The Jordan-Holder Theorem

Jakob von Raumer

May 26, 2024

Abstract

This submission contains theories that lead to a formalization of the
proof of the Jordan-Hélder theorem about composition series of finite
groups. The theories formalize the notions of isomorphism classes of
groups, simple groups, normal series, composition series, maximal nor-
mal subgroups. Furthermore, they provide proofs of the second isomor-
phism theorem for groups, the characterization theorem for maximal
normal subgroups as well as many useful lemmas about normal sub-
groups and factor groups. The formalization is based on the work work
in my first AFP submission [vR14] while the proof of the Jordan-Hélder
theorem itself is inspired by course notes of Stuart Rankin [Ran05].

Contents

1 Facts about maximal normal subgroups 1

2 Normal series and Composition series 4
2.1 Preliminaries o 4
2.2 Normal Series 6
2.3 Composition Series oo 11

3 Isomorphism Classes of Groups 24

4 The Jordan-Ho6lder Theorem 26

theory MazimalNormalSubgroups
imports HOL— Algebra.Algebra
begin

1 Facts about maximal normal subgroups

A maximal normal subgroup of GG is a normal subgroup which is not con-
tained in other any proper normal subgroup of G.

locale maz-normal-subgroup = normal +

assumes proper: H # carrier G
assumes maz-normal: NJ. J < G = J # H = J # carrier G = - (H C
J)

Another characterization of maximal normal subgroups: The factor group is
simple.

theorem (in normal) maz-normal-simple-quotient:
assumes finite: finite (carrier Q)
shows maxz-normal-subgroup H G = simple-group (G Mod H)
proof
assume maz-normal-subgroup H G
then interpret mazH: maz-normal-subgroup H G.
show simple-group (G Mod H) unfolding simple-group-def simple-group-azioms-def
proof (intro conjl factorgroup-is-group alll impl disjCI)
have ¢t0: 0 < card (rcosets H)
by (metis gr-zerol lagrange-finite assms mult-is-0 order-gt-0-iff-finite sub-
group-axioms)
from maxH.proper finite have carrier (G Mod H) # {1¢ apod H} using
fact-group-trivial-iff by auto
hence 1 # order (G Mod H) using factorgroup-is-group group.order-one-triv-iff
by metis
with ¢gt0 show 1 < order (G Mod H) unfolding order-def FactGroup-def by
auto
next
fix A’
assume A'normal: A’ < G Mod H and A'nottriv: A" # {1¢ roa HY
define A where A = J A’
have A2: A < G using A'normal unfolding A-def by (rule factgroup-subgroup-union-normal)
have H € A’ using A'normal normal-imp-subgroup subgroup.one-closed un-
folding FactGroup-def by force
hence H C A unfolding A-def by auto
hence A1: H < (G(carrier := A))
by (simp add: A2 normal-azioms normal-invE(1) normal-restrict-supergroup)
have A3: A’ = rcosetqucar”»er = A) H
unfolding A-def using factgroup-subgroup-union-factor A'normal normal-imp-subgroup
by auto
from A1 interpret normalHA: normal H (G(carrier ;= A|) by metis
have H C A using normalHA.is-subgroup subgroup.subset by force
with A2 have A = H V A = carrier G using maxH.maz-normal by auto
thus A’ = carrier (G Mod H)
proof
assume A = H
hence carrier (G(carrier := A|) Mod H) = {1(G(|car1"ie'r .— A) Mod H)}
using cosets-finite subgroup-in-rcosets subset assms normalHA. fact-group-trivial-iff
by force
then have A’ = {14 p0a HY
using A3 unfolding FactGroup-def by simp
with A'nottriv show ?thesis..
next

assume A = carrier G
thus A’ = carrier (G Mod H) using A3 unfolding FactGroup-def by simp
qed
qed
next
assume simple: simple-group (G Mod H)
show maz-normal-subgroup H G
proof
from simple have carrier (G Mod H) # {1 ¢ proq gt unfolding simple-group-def
simple-group-axioms-def order-def by auto
with finite fact-group-trivial-iff show H # carrier G by auto
next
fix A
assume A: A 9 G A # H A # carrier G
show - H C A
proof
assume HA: H C A
hence H < (G(carrier := A)) by (metis A(1) inv-op-closed2 is-subgroup
normal-inv-iff normal-restrict-supergroup)
then interpret normalHA: normal H (G(carrier := A)) by simp
from finite have finiteA: finite A
by (meson A(1) normal-inv-iff finite-subset subgroup.subset)
have TCOS@tS(G(]carm’er = A)) H < G Mod H
by (simp add: A(1) HA normal-axioms normality-factorization)
with simple have TCOSELS(G carrier == A)) H={1¢ proa g}V TCOSELS G carrier == A))
H = carrier (G Mod H)
unfolding simple-group-def simple-group-azxioms-def by auto
thus Fulse
proof
assume rcosets g carrier = A) H = {1a Mod o}
with finiteA have H = A
using normalHA.fact-group-trivial-iff unfolding FactGroup-def by auto
with A(2) show ?thesis by simp
next
assume AHGH: TCOSELS Gy carrier == A) H = carrier (G Mod H)
have A = carrier G unfolding FactGroup-def RCOSETS-def
proof
show A C carrier G using A(1) normal-imp-subgroup subgroup.subset by
metis
next
show carrier G C A
proof
fix z
assume z: © € carrier G
hence H #> x € rcosets H unfolding RCOSETS-def by auto
with AHGH have H #> z € 7C0Sels 1| carrier == A) H unfolding
FactGroup-def by simp
then obtain 2z’ where z": 2z’ € A H #>x = H #>G(]carm'er = A) x’

unfolding RCOSETS-def by auto
hence H #> z = H #> z’ unfolding r-coset-def by auto
hence z € H #> x’ by (metis is-subgroup rcos-self x)
hence z € A #> z’ using HA unfolding r-coset-def by auto
thus z € A using z'(1) unfolding r-coset-def using subgroup.m-closed
A(1) normal-imp-subgroup by force
qed
qed
with A(3) show ?thesis by simp
qed
qed
qed
qed

