
Bernoulli Numbers

Lukas Bulwahn and Manuel Eberl

May 26, 2024

Abstract

Bernoulli numbers were first discovered in the closed-form expan-
sion of the sum 1m + 2m + . . .+ nm for a fixed m and appear in many
other places. This entry provides three different definitions for them:
a recursive one, an explicit one, and one through their exponential
generating function.

In addition, we prove some basic facts, e. g. their relation to sums of
powers of integers and that all odd Bernoulli numbers except the first
are zero. We also prove the correctness of the Akiyama–Tanigawa algo-
rithm [2] for computing Bernoulli numbers with reasonable efficiency,
and we define the periodic Bernoulli polynomials (which appear e. g.
in the Euler–MacLaurin summation formula and the expansion of the
log-Gamma function) and prove their basic properties.

Contents
1 Bernoulli numbers 2

1.1 Preliminaries . 2
1.2 Bernoulli Numbers and Bernoulli Polynomials 2
1.3 Basic Observations on Bernoulli Polynomials 4
1.4 Sum of Powers with Bernoulli Polynomials 6
1.5 Instances for Square And Cubic Numbers 8

2 Periodic Bernoulli polynomials 8

3 Connection of Bernoulli numbers to formal power series 14
3.1 Preliminaries . 14
3.2 Generating function of Stirling numbers 20
3.3 Generating function of Bernoulli numbers 23
3.4 Von Staudt–Clausen Theorem 27
3.5 Denominators of Bernoulli numbers 31
3.6 Akiyama–Tanigawa algorithm 36
3.7 Efficient code . 40

4 Bernoulli numbers and the zeta function at positive integers 44

1

1 Bernoulli numbers
theory Bernoulli
imports Complex-Main
begin

1.1 Preliminaries
lemma power-numeral-reduce: a ^ numeral n = a ∗ a ^ pred-numeral n

by (simp only: numeral-eq-Suc power-Suc)

lemma fact-diff-Suc: n < Suc m =⇒ fact (Suc m − n) = of-nat (Suc m − n) ∗
fact (m − n)

by (subst fact-reduce) auto

lemma of-nat-binomial-Suc:
assumes k ≤ n
shows (of-nat (Suc n choose k) :: ′a :: field-char-0) =

of-nat (Suc n) / of-nat (Suc n − k) ∗ of-nat (n choose k)
using assms by (simp add: binomial-fact divide-simps fact-diff-Suc of-nat-diff

del: of-nat-Suc)

lemma integrals-eq:
assumes f 0 = g 0
assumes

∧
x. ((λx. f x − g x) has-real-derivative 0) (at x)

shows f x = g x
proof −

show f x = g x
proof (cases x 6= 0)

case True
from assms DERIV-const-ratio-const[OF this, of λx. f x − g x 0]
show ?thesis by auto

qed (simp add: assms)
qed

lemma sum-diff : ((
∑

i≤n::nat. f (i + 1) − f i):: ′a::field) = f (n + 1) − f 0
by (induct n) (auto simp add: field-simps)

lemma Rats-sum: (
∧

x. x ∈ A =⇒ f x ∈ �) =⇒ sum f A ∈ �
by (induction A rule: infinite-finite-induct) simp-all

1.2 Bernoulli Numbers and Bernoulli Polynomials
declare sum.cong [fundef-cong]

fun bernoulli :: nat ⇒ real
where

bernoulli 0 = (1 ::real)
| bernoulli (Suc n) = (−1 / (n + 2)) ∗ (

∑
k ≤ n. ((n + 2 choose k) ∗ bernoulli

k))

2

declare bernoulli.simps[simp del]

lemmas bernoulli-0 [simp] = bernoulli.simps(1)
lemmas bernoulli-Suc = bernoulli.simps(2)
lemma bernoulli-1 [simp]: bernoulli 1 = −1/2 by (simp add: bernoulli-Suc)
lemma bernoulli-Suc-0 [simp]: bernoulli (Suc 0) = −1/2 by (simp add: bernoulli-Suc)

The “normal” Bernoulli numbers are the negative Bernoulli numbers B−
n we

just defined (so called because B−
1 = −1

2). There is also another convention,
the positive Bernoulli numbers B+

n , which differ from the negative ones only
in that B+

1 = 1
2 . Both conventions have their justification, since a number

of theorems are easier to state with one than the other.
definition bernoulli ′ where

bernoulli ′ n = (if n = 1 then 1/2 else bernoulli n)

lemma bernoulli ′-0 [simp]: bernoulli ′ 0 = 1 by (simp add: bernoulli ′-def)

lemma bernoulli ′-1 [simp]: bernoulli ′ (Suc 0) = 1/2
by (simp add: bernoulli ′-def)

lemma bernoulli-conv-bernoulli ′: n 6= 1 =⇒ bernoulli n = bernoulli ′ n
by (simp add: bernoulli ′-def)

lemma bernoulli ′-conv-bernoulli: n 6= 1 =⇒ bernoulli ′ n = bernoulli n
by (simp add: bernoulli ′-def)

lemma bernoulli-conv-bernoulli ′-if :
n 6= 1 =⇒ bernoulli n = (if n = 1 then −1/2 else bernoulli ′ n)

by (simp add: bernoulli ′-def)

lemma bernoulli-in-Rats: bernoulli n ∈ �
proof (induction n rule: less-induct)

case (less n)
thus ?case

by (cases n) (auto simp: bernoulli-Suc intro!: Rats-sum Rats-divide)
qed

lemma bernoulli ′-in-Rats: bernoulli ′ n ∈ �
by (simp add: bernoulli ′-def bernoulli-in-Rats)

definition bernpoly :: nat ⇒ ′a ⇒ ′a :: real-algebra-1 where
bernpoly n = (λx.

∑
k ≤ n. of-nat (n choose k) ∗ of-real (bernoulli k) ∗ x ^ (n

− k))

lemma bernpoly-altdef :
bernpoly n = (λx.

∑
k≤n. of-nat (n choose k) ∗ of-real (bernoulli (n − k)) ∗ x

^ k)
proof

3

fix x :: ′a
have bernpoly n x = (

∑
k≤n. of-nat (n choose (n − k)) ∗

of-real (bernoulli (n − k)) ∗ x ^ (n − (n − k)))
unfolding bernpoly-def by (rule sum.reindex-bij-witness[of - λk. n − k λk. n

− k]) simp-all
also have . . . = (

∑
k≤n. of-nat (n choose k) ∗ of-real (bernoulli (n − k)) ∗ x ^

k)
by (intro sum.cong refl) (simp-all add: binomial-symmetric [symmetric])

finally show bernpoly n x =
qed

lemma bernoulli-Suc ′:
bernoulli (Suc n) = −1/(real n + 2) ∗ (

∑
k≤n. real (n + 2 choose (k + 2)) ∗

bernoulli (n − k))
proof −

have bernoulli (Suc n) = − 1 / (real n + 2) ∗ (
∑

k≤n. real (n + 2 choose k)
∗ bernoulli k)

unfolding bernoulli.simps ..
also have (

∑
k≤n. real (n + 2 choose k) ∗ bernoulli k) =

(
∑

k≤n. real (n + 2 choose (n − k)) ∗ bernoulli (n − k))
by (rule sum.reindex-bij-witness[of - λk. n − k λk. n − k]) simp-all

also have . . . = (
∑

k≤n. real (n + 2 choose (k + 2)) ∗ bernoulli (n − k))
by (intro sum.cong refl, subst binomial-symmetric) simp-all

finally show ?thesis .
qed

1.3 Basic Observations on Bernoulli Polynomials
lemma bernpoly-0 [simp]: bernpoly n 0 = (of-real (bernoulli n) :: ′a :: real-algebra-1)
proof (cases n)

case 0
then show bernpoly n 0 = of-real (bernoulli n)

unfolding bernpoly-def bernoulli.simps by auto
next

case (Suc n ′)
have (

∑
k≤n ′. of-nat (Suc n ′ choose k) ∗ of-real (bernoulli k) ∗ 0 ^ (Suc n ′ −

k)) = (0 :: ′a)
proof (intro sum.neutral ballI)

fix k assume k ∈ {..n ′}
thus of-nat (Suc n ′ choose k) ∗ of-real (bernoulli k) ∗ (0 :: ′a) ^ (Suc n ′ − k) =

0
by (cases Suc n ′ − k) auto

qed
with Suc show ?thesis

unfolding bernpoly-def by simp
qed

lemma continuous-on-bernpoly [continuous-intros]:
continuous-on A (bernpoly n :: ′a ⇒ ′a :: real-normed-algebra-1)

4

unfolding bernpoly-def by (auto intro!: continuous-intros)

lemma isCont-bernpoly [continuous-intros]:
isCont (bernpoly n :: ′a ⇒ ′a :: real-normed-algebra-1) x
unfolding bernpoly-def by (auto intro!: continuous-intros)

lemma has-field-derivative-bernpoly:
(bernpoly (Suc n) has-field-derivative

(of-nat (n + 1) ∗ bernpoly n x :: ′a :: real-normed-field)) (at x)
proof −

have (bernpoly (Suc n) has-field-derivative
(
∑

k≤n. of-nat (Suc n − k) ∗ x ^ (n − k) ∗ (of-nat (Suc n choose k) ∗
of-real (bernoulli k)))) (at x) (is (- has-field-derivative ?D) -)

unfolding bernpoly-def by (rule DERIV-cong) (fast intro!: derivative-intros,
simp)

also have ?D = of-nat (n + 1) ∗ bernpoly n x unfolding bernpoly-def
by (subst sum-distrib-left, intro sum.cong refl, subst of-nat-binomial-Suc) simp-all

ultimately show ?thesis by (auto simp del: of-nat-Suc One-nat-def)
qed

lemmas has-field-derivative-bernpoly ′ [derivative-intros] =
DERIV-chain ′[OF - has-field-derivative-bernpoly]

lemma sum-binomial-times-bernoulli:
(
∑

k≤n. ((Suc n) choose k) ∗ bernoulli k) = (if n = 0 then 1 else 0)
proof (cases n)

case (Suc m)
then show ?thesis

by (simp add: bernoulli-Suc)
(simp add: field-simps add-2-eq-Suc ′[symmetric] del: add-2-eq-Suc add-2-eq-Suc ′)

qed simp-all

lemma sum-binomial-times-bernoulli ′:
(
∑

k<n. real (n choose k) ∗ bernoulli k) = (if n = 1 then 1 else 0)
proof (cases n)

case (Suc m)
have (

∑
k<n. real (n choose k) ∗ bernoulli k) =

(
∑

k≤m. real (Suc m choose k) ∗ bernoulli k)
unfolding Suc lessThan-Suc-atMost ..

also have . . . = (if n = 1 then 1 else 0)
by (subst sum-binomial-times-bernoulli) (simp add: Suc)

finally show ?thesis .
qed simp-all

lemma binomial-unroll:
n > 0 =⇒ (n choose k) = (if k = 0 then 1 else (n − 1) choose (k − 1) + ((n
− 1) choose k))

by (auto simp add: gr0-conv-Suc)

5

lemma sum-unroll:
(
∑

k≤n::nat. f k) = (if n = 0 then f 0 else f n + (
∑

k≤n − 1 . f k))
by (cases n) (simp-all add: add-ac)

lemma bernoulli-unroll:
n > 0 =⇒ bernoulli n = − 1 / (real n + 1) ∗ (

∑
k≤n − 1 . real (n + 1 choose

k) ∗ bernoulli k)
by (cases n) (simp add: bernoulli-Suc)+

lemmas bernoulli-unroll-all = binomial-unroll bernoulli-unroll sum-unroll bern-
poly-def

lemma bernpoly-1-1 : bernpoly 1 1 = of-real (1/2)
proof −

have ∗: (1 :: ′a) = of-real 1 by simp
have bernpoly 1 (1 :: ′a) = 1 − of-real (1 / 2)

by (simp add: bernoulli-unroll-all)
also have . . . = of-real (1 − 1 / 2)

by (simp only: ∗ of-real-diff)
also have 1 − 1 / 2 = (1 / 2 :: real)

by simp
finally show ?thesis .

qed

1.4 Sum of Powers with Bernoulli Polynomials
lemma diff-bernpoly:

fixes x :: real
shows bernpoly n (x + 1) − bernpoly n x = of-nat n ∗ x ^ (n − 1)

proof (induct n arbitrary: x)
case 0
show ?case unfolding bernpoly-def by auto

next
case (Suc n)
have bernpoly (Suc n) (0 + 1) − bernpoly (Suc n) (0 :: real) =

(
∑

k≤n. of-real (real (Suc n choose k) ∗ bernoulli k))
unfolding bernpoly-0 unfolding bernpoly-def by simp

also have . . . = of-nat (Suc n) ∗ 0 ^ n
by (simp only: of-real-sum [symmetric] sum-binomial-times-bernoulli) simp

finally have const: bernpoly (Suc n) (0 + 1) − bernpoly (Suc n) 0 = . . .
by simp

have hyps ′: of-nat (Suc n) ∗ bernpoly n (x + 1) −
of-nat (Suc n) ∗ bernpoly n x =
of-nat n ∗ of-nat (Suc n) ∗ x ^ (n − Suc 0) for x :: real

unfolding right-diff-distrib[symmetric]
by (subst Suc) (simp-all add: algebra-simps)

have ((λx. bernpoly (Suc n) (x + 1) − bernpoly (Suc n) x − of-nat (Suc n) ∗ x
^ n)

6

has-field-derivative 0) (at x) for x :: real
by (rule derivative-eq-intros refl)+ (insert hyps ′[of x], simp add: algebra-simps)

from integrals-eq[OF const this] show ?case by simp
qed

lemma bernpoly-of-real: bernpoly n (of-real x) = of-real (bernpoly n x)
by (simp add: bernpoly-def)

lemma bernpoly-1 :
assumes n 6= 1
shows bernpoly n 1 = of-real (bernoulli n)

proof −
have bernpoly n 1 = bernoulli n
proof (cases n ≥ 2)

case False
with assms have n = 0 by auto
thus ?thesis by (simp add: bernpoly-def)

next
case True
with diff-bernpoly[of n 0] show ?thesis

by (simp add: power-0-left bernpoly-0)
qed
hence bernpoly n (of-real 1) = of-real (bernoulli n)

by (simp only: bernpoly-of-real)
thus ?thesis by simp

qed

lemma bernpoly-1 ′: bernpoly n 1 = of-real (bernoulli ′ n)
using bernpoly-1-1 [where ? ′a = ′a]
by (cases n = 1) (simp-all add: bernpoly-1 bernoulli ′-def)

theorem sum-of-powers:
(
∑

k≤n::nat. (real k) ^ m) = (bernpoly (Suc m) (n + 1) − bernpoly (Suc m) 0)
/ (m + 1)
proof −

from diff-bernpoly[of Suc m, simplified] have (m + (1 ::real)) ∗ (
∑

k≤n. (real k)
^ m) = (

∑
k≤n. bernpoly (Suc m) (real k + 1) − bernpoly (Suc m) (real k))

by (auto simp add: sum-distrib-left intro!: sum.cong)
also have ... = (

∑
k≤n. bernpoly (Suc m) (real (k + 1)) − bernpoly (Suc m)

(real k))
by (simp add: add-ac)

also have ... = bernpoly (Suc m) (n + 1) − bernpoly (Suc m) 0
by (simp only: sum-diff [where f=λk. bernpoly (Suc m) (real k)]) simp

finally show ?thesis by (auto simp add: field-simps intro!: eq-divide-imp)
qed

lemma sum-of-powers-nat-aux:
assumes real a = b / c real b ′ = b real c ′ = c
shows a = b ′ div c ′

7

proof (cases c = 0)
case False
with assms have real (a ∗ c ′) = real b ′ by (simp add: field-simps)
hence b ′ = a ∗ c ′ by (subst (asm) of-nat-eq-iff) simp
with False assms show ?thesis by simp

qed (insert assms, simp-all)

1.5 Instances for Square And Cubic Numbers
theorem sum-of-squares: real (

∑
k≤n::nat. k ^ 2) = real (2 ∗ n ^ 3 + 3 ∗ n ^

2 + n) / 6
by (simp only: of-nat-sum of-nat-power sum-of-powers)
(simp add: bernoulli-unroll-all field-simps power2-eq-square power-numeral-reduce)

corollary sum-of-squares-nat: (
∑

k≤n::nat. k ^ 2) = (2 ∗ n ^ 3 + 3 ∗ n ^ 2 +
n) div 6

by (rule sum-of-powers-nat-aux[OF sum-of-squares]) simp-all

theorem sum-of-cubes: real (
∑

k≤n::nat. k ^ 3) = real (n ^ 2 + n) ^ 2 / 4
by (simp only: of-nat-sum of-nat-power sum-of-powers)
(simp add: bernoulli-unroll-all field-simps power2-eq-square power-numeral-reduce)

corollary sum-of-cubes-nat: (
∑

k≤n::nat. k ^ 3) = (n ^ 2 + n) ^ 2 div 4
by (rule sum-of-powers-nat-aux[OF sum-of-cubes]) simp-all

end

2 Periodic Bernoulli polynomials
theory Periodic-Bernpoly
imports

Bernoulli
HOL−Library.Periodic-Fun

begin

Given the n-th Bernoulli polynomial Bn(x), one can define the periodic func-
tion Pn(x) = Bn(x−bxc), which shares many of the interesting properties of
the Bernoulli polynomials. In particular, all Pn(x) with n 6= 1 are continuous
and if n ≥ 3, they are continuously differentiable with P ′

n(x) = nPn−1(x)
just like the Bernoully polynomials themselves.
These functions occur e. g. in the Euler–MacLaurin summation formula and
Stirling’s approximation for the logarithmic Gamma function.
lemma frac-0 [simp]: frac 0 = 0 by (simp add: frac-def)

lemma frac-eq-id: x ∈ {0 ..<1} =⇒ frac x = x
by (simp add: frac-eq)

lemma periodic-continuous-onI :

