suffer from the problem of limited write 
endurance. Such systems need high levels of error correction to ensure 
reasonable lifetime under high variability in device endurance. Uniformly 
allocating large amounts of error correction entries to all the lines results 
in most of them remaining unused. We can avoid the storage overhead of 
such unused entries by allocating the entries in proportion to the number of 
faults in the line. Based on this key insight, our article makes the following 
contributions:

●● We propose Pay-As-You-Go (PAYG), an efficient hard-error–resilient 
architecture that allocates error correction entries on-demand, as and when 
errors occur.

●● We propose a storage-efficient, low-latency organization for searching 
through large number of global error correction (GEC) entries. 

●● We reduce the latency for accessing error correction entries further by 
allocating a small amount of Local Error Correction (LEC) per line. Our 
analysis shows that one bit of LEC per line is sufficient to balance the 
tradeoff between storage overhead and latency impact. 

PAYG can be implemented with any hard-error correction technique and is 
highly effective compared to line sparing. While we have evaluated the concept 
of nonuniform fault tolerance in the context of PCM systems, this concept is 
applicable to other memory technologies as well.
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As computer systems evolve towards exascale and attempt to meet new 
application requirements such as big data, conventional memory technologies 
and architectures are no longer adequate in terms of bandwidth, power, 
capacity, or resilience. In order to understand these problems and analyze 
potential solutions, an accurate simulation environment that captures all 
of the complex interactions of the modern computer system is essential. In 
this article, we present an integrated simulation infrastructure for the entire 
memory hierarchy, including the processor cache, the DRAM main memory 
system, and nonvolatile memory, whether it is integrated as hybrid main 
memory or as a solid state drive. The memory simulations we present are 
integrated into a full system simulation, which enables studying the memory 
hierarchy with a faithful representation of a modern x86 multicore processor. 
The simulated hardware is capable of running unmodified operating systems 
and user software, which generates authentic memory access patterns for 
memory hierarchy studies. To demonstrate the capabilities of our infrastructure 
we include a series of experimental examples that utilize the cache, DRAM 
main memory, and nonvolatile memory modules. 

Introduction
The rise of multicore systems has shifted the primary bottleneck of system 
performance from the processor to the memory hierarchy, accelerating the 
gap that had already existed between processor and memory performance 
(the memory wall). Previously, the memory wall problem was the result of the 
increasing frequencies of CPUs relative to the latency of the memory system, 
which meant that CPUs were losing more processing time waiting on memory 
accesses. However, as processor frequency improvements stalled and with the 
introduction of multicore systems, a more urgent problem was created since the 
current memory system cannot scale at the same rate as the number of cores. 
Therefore, in modern systems there is actually much less bandwidth and capacity 
per core than there was a few years ago. This trend can be seen in Figure 1. This 
problem, combined with the existing operating frequency problem, has led to the 
memory hierarchy becoming the dominant source of slowdown in the system. 
To address the increased need for capacity, systems are now relying more on solid 
state drives and other high performance storage systems, exacerbating the latency 
problem of the memory system due to the increased frequency of references to 
the slower storage system. Finally, since multicore systems are running threads 
in different address spaces with different access patterns, there is less locality of 
reference for the cache hierarchy to exploit. This implies that overcoming the 
multicore memory wall problem requires examining the entire memory hierarchy 
from the cache system down to the storage system.

“…overcoming the multicore memory 

wall problem requires examining the 

entire memory hierarchy…”
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per core for a typical system
(Source: University of Maryland, 2013)