end

theory CompositionSeries
imports

MazximalNormalSubgroups Secondary-Sylow.SndSylow
begin

hide-const (open) Divisibility.prime

2 Normal series and Composition series

2.1 Preliminaries

A subgroup which is unique in cardinality is normal:

lemma (in group) unique-sizes-subgrp-normal:
assumes fin: finite (carrier G)
assumes 3!Q. Q € subgroups-of-size q
shows (THE Q. Q € subgroups-of-size q) < G
proof —
from assms obtain @ where @ € subgroups-of-size q by auto
define @ where Q = (THE Q. Q € subgroups-of-size q)
with assms have Qsize: @ € subgroups-of-size q using thel by metis
hence QG: subgroup @ G and card@: card Q = ¢ unfolding subgroups-of-size-def
by auto
from QG have @ < G apply(rule normall)
proof
fix ¢
assume g: g € carrier G
hence invg: inv g € carrier G by (metis inv-closed)
with fin Qsize have conjugation-action q (inv g) Q € subgroups-of-size q by
(metis conjugation-is-size-invariant)
with g Qsize have (inv g) <# (Q #> inv (inv g)) € subgroups-of-size q
unfolding conjugation-action-def by auto

with invg g have inv g <# (Q #> g) = Q by (metis Qsize assms(2) inv-inv)
with QG QG g show Q #> g = g <# @Q by (rule conj-wo-inv)
qed
with @Q-def show ?thesis by simp
qed

A group whose order is the product of two distinct primes p and ¢ where
p < q has a unique subgroup of size ¢:

lemma (in group) pg-order-unique-subgrp:
assumes finite: finite (carrier G)
assumes orderG: order G = q * p
assumes primep: prime p and primeq: prime ¢ and pqg: p < q
shows 31Q. @ € (subgroups-of-size q)
proof —
from primep primeq pq have nqdvdp: — (q dvd p) by (metis less-not-refl3
prime-nat-iff)
define calM where calM = {s. s C carrier G A card s = q ~ 1}
define RelM where RelM = {(N1, N2). N1 € calM N N2 € calM A (3 g€ carrier
G. N1 = N2 #> ¢)}
interpret syl: snd-sylow G q 1 p calM RelM
unfolding snd-sylow-def sylow-def snd-sylow-axioms-def sylow-azxioms-def
using is-group primeq orderG finite ngdvdp calM-def RelM-def by auto
obtain @ where Q: Q € subgroups-of-size q by (metis (lifting, mono-tags)
mem-Collect-eq power-one-right subgroups-of-size-def syl.sylow-thm)
thus ?thesis
proof (rule ex1l)
fix P
assume P: P € subgroups-of-size q
have card (subgroups-of-size q) mod g = 1 by (metis power-one-right syl.p-sylow-mod-p)

moreover have card (subgroups-of-size q) dvd p by (metis power-one-right
syl.num-sylow-dvd-remainder)
then have card (subgroups-of-size q) = p V card (subgroups-of-size q) = 1
using primep by (auto simp add: prime-nat-iff)
ultimately have card (subgroups-of-size q¢) = 1 using pq
by auto
with Q P show P = @ by (auto simp:card-Suc-eq)
qed
qged

... And this unique subgroup is normal.

corollary (in group) pg-order-subgrp-normal:
assumes finite: finite (carrier G)
assumes orderG: order G = q x p
assumes primep: prime p and primeq: prime ¢ and pqg: p < ¢
shows (THE Q. Q € subgroups-of-size q) < G
using assms by (metis pg-order-unique-subgrp unique-sizes-subgrp-normal)

The trivial subgroup is normal in every group.

lemma (in group) trivial-subgroup-is-normal:

shows {1} < G
unfolding normal-def normal-axioms-def r-coset-def l-coset-def by (auto intro:
normall subgroupl simp: is-group)

2.2 Normal Series

We define a normal series as a locale which fixes one group G and a list
& of subsets of G’s carrier. This list must begin with the trivial subgroup,
end with the carrier of the group itself and each of the list items must be a
normal subgroup of its successor.

locale normal-series = group +
fixes &
assumes notempty: & # ||
assumes hd: hd & = {1}
assumes last: last & = carrier G
assumes normal: N\i. i + 1 < length & = (& ! i) < G(carrier := & ! (i +

1)

lemma (in normal-series) is-normal-series: normal-series G & by (rule normal-series-axioms)

For every group there is a "trivial" normal series consisting only of the group
itself and its trivial subgroup.

lemma (in group) trivial-normal-series:

shows normal-series G [{1}, carrier G|
unfolding normal-series-def normal-series-axioms-def
using is-group trivial-subgroup-is-normal by auto

We can also show that the normal series presented above is the only such
with a length of two:

lemma (in normal-series) length-two-unique:
assumes length & = 2
shows & = [{1}, carrier G]
proof(rule nth-equalityl)
from assms show length & = length [{1}, carrier G| by auto
next
show & ! i = [{1}, carrier G] ! i if i: { < length & for i
proof —
have i = 0 V i = 1 using that assms by auto
thus & ! i = [{1}, carrier G] ! ¢
proof (rule disjE)
assume i: ¢ = 0
hence & | i = hd & by (metis hd-conv-nth notempty)
thus & ! { = [{1}, carrier G] ! ¢ using hd i by simp
next
assume i: { = |
with assms have & ! i = last & by (metis diff-add-inverse last-conv-nth
nat-1-add-1 notempty)

thus & ! { = [{1}, carrier G] ! i using last i by simp
qed
qed
qed

We can construct new normal series by expanding existing ones: If we append
the carrier of a group G to a normal series for a normal subgroup H < G
we receive a normal series for G.