8

fixes f :: real ⇒ real
assumes periodic:

∧
x. f (x + p) = f x p > 0

assumes cont: continuous-on {a..a+p} f
shows continuous-on UNIV f

unfolding continuous-on-def
proof safe

fix x :: real
interpret f : periodic-fun-simple f p by unfold-locales (rule periodic)

have continuous-on {a−p..a} (f ◦ (λx. x + p))
by (intro continuous-on-compose) (auto intro!: continuous-intros cont)

also have f ◦ (λx. x + p) = f by (rule ext) (simp add: f .periodic-simps)
finally have continuous-on ({a−p..a} ∪ {a..a+p}) f using cont

by (intro continuous-on-closed-Un) simp-all
also have {a−p..a} ∪ {a..a+p} = {a−p..a+p} by auto
finally have continuous-on {a−p..a+p} f .
hence cont: continuous-on {a−p<..<a+p} f by (rule continuous-on-subset) auto

define n :: int where n = d(a − x) / pe
have (a − x) / p ≤ n n < (a − x) / p + 1 unfolding n-def by linarith+
with ‹p > 0 › have x + n ∗ p ∈ {a−p<..<a + p} by (simp add: field-simps)
with cont have isCont f (x + n ∗ p)

by (subst (asm) continuous-on-eq-continuous-at) auto
hence ∗: f −x+n∗p→ f (x+n∗p) by (simp add: isCont-def f .periodic-simps)
have (λx. f (x + n∗p)) −x→ f (x+n∗p)

by (intro tendsto-compose[OF ∗] tendsto-intros)
thus f −x→ f x by (simp add: f .periodic-simps)

qed

lemma has-field-derivative-at-within-union:
assumes (f has-field-derivative D) (at x within A)

(f has-field-derivative D) (at x within B)
shows (f has-field-derivative D) (at x within (A ∪ B))

proof −
from assms have ((λy. (f y − f x) / (y − x)) −−−→ D) (sup (at x within A) (at

x within B))
unfolding has-field-derivative-iff by (rule filterlim-sup)

also have sup (at x within A) (at x within B) = at x within (A ∪ B)
using at-within-union ..

finally show ?thesis unfolding has-field-derivative-iff .
qed

lemma has-field-derivative-cong-ev ′:
assumes x = y

and ∗: eventually (λx. x ∈ s −→ f x = g x) (nhds x)
and u = v s = t f x = g y

shows (f has-field-derivative u) (at x within s) = (g has-field-derivative v) (at y
within t)
proof −

9

have (f has-field-derivative u) (at x within (s ∪ {x})) =
(g has-field-derivative v) (at y within (s ∪ {x})) using assms

by (intro has-field-derivative-cong-ev) (auto elim!: eventually-mono)
also from assms have at x within (s ∪ {x}) = at x within s by (simp add:

at-within-def)
also from assms have at y within (s ∪ {x}) = at y within t by (simp add:

at-within-def)
finally show ?thesis .

qed

interpretation frac: periodic-fun-simple ′ frac
by unfold-locales (simp add: frac-def)

lemma tendsto-frac-at-right-0 :
(frac −−−→ 0) (at-right (0 :: ′a :: {floor-ceiling,order-topology}))

proof −
have ∗: eventually (λx. x = frac x) (at-right (0 :: ′a))

by (intro eventually-at-rightI [of 0 1]) (simp-all add: frac-eq eq-commute[of -
frac x for x])

moreover have ∗∗: ((λx:: ′a. x) −−−→ 0) (at-right 0)
by (rule tendsto-ident-at)

ultimately show ?thesis by (blast intro: Lim-transform-eventually)
qed

lemma tendsto-frac-at-left-1 :
(frac −−−→ 1) (at-left (1 :: ′a :: {floor-ceiling,order-topology}))

proof −
have ∗: eventually (λx. x = frac x) (at-left (1 :: ′a))

by (intro eventually-at-leftI [of 0]) (simp-all add: frac-eq eq-commute[of - frac x
for x])

moreover have ∗∗: ((λx:: ′a. x) −−−→ 1) (at-left 1)
by (rule tendsto-ident-at)

ultimately show ?thesis by (blast intro: Lim-transform-eventually)
qed

lemma continuous-on-frac [THEN continuous-on-subset, continuous-intros]:
continuous-on {0 :: ′a::{floor-ceiling,order-topology}..<1} frac

proof (subst continuous-on-cong[OF refl])
fix x :: ′a assume x ∈ {0 ..<1}
thus frac x = x by (simp add: frac-eq)

qed (auto intro: continuous-intros)

lemma isCont-frac [continuous-intros]:
assumes (x :: ′a :: {floor-ceiling,order-topology,t2-space}) ∈ {0<..<1}
shows isCont frac x

proof −
have continuous-on {0<..<(1 :: ′a)} frac by (rule continuous-on-frac) auto
with assms show ?thesis

10

by (subst (asm) continuous-on-eq-continuous-at) auto
qed

lemma has-field-derivative-frac:
assumes (x::real) /∈ �
shows (frac has-field-derivative 1) (at x)

proof −
have ((λt. t − of-int bxc) has-field-derivative 1) (at x)

by (auto intro!: derivative-eq-intros)
also have ?this ←→ ?thesis

using eventually-floor-eq[OF filterlim-ident assms]
by (intro DERIV-cong-ev refl) (auto elim!: eventually-mono simp: frac-def)

finally show ?thesis .
qed

lemmas has-field-derivative-frac ′ [derivative-intros] =
DERIV-chain ′[OF - has-field-derivative-frac]

lemma continuous-on-compose-fracI :
fixes f :: real ⇒ real
assumes cont1 : continuous-on {0 ..1} f
assumes cont2 : f 0 = f 1
shows continuous-on UNIV (λx. f (frac x))

proof (rule periodic-continuous-onI)
have cont: continuous-on {0 ..1} (λx. f (frac x))

unfolding continuous-on-def
proof safe

fix x :: real assume x: x ∈ {0 ..1}
show ((λx. f (frac x)) −−−→ f (frac x)) (at x within {0 ..1})
proof (cases x = 1)

case False
with x have [simp]: frac x = x by (simp add: frac-eq)
from x False have eventually (λx. x ∈ {..<1}) (nhds x)

by (intro eventually-nhds-in-open) auto
hence eventually (λx. frac x = x) (at x within {0 ..1})

by (auto simp: eventually-at-filter frac-eq elim!: eventually-mono)
hence eventually (λx. f x = f (frac x)) (at x within {0 ..1})

by eventually-elim simp
moreover from cont1 x have (f −−−→ f (frac x)) (at x within {0 ..1})

by (simp add: continuous-on-def)
ultimately show ((λx. f (frac x)) −−−→ f (frac x)) (at x within {0 ..1})

by (blast intro: Lim-transform-eventually)
next

case True
from cont1 have ∗∗: (f −−−→ f 1) (at 1 within {0 ..1}) by (simp add:

continuous-on-def)
moreover have ∗: filterlim frac (at 1 within {0 ..1}) (at 1 within {0 ..1})
proof (subst filterlim-cong[OF refl refl])

show eventually (λx. frac x = x) (at 1 within {0 ..1})

11

by (auto simp: eventually-at-filter frac-eq)
qed (simp add: filterlim-ident)
ultimately have ((λx. f (frac x)) −−−→ f 1) (at 1 within {0 ..1})

by (rule filterlim-compose)
thus ?thesis by (simp add: True cont2 frac-def)

qed
qed
thus continuous-on {0 ..0+1} (λx. f (frac x)) by simp

qed (simp-all add: frac.periodic-simps)

definition pbernpoly :: nat ⇒ real ⇒ real where
pbernpoly n x = bernpoly n (frac x)

lemma pbernpoly-0 [simp]: pbernpoly n 0 = bernoulli n
by (simp add: pbernpoly-def)

lemma pbernpoly-eq-bernpoly: x ∈ {0 ..<1} =⇒ pbernpoly n x = bernpoly n x
by (simp add: pbernpoly-def frac-eq-id)

interpretation pbernpoly: periodic-fun-simple ′ pbernpoly n
by unfold-locales (simp add: pbernpoly-def frac.periodic-simps)

lemma continuous-on-pbernpoly [continuous-intros]:
assumes n 6= 1
shows continuous-on A (pbernpoly n)

proof (cases n = 0)
case True
thus ?thesis by (auto intro: continuous-intros simp: pbernpoly-def bernpoly-def)

next
case False
with assms have n: n ≥ 2 by auto
have continuous-on UNIV (pbernpoly n) unfolding pbernpoly-def [abs-def]

by (rule continuous-on-compose-fracI)
(insert n, auto intro!: continuous-intros simp: bernpoly-0 bernpoly-1)

thus ?thesis by (rule continuous-on-subset) simp-all
qed

lemma continuous-on-pbernpoly ′ [continuous-intros]:
assumes n 6= 1 continuous-on A f
shows continuous-on A (λx. pbernpoly n (f x))
using continuous-on-compose[OF assms(2) continuous-on-pbernpoly[OF assms(1)]]
by (simp add: o-def)

lemma isCont-pbernpoly [continuous-intros]: n 6= 1 =⇒ isCont (pbernpoly n) x
using continuous-on-pbernpoly[of n UNIV] by (simp add: continuous-on-eq-continuous-at)

12

lemma has-field-derivative-pbernpoly-Suc:
assumes n ≥ 2 ∨ x /∈ �
shows (pbernpoly (Suc n) has-field-derivative real (Suc n) ∗ pbernpoly n x) (at

x)
using assms
proof (cases x ∈ �)

assume x /∈ �
with assms show ?thesis unfolding pbernpoly-def

by (auto intro!: derivative-eq-intros simp del: of-nat-Suc)
next

case True
from True obtain k where k: x = of-int k by (auto elim: Ints-cases)
have (pbernpoly (Suc n) has-field-derivative real (Suc n) ∗ pbernpoly n x)

(at x within ({..<x} ∪ {x<..}))
proof (rule has-field-derivative-at-within-union)

have ((λx. bernpoly (Suc n) (x − of-int (k−1))) has-field-derivative
real (Suc n) ∗ bernpoly n (x − of-int (k−1))) (at-left x)

by (auto intro!: derivative-eq-intros)
also have ?this ←→ (pbernpoly (Suc n) has-field-derivative

real (Suc n) ∗ pbernpoly n x) (at-left x) using assms
proof (intro has-field-derivative-cong-ev ′ refl)
have ∀ F y in nhds x . y ∈ {x − 1<..<x + 1} by (intro eventually-nhds-in-open)

simp-all
thus ∀ F t in nhds x. t ∈ {..<x} −→ bernpoly (Suc n) (t − real-of-int (k −

1)) =
pbernpoly (Suc n) t

proof (elim eventually-mono, safe)
fix t assume t < x t ∈ {x−1<..<x+1}
hence frac t = t − real-of-int (k − 1) using k

by (subst frac-unique-iff) auto
thus bernpoly (Suc n) (t − real-of-int (k − 1)) = pbernpoly (Suc n) t

by (simp add: pbernpoly-def)
qed

qed (insert k, auto simp: pbernpoly-def bernpoly-1)
finally show (pbernpoly (Suc n) has-real-derivative

real (Suc n) ∗ pbernpoly n x) (at-left x) .
next

have ((λx. bernpoly (Suc n) (x − of-int k)) has-field-derivative
real (Suc n) ∗ bernpoly n (x − of-int k)) (at-right x)

by (auto intro!: derivative-eq-intros)
also have ?this ←→ (pbernpoly (Suc n) has-field-derivative

real (Suc n) ∗ pbernpoly n x) (at-right x) using assms
proof (intro has-field-derivative-cong-ev ′ refl)
have ∀ F y in nhds x . y ∈ {x − 1<..<x + 1} by (intro eventually-nhds-in-open)

simp-all
thus ∀ F t in nhds x. t ∈ {x<..} −→ bernpoly (Suc n) (t − real-of-int k) =

pbernpoly (Suc n) t
proof (elim eventually-mono, safe)

fix t assume t > x t ∈ {x−1<..<x+1}

13

hence frac t = t − real-of-int k using k
by (subst frac-unique-iff) auto

thus bernpoly (Suc n) (t − real-of-int k) = pbernpoly (Suc n) t
by (simp add: pbernpoly-def)

qed
qed (insert k, auto simp: pbernpoly-def bernpoly-1)
finally show (pbernpoly (Suc n) has-real-derivative

real (Suc n) ∗ pbernpoly n x) (at-right x) .
qed
also have {..<x} ∪ {x<..} = UNIV − {x} by auto
also have at x within . . . = at x by (simp add: at-within-def)
finally show ?thesis .

qed

lemmas has-field-derivative-pbernpoly-Suc ′ =
DERIV-chain ′[OF - has-field-derivative-pbernpoly-Suc]

lemma bounded-pbernpoly: obtains c where
∧

x. norm (pbernpoly n x) ≤ c
proof −

have ∃ x∈{0 ..1}. ∀ y∈{0 ..1}. norm (bernpoly n y :: real) ≤ norm (bernpoly n x
:: real)

by (intro continuous-attains-sup) (auto intro!: continuous-intros)
then obtain x where x:∧

y. y ∈ {0 ..1} =⇒ norm (bernpoly n y :: real) ≤ norm (bernpoly n x :: real)
by blast

have norm (pbernpoly n y) ≤ norm (bernpoly n x :: real) for y
unfolding pbernpoly-def using frac-lt-1 [of y] by (intro x) simp-all

thus ?thesis by (rule that)
qed

end

3 Connection of Bernoulli numbers to formal power
series

theory Bernoulli-FPS
imports

Bernoulli
HOL−Computational-Algebra.Computational-Algebra
HOL−Combinatorics.Stirling
HOL−Number-Theory.Number-Theory

begin

3.1 Preliminaries
context factorial-semiring
begin

14

lemma multiplicity-prime-prime:
prime p =⇒ prime q =⇒ multiplicity p q = (if p = q then 1 else 0)
by (simp add: prime-multiplicity-other)

lemma prime-prod-dvdI :
fixes f :: ′b ⇒ ′a
assumes finite A
assumes

∧
x. x ∈ A =⇒ prime (f x)

assumes
∧

x. x ∈ A =⇒ f x dvd y
assumes inj-on f A
shows prod f A dvd y

proof (cases y = 0)
case False
have nz: f x 6= 0 if x ∈ A for x

using assms(2)[of x] that by auto
have prod f A 6= 0

using assms nz by (subst prod-zero-iff) auto
thus ?thesis
proof (rule multiplicity-le-imp-dvd)

fix p :: ′a assume prime p
show multiplicity p (prod f A) ≤ multiplicity p y
proof (cases p dvd prod f A)

case True
then obtain x where x: x ∈ A and p dvd f x

using ‹prime p› assms by (subst (asm) prime-dvd-prod-iff) auto
have multiplicity p (prod f A) = (

∑
x∈A. multiplicity p (f x))

using assms ‹prime p› nz by (intro prime-elem-multiplicity-prod-distrib)
auto

also have . . . = (
∑

x∈{x}. 1 :: nat)
using assms ‹prime p› ‹p dvd f x› primes-dvd-imp-eq x
by (intro Groups-Big.sum.mono-neutral-cong-right)

(auto simp: multiplicity-prime-prime inj-on-def)
finally have multiplicity p (prod f A) = 1 by simp
also have 1 ≤ multiplicity p y

using assms nz ‹prime p› ‹y 6= 0 › x ‹p dvd f x›
by (intro multiplicity-geI) force+

finally show ?thesis .
qed (auto simp: not-dvd-imp-multiplicity-0)

qed
qed auto

end

context semiring-gcd
begin

lemma gcd-add-dvd-right1 : a dvd b =⇒ gcd a (b + c) = gcd a c

15

by (elim dvdE) (simp add: gcd-add-mult mult.commute[of a])

lemma gcd-add-dvd-right2 : a dvd c =⇒ gcd a (b + c) = gcd a b
using gcd-add-dvd-right1 [of a c b] by (simp add: add-ac)

lemma gcd-add-dvd-left1 : a dvd b =⇒ gcd (b + c) a = gcd c a
using gcd-add-dvd-right1 [of a b c] by (simp add: gcd.commute)

lemma gcd-add-dvd-left2 : a dvd c =⇒ gcd (b + c) a = gcd b a
using gcd-add-dvd-right2 [of a c b] by (simp add: gcd.commute)

end

context ring-gcd
begin

lemma gcd-diff-dvd-right1 : a dvd b =⇒ gcd a (b − c) = gcd a c
using gcd-add-dvd-right1 [of a b −c] by simp

lemma gcd-diff-dvd-right2 : a dvd c =⇒ gcd a (b − c) = gcd a b
using gcd-add-dvd-right2 [of a −c b] by simp

lemma gcd-diff-dvd-left1 : a dvd b =⇒ gcd (b − c) a = gcd c a
using gcd-add-dvd-left1 [of a b −c] by simp

lemma gcd-diff-dvd-left2 : a dvd c =⇒ gcd (b − c) a = gcd b a
using gcd-add-dvd-left2 [of a −c b] by simp

end

lemma cong-int: [a = b] (mod m) =⇒ [int a = int b] (mod m)
by (simp add: cong-int-iff)

lemma Rats-int-div-natE :
assumes (x :: ′a :: field-char-0) ∈ �
obtains m :: int and n :: nat where n > 0 and x = of-int m / of-nat n and

coprime m n
proof −

from assms obtain r where [simp]: x = of-rat r
by (auto simp: Rats-def)

obtain a b where [simp]: r = Rat.Fract a b and ab: b > 0 coprime a b
by (cases r)

from ab show ?thesis
by (intro that[of nat b a]) (auto simp: of-rat-rat)

qed

lemma sum-in-Ints: (
∧

x. x ∈ A =⇒ f x ∈ �) =⇒ sum f A ∈ �
by (induction A rule: infinite-finite-induct) auto