In addition to the strain on memory system capacity and bandwidth that 
has been introduced by multicore chips, memory system capacity is also 
limited by scaling problems at the device level. For DRAM, as the memory 
cells shrink, the charge that can be stored on the capacitor becomes very 
small and the pass transistor leakage increases, which reduces the retention 
time of the cell and requires more complex peripheral circuitry to detect 
the smaller charge. For flash memory, as the dielectric of the floating gate 
shrinks, the amount of damage during program-erase cycles that can be 
tolerated decreases and the cells wear out faster.[1] Additionally, since control 
circuitry has analog components that are difficult to scale down, as the 
DRAM and flash cell size decreases, the control circuitry takes up a larger 
percentage of the chip area relative to the memory array. Architects have 
attempted to address device scaling problems by adding more devices with 
technologies like FB-DIMM and Buffer on Board, as well as technologies 
in currently development like the Hybrid Memory Cube.[2] However, these 
solutions require additional hardware to be designed and added to the 
memory system, making them currently prohibitively expensive for most 
applications. New memory technologies have also been suggested that might 
eventually provide a solution to the capacity problem but these technologies 
are not yet competitive with existing technologies in terms of cost or 
capacity.[17] Meanwhile, software is not helping to alleviate the situation, 
because application working sets continue to increase in size. In recent 
years, big data applications such as bioinformatics and graph analytics 
have only accelerated the increasing demand for faster and more scalable 
storage systems. This has also contributed to the rapid adoption of solid 
state drives. However, much of the storage system’s software and hardware 
infrastructure was constructed around assumptions of millisecond access 
latencies and, as a result, fails to efficiently utilize the new high performance 
storage solutions being implemented. In order to meet the new challenges 
posed by big data applications, the storage system needs to be reworked 
from the OS file system down to the hardware interfaces. Finally, as the 

“…big data applications such as 

bioinformatics and graph analytics 

have only accelerated the increasing 

demand for faster and more scalable 

storage systems.”
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community pushes towards exascale computers, the power and resilience 
limitations of the current memory system are becoming more pronounced.
[3] If an exascale-sized main memory system were constructed using today’s 
technology, then just that component alone would consume the entire 
system power budget. Furthermore, given the current probability of failure 
in memory system components, as the number of components approach 
the numbers needed for exascale, the probability of a failure somewhere in 
the system approaches 1. This means that if an exascale computer were built 
with today’s memory technology, not only would it use too much energy, it 
would also be breaking constantly. Therefore, to enable the push to exascale 
it is imperative that new, more energy-efficient and resilient memory 
technologies and architectures be developed.

In order to overcome these problems, new architectures and software need 
to be developed and evaluated. Since the new solutions will involve multiple 
aspects of the system, the feedback between the various components of the 
system is vital to understanding performance. For example, many researchers 
are studying how to integrate nonvolatile memory into the system as a first 
class citizen, which involves both the hardware and the software. Trace-based 
simulation has been used in the past to study these kinds of architecture 
problems. Unfortunately, trace-based simulation does not capture the feedback 
loops between software and hardware. One way to produce these feedback 
loops is to build a real-world prototype. However, due to the engineering effort 
required, real-world prototypes are impractical and costly for studying large 
design spaces. Full system simulation models those complex interactions and 
can provide valuable insights into the dynamic behavior of a variety of system 
designs. Previously, no full system simulator existed that could study all levels 
of the memory and storage hierarchy. In this article, we describe our simulation 
infrastructure that addresses this need by providing a full system simulator 
capable of modeling the entire processor and memory hierarchy, including the 
storage system.

Simulator Description
Our memory hierarchy simulation infrastructure is an extension of the 
MARSSx86 full system simulation environment[4] developed at SUNY 
Binghamton. We utilize MARSS to simulate the microprocessor and other 
non-memory hierarchy components of the system. The memory infrastructure 
builds on top of the prior MARSS memory hierarchy and incorporates 
detailed simulations of every level of the hierarchy including the cache, the 
main memory system, and the storage system. The cache simulator is an 
extended version of the existing cache simulation in MARSS that allows for 
heterogeneous technologies at different levels of the cache hierarchy. For 
traditional DRAM-based main memory systems, our simulation environment 
uses DRAMSim2, which is a detailed, cycle-accurate DRAM memory system 
simulator developed by our lab[13]. For nontraditional hybrid nonvolatile/
DRAM memory systems our simulation environment uses two modules, 
HybridSim and NVDIMM, which simulate the memory controller and 