lemma (in group) normal-series-extend:
assumes normal: normal-series (G(carrier := H)) 9
assumes HG: H 1 G
shows normal-series G (9 @ [carrier G))
proof —
from normal interpret normalH: normal-series (G(carrier .= HJ|) 9.
from normalH.hd have hd $ = {1} by simp
with normalH.notempty have hdTriv: hd ($ Q [carrier G]) = {1} by (metis
hd-append?2)
show ?thesis unfolding normal-series-def normal-series-axioms-def using is-group
proof auto
fix z
assume z € hd ($ Q [carrier G])
with hdTriv show z = 1 by simp
next
from hdTriv show 1 € hd ($ Q [carrier G]) by simp
next
fix i
assume i: i < length $
show (9 Q@ [carrier G]) ! i < G(carrier :== (9 Q [carrier G]) | Suc i)
proof (cases i + 1 < length $)
case True
with normalH.normal have $! i < G(carrier := $H ! (i + 1) by auto
with ¢ have ($ Q [carrier G]) ! i < G(carrier :== $! (i + 1)) using
nth-append by metis
with True show ($ @ [carrier G]) | i < G(carrier := ($ Q [carrier G]) !
(Suc 7)) using nth-append Suc-eq-plusl by metis
next
case Fulse
with ¢ have i2: ¢ + 1 = length $H by simp
from ¢ have ($ Q [carrier G]) ! i = $ | i by (metis nth-append)
also from i2 normalH .notempty have ... = last) by (metis add-diff-cancel-right’
last-conv-nth)
also from normalH .last have ... = H by simp
finally have (£ Q [carrier G]) ! i = H.
moreover from 2 have ($ Q [carrier G]) ! (i + 1) = carrier G by (metis
nth-append-length)
ultimately show ?thesis using HG by auto
qed
qed
qed

All entries of a normal series for G are subgroups of G.

lemma (in normal-series) normal-series-subgroups:
shows i < length & = subgroup (& ! i) G
proof —
have i + 1 < length & = subgroup (& ! i) G
proof (induction length & — (i + 2) arbitrary: 7)
case 0
hence i: i + 2 = length & by simp
hence ii: i + 1 = length & — 1 by force
from 7 normal have & | i < G(carrier := & ! (i + 1)) by auto
with 4 last notempty show subgroup (& ! i) G using last-conv-nth nor-
mal-imp-subgroup by fastforce
next
case (Suc k)
from Suc(3) normal have i: subgroup (& ! i) (G(carrier := & ! (i + 1))
using normal-imp-subgroup by auto
from Suc(2) have k: k = length & — (({ + 1) + 2) by arith
with Suc have subgroup (& ! (i + 1)) G by simp
with ¢ show subgroup (6! i) G
using incl-subgroup by blast
qed
moreover have i + 1 = length & = subgroup (& ! i) G
using last notempty last-conv-nth by (metis add-diff-cancel-right’ subgroup-self)
ultimately show { < length & = subgroup (& ! i) G by force
qed

The second to last entry of a normal series is a normal subgroup of G.

lemma (in normal-series) normal-series-snd-to-last:

shows & ! (length & — 2) < G
proof (cases 2 < length &)

case Fulse

with notempty have length: length ® = 1 by (metis Suc-eg-plusi lel length-0-conv
less-2-cases plus-nat.add-0)

with hd have & ! (length & — 2) = {1} using hd-conv-nth notempty by auto

with length show %thesis by (metis trivial-subgroup-is-normal)
next

case True

hence (length & — 2) + 1 < length & by arith

with normal last have & | (length & — 2) < G(carrier := & | ((length & — 2)
+ 1)) by auto

have 1 + (1 + (length & — (1 + 1))) = length &

using True le-add-diff-inverse by presburger
then have & ! (length & — 2) < G(carrier := & ! (length & — 1))
by (metis «& | (length & — 2) < G (carrier :== & | (length & — 2 + 1))

add.commute add-diff-cancel-left’ one-add-one)

with notempty last show ?thesis using last-conv-nth by force
qed

Just like the expansion of normal series, every prefix of a normal series is

again a normal series.

lemma (in normal-series) normal-series-prefiz-closed:
assumes 7 < length & and 0 < ¢
shows normal-series (G(carrier := & | (i — 1)) (take i &)
unfolding normal-series-def normal-series-axioms-def
using assms
apply (auto simp: hd del:equalityl)
apply (simp add: is-group normal-series-subgroups subgroup.subgroup-is-group)
apply (simp add: last-conv-nth min.absorb2 notempty)
using assms(1) normal apply simp
done

If a group’s order is the product of two distinct primes p and ¢, where p <
g, we can construct a normal series using the only subgroup of size q.

lemma (in group) pg-order-normal-series:

assumes finite: finite (carrier Q)

assumes orderG: order G = q * p

assumes primep: prime p and primeq: prime q¢ and pg: p < ¢

shows normal-series G [{1}, (THE H. H € subgroups-of-size q), carrier G|
proof —

define H where H = (THE H. H € subgroups-of-size q)

with assms have HG: H < G by (metis pg-order-subgrp-normal)

then interpret groupH: group G(carrier := H| unfolding normal-def by
(metis subgroup-imp-group)

have normal-series (G(carrier :== H|)) [{1}, H| using groupH .trivial-normal-series
by auto

with HG show ?thesis unfolding H-def by (metis append-Cons append-Nil
normal-series-extend)
qed

The following defines the list of all quotient groups of the normal series:

definition (in normal-series) quotients
where quotients = map (Ai. G(carrier :== & ! (i + 1)) Mod & ! i) [0..<((length
®) — 1)

The list of quotient groups has one less entry than the series itself:

lemma (in normal-series) quotients-length:

shows length quotients + 1 = length &
proof —

have length quotients + 1 = length [0..<((length &) — 1)] + I unfolding
quotients-def by simp

also have ... = (length & — 1) 4+ 1 by (metis diff-zero length-upt)

also with notempty have ... = length &

by (simp add: ac-simps)

finally show ?thesis .

qed

lemma (in normal-series) last-quotient:

assumes length & > 1
shows last quotients = G Mod & | (length & — 1 — 1)
proof —
from assms have Isimp: length & — 1 — 1 + 1 = length & — 1 by auto
from assms have quotients # [] unfolding quotients-def by auto
hence last quotients = quotients ! (length quotients — 1) by (metis last-conv-nth)

also have ... = quotients ! (length & — 1 — 1) by (metis add-diff-cancel-left’
quotients-length add.commute)

also have ... = G(carrier := & ! ((length & — 1 — 1) + 1)) Mod & ! (length
&—1—1)

unfolding quotients-def using assms by auto

also have ... = G(carrier := & ! (length & — 1)) Mod & ! (length & — 1 —
1) using lsimp by simp

also have ... = G Mod & ! (length & — 1 — 1) using last last-conv-nth notempty
by force

finally show ?thesis .
qed

The next lemma transports the constituting properties of a normal series
along an isomorphism of groups.