16

lemma Ints-real-of-nat-divide: b dvd a =⇒ real a / real b ∈ �
by auto

lemma product-dvd-fact:
assumes a > 1 b > 1 a = b −→ a > 2
shows (a ∗ b) dvd fact (a ∗ b − 1)

proof (cases a = b)
case False
have a ∗ 1 < a ∗ b and 1 ∗ b < a ∗ b

using assms by (intro mult-strict-left-mono mult-strict-right-mono; simp)+
hence ineqs: a ≤ a ∗ b − 1 b ≤ a ∗ b − 1

by linarith+
from False have a ∗ b =

∏
{a,b} by simp

also have . . . dvd
∏
{1 ..a ∗ b − 1}

using assms ineqs by (intro prod-dvd-prod-subset) auto
finally show ?thesis by (simp add: fact-prod)

next
case [simp]: True
from assms have a > 2 by auto
hence a ∗ 2 < a ∗ b using assms by (intro mult-strict-left-mono; simp)
hence ∗: 2 ∗ a ≤ a ∗ b − 1 by linarith
have a ∗ a dvd (2 ∗ a) ∗ a by simp
also have . . . =

∏
{2∗a, a} using assms by auto

also have . . . dvd
∏
{1 ..a ∗ b − 1}

using assms ∗ by (intro prod-dvd-prod-subset) auto
finally show ?thesis by (simp add: fact-prod)

qed

lemma composite-imp-factors-nat:
assumes m > 1 ¬prime (m::nat)
shows ∃n k. m = n ∗ k ∧ 1 < n ∧ n < m ∧ 1 < k ∧ k < m

proof −
from assms have ¬irreducible m

by (simp flip: prime-elem-iff-irreducible)
then obtain a where a: a dvd m ¬m dvd a a 6= 1

using assms by (auto simp: irreducible-altdef)
then obtain b where [simp]: m = a ∗ b

by auto
from a assms have a 6= 0 b 6= 0 b 6= 1

by (auto intro!: Nat.gr0I)
with a have a > 1 b > 1 by linarith+
moreover from this and a have a < m b < m

by auto
ultimately show ?thesis using ‹m = a ∗ b›

by blast
qed

This lemma describes what the numerator and denominator of a finite sub-

17

series of the harmonic series are when it is written as a single fraction.
lemma sum-inverses-conv-fraction:

fixes f :: ′a ⇒ ′b :: field
assumes

∧
x. x ∈ A =⇒ f x 6= 0 finite A

shows (
∑

x∈A. 1 / f x) = (
∑

x∈A.
∏

y∈A−{x}. f y) / (
∏

x∈A. f x)
proof −

have (
∑

x∈A. (
∏

y∈A. f y) / f x) = (
∑

x∈A.
∏

y∈A−{x}. f y)
using prod.remove[of A - f] assms by (intro sum.cong refl) (auto simp:

field-simps)
thus ?thesis

using assms by (simp add: field-simps sum-distrib-right sum-distrib-left)
qed

If all terms in the subseries are primes, this fraction is automatically on
lowest terms.
lemma sum-prime-inverses-fraction-coprime:

fixes f :: ′a ⇒ nat
assumes finite A and primes:

∧
x. x ∈ A =⇒ prime (f x) and inj: inj-on f A

defines a ≡ (
∑

x∈A.
∏

y∈A−{x}. f y)
shows coprime a (

∏
x∈A. f x)

proof (intro prod-coprime-right)
fix x assume x: x ∈ A
have a = (

∏
y∈A−{x}. f y) + (

∑
y∈A−{x}.

∏
z∈A−{y}. f z)

unfolding a-def using ‹finite A› and x by (rule sum.remove)
also have gcd . . . (f x) = gcd (

∏
y∈A−{x}. f y) (f x)

using ‹finite A› and x by (intro gcd-add-dvd-left2 dvd-sum dvd-prodI) auto
also from x primes inj have coprime (

∏
y∈A−{x}. f y) (f x)

by (intro prod-coprime-left) (auto intro!: primes-coprime simp: inj-on-def)
hence gcd (

∏
y∈A−{x}. f y) (f x) = 1

by simp
finally show coprime a (f x)

by (simp only: coprime-iff-gcd-eq-1)
qed

In the following, we will prove the correctness of the Akiyama–Tanigawa
algorithm [2], which is a simple algorithm for computing Bernoulli numbers
that was discovered by Akiyama and Tanigawa [1] essentially as a by-product
of their studies of the Euler–Zagier multiple zeta function. The algorithm
is based on a number triangle (similar to Pascal’s triangle) in which the
Bernoulli numbers are the leftmost diagonal.
While the algorithm itself is quite simple, proving it correct is not entirely
trivial. We will use generating functions and Stirling numbers, mostly fol-
lowing the presentation by Kaneko [2].

The following operator is a variant of the fps-XD operator where the multi-
plication is not with fps-X, but with an arbitrary formal power series. It is
not quite clear if this operator has a less ad-hoc meaning than the fashion

18

in which we use it; it is, however, very useful for proving the relationship
between Stirling numbers and Bernoulli numbers.
context

includes fps-notation
begin

definition fps-XD ′ where fps-XD ′ a = (λb. a ∗ fps-deriv b)

lemma fps-XD ′-0 [simp]: fps-XD ′ a 0 = 0 by (simp add: fps-XD ′-def)
lemma fps-XD ′-1 [simp]: fps-XD ′ a 1 = 0 by (simp add: fps-XD ′-def)
lemma fps-XD ′-fps-const [simp]: fps-XD ′ a (fps-const b) = 0 by (simp add: fps-XD ′-def)
lemma fps-XD ′-fps-of-nat [simp]: fps-XD ′ a (of-nat b) = 0 by (simp add: fps-XD ′-def)
lemma fps-XD ′-fps-of-int [simp]: fps-XD ′ a (of-int b) = 0 by (simp add: fps-XD ′-def)
lemma fps-XD ′-fps-numeral [simp]: fps-XD ′ a (numeral b) = 0 by (simp add:
fps-XD ′-def)

lemma fps-XD ′-add [simp]: fps-XD ′ a (b + c :: ′a :: comm-ring-1 fps) = fps-XD ′

a b + fps-XD ′ a c
by (simp add: fps-XD ′-def algebra-simps)

lemma fps-XD ′-minus [simp]: fps-XD ′ a (b − c :: ′a :: comm-ring-1 fps) = fps-XD ′

a b − fps-XD ′ a c
by (simp add: fps-XD ′-def algebra-simps)

lemma fps-XD ′-prod: fps-XD ′ a (b ∗ c :: ′a :: comm-ring-1 fps) = fps-XD ′ a b ∗
c + b ∗ fps-XD ′ a c

by (simp add: fps-XD ′-def algebra-simps)

lemma fps-XD ′-power : fps-XD ′ a (b ^ n :: ′a :: idom fps) = of-nat n ∗ b ^ (n −
1) ∗ fps-XD ′ a b
proof (cases n = 0)

case False
have b ∗ fps-XD ′ a (b ^ n) = of-nat n ∗ b ^ n ∗ fps-XD ′ a b

by (induction n) (simp-all add: fps-XD ′-prod algebra-simps)
also have . . . = b ∗ (of-nat n ∗ b ^ (n − 1) ∗ fps-XD ′ a b)

by (cases n) (simp-all add: algebra-simps)
finally show ?thesis using False

by (subst (asm) mult-cancel-left) (auto simp: power-0-left)
qed simp-all

lemma fps-XD ′-power-Suc: fps-XD ′ a (b ^ Suc n :: ′a :: idom fps) = of-nat (Suc
n) ∗ b ^ n ∗ fps-XD ′ a b

by (subst fps-XD ′-power) simp-all

lemma fps-XD ′-sum: fps-XD ′ a (sum f A) = sum (λx. fps-XD ′ (a :: ′a :: comm-ring-1
fps) (f x)) A

by (induction A rule: infinite-finite-induct) simp-all

lemma fps-XD ′-funpow-affine:

19

fixes G H :: real fps
assumes [simp]: fps-deriv G = 1
defines S ≡ λn i. fps-const (real (Stirling n i))
shows (fps-XD ′ G ^^ n) H =

(
∑

m≤n. S n m ∗ G ^ m ∗ (fps-deriv ^^ m) H)
proof (induction n arbitrary: H)

case 0
thus ?case by (simp add: S-def)

next
case (Suc n H)
have (

∑
m≤Suc n. S (Suc n) m ∗ G ^ m ∗ (fps-deriv ^^ m) H) =

(
∑

i≤n. of-nat (Suc i) ∗ S n (Suc i) ∗ G ^ Suc i ∗ (fps-deriv ^^ Suc i) H)
+

(
∑

i≤n. S n i ∗ G ^ Suc i ∗ (fps-deriv ^^ Suc i) H)
(is - = sum (λi. ?f (Suc i)) . . . + ?S2)

by (subst sum.atMost-Suc-shift) (simp-all add: sum.distrib algebra-simps fps-of-nat
S-def

fps-const-add [symmetric] fps-const-mult [symmetric] del: fps-const-add
fps-const-mult)

also have sum (λi. ?f (Suc i)) {..n} = sum (λi. ?f (Suc i)) {..<n}
by (intro sum.mono-neutral-right) (auto simp: S-def)

also have . . . = ?f 0 + . . . by simp
also have . . . = sum ?f {..n} by (subst sum.atMost-shift [symmetric]) simp-all
also have . . . + ?S2 = (

∑
x≤n. fps-XD ′ G (S n x ∗ G ^ x ∗ (fps-deriv ^^ x)

H))
unfolding sum.distrib [symmetric]

proof (rule sum.cong, goal-cases)
case (2 i)
thus ?case unfolding fps-XD ′-prod fps-XD ′-power

by (cases i) (auto simp: fps-XD ′-prod fps-XD ′-power-Suc algebra-simps
of-nat-diff S-def fps-XD ′-def)

qed simp-all
also have . . . = (fps-XD ′ G ^^ Suc n) H by (simp add: Suc.IH fps-XD ′-sum)
finally show ?case ..

qed

3.2 Generating function of Stirling numbers
lemma Stirling-n-0 : Stirling n 0 = (if n = 0 then 1 else 0)

by (cases n) simp-all

The generating function of Stirling numbers w. r. t. their first argument:
∞∑
n=0

{
n

m

}
xn

n!
=

(ex − 1)m

m!

definition Stirling-fps :: nat ⇒ real fps where
Stirling-fps m = fps-const (1 / fact m) ∗ (fps-exp 1 − 1) ^ m

20

theorem sum-Stirling-binomial:
Stirling (Suc n) (Suc m) = (

∑
i = 0 ..n. Stirling i m ∗ (n choose i))

proof −
have real (Stirling (Suc n) (Suc m)) = real (

∑
i = 0 ..n. Stirling i m ∗ (n choose

i))
proof (induction n arbitrary: m)

case (Suc n m)
have real (

∑
i = 0 ..Suc n. Stirling i m ∗ (Suc n choose i)) =

real (
∑

i = 0 ..n. Stirling (Suc i) m ∗ (Suc n choose Suc i)) + real
(Stirling 0 m)

by (subst sum.atLeast0-atMost-Suc-shift) simp-all
also have real (

∑
i = 0 ..n. Stirling (Suc i) m ∗ (Suc n choose Suc i)) =

real (
∑

i = 0 ..n. (n choose i) ∗ Stirling (Suc i) m) +
real (

∑
i = 0 ..n. (n choose Suc i) ∗ Stirling (Suc i) m)

by (simp add: algebra-simps sum.distrib)
also have (

∑
i = 0 ..n. (n choose Suc i) ∗ Stirling (Suc i) m) =

(
∑

i = Suc 0 ..Suc n. (n choose i) ∗ Stirling i m)
by (subst sum.shift-bounds-cl-Suc-ivl) simp-all

also have . . . = (
∑

i = Suc 0 ..n. (n choose i) ∗ Stirling i m)
by (intro sum.mono-neutral-right) auto

also have . . . = real (
∑

i = 0 ..n. Stirling i m ∗ (n choose i)) − real (Stirling
0 m)

by (simp add: sum.atLeast-Suc-atMost mult-ac)
also have real (

∑
i = 0 ..n. Stirling i m ∗ (n choose i)) = real (Stirling (Suc

n) (Suc m))
by (rule Suc.IH [symmetric])

also have real (
∑

i = 0 ..n. (n choose i) ∗ Stirling (Suc i) m) =
real m ∗ real (Stirling (Suc n) (Suc m)) + real (Stirling (Suc n) m)

by (cases m; (simp only: Suc.IH , simp add: algebra-simps sum.distrib
sum-distrib-left sum-distrib-right))

also have . . . + (real (Stirling (Suc n) (Suc m)) − real (Stirling 0 m)) + real
(Stirling 0 m) =

real (Suc m ∗ Stirling (Suc n) (Suc m) + Stirling (Suc n) m)
by (simp add: algebra-simps del: Stirling.simps)

also have Suc m ∗ Stirling (Suc n) (Suc m) + Stirling (Suc n) m =
Stirling (Suc (Suc n)) (Suc m)

by (rule Stirling.simps(4) [symmetric])
finally show ?case ..

qed simp-all
thus ?thesis by (subst (asm) of-nat-eq-iff)

qed

lemma Stirling-fps-aux: (fps-exp 1 − 1) ^ m $ n ∗ fact n = fact m ∗ real (Stirling
n m)
proof (induction m arbitrary: n)

case 0
thus ?case by (simp add: Stirling-n-0)

next
case (Suc m n)

21

show ?case
proof (cases n)

case 0
thus ?thesis by simp

next
case (Suc n ′)
hence (fps-exp 1 − 1 :: real fps) ^ Suc m $ n ∗ fact n =

fps-deriv ((fps-exp 1 − 1) ^ Suc m) $ n ′ ∗ fact n ′

by (simp-all add: algebra-simps del: power-Suc)
also have fps-deriv ((fps-exp 1 − 1 :: real fps) ^ Suc m) =

fps-const (real (Suc m)) ∗ ((fps-exp 1 − 1) ^ m ∗ fps-exp 1)
by (subst fps-deriv-power) simp-all

also have . . . $ n ′ ∗ fact n ′ =
real (Suc m) ∗ ((

∑
i = 0 ..n ′. (fps-exp 1 − 1) ^ m $ i / fact (n ′ − i)) ∗ fact

n ′)
unfolding fps-mult-left-const-nth
by (simp add: fps-mult-nth Suc.IH sum-distrib-right del: of-nat-Suc)

also have (
∑

i = 0 ..n ′. (fps-exp 1 − 1 :: real fps) ^ m $ i / fact (n ′ − i)) ∗
fact n ′ =

(
∑

i = 0 ..n ′. (fps-exp 1 − 1) ^ m $ i ∗ fact n ′ / fact (n ′ − i))
by (subst sum-distrib-right, rule sum.cong) (simp-all add: divide-simps)

also have . . . = (
∑

i = 0 ..n ′. (fps-exp 1 − 1) ^ m $ i ∗ fact i ∗ (n ′ choose i))
by (intro sum.cong refl) (simp-all add: binomial-fact)

also have . . . = (
∑

i = 0 ..n ′. fact m ∗ real (Stirling i m) ∗ real (n ′ choose i))
by (simp only: Suc.IH)

also have real (Suc m) ∗ . . . = fact (Suc m) ∗
(
∑

i = 0 ..n ′. real (Stirling i m) ∗ real (n ′ choose i)) (is - = - ∗ ?S)
by (simp add: sum-distrib-left sum-distrib-right mult-ac del: of-nat-Suc)

also have ?S = Stirling (Suc n ′) (Suc m)
by (subst sum-Stirling-binomial) simp

also have Suc n ′ = n by (simp add: Suc)
finally show ?thesis .

qed
qed

lemma Stirling-fps-nth: Stirling-fps m $ n = Stirling n m / fact n
unfolding Stirling-fps-def using Stirling-fps-aux[of m n] by (simp add: field-simps)

theorem Stirling-fps-altdef : Stirling-fps m = Abs-fps (λn. Stirling n m / fact n)
by (simp add: fps-eq-iff Stirling-fps-nth)

theorem Stirling-closed-form:
real (Stirling n k) = (

∑
j≤k. (−1)^(k − j) ∗ real (k choose j) ∗ real j ^ n) / fact

k
proof −

have (fps-exp 1 − 1 :: real fps) = (fps-exp 1 + (−1)) by simp
also have . . . ^ k = (

∑
j≤k. of-nat (k choose j) ∗ fps-exp 1 ^ j ∗ (− 1) ^ (k −

j))
unfolding binomial-ring ..

22

also have . . . = (
∑

j≤k. fps-const ((−1) ^ (k − j) ∗ real (k choose j)) ∗ fps-exp
(real j))

by (simp add: fps-const-mult [symmetric] fps-const-power [symmetric]
fps-const-neg [symmetric] mult-ac fps-of-nat fps-exp-power-mult

del: fps-const-mult fps-const-power fps-const-neg)
also have . . . $ n = (

∑
j≤k. (− 1) ^ (k − j) ∗ real (k choose j) ∗ real j ^ n) /

fact n
by (simp add: fps-sum-nth sum-divide-distrib)

also have . . . ∗ fact n = (
∑

j≤k. (− 1) ^ (k − j) ∗ real (k choose j) ∗ real j ^
n)

by simp
also note Stirling-fps-aux[of k n]
finally show ?thesis by (simp add: atLeast0AtMost field-simps)

qed

3.3 Generating function of Bernoulli numbers

We will show that the negative and positive Bernoulli numbers are the co-
efficients of the exponential generating function x

ex−1 (resp. x
1−e−x), i. e.