“…the feedback between the various 

components of the system is vital to 

understanding performance.”
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nonvolatile DIMMs that would be used by such a system. The hybrid 
memory components can also be reconfigured to simulate solid state drives. 
Figure 2 shows the overall structure of our simulation environment, including 
its constituent modules and how they communicate with one another.
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Figure 2: Block diagram of simulation environment for 
hybrid memory (top) and SSD (bottom)
(Source: University of Maryland, 2013)

MARSS
MARSS is designed to simulate a modern x86 computer system. MARSS utilizes 
PTLSim to simulate the internal details of the processor. PTLSim is capable of 
simulating a multicore processor with the full details of the pipeline, micro-op 
front end, reorder buffers, trace cache, and branch predictor. In addition, PTLSim 
also simulates a full cache hierarchy and can implement several cache coherency 
protocols. For the hardware that is not explicitly simulated, such as disks or the 
network card, MARSS uses the QEMU emulation environment. MARSS is 
able to boot full, unmodified operating systems, such as any Linux distribution, 
and then run unmodified benchmarks. We selected MARSS as the basis for our 
memory hierarchy simulation infrastructure because of its ability to simulate 

“We selected MARSS as the basis for 

our memory hierarchy simulation 

infrastructure because of its ability  

to simulate both the user programs  

and the operating system 
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both the user programs and the operating system functionality, while most other 
simulation environments are only capable of simulating user-level instructions. 
Therefore, in addition to being the most realistic simulation environment possible, 
MARSS can be used to study the behavior of the operating system, which we view 
as vital to solving the problems of future memory and storage systems.

Cache Simulation
While PTLSim already provides an SRAM-based cache simulation, studying 
other technologies is vital because of the power, bandwidth, and capacity 
problems that arise in the design of the memory hierarchy for future 
systems. Memory technologies such as SRAM, STT-RAM, and eDRAM 
have been considered for implementing on-die LLCs. Though they all 
have low read latency and high write endurance, they can be very different 
for other performance characteristics. For instance, SRAM is low density 
and has high leakage current, STT-RAM has high write latency and write 
energy consumption, and eDRAM requires refresh. Additionally, due to the 
very different inherent characteristics of each of the memory technologies, 
researchers have proposed various power and performance optimization 
techniques. Therefore, in order to make useful comparisons between SRAM, 
STT-RAM, and eDRAM LLCs, we expand MARSS with the following:

1.	 We integrate a refresh controller into MARSS to support eDRAM LLCs.

2.	 In addition to the parameterized cache access time, we expand MARSS 
with parameterized cache cycle time, tag access latency, and refresh period. 
Separating cycle time and tag access latency allows the user to evaluate 
pipelined caches and sequentially accessed caches (such as when data array 
access is skipped on a tag mismatch). We also modify MARSS to support 
asymmetric cache read and write latencies. This property is required to 
evaluate STT-RAM caches realistically.

3.	 We integrate dead line predictors to enable low power modes for SRAM 
and eDRAM caches.

These changes allow our environment to investigate future cache designs 
incorporating new technologies and techniques.

DRAM Main Memory Simulation
Since the DRAM-based main memory system has a large number  of 
configuration and timing parameters, such as the command and data queues, 
address mappings, refresh timings, low power modes, activate and pre-charge 
periods, and so on, choice of one or another scheme could have drastically 
different power or performance implications.[14] Therefore, DRAMSim2, a 
cycle-accurate JEDEC DDRx memory system simulator, was developed.[12][13] 
It models the memory controller, memory channels, DRAM ranks, and banks. 
The DRAMSim2 timing behavior has been compared and validated against 
Verilog-based device models published by DRAM vendors.