lemma (in normal-series) normal-series-iso:
assumes H: group H
assumes iso: ¥ € iso G H
shows normal-series H (map (image ¥) &)
apply (simp add: normal-series-def normal-series-azioms-def)
using H notempty apply simp
proof (rule conjI)
from H is-group iso have group-hom: group-hom G H ¥ unfolding group-hom-def
group-hom-azxioms-def iso-def by auto
have hd (map (image ¥) &) = ¥ ‘ {1} by (metis hd-map hd notempty)

also have ... = {¥ 1} by (metis image-empty image-insert)
also have ... = {1y} using group-hom group-hom.hom-one by auto
finally show hd (map (() ¥) &) = {1p}.

next

show last (map ((¥) ¥) &) = carrier H A (Vi. Suc i < length & — U ‘& |4
< H(carrier := ¥ ‘& ! Suc i)
proof (auto del: equalityl)
have last (map (() ¥) 8) = U ‘ (carrier G) using last last-map notempty by
metis

also have ... = carrier H using iso unfolding iso-def bij-betw-def by simp
finally show last (map ((9) ¥) &) = carrier H.

next
fix ¢

assume i: Suc i < length ®
hence norm: & ! i < G(carrier := & ! Suc i) using normal by simp
moreover have restrict U (& | Suc i) € iso (G(carrier := & | Suc 1))
(H(carrier :== ¥ ‘& | Suc i)
by (metis H i is-group iso iso-restrict normal-series-subgroups)
moreover have group (G(carrier :== & ! Suc i) by (metis i normal-series-subgroups

10

subgroup-imp-group)
moreover hence subgroup (& ! Suc i) G by (metis i normal-series-subgroups)
hence subgroup (¥ ‘& | Suc i) H
by (simp add: H iso subgroup.iso-subgroup)
hence group (H(carrier := ¥ ‘& | Suc i))) by (metis H subgroup.subgroup-is-group)
ultimately have restrict ¥ (& ! Suc i) ‘& i < H(carrier := ¥ ‘& ! Suc i)
using is-group H iso-normal-subgroup by (auto cong del: image-cong-simp)
moreover from norm have & | i C & ! Suc i unfolding normal-def sub-
group-def by auto
hence {y. 3z€® ! i. y = (if x € & | Suc i then U z else undefined)} = {y.
Jze® ! i. y = U z} by auto
ultimately show U ‘& ! ¢ < H(carrier := ¥ ‘& ! Suc i|) unfolding restrict-def
image-def by auto
qed
qed

2.3 Composition Series

A composition series is a normal series where all consecutive factor groups
are simple:

locale composition-series = normal-series +
assumes simplefact: \i. i + 1 < length & = simple-group (G(carrier := &
V(i + 1)) Mod & ! i)

lemma (in composition-series) is-composition-series:
shows composition-series G &
by (rule composition-series-axioms)

A composition series for a group G has length one if and only if G is the
trivial group.

lemma (in composition-series) composition-series-length-one:
shows (length & = 1) = (& = [{1}])
proof
assume length & = 1
with hd have length & = length [{1}] A (Vi < length &. & ! { = [{1}] ! i) using
hd-conv-nth notempty by force
thus & = [{1}] using list-eg-iff-nth-eq by blast
next
assume & = [{1}]
thus length & = 1 by simp
qged

lemma (in composition-series) composition-series-triv-group:
shows (carrier G = {1}) = (6 = [{1}])
proof
assume G: carrier G = {1}
have length & = 1
proof (rule ccontr)

11

assume length & # 1
with notempty have length: length & > 2 by (metis Suc-eq-plus! length-0-conv
less-2-cases not-less plus-nat.add-0)
with simplefact hd hd-conv-nth notempty have simple-group (G(carrier := &
' 1)) Mod {1}) by force
moreover have SG: subgroup (& ! 1) G using length normal-series-subgroups
by auto
hence group (G(carrier :== &1 1)) by (metis subgroup-imp-group)
ultimately have simple-group (G(carrier := & ! 1)) using group.trivial-factor-iso
simple-group.iso-simple by fastforce
moreover from SG G have carrier (G(carrier :== & | 1)) = {1} unfolding
subgroup-def by auto
ultimately show Fulse using simple-group.simple-not-triv by force
qed
thus & = [{1}] by (metis composition-series-length-one)
next
assume & = [{1}]
with last show carrier G = {1} by auto
qed

The inner elements of a composition series may not consist of the trivial
subgroup or the group itself.

lemma (in composition-series) inner-elements-not-triv:

assumes i + 1 < length &

assumes i > (

shows & ! ¢ # {1}
proof

from assms have (i — 1) + 1 < length & by simp

hence simple: simple-group (G(carrier := & ! (i — 1) + 1)) Mod & ! (i — 1))
using simplefact by auto

assume i: & | ¢ = {1}

moreover from assms have (i — 1) + 1 = i by auto

ultimately have G(carrier := & ! ((i — 1) + 1)) Mod & ! (i — 1) = G(carrier
= {1}) Mod & ! (i — 1) using ¢ by auto

hence order (G(carrier := & ! ((i — 1) + 1)) Mod & | (i — 1)) = I unfolding
FactGroup-def order-def RCOSETS-def by force

thus Fulse using i simple unfolding simple-group-def simple-group-azioms-def
by auto
qed

A composition series of a simple group always is its trivial one.

lemma (in composition-series) composition-series-simple-group:
shows (simple-group G) = (& = [{1}, carrier G])
proof
assume & = [{1}, carrier G|
with simplefact have simple-group (G Mod {1}) by auto
moreover have the-elem € iso (G Mod {1}) G by (rule trivial-factor-iso)
ultimately show simple-group G by (metis is-group simple-group.iso-simple)
next