∞∑
n=0

B−
n

xn

n!
=

x

ex − 1

∞∑
n=0

B+
n

xn

n!
=

x

1− e−1

definition bernoulli-fps :: ′a :: real-normed-field fps
where bernoulli-fps = fps-X / (fps-exp 1 − 1)

definition bernoulli ′-fps :: ′a :: real-normed-field fps
where bernoulli ′-fps = fps-X / (1 − (fps-exp (−1)))

lemma bernoulli-fps-altdef : bernoulli-fps = Abs-fps (λn. of-real (bernoulli n) / fact
n :: ′a)

and bernoulli-fps-aux: bernoulli-fps ∗ (fps-exp 1 − 1 :: ′a :: real-normed-field
fps) = fps-X
proof −

have ∗: Abs-fps (λn. of-real (bernoulli n) / fact n :: ′a) ∗ (fps-exp 1 − 1) =
fps-X

proof (rule fps-ext)
fix n
have (Abs-fps (λn. of-real (bernoulli n) / fact n :: ′a) ∗ (fps-exp 1 − 1)) $ n

=
(
∑

i = 0 ..n. of-real (bernoulli i) ∗ (1 / fact (n − i) − (if n = i then 1
else 0)) / fact i)

by (auto simp: fps-mult-nth divide-simps split: if-splits intro!: sum.cong)
also have . . . = (

∑
i = 0 ..n. of-real (bernoulli i) / (fact i ∗ fact (n − i)) −

(if n = i then of-real (bernoulli i) / fact i else 0))
by (intro sum.cong) (simp-all add: field-simps)

23

also have . . . = (
∑

i = 0 ..n. of-real (bernoulli i) / (fact i ∗ fact (n − i))) −
of-real (bernoulli n) / fact n

unfolding sum-subtractf by (subst sum.delta ′) simp-all
also have . . . = (

∑
i<n. of-real (bernoulli i) / (fact i ∗ fact (n − i)))

by (cases n) (simp-all add: atLeast0AtMost lessThan-Suc-atMost [symmetric])
also have . . . = (

∑
i<n. fact n ∗ (of-real (bernoulli i) / (fact i ∗ fact (n −

i)))) / fact n
by (subst sum-distrib-left [symmetric]) simp-all

also have (
∑

i<n. fact n ∗ (of-real (bernoulli i) / (fact i ∗ fact (n − i)))) =
(
∑

i<n. of-nat (n choose i) ∗ of-real (bernoulli i) :: ′a)
by (intro sum.cong) (simp-all add: binomial-fact)

also have . . . = of-real (
∑

i<n. (n choose i) ∗ bernoulli i)
by simp

also have . . . / fact n = fps-X $ n by (subst sum-binomial-times-bernoulli ′)
simp-all

finally show (Abs-fps (λn. of-real (bernoulli n) / fact n :: ′a) ∗ (fps-exp 1 −
1)) $ n =

fps-X $ n .
qed
moreover show bernoulli-fps = Abs-fps (λn. of-real (bernoulli n) / fact n :: ′a)

unfolding bernoulli-fps-def by (subst ∗ [symmetric]) simp-all
ultimately show bernoulli-fps ∗ (fps-exp 1 − 1 :: ′a fps) = fps-X by simp

qed

theorem fps-nth-bernoulli-fps [simp]:
fps-nth bernoulli-fps n = of-real (bernoulli n) / fact n
by (simp add: bernoulli-fps-altdef)

lemma bernoulli ′-fps-aux:
(fps-exp 1 − 1) ∗ Abs-fps (λn. of-real (bernoulli ′ n) / fact n :: ′a) = fps-exp 1

∗ fps-X
and bernoulli ′-fps-aux ′:
(1 − fps-exp (−1)) ∗ Abs-fps (λn. of-real (bernoulli ′ n) / fact n :: ′a) = fps-X

and bernoulli ′-fps-altdef :
bernoulli ′-fps = Abs-fps (λn. of-real (bernoulli ′ n) / fact n :: ′a :: real-normed-field)

proof −
have Abs-fps (λn. of-real (bernoulli ′ n) / fact n :: ′a) = bernoulli-fps + fps-X

by (simp add: fps-eq-iff bernoulli ′-def)
also have (fps-exp 1 − 1) ∗ . . . = fps-exp 1 ∗ fps-X

using bernoulli-fps-aux by (simp add: algebra-simps)
finally show (fps-exp 1 − 1) ∗ Abs-fps (λn. of-real (bernoulli ′ n) / fact n :: ′a)

=
fps-exp 1 ∗ fps-X .

also have (fps-exp 1 − 1) = fps-exp 1 ∗ (1 − fps-exp (−1 :: ′a))
by (simp add: algebra-simps fps-exp-add-mult [symmetric])

also note mult.assoc
finally show ∗: (1 − fps-exp (−1)) ∗ Abs-fps (λn. of-real (bernoulli ′ n) / fact n

:: ′a) = fps-X
by (subst (asm) mult-left-cancel) simp-all

24

show bernoulli ′-fps = Abs-fps (λn. of-real (bernoulli ′ n) / fact n :: ′a)
unfolding bernoulli ′-fps-def by (subst ∗ [symmetric]) simp-all

qed

theorem fps-nth-bernoulli ′-fps [simp]:
fps-nth bernoulli ′-fps n = of-real (bernoulli ′ n) / fact n
by (simp add: bernoulli ′-fps-altdef)

lemma bernoulli-fps-conv-bernoulli ′-fps: bernoulli-fps = bernoulli ′-fps − fps-X
by (simp add: fps-eq-iff bernoulli ′-def)

lemma bernoulli ′-fps-conv-bernoulli-fps: bernoulli ′-fps = bernoulli-fps + fps-X
by (simp add: fps-eq-iff bernoulli ′-def)

theorem bernoulli-odd-eq-0 :
assumes n 6= 1 and odd n
shows bernoulli n = 0

proof −
from bernoulli-fps-aux have 2 ∗ bernoulli-fps ∗ (fps-exp 1 − 1) = 2 ∗ fps-X by

simp
hence (2 ∗ bernoulli-fps + fps-X) ∗ (fps-exp 1 − 1) = fps-X ∗ (fps-exp 1 + 1)

by (simp add: algebra-simps)
also have fps-exp 1 − 1 = fps-exp (1/2) ∗ (fps-exp (1/2) − fps-exp (−1/2 ::

real))
by (simp add: algebra-simps fps-exp-add-mult [symmetric])

also have fps-exp 1 + 1 = fps-exp (1/2) ∗ (fps-exp (1/2) + fps-exp (−1/2 ::
real))

by (simp add: algebra-simps fps-exp-add-mult [symmetric])
finally have fps-exp (1/2) ∗ ((2 ∗ bernoulli-fps + fps-X) ∗ (fps-exp (1/2) −

fps-exp (− 1/2))) =
fps-exp (1/2) ∗ (fps-X ∗ (fps-exp (1/2) + fps-exp (−1/2 :: real)))

by (simp add: algebra-simps)
hence ∗: (2 ∗ bernoulli-fps + fps-X) ∗ (fps-exp (1/2) − fps-exp (− 1/2)) =

fps-X ∗ (fps-exp (1/2) + fps-exp (−1/2 :: real))
(is ?lhs = ?rhs) by (subst (asm) mult-cancel-left) simp-all

have fps-compose ?lhs (−fps-X) = fps-compose ?rhs (−fps-X) by (simp only: ∗)
also have fps-compose ?lhs (−fps-X) =

(−2 ∗ (bernoulli-fps oo − fps-X) + fps-X) ∗ (fps-exp ((1/2)) − fps-exp
(−1/2))

by (simp add: fps-compose-mult-distrib fps-compose-add-distrib
fps-compose-sub-distrib algebra-simps)

also have fps-compose ?rhs (−fps-X) = −?rhs
by (simp add: fps-compose-mult-distrib fps-compose-add-distrib fps-compose-sub-distrib)

also note ∗ [symmetric]
also have − ((2 ∗ bernoulli-fps + fps-X) ∗ (fps-exp (1/2) − fps-exp (−1/2)))

=
((−2 ∗ bernoulli-fps − fps-X) ∗ (fps-exp (1/2) − fps-exp (−1/2)))

by (simp add: algebra-simps)

25

finally have 2 ∗ (bernoulli-fps oo − fps-X) = 2 ∗ (bernoulli-fps + fps-X :: real
fps)

by (subst (asm) mult-cancel-right) (simp add: algebra-simps)
hence ∗∗: bernoulli-fps oo −fps-X = (bernoulli-fps + fps-X :: real fps)

by (subst (asm) mult-cancel-left) simp

from assms have (bernoulli-fps oo −fps-X) $ n = bernoulli n / fact n
by (subst ∗∗) simp

also have −fps-X = fps-const (−1 :: real) ∗ fps-X
by (simp only: fps-const-neg [symmetric] fps-const-1-eq-1) simp

also from assms have (bernoulli-fps oo . . .) $ n = − bernoulli n / fact n
by (subst fps-compose-linear) simp

finally show ?thesis by simp
qed

lemma bernoulli ′-odd-eq-0 : n 6= 1 =⇒ odd n =⇒ bernoulli ′ n = 0
by (simp add: bernoulli ′-def bernoulli-odd-eq-0)

The following simplification rule takes care of rewriting bernoulli n to 0 for
any odd numeric constant greater than 1:
lemma bernoulli-odd-numeral-eq-0 [simp]: bernoulli (numeral (Num.Bit1 n)) = 0

by (rule bernoulli-odd-eq-0 [OF - odd-numeral]) auto

lemma bernoulli ′-odd-numeral-eq-0 [simp]: bernoulli ′ (numeral (Num.Bit1 n)) =
0

by (simp add: bernoulli ′-def)

The following explicit formula for Bernoulli numbers can also derived reason-
ably easily using the generating functions of Stirling numbers and Bernoulli
numbers. The proof follows an answer by Marko Riedel on the Mathematics
StackExchange [3].
theorem bernoulli-altdef :

bernoulli n = (
∑

m≤n.
∑

k≤m. (−1)^k ∗ real (m choose k) ∗ real k^n / real
(Suc m))
proof −

have (
∑

m≤n.
∑

k≤m. (−1)^k ∗ real (m choose k) ∗ real k^n / real (Suc m))
=

(
∑

m≤n. (
∑

k≤m. (−1)^k ∗ real (m choose k) ∗ real k^n) / real (Suc m))
by (subst sum-divide-distrib) simp-all

also have . . . = fact n ∗ (
∑

m≤n. (− 1) ^ m / real (Suc m) ∗ (fps-exp 1 −
1) ^ m $ n)

proof (subst sum-distrib-left, intro sum.cong refl)
fix m assume m: m ∈ {..n}
have (

∑
k≤m. (−1)^k ∗ real (m choose k) ∗ real k^n) =

(−1)^m ∗ (
∑

k≤m. (−1)^(m − k) ∗ real (m choose k) ∗ real k^n)
by (subst sum-distrib-left, intro sum.cong refl) (auto simp: minus-one-power-iff)
also have . . . = (−1) ^ m ∗ (real (Stirling n m) ∗ fact m)

by (subst Stirling-closed-form) simp-all
also have real (Stirling n m) = Stirling-fps m $ n ∗ fact n

26

by (subst Stirling-fps-nth) simp-all
also have . . . ∗ fact m = (fps-exp 1 − 1) ^ m $ n ∗ fact n by (simp add:

Stirling-fps-def)
finally show (

∑
k≤m. (−1)^k ∗ real (m choose k) ∗ real k^n) / real (Suc m)

=
fact n ∗ ((− 1) ^ m / real (Suc m) ∗ (fps-exp 1 − 1) ^ m $ n)

by simp
qed
also have (

∑
m≤n. (− 1) ^ m / real (Suc m) ∗ (fps-exp 1 − 1) ^ m $ n) =

fps-compose (Abs-fps (λm. (−1) ^ m / real (Suc m))) (fps-exp 1 −
1) $ n

by (simp add: fps-compose-def atLeast0AtMost fps-sum-nth)
also have fps-ln 1 = fps-X ∗ Abs-fps (λm. (−1) ^ m / real (Suc m))

unfolding fps-ln-def by (auto simp: fps-eq-iff)
hence Abs-fps (λm. (−1) ^ m / real (Suc m)) = fps-ln 1 / fps-X

by (metis fps-X-neq-zero nonzero-mult-div-cancel-left)
also have fps-compose . . . (fps-exp 1 − 1) =

fps-compose (fps-ln 1) (fps-exp 1 − 1) / (fps-exp 1 − 1)
by (subst fps-compose-divide-distrib) auto

also have fps-compose (fps-ln 1) (fps-exp 1 − 1 :: real fps) = fps-X
by (simp add: fps-ln-fps-exp-inv fps-inv-fps-exp-compose)

also have (fps-X / (fps-exp 1 − 1)) = bernoulli-fps by (simp add: bernoulli-fps-def)
also have fact n ∗ . . . $ n = bernoulli n by simp
finally show ?thesis ..

qed

corollary bernoulli-conv-Stirling:
bernoulli n = (

∑
k≤n. (−1) ^ k ∗ fact k / real (k + 1) ∗ Stirling n k)

proof −
have (

∑
k≤n. (−1) ^ k ∗ fact k / (k + 1) ∗ Stirling n k) =

(
∑

k≤n.
∑

i≤k. (−1) ^ i ∗ (k choose i) ∗ i ^ n / real (k + 1))
proof (intro sum.cong, goal-cases)

case (2 k)
have (−1) ^ k ∗ fact k / (k + 1) ∗ Stirling n k =

(
∑

j≤k. (−1) ^ k ∗ (−1) ^ (k − j) ∗ (k choose j) ∗ j ^ n / (k + 1))
by (simp add: Stirling-closed-form sum-distrib-left sum-divide-distrib mult-ac)

also have . . . = (
∑

j≤k. (−1) ^ j ∗ (k choose j) ∗ j ^ n / (k + 1))
by (intro sum.cong) (auto simp: uminus-power-if split: if-splits)

finally show ?case .
qed auto
also have . . . = bernoulli n

by (simp add: bernoulli-altdef)
finally show ?thesis ..

qed

3.4 Von Staudt–Clausen Theorem
lemma vonStaudt-Clausen-lemma:

assumes n > 0 and prime p

27

shows [(
∑

m<p. (−1) ^ m ∗ ((p − 1) choose m) ∗ m ^ (2∗n)) =
(if (p − 1) dvd (2 ∗ n) then −1 else 0)] (mod p)

proof (cases (p − 1) dvd (2 ∗ n))
case True
have cong-power-2n: [m ^ (2 ∗ n) = 1] (mod p) if m > 0 m < p for m
proof −

from True obtain q where 2 ∗ n = (p − 1) ∗ q
by blast

hence [m ^ (2 ∗ n) = (m ^ (p − 1)) ^ q] (mod p)
by (simp add: power-mult)

also have [(m ^ (p − 1)) ^ q = 1 ^ q] (mod p)
using assms ‹m > 0 › ‹m < p› by (intro cong-pow fermat-theorem) auto

finally show ?thesis by simp
qed

have (
∑

m<p. (−1)^m ∗ ((p − 1) choose m) ∗ m ^ (2∗n)) =
(
∑

m∈{0<..<p}. (−1)^m ∗ ((p − 1) choose m) ∗ m ^ (2∗n))
using ‹n > 0 › by (intro sum.mono-neutral-right) auto

also have [. . . = (
∑

m∈{0<..<p}. (−1)^m ∗ ((p − 1) choose m) ∗ int 1)] (mod
p)

by (intro cong-sum cong-mult cong-power-2n cong-int) auto
also have (

∑
m∈{0<..<p}. (−1)^m ∗ ((p − 1) choose m) ∗ int 1) =

(
∑

m∈insert 0 {0<..<p}. (−1)^m ∗ ((p − 1) choose m)) − 1
by (subst sum.insert) auto

also have insert 0 {0<..<p} = {..p−1}
using assms prime-gt-0-nat[of p] by auto

also have (
∑

m≤p−1 . (−1)^m ∗ ((p − 1) choose m)) = 0
using prime-gt-1-nat[of p] assms by (subst choose-alternating-sum) auto

finally show ?thesis using True by simp
next

case False
define n ′ where n ′ = (2 ∗ n) mod (p − 1)
from assms False have n ′ > 0

by (auto simp: n ′-def dvd-eq-mod-eq-0)
from False have p 6= 2 by auto
with assms have odd p

using prime-prime-factor two-is-prime-nat by blast

have cong-pow-2n: [m ^ (2∗n) = m ^ n ′] (mod p) if m > 0 m < p for m
proof −

from assms and that have coprime p m
by (intro prime-imp-coprime) auto

have [2 ∗ n = n ′] (mod (p − 1))
by (simp add: n ′-def)

moreover have ord p m dvd (p − 1)
using order-divides-totient[of p m] ‹coprime p m› assms by (auto simp:

totient-prime)
ultimately have [2 ∗ n = n ′] (mod ord p m)

by (rule cong-dvd-modulus-nat)