Recently, JEDEC published the next generation DDR4 standard.[15] DDR4 
devices could operate at double the speed of previous generation DDR3 chips, 

“These changes allow our environment 

to investigate future cache designs 

incorporating new technologies  
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and moreover DDR4 will have additional features enabling low power and 
high memory capacity. DDR4 devices will have banks separated into multiple 
bank-groups to facilitate higher bandwidths and greater bank-level parallelism. 
However, since banks within a bank-group share some peripheral circuitry, 
requests to banks of the same bank-group takes longer time than banks on 
different bank-groups. We modified the DRAMSim2 memory controller to 
incorporate these DDR4 specific changes.

Power dissipated due to DRAM represents a substantial portion of the total 
system power budget, as the main memory capacity and bandwidth increases 
to satisfy requirements of the current and future data-intensive applications. 
Therefore, to study the tradeoffs involved with switching to various DRAM 
low power modes, such as active, power-down, self-refresh, and deep power-
down , requires accurate switching time as well as the current drawn during 
each mode. Furthermore, refresh command scheduling could also potentially 
affect the switching to low power modes. We have augmented DRAMSim2 
with detailed low power modes and a range of refresh policies, allowing users 
to study the performance and power tradeoff when using different low power 
modes and refresh methods.

Nonvolatile Memory Simulation
Recently many designs have been proposed that utilize nonvolatile device 
based DIMMs to address the capacity issues of the main memory system. For 
DIMMs that are not made using DRAM parts, we use NVDIMM, which is 
capable of simulating DIMMs made from a wide variety of technologies. This 
is possible because most nonvolatile technologies share many common features 
and differ in only a few parameters. For instance, both flash and Phase Change 
Memory (PCM) feature asymmetric reads and writes. To allow for these 
differences, NVDIMM has a wide variety of options that can be used to shape 
the behavior of the system. Some technology-specific options include access 
latencies, device interface widths, address mapping policies, and wear leveling 
policies. For example, in flash a dynamic mapping scheme is used so that dirty 
pages can be set aside to be erased during idle cycles by a garbage collection 
process, enabling faster modifications of existing data. This scheme was chosen 
because the erase time for flash is prohibitively long even for basic storage 
applications. Early architectures for PCM, on the other hand, have been 
designed with a simpler static mapping scheme that does not require a garbage 
collection process because its erase is considerably faster than flash’s. 

In addition, other options have been included in NVDIMM to enable 
investigations into the effects of organization, scheduling, and timing. A 
good example of such a study is to determine how many devices of a given 
type can be included on a DIMM before the host interface channel (such 
as DDR3 or SATA) is saturated. By enabling both device and architecture 
level investigations, NVDIMM allows our memory hierarchy simulation 
infrastructure to study different methods for integrating nonvolatile memory 
into a computer system.

“We have augmented DRAMSim2 

with detailed low power modes and  

a range of refresh policies,”
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Nonvolatile Memory Integration
There are two primary ways to integrate nonvolatile memory into a computer 
system below the cache level, as illustrated in Figure 3. The first method is 
the traditional storage route, which uses the same software and hardware 
abstractions and protocols as hard disk drives. The second method is to tie 
the nonvolatile memory directly into the memory controller. Our memory 
hierarchy simulation infrastructure is designed in such a way that you can 
utilize a common set of modules to simulate both integration methods, which 
enables the ability to make fair comparisons between the two.
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Figure 3: System design for SSD (top) and hybrid memory (bottom)
(Source: University of Maryland, 2013)

In both disk-like and memory-like integration methods, since the nonvolatile 
memory typically has long latencies, a faster memory such as DRAM or SRAM 
is utilized as a buffer or cache. We provide the HybridSim module to simulate 
this aspect of the system. HybridSim uses NVDIMM as its backing store and 
DRAMSim2 as its cache. HybridSim’s features enable the study of a variety 
of cache replacement policies, prefetching policies, and hardware/software co-
design (for example, having the memory controller and operating system work 
together to manage nonvolatile memory). 