12

assume simple: simple-group G
have length & > 1
proof (rule ccontr)
assume — 1 < length &
hence length & = 1 by (simp add: Suc-lel antisym notempty)
hence carrier G = {1} using hd last by (metis composition-series-length-one
composition-series-triv-group)
hence order G = 1 unfolding order-def by auto
with simple show False unfolding simple-group-def simple-group-azioms-def
by auto
qed
moreover have length & < 2
proof (rule ccontr)
define k£ where k = length & — 2
assume — (length & < 2)
hence ¢t2: length & > 2 by simp
hence ksmall: £ + 1 < length & unfolding k-def by auto
from gt2 have carrier: & ! (k + 1) = carrier G using notempty last last-conv-nth
k-def
by (metis Nat.add-diff-assoc Nat.diff-cancel <— length & < 2» add.commute
nat-le-linear one-add-one)
from normal ksmall have & ! k < G(carrier := & ! (k + 1)]) by simp
from simplefact ksmall have simplek: simple-group (G(carrier := & ! (k + 1))
Mod & ! k) by simp
from simplefact ksmall have simplek’: simple-group (G(carrier == & ! ((k —
1)+ 1)) Mod & ! (k — 1)) by auto
have & | k < G using carrier k-def gt2 normal ksmall by force
with simple have (& | k) = carrier G V (& | k) = {1} unfolding sim-
ple-group-def simple-group-axioms-def by simp
thus Fulse
proof (rule disjE)
assume & ! k = carrier G
hence G(carrier := & ! (k + 1)) Mod & ! k = G Mod (carrier G) using
carrier by auto
with simplek self-factor-not-simple show False by auto
next
assume & | k= {1}
with ksmall k-def gt2 show Fualse using inner-elements-not-triv by auto
qed
qed
ultimately have length & = 2 by simp
thus & = [{1}, carrier G] by (rule length-two-unique)
qed

Two consecutive elements in a composition series are distinct.

lemma (in composition-series) entries-distinct:
assumes finite: finite (carrier G)
assumes i: i + 1 < length &
shows 6 | i A& (i 4+ 1)

13

proof
from finite have finite (& ! (i + 1))
using ¢ normal-series-subgroups subgroup.subset rev-finite-subset by metis
hence fin: finite (carrier (G(carrier :== & ! (i + 1)))) by auto
from ¢ have norm: & ! ¢ < (G(carrier := & ! (i + 1)) by (rule normal)
assume & ! i =& ! (i + 1)
hence & ! i = carrier (G(carrier := & ! (i + 1)))) by auto
hence carrier ((G(carrier := (& ! (i + 1))))) Mod (& !¢)) = {I(G(Icarrier =& | (i + 1)) Mod & ! it
using norm fin normal.fact-group-trivial-iff by metis
hence — simple-group ((G(carrier := (& ! (i + 1))])) Mod (& ! 7)) by (metis
stmple-group.simple-not-triv)
thus False by (metis i simplefact)
qed

The normal series for groups of order p * ¢ is even a composition series:

lemma (in group) pg-order-composition-series:
assumes finite: finite (carrier G)
assumes orderG: order G = q * p
assumes primep: prime p and primeq: prime ¢ and pq: p < ¢
shows composition-series G [{1}, (THE H. H € subgroups-of-size q), carrier G|
unfolding composition-series-def composition-series-axioms-def
apply(auto)
using assms apply(rule pg-order-normal-series)
proof —
define H where H = (THE H. H € subgroups-of-size q)
from assms have exi: 31Q. Q € (subgroups-of-size q) by (auto simp: pq-order-unique-subgrp)
hence Hsize: H € subgroups-of-size q unfolding H-def using thel’ by metis
hence HsubG: subgroup H G unfolding subgroups-of-size-def by auto
then interpret Hgroup: group G(carrier := H|) by (metis subgroup-imp-group)
fix ¢
assume i < Suc (Suc 0)
hence i = 0 V i = 1 by auto
thus simple-group (G(carrier := [H, carrier G) ! i) Mod [{1}, H, carrier G] ! i)

proof
assume i: ¢ =
from Hsize have orderH: order (G(carrier := H|)) = ¢ unfolding sub-

groups-of-size-def order-def by simp
hence order-eq-q: order (G(carrier :== H|) Mod {1}) = ¢
using Hgroup.trivial-factor-iso iso-same-order by auto
have normal {1} (G(carrier := HY))
by (simp add: HsubG group.normal-restrict-supergroup subgroup.one-closed
trivial-subgroup-is-normal)
hence group (G(carrier := H|) Mod {1}) by (metis normal.factorgroup-is-group)
with orderH primeq have simple-group (G(carrier :== H|) Mod {1})
by (metis order-eq-q group.prime-order-simple)
with ¢ show ?thesis by simp
next
assume i: | = |
from assms exi have H <1 G unfolding H-def by (metis pg-order-subgrp-normal)

14

hence groupGH: group (G Mod H) by (metis normal.factorgroup-is-group)
from primeq have g # 0 by (metis not-prime-0)
from HsubG finite orderG have card (rcosets H) * card H = q * p unfolding
subgroups-of-size-def using lagrange by simp
with Hsize have card (rcosets H) x ¢ = q * p unfolding subgroups-of-size-def
by simp
with <q # 0> have card (rcosets H) = p by auto
hence order (G Mod H) = p unfolding order-def FactGroup-def by auto
with groupGH primep have simple-group (G Mod H) by (metis group.prime-order-simple)
with ¢ show ?thesis by auto
qed
qed

Prefixes of composition series are also composition series.

lemma (in composition-series) composition-series-prefiz-closed:
assumes 7 < length & and 0 < ¢
shows composition-series (G(carrier :== & | (i — 1)) (take i 8)
unfolding composition-series-def composition-series-axioms-def
proof auto
from assms show normal-series (G(carrier := &1 (i — Suc 0))) (take i &) by
(metis One-nat-def normal-series-prefiz-closed)
next
fix j
assume j: Suc j < length & Suc j < @
with simplefact show simple-group (G(carrier := & ! Suc j) Mod & ! j) by
(metis Suc-eq-plusl)
qed

The second element in a composition series is simple group.