28

thus ?thesis
using ‹coprime p m› by (subst order-divides-expdiff) auto

qed

have (
∑

m<p. (−1)^m ∗ ((p − 1) choose m) ∗ m ^ (2∗n)) =
(
∑

m∈{0<..<p}. (−1)^m ∗ ((p − 1) choose m) ∗ m ^ (2∗n))
using ‹n > 0 › by (intro sum.mono-neutral-right) auto

also have [. . . = (
∑

m∈{0<..<p}. (−1)^m ∗ ((p − 1) choose m) ∗ m ^ n ′)]
(mod p)

by (intro cong-sum cong-mult cong-pow-2n cong-int) auto
also have (

∑
m∈{0<..<p}. (−1)^m ∗ ((p − 1) choose m) ∗ m ^ n ′) =

(
∑

m≤p−1 . (−1)^m ∗ ((p − 1) choose m) ∗ m ^ n ′)
using ‹n ′ > 0 › by (intro sum.mono-neutral-left) auto

also have . . . = (
∑

m≤p−1 . (−1)^(p − Suc m) ∗ ((p − 1) choose m) ∗ m ^
n ′)

using ‹n ′ > 0 › assms ‹odd p› by (intro sum.cong) (auto simp: uminus-power-if)
also have . . . = 0
proof −

have of-int (
∑

m≤p−1 . (−1)^(p − Suc m) ∗ ((p − 1) choose m) ∗ m ^ n ′) =
real (Stirling n ′ (p − 1)) ∗ fact (p − 1)

by (simp add: Stirling-closed-form)
also have n ′ < p − 1

using assms prime-gt-1-nat[of p] by (auto simp: n ′-def)
hence Stirling n ′ (p − 1) = 0

by simp
finally show ?thesis by linarith

qed
finally show ?thesis using False by simp

qed

The Von Staudt–Clausen theorem states that for n > 0,

B2n +
∑

p−1|2n

1

p

is an integer.
theorem vonStaudt-Clausen:

assumes n > 0
shows bernoulli (2 ∗ n) + (

∑
p | prime p ∧ (p − 1) dvd (2 ∗ n). 1 / real p)

∈ �
(is - + ?P ∈ �)

proof −
define P :: nat ⇒ real

where P = (λm. if prime (m + 1) ∧ m dvd (2 ∗ n) then 1 / (m + 1) else 0)

define P ′ :: nat ⇒ int
where P ′ = (λm. if prime (m + 1) ∧ m dvd (2 ∗ n) then 1 else 0)

have ?P = (
∑

p | prime (p + 1) ∧ p dvd (2 ∗ n). 1 / real (p + 1))

29

by (rule sum.reindex-bij-witness[of - λp. p + 1 λp. p − 1])
(use prime-gt-0-nat in auto)

also have . . . = (
∑

m≤2∗n. P m)
using ‹n > 0 › by (intro sum.mono-neutral-cong-left) (auto simp: P-def dest!:

dvd-imp-le)
finally have bernoulli (2 ∗ n) + ?P =

(
∑

m≤2∗n. (−1)^m ∗ (of-int (fact m ∗ Stirling (2∗n) m) / (m +
1)) + P m)

by (simp add: sum.distrib bernoulli-conv-Stirling sum-divide-distrib algebra-simps)
also have . . . = (

∑
m≤2∗n. of-int ((−1)^m ∗ fact m ∗ Stirling (2∗n) m + P ′

m) / (m + 1))
by (intro sum.cong) (auto simp: P ′-def P-def field-simps)

also have . . . ∈ �
proof (rule sum-in-Ints, goal-cases)

case (1 m)
have m = 0 ∨ m = 3 ∨ prime (m + 1) ∨ (¬prime (m + 1) ∧ m > 3)

by (cases m = 1 ; cases m = 2) (auto simp flip: numeral-2-eq-2)
then consider m = 0 | m = 3 | prime (m + 1) | ¬prime (m + 1) m > 3

by blast
thus ?case
proof cases

assume m = 0
thus ?case by auto

next
assume [simp]: m = 3
have real-of-int (fact m ∗ Stirling (2 ∗ n) m) =

real-of-int (9 ^ n + 3 − 3 ∗ 4 ^ n)
using ‹n > 0 › by (auto simp: P ′-def fact-numeral Stirling-closed-form

power-mult
atMost-nat-numeral binomial-fact zero-power)

hence int (fact m ∗ Stirling (2 ∗ n) m) = 9 ^ n + 3 − 3 ∗ 4 ^ n
by linarith

also have [. . . = 1 ^ n + (−1) − 3 ∗ 0 ^ n] (mod 4)
by (intro cong-add cong-diff cong-mult cong-pow) (auto simp: cong-def)

finally have dvd: 4 dvd int (fact m ∗ Stirling (2 ∗ n) m)
using ‹n > 0 › by (simp add: cong-0-iff zero-power)

have real-of-int ((− 1) ^ m ∗ fact m ∗ Stirling (2 ∗ n) m + P ′ m) / (m +
1) =

−(real-of-int (int (fact m ∗ Stirling (2 ∗ n) m)) / real-of-int 4)
using ‹n > 0 › by (auto simp: P ′-def)

also have . . . ∈ �
by (intro Ints-minus of-int-divide-in-Ints dvd)

finally show ?case .
next

assume composite: ¬prime (m + 1) and m > 3
obtain a b where ab: a ∗ b = m + 1 a > 1 b > 1

using ‹m > 3 › composite composite-imp-factors-nat[of m + 1] by auto
have a = b −→ a > 2

30

proof
assume a = b
hence a ^ 2 > 2 ^ 2

using ‹m > 3 › and ab by (auto simp: power2-eq-square)
thus a > 2

using power-less-imp-less-base by blast
qed
hence dvd: (m + 1) dvd fact m

using product-dvd-fact[of a b] ab by auto

have real-of-int ((− 1) ^ m ∗ fact m ∗ Stirling (2 ∗ n) m + P ′ m) / real (m
+ 1) =

real-of-int ((− 1) ^ m ∗ Stirling (2 ∗ n) m) ∗ (real (fact m) / (m + 1))
using composite by (auto simp: P ′-def)

also have . . . ∈ �
by (intro Ints-mult Ints-real-of-nat-divide dvd) auto

finally show ?case .
next

assume prime: prime (m + 1)
have real-of-int ((−1) ^ m ∗ fact m ∗ int (Stirling (2 ∗ n) m)) =

(
∑

j≤m. (−1) ^ m ∗ (−1) ^ (m − j) ∗ (m choose j) ∗ real-of-int j ^
(2 ∗ n))

by (simp add: Stirling-closed-form sum-divide-distrib sum-distrib-left mult-ac)
also have . . . = real-of-int (

∑
j≤m. (−1) ^ j ∗ (m choose j) ∗ j ^ (2 ∗ n))

unfolding of-int-sum by (intro sum.cong) (auto simp: uminus-power-if)
finally have (−1) ^ m ∗ fact m ∗ int (Stirling (2 ∗ n) m) =

(
∑

j≤m. (−1) ^ j ∗ (m choose j) ∗ j ^ (2 ∗ n)) by linarith
also have . . . = (

∑
j<m+1 . (−1) ^ j ∗ (m choose j) ∗ j ^ (2 ∗ n))

by (intro sum.cong) auto
also have [. . . = (if m dvd 2 ∗ n then − 1 else 0)] (mod (m + 1))

using vonStaudt-Clausen-lemma[of n m + 1] prime ‹n > 0 › by simp
also have (if m dvd 2 ∗ n then − 1 else 0) = − P ′ m

using prime by (simp add: P ′-def)
finally have int (m + 1) dvd ((− 1) ^ m ∗ fact m ∗ int (Stirling (2 ∗ n)

m) + P ′ m)
by (simp add: cong-iff-dvd-diff)

hence real-of-int ((−1)^m ∗ fact m ∗ int (Stirling (2∗n) m) + P ′ m) / of-int
(int (m+1)) ∈ �

by (intro of-int-divide-in-Ints)
thus ?case by simp

qed
qed
finally show ?thesis .

qed

3.5 Denominators of Bernoulli numbers

A consequence of the Von Staudt–Clausen theorem is that the denominator
of B2n for n > 0 is precisely the product of all prime numbers p such that

31

p − 1 divides 2n. Since the denominator is obvious in all other cases, this
fully characterises the denominator of Bernoulli numbers.
definition bernoulli-denom :: nat ⇒ nat where

bernoulli-denom n =
(if n = 1 then 2 else if n = 0 ∨ odd n then 1 else

∏
{p. prime p ∧ (p − 1)

dvd n})

definition bernoulli-num :: nat ⇒ int where
bernoulli-num n = bbernoulli n ∗ bernoulli-denom nc

lemma finite-bernoulli-denom-set: n > (0 :: nat) =⇒ finite {p. prime p ∧ (p −
1) dvd n}

by (rule finite-subset[of - {..2∗n+1}]) (auto dest!: dvd-imp-le)

lemma bernoulli-denom-0 [simp]: bernoulli-denom 0 = 1
and bernoulli-denom-1 [simp]: bernoulli-denom 1 = 2
and bernoulli-denom-Suc-0 [simp]: bernoulli-denom (Suc 0) = 2
and bernoulli-denom-odd [simp]: n 6= 1 =⇒ odd n =⇒ bernoulli-denom n = 1
and bernoulli-denom-even:

n > 0 =⇒ even n =⇒ bernoulli-denom n =
∏
{p. prime p ∧ (p − 1) dvd n}

by (auto simp: bernoulli-denom-def)

lemma bernoulli-denom-pos: bernoulli-denom n > 0
by (auto simp: bernoulli-denom-def intro!: prod-pos)

lemma bernoulli-denom-nonzero [simp]: bernoulli-denom n 6= 0
using bernoulli-denom-pos[of n] by simp

lemma bernoulli-denom-code [code]:
bernoulli-denom n =

(if n = 1 then 2 else if n = 0 ∨ odd n then 1
else prod-list (filter (λp. (p − 1) dvd n) (primes-upto (n + 1)))) (is - =

?rhs)
proof (cases even n ∧ n > 0)

case True
hence ?rhs = prod-list (filter (λp. (p − 1) dvd n) (primes-upto (n + 1)))

by auto
also have . . . =

∏
(set (filter (λp. (p − 1) dvd n) (primes-upto (n + 1))))

by (subst prod.distinct-set-conv-list) auto
also have (set (filter (λp. (p − 1) dvd n) (primes-upto (n + 1)))) =

{p∈{..n+1}. prime p ∧ (p − 1) dvd n}
by (auto simp: set-primes-upto)

also have . . . = {p. prime p ∧ (p − 1) dvd n}
using True by (auto dest: dvd-imp-le)

also have
∏

. . . = bernoulli-denom n
using True by (simp add: bernoulli-denom-even)

finally show ?thesis ..
qed auto

32

corollary bernoulli-denom-correct:
obtains a :: int

where coprime a (bernoulli-denom m)
bernoulli m = of-int a / of-nat (bernoulli-denom m)

proof −
consider m = 0 | m = 1 | odd m m 6= 1 | even m m > 0

by auto
thus ?thesis
proof cases

assume m = 0
thus ?thesis by (intro that[of 1]) (auto simp: bernoulli-denom-def)

next
assume m = 1
thus ?thesis by (intro that[of −1]) (auto simp: bernoulli-denom-def)

next
assume odd m m 6= 1

thus ?thesis by (intro that[of 0]) (auto simp: bernoulli-denom-def bernoulli-odd-eq-0)
next

assume even m m > 0
define n where n = m div 2
have [simp]: m = 2 ∗ n and n: n > 0

using ‹even m› ‹m > 0 › by (auto simp: n-def intro!: Nat.gr0I)

obtain a b where ab: bernoulli (2 ∗ n) = a / b coprime a (int b) b > 0
using Rats-int-div-natE [OF bernoulli-in-Rats] by metis

define P where P = {p. prime p ∧ (p − 1) dvd (2 ∗ n)}
have finite P unfolding P-def

using n by (intro finite-bernoulli-denom-set) auto
from vonStaudt-Clausen[of n] obtain k where k: bernoulli (2 ∗ n) + (

∑
p∈P.

1/p) = of-int k
using ‹n > 0 › by (auto simp: P-def Ints-def)

define c where c = (
∑

p∈P.
∏

(P−{p}))
from ‹finite P› have (

∑
p∈P. 1 / p) = c /

∏
P

by (subst sum-inverses-conv-fraction) (auto simp: P-def prime-gt-0-nat c-def)
moreover have P-nz: prod real P > 0

using prime-gt-0-nat by (auto simp: P-def intro!: prod-pos)
ultimately have eq: bernoulli (2 ∗ n) = (k ∗

∏
P − c) /

∏
P

using ab P-nz by (simp add: field-simps k [symmetric])

have gcd (k ∗
∏

P − int c) (
∏

P) = gcd (int c) (
∏

P)
by (simp add: gcd-diff-dvd-left1)

also have . . . = int (gcd c (
∏

P))
by (simp flip: gcd-int-int-eq)

also have coprime c (
∏

P)
unfolding c-def using ‹finite P›
by (intro sum-prime-inverses-fraction-coprime) (auto simp: P-def)

hence gcd c (
∏

P) = 1
by simp

33

finally have coprime: coprime (k ∗
∏

P − int c) (
∏

P)
by (simp only: coprime-iff-gcd-eq-1)

have eq ′:
∏

P = bernoulli-denom (2 ∗ n)
using n by (simp add: bernoulli-denom-def P-def)

show ?thesis
by (rule that[of k ∗

∏
P − int c]) (use eq eq ′ coprime in simp-all)

qed
qed

lemma bernoulli-conv-num-denom: bernoulli n = bernoulli-num n / bernoulli-denom
n (is ?th1)

and coprime-bernoulli-num-denom: coprime (bernoulli-num n) (bernoulli-denom
n) (is ?th2)
proof −

obtain a :: int where a: coprime a (bernoulli-denom n) bernoulli n = a /
bernoulli-denom n

using bernoulli-denom-correct[of n] by blast
thus ?th1 by (simp add: bernoulli-num-def)
with a show ?th2 by auto

qed

Two obvious consequences from this are that the denominators of all odd
Bernoulli numbers except for the first one are squarefree and multiples of 6:
lemma six-divides-bernoulli-denom:

assumes even n n > 0
shows 6 dvd bernoulli-denom n

proof −
from assms have

∏
{2 , 3} dvd

∏
{p. prime p ∧ (p − 1) dvd n}

by (intro prod-dvd-prod-subset finite-bernoulli-denom-set) auto
with assms show ?thesis by (simp add: bernoulli-denom-even)

qed

lemma squarefree-bernoulli-denom: squarefree (bernoulli-denom n)
by (auto intro!: squarefree-prod-coprime primes-coprime

simp: bernoulli-denom-def squarefree-prime)

Furthermore, the denominator of Bn divides 2(2n − 1). This also gives us
an upper bound on the denominators.
lemma bernoulli-denom-dvd: bernoulli-denom n dvd (2 ∗ (2 ^ n − 1))
proof (cases even n ∧ n > 0)

case True
hence bernoulli-denom n =

∏
{p. prime p ∧ (p − 1) dvd n}

by (auto simp: bernoulli-denom-def)
also have . . . dvd (2 ∗ (2 ^ n − 1))
proof (rule prime-prod-dvdI ; clarify?)

from True show finite {p. prime p ∧ (p − 1) dvd n}
by (intro finite-bernoulli-denom-set) auto

next

34

fix p assume p: prime p (p − 1) dvd n
show p dvd (2 ∗ (2 ^ n − 1))
proof (cases p = 2)

case False
with p have p > 2

using prime-gt-1-nat[of p] by force
have [2 ^ n − 1 = 1 − 1] (mod p)

using p ‹p > 2 › prime-odd-nat
by (intro cong-diff-nat Carmichael-divides) (auto simp: Carmichael-prime)

hence p dvd (2 ^ n − 1)
by (simp add: cong-0-iff)

thus ?thesis by simp
qed auto

qed auto
finally show ?thesis .

qed (auto simp: bernoulli-denom-def)

corollary bernoulli-bound:
assumes n > 0
shows bernoulli-denom n ≤ 2 ∗ (2 ^ n − 1)

proof −
from assms have 2 ^ n > (1 :: nat)

by (intro one-less-power) auto
thus ?thesis

by (intro dvd-imp-le[OF bernoulli-denom-dvd]) auto
qed

It can also be shown fairly easily from the von Staudt–Clausen theorem that
if p is prime and 2p + 1 is not, then B2p ≡ 1

6 (mod 1) or, equivalently, the
denominator of B2p is 6 and the numerator is of the form 6k + 1.
This is the case e. g. for any primes of the form 3k + 1 or 5k + 2.
lemma bernoulli-denom-prime-nonprime:

assumes prime p ¬prime (2 ∗ p + 1)
shows bernoulli (2 ∗ p) − 1 / 6 ∈ �

[bernoulli-num (2 ∗ p) = 1] (mod 6)
bernoulli-denom (2 ∗ p) = 6

proof −
from assms have p > 0

using prime-gt-0-nat by auto
define P where P = {q. prime q ∧ (q − 1) dvd (2 ∗ p)}
have P-eq: P = {2 , 3}
proof (intro equalityI subsetI)

fix q assume q ∈ P
hence q: prime q (q − 1) dvd (2 ∗ p)

by (simp-all add: P-def)
have q − 1 ∈ {1 , 2 , p, 2 ∗ p}
proof −

obtain b c where bc: b dvd 2 c dvd p q − 1 = b ∗ c
using division-decomp[OF q(2)] by auto