When HybridSim is simulating a memory-like integration method for 
nonvolatile memory, also known as a hybrid main memory, it interacts with 
the memory controller of the base MARSS system to capture addresses and 
bypass its simpler memory model. HybridSim then performs its caching 
functions and sends requests to DRAMSim2 or NVDIMM to implement 
requests. When the requests complete, HybridSim sends callbacks to the 
MARSS memory controller to indicate that a request is done and allow the 
processor to make progress at the appropriate clock cycle.

“HybridSim’s features enable the 

study of a variety of cache replacement 

policies, prefetching policies, and 

hardware/software co-design…”
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When HybridSim is simulating a disk-like integration method, it receives 
disk requests from MARSS and then later raises an I/O interrupt to indicate a 
request is complete. This works exactly like a modern solid state drive. We also 
provide an additional module called PCI_SSD to simulate the host interface for 
a modern SATA or PCIe SSD and to allow the user to configure various options 
including the number of lanes, half or full duplexing, an optional two-level 
interface (such as Intel Direct Media Interface to SATA), frequency, and protocol 
overhead. Our SSD simulation also ties in with our DRAMSim2 main memory 
simulation to perform direct memory access operations to DRAM before or 
after a disk request occurs. This process of disk simulation is also compatible 
with simulators for conventional hard disk drives like DiskSim[5] and HDD 
simulation could be achieved by simply modifying the PCI_SSD module.

Simulation Variability and Warm-Up
Full system simulation introduces some additional sources of complexity 
and nondeterminism that can lead to inaccurate results if they are not dealt 
with properly. In particular, just as in a real system, the OS introduces 
nondeterminism into the simulation as a result of timing variation (for 
example, interrupt arrival time) from run to run. This problem can be reduced 
by utilizing checkpoints of the system state, which MARSS enables using the 
QEMU snapshot mechanism. Another source of complexity is how to properly 
warm up the caches and other state (such as NVDIMM’s address mapping) 
for novel memory hierarchy architectures. We provide a generic mechanism 
for warm-up utilizing state files that can be saved during a warm-up period 
or generated by scripts and then restored at the beginning of the region of 
interest. An example of this warm-up process can be seen in Figure 4.

Baseline Configuration
The baseline configuration for the following experiments is a quad-core, out-of-
order system, with cache organization similar to the Intel® Core™ i7. The cache 
experiments below use this processor with a modified LLC to incorporate new 
memory technologies. The cache experiments also utilized the baseline DRAM 
main memory configuration. These baseline configurations are shown in Table 1.

Processor 4-core, issue width = 4, 2 GHz

L1I (private) 128 KB, 8-way, 64-B block size

L1D (private) 128 KB, 8-way, 64-B block size

L2 (private) 2 MB, 8-way, 64-B block size

L3 (shared) (if present) 8 MB, 16-way, 64-B block size

DRAM (if used as cache) 512 MB, 64-way, 4-KB page size

DRAM (if used as main memory) 1 GB, DDR3-1333

Nonvolatile main memory 8 GB, 4-KB page size, PCIe 3.0 16 Lane equivalent bandwidth

Table 1: Baseline Configuration
(Source: University of Maryland, 2013)

“Our SSD simulation also ties in 
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The DRAM examples also utilize the baseline processor and cache shown in 
Table 1. 

For the hybrid and SSD experiments, an 8-GB NVM is considered, with a 
512-MB DRAM cache in front of it. The nonvolatile DIMM organization 
has 1 channel, 64 dies per channel, 2 planes per die, 4,096 blocks per plane, 
64 pages per block, and each page is 4 KB. All transfers between the NVM 
and the DRAM occur at the page granularity. The timing parameters for 
the nonvolatile memory are based on MLC flash numbers.[6] The DRAM 
cache, also in the form of a DIMM, is organized as 1 channel, 1 rank per 
channel, 8 banks per rank, 8,192 rows per bank, and 1,024 columns per row. 
All transfers between the DRAM and the L2 cache occur at the L2 cache 
line granularity (64 B). DRAM timing parameters are based on a Micron 
datasheet.[7] All devices are 8 bits wide. 