lemma (in composition-series) composition-series-snd-simple:

assumes 2 < length &

shows simple-group (G(carrier := & | 1))
proof —

from assms interpret compTake: composition-series G(carrier := & | 1)) take
2 & by (metis add-diff-cancel-right’ composition-series-prefiz-closed one-add-one
zero-less-numeral)

from assms have length (take 2 &) = 2 by (metis add-diff-cancel-right’ ap-
pend-take-drop-id diff-diff-cancel length-append length-drop)

hence (take 2 &) = [{I(G’(]carrier — & JD)}’ carrier (G(carrier := & | 1)))]
by (rule compTake.length-two-unique)

thus ?thesis by (metis comp Take.composition-series-simple-group)
qed

As a stronger way to state the previous lemma: An entry of a composition
series is simple if and only if it is the second one.

lemma (in composition-series) composition-snd-simple-iff:
assumes i < length &
shows (simple-group (G(carrier == & i) = (i = 1)

15

proof

assume simpi: simple-group (G(carrier := & ! i)

hence & ! i # {1} using simple-group.simple-not-triv by force

hence i # 0 using hd hd-conv-nth notempty by auto

then interpret compTake: composition-series G(carrier := & | i) take (Suc)
[

using assms composition-series-prefiz-closed by (metis diff-Suc-1 less-eq-Suc-le

zero-less-Suc)

from simpi have (take (Suc i) &) = [{1 G(earrier == ® | iD}’ carrier (G(carrier
=6 1))

by (metis comp Take.composition-series-simple-group)

hence length (take (Suc i) &) = 2 by auto

hence min (length &) (Suc i) = 2 by (metis length-take)

with assms have Suc i = 2 by force

thus i = 1 by simp
next

assume i: ¢ = |

with assms have 2 < length & by simp

with i show simple-group (G(carrier := & ! i|)) by (metis composition-series-snd-simple)
qed

The second to last entry of a normal series is not only a normal subgroup
but actually even a mazimal normal subgroup.

lemma (in composition-series) snd-to-last-max-normal:
assumes finite: finite (carrier Q)
assumes length: length & > 1
shows maz-normal-subgroup (& ! (length & — 2)) G
unfolding maz-normal-subgroup-def max-normal-subgroup-axioms-def
proof (auto del: equalityl)
show & ! (length & — 2) < G by (rule normal-series-snd-to-last)
next
define G’ where G' = & | (length & — 2)
from length have length21: length & — 2 + 1 = length & — 1 by arith
from length have length & — 2 4+ 1 < length & by arith
with simplefact have simple-group (G(carrier :== & ! ((length & — 2) + 1))
Mod G') unfolding G’-def by auto
with length21 have simple-last: simple-group (G Mod G') using last notempty
last-conv-nth by fastforce
{
assume snd-to-last-eq: G’ = carrier G
hence carrier (G Mod G') = {14 00 o'}
using normal-series-snd-to-last finite normal.fact-group-trivial-iff unfolding
G'-def by metis
with snd-to-last-eq have — simple-group (G Mod G') by (metis self-factor-not-simple)
with simple-last show False unfolding G'-def by auto
}
{
have G’'G: G’ < G unfolding G’-def by (rule normal-series-snd-to-last)
fix J

16

assume J: J < G J # G' J # carrier G G' C J
hence JG'GG" rCosels(G carrier = J)) G’ < G Mod G' wusing normal-

ity-factorization normal-series-snd-to-last unfolding G’-def by auto
from G'G J(1,4) have G'J: G’ < (G(carrier :== J))) by (metis normal-imp-subgroup
normal-restrict-supergroup)
from finite J(1) have finJ: finite J by (auto simp: normal-imp-subgroup
subgroup-finite)
from JG'GG’ simple-last have TCOSELS G carrier == J|) G'={1¢ poa a't V
TCOSELS oy carrier = J) G’ = carrier (G Mod G”)
unfolding simple-group-def simple-group-axioms-def by auto
thus Fulse
proof
assume rcosetsGQcarm’er =J) G'=11G Mod '}
hence 7"cosetSG(lcar‘m’er = J) G' = {1(Gqca7’rier = J))) Mod '} unfolding
FactGroup-def by simp
hence G’ = J using G'J finJ normal.fact-group-trivial-iff unfolding Fact-
Group-def by fastforce
with J(2) show Fulse by simp
next
assume facts-eq: TCOSELS ¢ carrier == J) G' = carrier (G Mod G’)
have J = carrier G
proof
show J C carrier G using J(1) normal-imp-subgroup subgroup.subset by
force
next
show carrier G C J
proof
fix z
assume z: z € carrier G
hence G’ #> z € carrier (G Mod G') unfolding FactGroup-def
RCOSETS-def by auto
hence G' #> z € rcosetqucawier = J) G’ using facts-eq by auto
then obtain j where j: j € J G’ #> x = G’ #> j unfolding RCOSETS-def
r-coset-def by force
hence © € G' #> j using G'G normal-imp-subgroup x repr-independenceD
by fastforce
then obtain g’ where ¢ ¢’ € G’ z = ¢’ ® j unfolding r-coset-def by
auto
hence ¢’ € J using G'J normal-imp-subgroup subgroup.subset by force
with ¢'(2) j(1) show z € J using J(I) normal-imp-subgroup sub-
group.m-closed by fastforce
qed
qed
with J(3) show Fualse by simp
qed

}
qed

17

For the next lemma we need a few facts about removing adjacent duplicates.

lemma remdups-adj-obtain-adjacency:
assumes i + 1 < length (remdups-adj xs) length s > 0
obtains j where j + 1 < length zs
(remdups-adj xs) ! i = zs ! j (remdups-adj xs) ! (i + 1) =axs ! (j + 1)
using assms proof (induction zs arbitrary: i thesis)
case Nil
hence Fulse by (metis length-greater-0-conv)
thus thesis..
next
case (Cons z zs)
then have zs # [|
by auto
then obtain y zs’ where zs: xs = y # xs’
by (cases xs) blast
from <zs # []» have lenzs: length zs > 0 by simp
from zs have rem: remdups-adj (x # zs) = (if © = y then remdups-adj (y #
xs’) else © # remdups-adj (y # zs’)) using remdups-adj.simps(3) by auto
show thesis
proof (cases ¢ = y)
case True
with rem zs have rem?2: remdups-adj (z # xs) = remdups-adj xs by auto
with Cons(3) have i + 1 < length (remdups-adj xs) by simp
with Cons.IH lenzs obtain k where j: k + 1 < length zs remdups-adj xs ! ¢
=uas!k
remdups-adj zs ! (i + 1) = zs ! (k + 1) by auto
thus thesis using Cons(2) rem2 by auto
next
case Fulse
with rem zs have rem2: remdups-adj (z # xs) = z # remdups-adj zs by auto
show thesis
proof (cases 1)
case (
have 0 + 1 < length (z # xs) using lenxs by auto
moreover have remdups-adj (x # xs) ! i = (x # xs) ! 0
proof —
have remdups-adj (z # xs) ! i = (z # remdups-adj (y # zs’)) ! 0 using zs
rem2 0 by simp