35

from bc have b ∈ {1 , 2} and c ∈ {1 , p}
using prime-nat-iff two-is-prime-nat ‹prime p› by blast+

with bc show ?thesis by auto
qed
hence q ∈ {2 , 3 , p + 1 , 2 ∗ p + 1}

using prime-gt-0-nat[OF ‹prime q›] by force
moreover have q 6= p + 1
proof

assume [simp]: q = p + 1
have even q ∨ even p by auto
with ‹prime q› and ‹prime p› have p = 2
using prime-odd-nat[of p] prime-odd-nat[of q] prime-gt-1-nat[of p] prime-gt-1-nat[of

q]
by force

with assms show False by (simp add: cong-def)
qed
ultimately show q ∈ {2 , 3}

using assms ‹prime q› by auto
qed (auto simp: P-def)

show [simp]: bernoulli-denom (2 ∗ p) = 6
using ‹p > 0 › P-eq by (subst bernoulli-denom-even) (auto simp: P-def)

have bernoulli (2 ∗ p) + 5 / 6 ∈ �
using ‹p > 0 › P-eq vonStaudt-Clausen[of p] by (auto simp: P-def)

hence bernoulli (2 ∗ p) + 5 / 6 − 1 ∈ �
by (intro Ints-diff) auto

thus bernoulli (2 ∗ p) − 1 / 6 ∈ � by simp
then obtain a where of-int a = bernoulli (2 ∗ p) − 1 / 6

by (elim Ints-cases) auto
hence real-of-int a = real-of-int (bernoulli-num (2 ∗ p) − 1) / 6

by (auto simp: bernoulli-conv-num-denom)
hence bernoulli-num (2 ∗ p) − 1 = 6 ∗ a

by simp
thus [bernoulli-num (2 ∗ p) = 1] (mod 6)

by (auto simp: cong-iff-dvd-diff)
qed

3.6 Akiyama–Tanigawa algorithm

First, we define the Akiyama–Tanigawa number triangle as shown by Kaneko [2].
We define this generically, parametrised by the first row. This makes the
proofs a little bit more modular.
fun gen-akiyama-tanigawa :: (nat ⇒ real) ⇒ nat ⇒ nat ⇒ real where

gen-akiyama-tanigawa f 0 m = f m
| gen-akiyama-tanigawa f (Suc n) m =

real (Suc m) ∗ (gen-akiyama-tanigawa f n m − gen-akiyama-tanigawa f n (Suc
m))

lemma gen-akiyama-tanigawa-0 [simp]: gen-akiyama-tanigawa f 0 = f

36

by (simp add: fun-eq-iff)

The “regular” Akiyama–Tanigawa triangle is the one that is used for reading
off Bernoulli numbers:
definition akiyama-tanigawa where

akiyama-tanigawa = gen-akiyama-tanigawa (λn. 1 / real (Suc n))

context
begin

private definition AT-fps :: (nat ⇒ real) ⇒ nat ⇒ real fps where
AT-fps f n = (fps-X − 1) ∗ Abs-fps (gen-akiyama-tanigawa f n)

private lemma AT-fps-Suc: AT-fps f (Suc n) = (fps-X − 1) ∗ fps-deriv (AT-fps
f n)
proof (rule fps-ext)

fix m :: nat
show AT-fps f (Suc n) $ m = ((fps-X − 1) ∗ fps-deriv (AT-fps f n)) $ m

by (cases m) (simp-all add: AT-fps-def fps-deriv-def algebra-simps)
qed

private lemma AT-fps-altdef :
AT-fps f n =

(
∑

m≤n. fps-const (real (Stirling n m)) ∗ (fps-X − 1)^m ∗ (fps-deriv ^^ m)
(AT-fps f 0))
proof −

have AT-fps f n = (fps-XD ′ (fps-X − 1) ^^ n) (AT-fps f 0)
by (induction n) (simp-all add: AT-fps-Suc fps-XD ′-def)

also have . . . = (
∑

m≤n. fps-const (real (Stirling n m)) ∗ (fps-X − 1) ^ m ∗
(fps-deriv ^^ m) (AT-fps f 0))

by (rule fps-XD ′-funpow-affine) simp-all
finally show ?thesis .

qed

private lemma AT-fps-0-nth: AT-fps f 0 $ n = (if n = 0 then −f 0 else f (n −
1) − f n)

by (simp add: AT-fps-def algebra-simps)

The following fact corresponds to Proposition 1 in Kaneko’s proof:
lemma gen-akiyama-tanigawa-n-0 :

gen-akiyama-tanigawa f n 0 =
(
∑

k≤n. (− 1) ^ k ∗ fact k ∗ real (Stirling (Suc n) (Suc k)) ∗ f k)
proof (cases n = 0)

case False
note [simp del] = gen-akiyama-tanigawa.simps
have gen-akiyama-tanigawa f n 0 = −(AT-fps f n $ 0) by (simp add: AT-fps-def)
also have AT-fps f n $ 0 = (

∑
k≤n. real (Stirling n k) ∗ (− 1) ^ k ∗ (fact k ∗

AT-fps f 0 $ k))
by (subst AT-fps-altdef) (simp add: fps-sum-nth fps-nth-power-0 fps-0th-higher-deriv)

37

also have . . . = (
∑

k≤n. real (Stirling n k) ∗ (− 1) ^ k ∗ (fact k ∗ (f (k − 1)
− f k)))

using False by (intro sum.cong refl) (auto simp: Stirling-n-0 AT-fps-0-nth)
also have . . . = (

∑
k≤n. fact k ∗ (real (Stirling n k) ∗ (− 1) ^ k) ∗ f (k − 1))

−
(
∑

k≤n. fact k ∗ (real (Stirling n k) ∗ (− 1) ^ k) ∗ f k)
(is - = sum ?f - − ?S2) by (simp add: sum-subtractf algebra-simps)

also from False have sum ?f {..n} = sum ?f {0<..n}
by (intro sum.mono-neutral-right) (auto simp: Stirling-n-0)

also have . . . = sum ?f {0<..Suc n}
by (intro sum.mono-neutral-left) auto

also have {0<..Suc n} = {Suc 0 ..Suc n} by auto
also have sum ?f . . . = sum (λn. ?f (Suc n)) {0 ..n}

by (subst sum.atLeast-Suc-atMost-Suc-shift) simp-all
also have {0 ..n} = {..n} by auto
also have sum (λn. ?f (Suc n)) . . . − ?S2 =

(
∑

k≤n. −((−1)^k ∗ fact k ∗ real (Stirling (Suc n) (Suc k)) ∗ f k))
by (subst sum-subtractf [symmetric], intro sum.cong) (simp-all add: alge-

bra-simps)
also have −. . . = (

∑
k≤n. ((−1)^k ∗ fact k ∗ real (Stirling (Suc n) (Suc k)) ∗

f k))
by (simp add: sum-negf)

finally show ?thesis .
qed simp-all

The following lemma states that for A(x) :=
∑∞

k=0 a0,kx
k, we have

∞∑
n=0

an,0
xn

n!
= exA(1− ex)

which correspond’s to Kaneko’s remark at the end of Section 2. This seems
to be easier to formalise than his actual proof of his Theorem 1, since his
proof contains an infinite sum of formal power series, and it was unclear to
us how to capture this formally.
lemma gen-akiyama-tanigawa-fps:

Abs-fps (λn. gen-akiyama-tanigawa f n 0 / fact n) = fps-exp 1 ∗ fps-compose
(Abs-fps f) (1 − fps-exp 1)
proof (rule fps-ext)

fix n :: nat
have (fps-const (fact n) ∗

(fps-compose (Abs-fps (λn. gen-akiyama-tanigawa f 0 n)) (1 − fps-exp 1)
∗ fps-exp 1)) $ n =

(
∑

m≤n.
∑

k≤m. (1 − fps-exp 1) ^ k $ m ∗ fact n / fact (n − m) ∗ f k)
unfolding fps-mult-left-const-nth

by (simp add: fps-times-def fps-compose-def gen-akiyama-tanigawa-n-0 sum-Stirling-binomial
field-simps sum-distrib-left sum-distrib-right atLeast0AtMost

del: Stirling.simps of-nat-Suc)
also have . . . = (

∑
m≤n.

∑
k≤m. (−1)^k ∗ fact k ∗ real (Stirling m k) ∗ real

(n choose m) ∗ f k)

38

proof (intro sum.cong refl, goal-cases)
case (1 m k)
have (1 − fps-exp 1 :: real fps) ^ k = (−fps-exp 1 + 1 :: real fps) ^ k by simp
also have . . . = (

∑
i≤k. of-nat (k choose i) ∗ (−1) ^ i ∗ fps-exp (real i))

by (subst binomial-ring) (simp add: atLeast0AtMost power-minus ′ fps-exp-power-mult
mult.assoc)

also have . . . = (
∑

i≤k. fps-const (real (k choose i) ∗ (−1) ^ i) ∗ fps-exp (real
i))

by (simp add: fps-const-mult [symmetric] fps-of-nat fps-const-power [symmetric]

fps-const-neg [symmetric] del: fps-const-mult fps-const-power
fps-const-neg)

also have . . . $ m = (
∑

i≤k. real (k choose i) ∗ (− 1) ^ i ∗ real i ^ m) / fact
m

(is - = ?S / -) by (simp add: fps-sum-nth sum-divide-distrib [symmetric])
also have ?S = (−1) ^ k ∗ (

∑
i≤k. (−1) ^ (k − i) ∗ real (k choose i) ∗ real

i ^ m)
by (subst sum-distrib-left, intro sum.cong refl) (auto simp: minus-one-power-iff)
also have (

∑
i≤k. (−1) ^ (k − i) ∗ real (k choose i) ∗ real i ^ m) =

real (Stirling m k) ∗ fact k
by (subst Stirling-closed-form) (simp-all add: field-simps)

finally have ∗: (1 − fps-exp 1 :: real fps) ^ k $ m ∗ fact n / fact (n − m) =
(− 1) ^ k ∗ fact k ∗ real (Stirling m k) ∗ real (n choose m)

using 1 by (simp add: binomial-fact del: of-nat-Suc)
show ?case using 1 by (subst ∗) simp

qed
also have . . . = (

∑
m≤n.

∑
k≤n. (− 1) ^ k ∗ fact k ∗

real (Stirling m k) ∗ real (n choose m) ∗ f k)
by (rule sum.cong[OF refl], rule sum.mono-neutral-left) auto

also have . . . = (
∑

k≤n.
∑

m≤n. (− 1) ^ k ∗ fact k ∗
real (Stirling m k) ∗ real (n choose m) ∗ f k)

by (rule sum.swap)
also have . . . = gen-akiyama-tanigawa f n 0

by (simp add: gen-akiyama-tanigawa-n-0 sum-Stirling-binomial sum-distrib-left
sum-distrib-right

mult.assoc atLeast0AtMost del: Stirling.simps)
finally show Abs-fps (λn. gen-akiyama-tanigawa f n 0 / fact n) $ n =

(fps-exp 1 ∗ (Abs-fps f oo 1 − fps-exp 1)) $ n
by (subst (asm) fps-mult-left-const-nth) (simp add: field-simps del: of-nat-Suc)

qed

As Kaneko notes in his afore-mentioned remark, if we let a0,k = 1
k+1 , we

obtain

A(z) =

∞∑
k=0

xk

k + 1
= − ln(1− x)

x

and therefore
∞∑
n=0

an,0
xn

n!
=

xex

ex − 1
=

x

1− e−x
,

39

which immediately gives us the connection to the positive Bernoulli numbers.
theorem bernoulli ′-conv-akiyama-tanigawa: bernoulli ′ n = akiyama-tanigawa n 0
proof −

define f where f = (λn. 1 / real (Suc n))
note gen-akiyama-tanigawa-fps[of f]
also {

have fps-ln 1 = fps-X ∗ Abs-fps (λn. (−1)^n / real (Suc n))
by (intro fps-ext) (simp del: of-nat-Suc add: fps-ln-def)

hence fps-ln 1 / fps-X = Abs-fps (λn. (−1)^n / real (Suc n))
by (metis fps-X-neq-zero nonzero-mult-div-cancel-left)

also have fps-compose . . . (−fps-X) = Abs-fps f
by (simp add: fps-compose-uminus ′ fps-eq-iff f-def)

finally have Abs-fps f = fps-compose (fps-ln 1 / fps-X) (−fps-X) ..
also have fps-ln 1 / fps-X oo − fps-X oo 1 − fps-exp (1 ::real) = fps-ln 1 /

fps-X oo fps-exp 1 − 1
by (subst fps-compose-assoc [symmetric])

(simp-all add: fps-compose-uminus)
also have . . . = (fps-ln 1 oo fps-exp 1 − 1) / (fps-exp 1 − 1)

by (subst fps-compose-divide-distrib) auto
also have . . . = fps-X / (fps-exp 1 − 1) by (simp add: fps-ln-fps-exp-inv

fps-inv-fps-exp-compose)
finally have Abs-fps f oo 1 − fps-exp 1 = fps-X / (fps-exp 1 − 1) .

}
also have fps-exp (1 ::real) − 1 = (1 − fps-exp (−1)) ∗ fps-exp 1

by (simp add: algebra-simps fps-exp-add-mult [symmetric])
also have fps-exp 1 ∗ (fps-X / . . .) = bernoulli ′-fps unfolding bernoulli ′-fps-def

by (subst dvd-div-mult2-eq) (auto simp: fps-dvd-iff intro!: subdegree-leI)
finally have Abs-fps (λn. gen-akiyama-tanigawa f n 0 / fact n) = bernoulli ′-fps

.
thus ?thesis by (simp add: fps-eq-iff akiyama-tanigawa-def f-def)

qed

theorem bernoulli-conv-akiyama-tanigawa:
bernoulli n = akiyama-tanigawa n 0 − (if n = 1 then 1 else 0)
using bernoulli ′-conv-akiyama-tanigawa[of n] by (auto simp: bernoulli-conv-bernoulli ′)

end

end

3.7 Efficient code

We can now compute parts of the Akiyama–Tanigawa (and thereby Bernoulli
numbers) with reasonable efficiency but iterating the recurrence row by row.
We essentially start with some finite prefix of the zeroth row, say of length
n, and then apply the recurrence one to get a prefix of the first row of length
n− 1 etc.
fun akiyama-tanigawa-step-aux :: nat ⇒ real list ⇒ real list where

40

akiyama-tanigawa-step-aux m (x # y # xs) =
real m ∗ (x − y) # akiyama-tanigawa-step-aux (Suc m) (y # xs)

| akiyama-tanigawa-step-aux m xs = []

lemma length-akiyama-tanigawa-step-aux [simp]:
length (akiyama-tanigawa-step-aux m xs) = length xs − 1
by (induction m xs rule: akiyama-tanigawa-step-aux.induct) simp-all

lemma akiyama-tanigawa-step-aux-eq-Nil-iff [simp]:
akiyama-tanigawa-step-aux m xs = [] ←→ length xs < 2
by (subst length-0-conv [symmetric]) auto

lemma nth-akiyama-tanigawa-step-aux:
n < length xs − 1 =⇒

akiyama-tanigawa-step-aux m xs ! n = real (m + n) ∗ (xs ! n − xs ! Suc n)
proof (induction m xs arbitrary: n rule: akiyama-tanigawa-step-aux.induct)

case (1 m x y xs n)
thus ?case by (cases n) auto

qed auto

definition gen-akiyama-tanigawa-row where
gen-akiyama-tanigawa-row f n l u = map (gen-akiyama-tanigawa f n) [l..<u]

lemma length-gen-akiyama-tanigawa-row [simp]: length (gen-akiyama-tanigawa-row
f n l u) = u − l

by (simp add: gen-akiyama-tanigawa-row-def)

lemma gen-akiyama-tanigawa-row-eq-Nil-iff [simp]:
gen-akiyama-tanigawa-row f n l u = [] ←→ l ≥ u
by (auto simp add: gen-akiyama-tanigawa-row-def)

lemma nth-gen-akiyama-tanigawa-row:
i < u − l =⇒ gen-akiyama-tanigawa-row f n l u ! i = gen-akiyama-tanigawa f n

(i + l)
by (simp add: gen-akiyama-tanigawa-row-def add-ac)

lemma gen-akiyama-tanigawa-row-0 [code]:
gen-akiyama-tanigawa-row f 0 l u = map f [l..<u]
by (simp add: gen-akiyama-tanigawa-row-def)

lemma gen-akiyama-tanigawa-row-Suc [code]:
gen-akiyama-tanigawa-row f (Suc n) l u =

akiyama-tanigawa-step-aux (Suc l) (gen-akiyama-tanigawa-row f n l (Suc u))
by (rule nth-equalityI) (auto simp: nth-gen-akiyama-tanigawa-row nth-akiyama-tanigawa-step-aux)

lemma gen-akiyama-tanigawa-row-numeral:
gen-akiyama-tanigawa-row f (numeral n) l u =

akiyama-tanigawa-step-aux (Suc l) (gen-akiyama-tanigawa-row f (pred-numeral
n) l (Suc u))

41

by (simp only: numeral-eq-Suc gen-akiyama-tanigawa-row-Suc)

lemma gen-akiyama-tanigawa-code [code]:
gen-akiyama-tanigawa f n k = hd (gen-akiyama-tanigawa-row f n k (Suc k))
by (subst hd-conv-nth) (auto simp: nth-gen-akiyama-tanigawa-row length-0-conv