For these experiments we use the GUPS benchmark and a random access 
micro-benchmark called mmap developed by our lab as well as selected 
benchmarks from the NAS benchmark suite, the SPEC benchmark suite, 
and the PARSEC benchmark suite.[8][9][10][11] These benchmarks were selected 
because they have a large working set size and are memory intensive.

Experiments
The following experiments demonstrate examples of the wide variety of studies 
that can be performed using the various modules of our environment. For the 
processor cache, we present energy and execution time data for last-level caches 
constructed using different memory technologies for a several benchmarks. To 
demonstrate the capabilities of the DRAM system portion of the simulator, 
we have included power and instructions-per-cycle data for similar sets of 
several benchmarks. Finally, we exhibit the features of the nonvolatile memory 
portions of our environment with data showing the effects of additional 
bandwidth, prefetching, working set size, and memory system traffic volume on 
system performance. Table 1 contains the baseline configuration details that are 
common to all of the experiments.

Caches
As a case study, we compare the LLC energy consumption and system 
performance when using SRAM, STT-RAM, and eDRAM. The LLC is a 
32-nm, 32-MB, 16-way write-back cache that is partitioned into 16 banks 
and uses 64-byte blocks. It is also pipelined and sequentially accessed.

Figure 5 illustrates the normalized energy breakdown of LLCs based on SRAM, 
STT-RAM, and eDRAM. We include the results for “regular” implementations 
(without power-optimization) and “low power” implementations. For instance, 
“regular” SRAM uses high performance transistors to implement the entire 
cache without power gating; “regular” STT-RAM uses storage-class STT-RAM 
technology, which has a long retention time but requires high write energy; 
and “regular” eDRAM uses the conventional periodic refresh method. On 