also have ... = z by simp

also have ... = (z # zs) ! 0 by simp

finally show ?thesis.
qed
moreover have remdups-adj (x # xs) ! (i + 1) = (x # zs) ! (0 + 1)
proof —

have remdups-adj (z # xzs) ! (i + 1) = (z # remdups-adj (y # xzs’)) ! 1
using zs rem?2 0 by simp
also have ... = remdups-adj (y # zs’) ! 0 by simp
also have ... = (y # (remdups (y # zs’))) ! 0 by (metis nth-Cons’
remdups-adj-Cons-alt)

18

also have ... = y by simp

also have ... = (z # xs) ! (0 + 1) unfolding zs by simp
finally show ?thesis.
qed
ultimately show thesis by (rule Cons.prems(1))
next

case (Suc k)

with Cons(3) have k + 1 < length (remdups-adj (z # zs)) — 1 by auto

also have ... < length (remdups-adj xs) + 1 — 1 by (metis One-nat-def
le-refl list.size(4) rem?2)

also have ... = length (remdups-adj xs) by simp

finally have k + 1 < length (remdups-adj xs).

with Cons.IH lenzs obtain j where j: j + 1 < length xs remdups-adj xs | k
=uas!j

remdups-adj xs ! (k + 1) = xs! (j + 1) by auto
from j(1) have Suc j + 1 < length (x # xs) by simp
moreover have remdups-adj (x # xs) ! i = (z # xs) ! (Suc j)

proof —
have remdups-adj (x # zs) | i = (z # remdups-adj zs) ! i using rem2 by
stmp
also have ... = (remdups-adj zs) | k using Suc by simp
also have ... = zs | j using j(2) .
also have ... = (z # xs) ! (Suc j) by simp
finally show ?thesis .
qed
moreover have remdups-adj (x # xs) ! (i + 1) = (z # xs) | (Sucj + 1)
proof —

have remdups-adj (x # zs) ! (i + 1) = (z # remdups-adj xs) ! (i + 1)
using rem?2 by simp

also have ... = (remdups-adj zs) ! (k + 1) using Suc by simp
also have ... = zs ! (j + 1) using j(3).
also have ... = (z # zs) ! (Suc j + 1) by simp
finally show ?thesis.

qed

ultimately show thesis by (rule Cons.prems(1))

qed
qged

qged

lemma hd-remdups-adj[simp]: hd (remdups-adj zs) = hd xs
by (induction zs rule: remdups-adj.induct) simp-all

lemma remdups-adj-adjacent:

Suc i < length (remdups-adj xs) = remdups-adj s ! i # remdups-adj zs ! Suc i
proof (induction xs arbitrary: i rule: remdups-adj.induct)

case (3 z y xs 1)

thus ?case by (cases i, cases © = y) (simp, auto simp: hd-conv-nth[symmetric])

qed simp-all

Intersecting each entry of a composition series with a normal subgroup of G

19

and removing all adjacent duplicates yields another composition series.

lemma (in composition-series) intersect-normal:
assumes finite: finite (carrier G)
assumes KG: K < G
shows composition-series (G(carrier .= K|)) (remdups-adj (map (\H. K N H)
®))
unfolding composition-series-def composition-series-axioms-def normal-series-def
normal-series-axioms-def
apply (auto simp only: conjl del: equalityl)
proof —
show group (G(carrier :== K|)) using KG normal-imp-subgroup subgroup-imp-group
by auto
next
— Show, that removing adjacent duplicates doesn’t result in an empty list.
assume remdups-adj (map ((N) K) &) = ||
hence map ((N) K) & =[] by (metis remdups-adj-Nil-iff)

hence ® = [| by (metis Nil-is-map-conv)
with notempty show Fulse..
next

— Show, that the head of the reduced list is still the trivial group

have & = {1} # tl & using notempty hd by (metis list.sel(1,3) neg-Nil-conv)

hence map ((N) K) & = map ((N) K) ({1} # tl &) by simp

hence remdups-adj (map ((N) K) &) = remdups-adj ((K N {1}) # (map ((N)
K) (t1 ®))) by simp

also have ... = (K N {1}) # #l (remdups-adj (K N {1}) # (map ((N) K) (¢
®))) by simp

finally have hd (remdups-adj (map ((N) K) &)) = K N {1} using list.sel(1)
by metis

thus hd (remdups-adj (map ((N) K) &)) = {1GqCarrier — KD}

using KG normal-imp-subgroup subgroup.one-closed by force

next

— Show that the last entry is really K N G. Since we don’t have a lemma ready
to talk about the last entry of a reduced list, we reverse the list twice.

have rev & = (carrier G) # tl (rev ®) by (metis list.sel(1,3) last last-rev
neq-Nil-conv notempty rev-is-Nil-conv rev-rev-ident)

hence rev (map ((N) K) &) = map ((N) K) ((carrier G) # tl (rev &)) by (metis
rev-map)

hence rev: rev (map ((N) K) &) = (K N (carrier G)) # (map ((N) K) (¢ (rev
®))) by simp

have last (remdups-adj (map ((N) K) &)) = hd (rev (remdups-adj (map ((N) K)
®)))

by (metis hd-rev map-is-Nil-conv notempty remdups-adj-Nil-iff)

also have ... = hd (remdups-adj (rev (map ((N) K) &))) by (metis remdups-adj-rev)

also have ... = hd (remdups-adj ((K N (carrier G)) # (map ((N) K) (¢ (rev
®))))) by (metis rev)

also have ... = hd ((K N (carrier G)) # (remdups-adj ((K N (carrier G)) #
(map ((N) K) (t (rev &)))))) by (metis list.sel(1) remdups-adj-Cons-alt)

also have ... = K using KG normal-imp-subgroup subgroup.subset by force

finally show last (remdups-adj (map ((N) K) &)) = carrier (G(carrier := K))