[symmetric])

definition akiyama-tanigawa-row where
akiyama-tanigawa-row n l u = map (akiyama-tanigawa n) [l..<u]

lemma length-akiyama-tanigawa-row [simp]: length (akiyama-tanigawa-row n l u)
= u − l

by (simp add: akiyama-tanigawa-row-def)

lemma akiyama-tanigawa-row-eq-Nil-iff [simp]:
akiyama-tanigawa-row n l u = [] ←→ l ≥ u
by (auto simp add: akiyama-tanigawa-row-def)

lemma nth-akiyama-tanigawa-row:
i < u − l =⇒ akiyama-tanigawa-row n l u ! i = akiyama-tanigawa n (i + l)
by (simp add: akiyama-tanigawa-row-def add-ac)

lemma akiyama-tanigawa-row-0 [code]:
akiyama-tanigawa-row 0 l u = map (λn. inverse (real (Suc n))) [l..<u]
by (simp add: akiyama-tanigawa-row-def akiyama-tanigawa-def divide-simps)

lemma akiyama-tanigawa-row-Suc [code]:
akiyama-tanigawa-row (Suc n) l u =

akiyama-tanigawa-step-aux (Suc l) (akiyama-tanigawa-row n l (Suc u))
by (rule nth-equalityI) (auto simp: nth-akiyama-tanigawa-row

nth-akiyama-tanigawa-step-aux akiyama-tanigawa-def)

lemma akiyama-tanigawa-row-numeral:
akiyama-tanigawa-row (numeral n) l u =

akiyama-tanigawa-step-aux (Suc l) (akiyama-tanigawa-row (pred-numeral n) l
(Suc u))

by (simp only: numeral-eq-Suc akiyama-tanigawa-row-Suc)

lemma akiyama-tanigawa-code [code]:
akiyama-tanigawa n k = hd (akiyama-tanigawa-row n k (Suc k))
by (subst hd-conv-nth) (auto simp: nth-akiyama-tanigawa-row length-0-conv [symmetric])

lemma bernoulli-code [code]:
bernoulli n =
(if n = 0 then 1 else if n = 1 then −1/2 else if odd n then 0 else akiyama-tanigawa

n 0)

42

proof (cases n = 0 ∨ n = 1 ∨ odd n)
case False
thus ?thesis by (auto simp add: bernoulli-conv-akiyama-tanigawa)

qed (auto simp: bernoulli-odd-eq-0)

lemma bernoulli ′-code [code]:
bernoulli ′ n =
(if n = 0 then 1 else if n = 1 then 1/2 else if odd n then 0 else akiyama-tanigawa

n 0)
by (simp add: bernoulli ′-def bernoulli-code)

Evaluation with the simplifier is much slower than by reflection, but can still
be done with much better efficiency than before:
lemmas eval-bernoulli =

akiyama-tanigawa-code akiyama-tanigawa-row-numeral
numeral-2-eq-2 [symmetric] akiyama-tanigawa-row-Suc upt-conv-Cons
akiyama-tanigawa-row-0 bernoulli-code[of numeral n for n]

lemmas eval-bernoulli ′ = eval-bernoulli bernoulli ′-code[of numeral n for n]

lemmas eval-bernpoly =
bernpoly-def atMost-nat-numeral power-eq-if binomial-fact fact-numeral eval-bernoulli

lemma bernoulli-upto-20 [simp]:
bernoulli 2 = 1 / 6
bernoulli 4 = −(1 / 30)
bernoulli 6 = 1 / 42
bernoulli 8 = − (1 / 30)
bernoulli 10 = 5 / 66
bernoulli 12 = − (691 / 2730)
bernoulli 14 = 7 / 6
bernoulli 16 = −(3617 / 510)
bernoulli 18 = 43867 / 798
bernoulli 20 = −(174611 / 330)
by (simp-all add: eval-bernoulli)

lemma bernoulli ′-upto-20 [simp]:
bernoulli ′ 2 = 1 / 6
bernoulli ′ 4 = −(1 / 30)
bernoulli ′ 6 = 1 / 42
bernoulli ′ 8 = − (1 / 30)
bernoulli ′ 10 = 5 / 66
bernoulli ′ 12 = − (691 / 2730)
bernoulli ′ 14 = 7 / 6
bernoulli ′ 16 = −(3617 / 510)
bernoulli ′ 18 = 43867 / 798
bernoulli ′ 20 = −(174611 / 330)
by (simp-all add: bernoulli ′-def)

43

end

4 Bernoulli numbers and the zeta function at pos-
itive integers

theory Bernoulli-Zeta
imports

HOL−Complex-Analysis.Complex-Analysis
Bernoulli-FPS

begin

lemma joinpaths-cong: f = f ′ =⇒ g = g ′ =⇒ f +++ g = f ′ +++ g ′

by simp

lemma linepath-cong: a = a ′ =⇒ b = b ′ =⇒ linepath a b = linepath a ′ b ′

by simp

The analytic continuation of the exponential generating function of the
Bernoulli numbers is z

ez−1 , which has simple poles at all 2kiπ for k ∈ Z\{0}.
We will need the residue at these poles:
lemma residue-bernoulli:

assumes n 6= 0
shows residue (λz. 1 / (z ^ m ∗ (exp z − 1))) (2 ∗ pi ∗ real-of-int n ∗ i) =

1 / (2 ∗ pi ∗ real-of-int n ∗ i) ^ m
proof −

have residue (λz. (1 / z ^ m) / (exp z − 1)) (2 ∗ pi ∗ real-of-int n ∗ i) =
1 / (2 ∗ pi ∗ real-of-int n ∗ i) ^ m / 1

using exp-integer-2pi[of real-of-int n] and assms
by (rule-tac residue-simple-pole-deriv[where s=−{0}])
(auto intro!: holomorphic-intros derivative-eq-intros connected-open-delete-finite

simp add: mult-ac connected-punctured-universe)
thus ?thesis by (simp add: divide-simps)

qed

At positive integers greater than 1, the Riemann zeta function is simply
the infinite sum ζ(n) =

∑∞
k=1 k

−n. For even n, this quantity can also be
expressed in terms of Bernoulli numbers.
To show this, we employ a similar strategy as in the meromorphic asymp-
totics approach: We apply the Residue Theorem to the exponential gener-
ating function of the Bernoulli numbers:

∞∑
n=0

Bn

n!
zn =

z

ez − 1

44

Recall that this function has poles at 2kiπ for k ∈ Z \ {0}. In the meromor-
phic asymptotics case, we integrated along a circle of radius 3iπ in order to
get the dominant singularities 2iπ and −2iπ. Now, however, we will not use
a fixed integration path, but we let the integration path become bigger and
bigger. Because the integrand decays relatively quickly if n > 1, the integral
vanishes in the limit and we obtain not just an asymptotic formula, but an
exact representation of Bn as an infinite sum.
For odd n, we have Bn = 0, but for even n, the residues at 2kiπ and −2kiπ
combine nicely to 2 · (−2kπ)−n, and after some simplification we get the
formula for Bn.
Another difference to the meromorphic asymptotics is that we now use a
rectangle instead of a circle as the integration path. For the asymptotics,
only a big-oh bound was needed for the integral over one fixed integration
path, and the circular path was very convenient. However, now we need to
explicitly bound the integral for a whole sequence of integration paths that
grow in size, and bounding ez − 1 for z on a circle is very tedious. On a
rectangle, this term can be bounded much more easily. Still, we have to do
this separately for all four edges of the rectangle, which will be a bit tedious.
theorem nat-even-power-sums-complex:

assumes n ′: n ′ > 0
shows (λk. 1 / of-nat (Suc k) ^ (2∗n ′) :: complex) sums

of-real ((−1) ^ Suc n ′ ∗ bernoulli (2∗n ′) ∗ (2 ∗ pi) ^ (2 ∗ n ′) / (2 ∗
fact (2∗n ′)))
proof −

define n where n = 2 ∗ n ′

from n ′ have n: n ≥ 2 even n by (auto simp: n-def)
define zeta :: complex where zeta = (

∑
k. 1 / of-nat (Suc k) ^ n)

have summable (λk. 1 / of-nat (Suc k) ^ n :: complex)
using inverse-power-summable[of n] n
by (subst summable-Suc-iff) (simp add: divide-simps)

hence (λk.
∑

i<k. 1 / of-nat (Suc i) ^ n) −−−−→ zeta
by (subst (asm) summable-sums-iff) (simp add: sums-def zeta-def)

also have (λk.
∑

i<k. 1 / of-nat (Suc i) ^ n) = (λk.
∑

i∈{0<..k}. 1 / of-nat
i ^ n)

by (intro ext sum.reindex-bij-witness[of - λn. n − 1 Suc]) auto
finally have zeta-limit: (λk.

∑
i∈{0<..k}. 1 / of-nat i ^ n) −−−−→ zeta .

— This is the exponential generating function of the Bernoulli numbers.
define f where f = (λz::complex. if z = 0 then 1 else z / (exp z − 1))

— We will integrate over this function, since its residue at the origin is the n-th
coefficient of f. Note that it has singularities at all points 2ikπ for k ∈ Z.

define g where g = (λz::complex. 1 / (z ^ n ∗ (exp z − 1)))

— We integrate along a rectangle of width 2m and height 2(2m + 1)π with its

45

centre at the origin. The benefit of the rectangular path is that it is easier to bound
the value of the exponential appearing in the integrand. The horizontal lines of the
rectangle are always right in the middle between two adjacent singularities.

define γ :: nat ⇒ real ⇒ complex
where γ = (λm. rectpath (−real m − real (2∗m+1)∗pi∗i) (real m + real

(2∗m+1)∗pi∗i))

— This set is a convex open enclosing set the contains our path.
define A where A = (λm::nat. box (−(real m+1) − (2∗m+2)∗pi∗i) (real m+1

+ (2∗m+2)∗pi∗i))

— These are all the singularities in the enclosing inside the path (and also inside
A).

define S where S = (λm::nat. (λn. 2 ∗ pi ∗ of-int n ∗ i) ‘ {−m..m})

— Any singularity in A is of the form 2kiπ where |k| ≤ m.
have int-bound: k ∈ {−int m..int m} if 2 ∗ pi ∗ k ∗ i ∈ A m for k m
proof −

from that have (−real (Suc m)) ∗ (2 ∗ pi) < real-of-int k ∗ (2 ∗ pi) ∧
real (Suc m) ∗ (2 ∗ pi) > real-of-int k ∗ (2 ∗ pi)

by (auto simp: A-def in-box-complex-iff algebra-simps)
hence −real (Suc m) < real-of-int k ∧ real-of-int k < real (Suc m)

by simp
also have −real (Suc m) = real-of-int (−int (Suc m)) by simp
also have real (Suc m) = real-of-int (int (Suc m)) by simp
also have real-of-int (− int (Suc m)) < real-of-int k ∧

real-of-int k < real-of-int (int (Suc m)) ←→ k ∈ {−int m..int m}
by (subst of-int-less-iff) auto

finally show k ∈ {−int m..int m} .
qed

have zeros: ∃ k∈{−int m..int m}. z = 2 ∗ pi ∗ of-int k ∗ i if z ∈ A m exp z =
1 for z m

proof −
from that(2) obtain k where z-eq: z = 2 ∗ pi ∗ of-int k ∗ i

unfolding exp-eq-1 by (auto simp: complex-eq-iff)
with int-bound[of k] and that(1) show ?thesis by auto

qed
have zeros ′: z ^ n ∗ (exp z − 1) 6= 0 if z ∈ A m − S m for z m

using zeros[of z] that by (auto simp: S-def)

— The singularities all lie strictly inside the integration path.
have subset: S m ⊆ box (−real m − real(2∗m+1)∗pi∗i) (real m + real(2∗m+1)∗pi∗i)

if m > 0 for m
proof (rule, goal-cases)

case (1 z)
then obtain k :: int where k: k ∈ {−int m..int m} z = 2 ∗ pi ∗ k ∗ i

unfolding S-def by blast
have 2 ∗ pi ∗ −m + −pi < 2 ∗ pi ∗ k + 0

46

using k by (intro add-le-less-mono mult-left-mono) auto
moreover have 2 ∗ pi ∗ k + 0 < 2 ∗ pi ∗ m + pi

using k by (intro add-le-less-mono mult-left-mono) auto
ultimately show ?case using k ‹m > 0 ›

by (auto simp: A-def in-box-complex-iff algebra-simps)
qed
from n and zeros ′ have holo: g holomorphic-on A m − S m for m

unfolding g-def by (intro holomorphic-intros) auto

— The integration path lies completely inside A and does not cross any singular-
ities.

have path-subset: path-image (γ m) ⊆ A m − S m if m > 0 for m
proof −

have path-image (γ m) ⊆ cbox (−real m − (2 ∗ m + 1) ∗ pi ∗ i) (real m + (2
∗ m + 1) ∗ pi ∗ i)

unfolding γ-def by (rule path-image-rectpath-subset-cbox) auto
also have . . . ⊆ A m unfolding A-def

by (subst subset-box-complex) auto
finally have path-image (γ m) ⊆ A m .
moreover have path-image (γ m) ∩ S m = {}
proof safe

fix z assume z: z ∈ path-image (γ m) z ∈ S m
from this(2) obtain k :: int where k: z = 2 ∗ pi ∗ k ∗ i

by (auto simp: S-def)
hence [simp]: Re z = 0 by simp
from z(1) have |Im z | = of-int (2∗m+1) ∗ pi

using ‹m > 0 › by (auto simp: γ-def path-image-rectpath)
also have |Im z| = of-int (2 ∗ |k|) ∗ pi

by (simp add: k abs-mult)
finally have 2 ∗ |k| = 2 ∗ m + 1

by (subst (asm) mult-cancel-right, subst (asm) of-int-eq-iff) simp
hence False by presburger
thus z ∈ {} ..

qed
ultimately show path-image (γ m) ⊆ A m − S m by blast

qed

— We now obtain a closed form for the Bernoulli numbers using the integral.
have eq: (

∑
x∈{0<..m}. 1 / of-nat x ^ n) =

contour-integral (γ m) g ∗ (2 ∗ pi ∗ i) ^ n / (4 ∗ pi ∗ i) −
complex-of-real (bernoulli n / fact n) ∗ (2 ∗ pi ∗ i) ^ n / 2

if m: m > 0 for m
proof −
— We relate the formal power series of the Bernoulli numbers to the correspond-

ing complex function.
have subdegree (fps-exp 1 − 1 :: complex fps) = 1

by (intro subdegreeI) auto
hence expansion: f has-fps-expansion bernoulli-fps

unfolding f-def bernoulli-fps-def by (auto intro!: fps-expansion-intros)

47

— We use the Residue Theorem to explicitly compute the integral.
have contour-integral (γ m) g =

2 ∗ pi ∗ i ∗ (
∑

z∈S m. winding-number (γ m) z ∗ residue g z)
proof (rule Residue-theorem)

have cbox (−real m − (2 ∗ m + 1) ∗ pi ∗ i) (real m + (2 ∗ m + 1) ∗ pi ∗
i) ⊆ A m

unfolding A-def by (subst subset-box-complex) simp-all
thus ∀ z. z /∈ A m −→ winding-number (γ m) z = 0 unfolding γ-def

by (intro winding-number-rectpath-outside allI impI) auto
qed (insert holo path-subset m, auto simp: γ-def A-def S-def intro: convex-connected)
— Clearly, all the winding numbers are 1
also have winding-number (γ m) z = 1 if z ∈ S m for z
unfolding γ-def using subset[of m] that m by (subst winding-number-rectpath)

blast+
hence (

∑
z∈S m. winding-number (γ m) z ∗ residue g z) = (

∑
z∈S m. residue

g z)
by (intro sum.cong) simp-all

also have . . . = (
∑

k=−int m..int m. residue g (2 ∗ pi ∗ of-int k ∗ i))
unfolding S-def by (subst sum.reindex) (auto simp: inj-on-def o-def)

also have {−int m..int m} = insert 0 ({−int m..int m}−{0})
by auto

also have (
∑

k∈. . . . residue g (2 ∗ pi ∗ of-int k ∗ i)) =
residue g 0 + (

∑
k∈{−int m..m}−{0}. residue g (2 ∗ pi ∗ of-int k

∗ i))
by (subst sum.insert) auto

— The residue at the origin is just the n-th coefficient of f .
also have residue g 0 = residue (λz. f z / z ^ Suc n) 0 unfolding f-def g-def

by (intro residue-cong eventually-mono[OF eventually-at-ball[of 1]]) auto
also have . . . = fps-nth bernoulli-fps n

by (rule residue-fps-expansion-over-power-at-0 [OF expansion])
also have . . . = of-real (bernoulli n / fact n)

by simp
also have (

∑
k∈{−int m..m}−{0}. residue g (2 ∗ pi ∗ of-int k ∗ i)) =

(
∑

k∈{−int m..m}−{0}. 1 / of-int k ^ n) / (2 ∗ pi ∗ i) ^ n
proof (subst sum-divide-distrib, intro refl sum.cong, goal-cases)

case (1 k)
hence ∗: residue g (2 ∗ pi ∗ of-int k ∗ i) = 1 / (2 ∗ complex-of-real pi ∗

of-int k ∗ i) ^ n
unfolding g-def by (subst residue-bernoulli) auto

thus ?case using 1 by (subst ∗) (simp add: divide-simps power-mult-distrib)
qed
also have (

∑
k∈{−int m..m}−{0}. 1 / of-int k ^ n) =

(
∑

(a,b)∈{0<..m}×{−1 ,1 ::int}. 1 / of-int (int a) ^ n :: complex)
using n

by (intro sum.reindex-bij-witness[of - λk. snd k ∗ int (fst k) λk. (nat |k|,sgn
k)])

(auto split: if-splits simp: abs-if)
also have . . . = (

∑
x∈{0<..m}. 2 / of-nat x ^ n)

48

using n by (subst sum.Sigma [symmetric]) auto
also have . . . = (

∑
x∈{0<..m}. 1 / of-nat x ^ n) ∗ 2

by (simp add: sum-distrib-right)
finally show ?thesis

by (simp add: field-simps)
qed

— The ugly part: We have to prove a bound on the integral by splitting it into
four integrals over lines and bounding each part separately.