“…we compare the LLC energy 

consumption and system performance 

when using SRAM, STT-RAM,  
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the other hand, low power SRAM uses dead line prediction[18], power gating, 
and low leakage CMOS for the memory cells[19] to reduce leakage power; low 
power STT-RAM uses device optimization techniques to reduce write energy 
by sacrificing data-retention time[17]; and low power eDRAM uses dead line 
prediction to reduce the number of refresh operations. The impact of different 
memory technologies and implementations on system performance is shown in 
Figure 6.
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Figure 5: Normalized LLC energy breakdown with respect to various memory 
technologies. The results are normalized to regular SRAM (not shown). Note 
that regular SRAM dissipates 5x more power on average
(Source: University of Maryland, 2013)
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DRAM
As an interesting case study of a DRAM-based main memory system, we 
show the impact of refresh when device size is increased from small 1-Gb to 
future big 32-Gb chips. We simulated few SPEC2006 benchmarks in region 
of interest (RoI) for 1 billion instructions, assuming both with and without 
refresh enabled. Figure 7 presents the energy contribution separated for each 
type of operation, that is: read and write, activate and pre-charge, background 
and refresh operations. The Y-axis representing energy is normalized to the 
corresponding 1-Gb device values for each benchmark. The background and 
refresh energy portion increases for higher density devices, because of the 
greater number of peripheral circuitry and cells to be refreshed as device size 
increases. Since with DRAM density, the number rows also increases, this 
leads to more frequent refresh commands to be scheduled, and therefore leads 
to a degradation of the memory performance and latency. Figure 8 shows the 
percentage degradation of system performance (IPC) and the average latency 
increase due to refresh operations as the size of DRAM devices vary.
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Nonvolatile Memory
An important type of study for future memory systems is to understand how 
the system reacts to changing the working set size and volume of accesses. This 
is especially important in hybrid main memory systems because nonvolatile 
memory latencies can be significantly slower than traditional SRAM and 
DRAM. The Giga-Updates Per Second (GUPS) implementation from Sandia 
National Laboratories is an ideal benchmark to study such access patterns since 
it takes the working set size and number of accesses as parameters, unlike many 
other benchmarks that assume a constant pattern for memory accesses. GUPS 
creates a large table and then performs a series of updates on pseudorandom 
locations within that table. In this experiment we chose table sizes of 256 MB, 
512 MB and 1 GB. The DRAM cache in our test system was 512 MB. Our 
choice of table sizes allows us to see the effect on system performance when the 
table fits in the DRAM cache easily, when the table is approximately the same 
size as the DRAM cache to cause some swapping between the DRAM cache and 
the nonvolatile backing store, and when the table is two times the size of the 
DRAM cache to cause a significant number of DRAM cache misses. We also 
vary the number of updates from 1000 to 5000 in increments of 1000 to show 
the effect of different volumes of memory traffic on system performance. Finally, 
we included data for systems that incorporate the nonvolatile memory as both 
a hybrid memory and as a traditional SSD. From the results in Figure 9, we can 
see that for the SSD configuration as the table grows larger than the 512 MB 
DRAM and more accesses must go to the slower flash swap space, system 
performance suffers as would be expected. However, for the hybrid memory 
version, performance is not dependent on the table size. This is because Linux 
sees the 8 GB backing store as the main memory address space and allocates the 
entire table inside this space. Initially, this table is not present in the DRAM 
cache because it has been accessed yet. When the table size is twice the size of the 
DRAM, the performance of the Hybrid implementation becomes much better 
than the SSD implementation. This is because the SSD has more overhead for 
its accesses to the swap space than the Hybrid has for its accesses to the flash.
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Hybrid has for its accesses to the flash.”
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Optimizing the performance of the nonvolatile backing store is another 
important area of study for future memory systems. One area of potential 
performance gain is the interface of the nonvolatile devices used to create 
the backing store. To show the effect of improving the bandwidth provided 
by these interfaces, we utilize an in-house micro-benchmark called MMAP. 
MMAP works by first defining a large memory mapped file that is opened 
with the mmap() system call in Linux and then it accesses this file randomly. 
This benchmark is well suited to bandwidth studies because it is single 
threaded and therefore provides a clear picture of the effect of a minor change 
without much noise from other system threads. Additionally, since MMAP 
is designed to force misses to the DRAM cache as often as possible, which 
causes only one 64-byte access within each 4-KB page, it maximally stresses 
the host interface and device channels in the backing store. This is a worst-case 
scenario for the memory system because it generates a large volume of random 
accesses that are not fully utilized by the cache. This is the reason for the low 
observed IPC. For this experiment, we vary the clock rate of the interface of 
a device (the amount of time it takes to transmit 8 bits of data) from 0.05 ns 
to 10 ns. In addition, we also utilize a basic sequential prefetching algorithm 
to generate more accesses and place greater pressure on the devices. We vary 
the number of additional pages that are prefetched by our algorithm from 4 to 
8 to 16. As was the case in the previous example, we also include data for 
both a hybrid-style integration of the nonvolatile memory and an SSD-style 
integration. In Figure 10, we can see that both faster device interfaces and 
larger prefetching windows help to improve the system performance. We do 
not use the prefetching in HybridSim for the SSD version of the experiment 
because prefetching is performed by the operating system for disk accesses. It is 
also important to note that there is less nondeterminism in these results than in 
the previous example because this example is single threaded, which eliminates 
nondeterminism introduced by the OS scheduler when it has to schedule 
multiple threads. There is still some minor nondeterminism in this experiment’s 
results, but that is what one would expect from a real system.
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Figure 10: Performance of MMAP with varying bandwidth and prefetching window size
(Source: University of Maryland, 2013)

“Optimizing the performance of the 

nonvolatile backing store is another 

important area of study for future 

memory systems.”
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Conclusion
In this work, we have introduced a complete memory hierarchy simulation 
environment that is capable of accurately simulating the processor cache, 
the DRAM main memory system, and nonvolatile memory, whether it is 
implemented as a hybrid memory or as an SSD. We have shown the utility of 
this infrastructure for solving future memory hierarchy design problems by 
presenting example experiments that demonstrated multiple last-level cache 
cell technologies, DRAM refresh schemes, and nonvolatile memory integration 
methods.
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