have eventually (λm. norm (contour-integral (γ m) g) ≤
((4 + 12 ∗ pi) + 6 ∗ pi / m) / real m ^ (n − 1)) sequentially

using eventually-gt-at-top[of 1 ::nat]
proof eventually-elim

case (elim m)
let ?c = (2∗m+1) ∗ pi ∗ i
define I where I = (λp1 p2 . contour-integral (linepath p1 p2) g)
define p1 p2 p3 p4 where p1 = −real m − ?c and p2 = real m − ?c

and p3 = real m + ?c and p4 = −real m + ?c
have eq: γ m = linepath p1 p2 +++ linepath p2 p3 +++ linepath p3 p4 +++

linepath p4 p1
(is γ m = ?γ ′) unfolding γ-def rectpath-def Let-def
by (intro joinpaths-cong linepath-cong)

(simp-all add: p1-def p2-def p3-def p4-def complex-eq-iff)
have integrable: g contour-integrable-on γ m using elim

by (intro contour-integrable-holomorphic-simple[OF holo - - path-subset])
(auto simp: γ-def A-def S-def intro!: finite-imp-closed)

have norm (contour-integral (γ m) g) = norm (I p1 p2 + I p2 p3 + I p3 p4
+ I p4 p1)

unfolding I-def by (insert integrable, unfold eq)
(subst contour-integral-join; (force simp: add-ac)?)+

also have . . . ≤ norm (I p1 p2) + norm (I p2 p3) + norm (I p3 p4) + norm
(I p4 p1)

by (intro norm-triangle-mono order .refl)

also have norm (I p1 p2) ≤ 1 / real m ^ n ∗ norm (p2 − p1) (is - ≤ ?B1 ∗
-)

unfolding I-def
proof (intro contour-integral-bound-linepath)

fix z assume z: z ∈ closed-segment p1 p2
define a where a = Re z
from z have z: z = a − (2∗m+1) ∗ pi ∗ i

by (subst (asm) closed-segment-same-Im)
(auto simp: p1-def p2-def complex-eq-iff a-def)

have real m ∗ 1 ≤ (2∗m+1) ∗ pi
using pi-ge-two by (intro mult-mono) auto

also have (2∗m+1) ∗ pi = |Im z| by (simp add: z)
also have |Im z| ≤ norm z by (rule abs-Im-le-cmod)
finally have norm z ≥ m by simp
moreover {

49

have exp z − 1 = −of-real (exp a + 1) using exp-integer-2pi-plus1 [of m]
by (simp add: z exp-diff algebra-simps exp-of-real)

also have norm . . . ≥ 1
unfolding norm-minus-cancel norm-of-real by simp

finally have norm (exp z − 1) ≥ 1 .
}
ultimately have norm z ^ n ∗ norm (exp z − 1) ≥ real m ^ n ∗ 1

by (intro mult-mono power-mono) auto
thus norm (g z) ≤ 1 / real m ^ n using elim

by (simp add: g-def divide-simps norm-divide norm-mult norm-power
mult-less-0-iff)

qed (insert integrable, auto simp: eq)
also have norm (p2 − p1) = 2 ∗ m by (simp add: p2-def p1-def)

also have norm (I p3 p4) ≤ 1 / real m ^ n ∗ norm (p4 − p3) (is - ≤ ?B3 ∗
-)

unfolding I-def
proof (intro contour-integral-bound-linepath)

fix z assume z: z ∈ closed-segment p3 p4
define a where a = Re z
from z have z: z = a + (2∗m+1) ∗ pi ∗ i

by (subst (asm) closed-segment-same-Im)
(auto simp: p3-def p4-def complex-eq-iff a-def)

have real m ∗ 1 ≤ (2∗m+1) ∗ pi
using pi-ge-two by (intro mult-mono) auto

also have (2∗m+1) ∗ pi = |Im z| by (simp add: z)
also have |Im z| ≤ norm z by (rule abs-Im-le-cmod)
finally have norm z ≥ m by simp
moreover {

have exp z − 1 = −of-real (exp a + 1) using exp-integer-2pi-plus1 [of m]
by (simp add: z exp-add algebra-simps exp-of-real)

also have norm . . . ≥ 1
unfolding norm-minus-cancel norm-of-real by simp

finally have norm (exp z − 1) ≥ 1 .
}
ultimately have norm z ^ n ∗ norm (exp z − 1) ≥ real m ^ n ∗ 1

by (intro mult-mono power-mono) auto
thus norm (g z) ≤ 1 / real m ^ n using elim

by (simp add: g-def divide-simps norm-divide norm-mult norm-power
mult-less-0-iff)

qed (insert integrable, auto simp: eq)
also have norm (p4 − p3) = 2 ∗ m by (simp add: p4-def p3-def)

also have norm (I p2 p3) ≤ (1 / real m ^ n) ∗ norm (p3 − p2) (is - ≤ ?B2
∗ -)

unfolding I-def
proof (rule contour-integral-bound-linepath)

fix z assume z: z ∈ closed-segment p2 p3
define b where b = Im z

50

from z have z: z = m + b ∗ i
by (subst (asm) closed-segment-same-Re)

(auto simp: p2-def p3-def algebra-simps complex-eq-iff b-def)
from elim have 2 ≤ 1 + real m by simp
also have . . . ≤ exp (real m) by (rule exp-ge-add-one-self)
also have exp (real m) − 1 = norm (exp z) − norm (1 ::complex)

by (simp add: z)
also have . . . ≤ norm (exp z − 1)

by (rule norm-triangle-ineq2)
finally have norm (exp z − 1) ≥ 1 by simp
moreover have norm z ≥ m

using z and abs-Re-le-cmod[of z] by simp
ultimately have norm z ^ n ∗ norm (exp z − 1) ≥ real m ^ n ∗ 1 using

elim
by (intro mult-mono power-mono) (auto simp: z)

thus norm (g z) ≤ 1 / real m ^ n using n and elim
by (simp add: g-def norm-mult norm-divide norm-power divide-simps

mult-less-0-iff)
qed (insert integrable, auto simp: eq)
also have p3 − p2 = of-real (2∗(2∗real m+1)∗pi) ∗ i by (simp add: p2-def

p3-def)
also have norm . . . = 2 ∗ (2 ∗ real m + 1) ∗ pi

unfolding norm-mult norm-of-real by simp

also have norm (I p4 p1) ≤ (2 / real m ^ n) ∗ norm (p1 − p4) (is - ≤ ?B4
∗ -)

unfolding I-def
proof (rule contour-integral-bound-linepath)

fix z assume z: z ∈ closed-segment p4 p1
define b where b = Im z
from z have z: z = −real m + b ∗ i

by (subst (asm) closed-segment-same-Re)
(auto simp: p1-def p4-def algebra-simps b-def complex-eq-iff)

from elim have 2 ≤ 1 + real m by simp
also have . . . ≤ exp (real m) by (rule exp-ge-add-one-self)
finally have 1 / 2 ≤ 1 − exp (−real m)

by (subst exp-minus) (simp add: field-simps)
also have 1 − exp (−real m) = norm (1 ::complex) − norm (exp z)

by (simp add: z)
also have . . . ≤ norm (exp z − 1)

by (subst norm-minus-commute, rule norm-triangle-ineq2)
finally have norm (exp z − 1) ≥ 1 / 2 by simp
moreover have norm z ≥ m

using z and abs-Re-le-cmod[of z] by simp
ultimately have norm z ^ n ∗ norm (exp z − 1) ≥ real m ^ n ∗ (1 / 2)

using elim
by (intro mult-mono power-mono) (auto simp: z)

thus norm (g z) ≤ 2 / real m ^ n using n and elim
by (simp add: g-def norm-mult norm-divide norm-power divide-simps

51

mult-less-0-iff)
qed (insert integrable, auto simp: eq)
also have p1 − p4 = −of-real (2∗(2∗real m+1)∗pi) ∗ i

by (simp add: p1-def p4-def algebra-simps)
also have norm . . . = 2 ∗ (2 ∗ real m + 1) ∗ pi

unfolding norm-mult norm-of-real norm-minus-cancel by simp

also have ?B1 ∗ (2∗m) + ?B2 ∗ (2∗(2∗real m+1)∗pi) + ?B3 ∗ (2∗m) + ?B4
∗ (2∗(2∗real m+1)∗pi) =

(4 ∗ m + 6 ∗ (2 ∗ m + 1) ∗ pi) / real m ^ n
by (simp add: divide-simps)

also have (4 ∗ m + 6 ∗ (2 ∗ m + 1) ∗ pi) = (4 + 12 ∗ pi) ∗ m + 6 ∗ pi
by (simp add: algebra-simps)

also have . . . / real m ^ n = ((4 + 12 ∗ pi) + 6 ∗ pi / m) / real m ^ (n − 1)
using n by (cases n) (simp-all add: divide-simps)

finally show cmod (contour-integral (γ m) g) ≤ . . . by simp
qed

— It is clear that this bound goes to 0 since 2 ≤ n.
moreover have (λm. (4 + 12 ∗ pi + 6 ∗ pi / real m) / real m ^ (n − 1))
−−−−→ 0

by (rule real-tendsto-divide-at-top tendsto-add tendsto-const
filterlim-real-sequentially filterlim-pow-at-top | use n in simp)+

ultimately have ∗: (λm. contour-integral (γ m) g) −−−−→ 0
by (rule Lim-null-comparison)

— Since the infinite sum over the residues can expressed using the zeta function,
we have now related the Bernoulli numbers at even positive integers to the zeta
function.

have (λm. contour-integral (γ m) g ∗ (2 ∗ pi ∗ i) ^ n / (4 ∗ pi ∗ i) −
of-real (bernoulli n / fact n) ∗ (2 ∗ pi ∗ i) ^ n / 2) −−−−→

0 ∗ (2 ∗ pi ∗ i) ^ n / (4 ∗ pi ∗ i) −
of-real (bernoulli n / fact n) ∗ (2 ∗ pi ∗ i) ^ n / 2

using n by (intro tendsto-intros ∗ zeta-limit) auto
also have ?this ←→ (λm.

∑
k∈{0<..m}. 1 / of-nat k ^ n) −−−−→

− of-real (bernoulli n / fact n) ∗ (2 ∗ pi ∗ i) ^ n / 2
by (intro filterlim-cong eventually-mono [OF eventually-gt-at-top[of 0 ::nat]])

(use eq in simp-all)
finally have (λm.

∑
k∈{0<..m}. 1 / of-nat k ^ n)

−−−−→ − of-real (bernoulli n / fact n) ∗ (of-real (2 ∗ pi) ∗ i) ^ n
/ 2

(is - −−−−→ ?L) .
also have (λm.

∑
k∈{0<..m}. 1 / of-nat k ^ n) = (λm.

∑
k∈{..<m}. 1 / of-nat

(Suc k) ^ n)
by (intro ext sum.reindex-bij-witness[of - Suc λn. n − 1]) auto

also have . . . −−−−→ ?L ←→ (λk. 1 / of-nat (Suc k) ^ n) sums ?L
by (simp add: sums-def)

also have (2 ∗ pi ∗ i) ^ n = (2 ∗ pi) ^ n ∗ (−1) ^ n ′

52

by (simp add: n-def divide-simps power-mult-distrib power-mult power-minus ′)
also have − of-real (bernoulli n / fact n) ∗ . . . / 2 =

of-real ((−1) ^ Suc n ′ ∗ bernoulli (2∗n ′) ∗ (2∗pi)^(2∗n ′) / (2 ∗ fact
(2∗n ′)))

by (simp add: n-def divide-simps)
finally show ?thesis unfolding n-def .

qed

corollary nat-even-power-sums-real:
assumes n ′: n ′ > 0
shows (λk. 1 / real (Suc k) ^ (2∗n ′)) sums

((−1) ^ Suc n ′ ∗ bernoulli (2∗n ′) ∗ (2 ∗ pi) ^ (2 ∗ n ′) / (2 ∗ fact
(2∗n ′)))

(is ?f sums ?L)
proof −

have (λk. complex-of-real (?f k)) sums complex-of-real ?L
using nat-even-power-sums-complex[OF assms] by simp

thus ?thesis by (simp only: sums-of-real-iff)
qed

We can now also easily determine the signs of Bernoulli numbers: the above
formula clearly shows that the signs of B2n alternate as n increases, and we
already know that B2n+1 = 0 for any positive n. A lot of other facts about
the signs of Bernoulli numbers follow.
corollary sgn-bernoulli-even:

assumes n > 0
shows sgn (bernoulli (2 ∗ n)) = (−1) ^ Suc n

proof −
have ∗: (λk. 1 / real (Suc k) ^ (2 ∗ n)) sums

((− 1) ^ Suc n ∗ bernoulli (2 ∗ n) ∗ (2 ∗ pi) ^ (2 ∗ n) / (2 ∗ fact (2
∗ n)))

using assms by (rule nat-even-power-sums-real)
from ∗ have 0 < (

∑
k. 1 / real (Suc k) ^ (2∗n))

by (intro suminf-pos) (auto simp: sums-iff)
hence sgn (

∑
k. 1 / real (Suc k) ^ (2∗n)) = 1

by simp
also have (

∑
k. 1 / real (Suc k) ^ (2∗n)) =

(− 1) ^ Suc n ∗ bernoulli (2 ∗ n) ∗ (2 ∗ pi) ^ (2 ∗ n) / (2 ∗ fact (2
∗ n))

using ∗ by (simp add: sums-iff)
also have sgn . . . = (−1) ^ Suc n ∗ sgn (bernoulli (2 ∗ n))

by (simp add: sgn-mult)
finally show ?thesis

by (simp add: minus-one-power-iff split: if-splits)
qed

corollary bernoulli-even-nonzero: even n =⇒ bernoulli n 6= 0
using sgn-bernoulli-even[of n div 2] by (cases n = 0) (auto elim!: evenE)

53

corollary sgn-bernoulli:
sgn (bernoulli n) =

(if n = 0 then 1 else if n = 1 then −1 else if odd n then 0 else (−1) ^ Suc (n
div 2))

using sgn-bernoulli-even [of n div 2] by (auto simp: bernoulli-odd-eq-0)

corollary bernoulli-zero-iff : bernoulli n = 0 ←→ odd n ∧ n 6= 1
by (auto simp: bernoulli-even-nonzero bernoulli-odd-eq-0)

corollary bernoulli ′-zero-iff : (bernoulli ′ n = 0) ←→ (n 6= 1 ∧ odd n)
by (auto simp: bernoulli ′-def bernoulli-zero-iff)

corollary bernoulli-pos-iff : bernoulli n > 0 ←→ n = 0 ∨ n mod 4 = 2
proof −

have bernoulli n > 0 ←→ sgn (bernoulli n) = 1
by (simp add: sgn-if)

also have . . . ←→ n = 0 ∨ even n ∧ odd (n div 2)
by (subst sgn-bernoulli) auto

also have even n ∧ odd (n div 2) ←→ n mod 4 = 2
by presburger

finally show ?thesis .
qed

corollary bernoulli-neg-iff : bernoulli n < 0 ←→ n = 1 ∨ n > 0 ∧ 4 dvd n
proof −

have bernoulli n < 0 ←→ sgn (bernoulli n) = −1
by (simp add: sgn-if)

also have . . . ←→ n = 1 ∨ n > 0 ∧ even n ∧ even (n div 2)
by (subst sgn-bernoulli) (auto simp: minus-one-power-iff)

also have even n ∧ even (n div 2) ←→ 4 dvd n
by presburger

finally show ?thesis .
qed

We also get the solution of the Basel problem (the sum over all squares
of positive integers) and any ‘Basel-like’ problem with even exponent. The
case of odd exponents is much more complicated and no similarly nice closed
form is known for these.
corollary nat-squares-sums: (λn. 1 / (n+1) ^ 2) sums (pi ^ 2 / 6)

using nat-even-power-sums-real[of 1] by (simp add: fact-numeral)

corollary nat-power4-sums: (λn. 1 / (n+1) ^ 4) sums (pi ^ 4 / 90)
using nat-even-power-sums-real[of 2] by (simp add: fact-numeral)

corollary nat-power6-sums: (λn. 1 / (n+1) ^ 6) sums (pi ^ 6 / 945)
using nat-even-power-sums-real[of 3] by (simp add: fact-numeral)

corollary nat-power8-sums: (λn. 1 / (n+1) ^ 8) sums (pi ^ 8 / 9450)
using nat-even-power-sums-real[of 4] by (simp add: fact-numeral)

54

end

References

[1] S. Akiyama and Y. Tanigawa. Multiple zeta values at non-positive
integers. The Ramanujan Journal, 5(4):327–351, 2001.

[2] M. Kaneko. The Akiyama–Tanigawa algorithm for Bernoulli numbers.
Journal of Integer Sequences, 3, 2000.

[3] M. Riedel. Bernoulli numbers explicit form.
https://math.stackexchange.com/a/784156/67576, 2014.

55

https://math.stackexchange.com/a/784156/67576

	Bernoulli numbers
	Preliminaries
	Bernoulli Numbers and Bernoulli Polynomials
	Basic Observations on Bernoulli Polynomials
	Sum of Powers with Bernoulli Polynomials
	Instances for Square And Cubic Numbers

	Periodic Bernoulli polynomials
	Connection of Bernoulli numbers to formal power series
	Preliminaries
	Generating function of Stirling numbers
	Generating function of Bernoulli numbers
	Von Staudt–Clausen Theorem
	Denominators of Bernoulli numbers
	Akiyama–Tanigawa algorithm
	Efficient code

	Bernoulli numbers and the zeta function at positive integers