20

by auto
next
— The induction step, using the second isomorphism theorem for groups.
fix j
assume j: j + 1 < length (remdups-adj (map ((N) K) &))
have KGnotempty: (map ((N) K) &) # [| using notempty by (metis Nil-is-map-conv)
with j obtain ¢ where i: ¢ + 1 < length (map ((N) K) &)
(remdups-adj (map ((N) K) &)) ! 5= (map (N) K) &) 1 ¢
(remdups-adj (map ((N) K) &) (j+ 1) = (map (N) K) &) ! (i + 1)
using remdups-adj-obtain-adjacency by force
from i(1) have i i + 1 < length & by (metis length-map)
hence GiSi: & | i < G(carrier :== & ! (i + 1)|) by (metis normal)
hence GiSi": & ! i C & ! (i + 1) using normal-imp-subgroup subgroup.subset
by force
from ¢’ have finGSi: finite (& ! (i + 1)) using normal-series-subgroups finite
by (metis subgroup-finite)
from GiSi KG i’ normal-series-subgroups have GSiKnormGSi: & | (i + 1) N K
< G(carrier :== & (i + 1))
using second-isomorphism-grp.normal-subgrp-intersection-normal
unfolding second-isomorphism-grp-def second-isomorphism-grp-axzioms-def by
auto
with GiSi have & ! i N (& ! (i + 1) N K) < G(carrier := & ! (i + 1))
by (metis group.normal-subgroup-intersect group.subgroup-imp-group i’ is-group
is-normal-series normal-series.normal-series-subgroups)
hence K N (B! iN&! (i + 1)) < G(carrier := & | (i + 1)) by (metis
inf-commute inf-left-commute)
hence KGinormGSi: K N & | i 9 G(carrier :== & ! (i + 1)]) using GiSi’ by
(metis le-iff-inf)
moreover have K N & 1 { C K N& ! (i + 1) using GiSi’ by auto
moreover have groupGSi: group (G(carrier :== & | (i + 1)) using i nor-
mal-series-subgroups subgroup-imp-group by auto
moreover have subKGSiGSi: subgroup (K N & ! (i + 1)) (G(carrier := & ! (i
+ 1)) by (metis GSiKnormGSi inf-sup-aci(1) normal-imp-subgroup)
ultimately have fstgoal: K N & ! i < G(carrier := & ! (i + 1), carrier :== K
NG (i+ 1))
using group.normal-restrict-supergroup by force
thus remdups-adj (map ((N) K) &) ! j < G(carrier := K, carrier := remdups-adj
(map ((N) K) &) ! (j + 1))
using i by auto
from simplefact have Gisimple: simple-group (G(carrier := & | (i + 1)) Mod
& ! ¢) using i’ by simp
hence Gimaxz: maz-normal-subgroup (& ! ©) (G(carrier := & | (i + 1))
using normal.maz-normal-simple-quotient GiSi finGSi by force
from GSiKnormGSi GiSi have & ! § <#>Gﬂcarrier =61+ 1)) Sl (i+1)
N K < (G(carrier :== & ! (i + 1))
using groupGSi group.normal-subgroup-set-mult-closed set-mult-consistent by
fastforce
hence & | i <#> & ! (i + 1) N K < G(carrier := & | (i + 1)) unfolding
set-mult-def by auto

21

hence & | i <#> KN & ! (i + 1) < G(carrier := & ! (i + 1)) using
inf-commute by metis
moreover have & | i C & ! ¢ <#>GqCarm’er =& (i + 1)) Kne&l(i+1)
using second-isomorphism-grp. H-contained-in-set-mult
unfolding second-isomorphism-grp-def second-isomorphism-grp-azioms-def
using subKGSiGSi GiSi normal-imp-subgroup by fastforce
hence ! i C & ! i <#> KN & ! (i + 1) unfolding set-mult-def by auto
ultimately have KGdisj: 8 1 i <#> KNG ! (i+ 1)=& iV B! i<#>K
NGl (i+1)=6!1(i+1)
using Gimaz unfolding maz-normal-subgroup-def maz-normal-subgroup-axioms-def
by auto
obtain ¢ where ¢ € iso (G(carrier .= KN & ! (i + 1)) Mod (&!in (KN
&1 (i + 1))
(G(carrier := &1 ¢ <#>G00arrier =olG+1) KNG P+ 1))
Mod & ! 7)
using second-isomorphism-grp.normal-intersection-quotient-isom
unfolding second-isomorphism-grp-def second-isomorphism-grp-azxioms-def
using GiSi subKGSiGSi normal-imp-subgroup by fastforce
hence ¢ € iso (G(carrier := KN & ! (i+ 1)) Mod (KNG ! (i +
(G(carrier .= & ! ¢ <H#>G(carrier =& ! (i + 1)) KNG ! (i +
1)) Mod & ! 1)
by (metis inf-commute)
hence ¢ € iso (G(carrier = KN & ! (i + 1)) Mod (KN (B! (i + 1)N&!
i)))

Mod & ! 7)
by (metis Int-assoc)
hence ¢ € iso (G(carrier .= KN & ! (i + 1)) Mod (K N & ! 7))
(G(carrier := & 1 ¢ <H#>Q(carrier =& | (i + 1)) KNS M@+ 1))

(G(carrier := & 1 ¢ <#>G(|carm'er =61+ 1)) ENG M@+ 1))

Mod & ! 1)
by (metis GiSi’ Int-absorb2 Int-commute)
hence ¢: ¢ € iso (G(carrier .= KN & ! (i + 1)) Mod (K N & 7))
(G(carrier .= i <#>KN&! (i+ 1)) Mod & ! i)
unfolding set-mult-def by auto
from fstgoal have KGsiKGigroup: group (G(carrier := K N & | (i + 1)) Mod
(K N & ! %)) using normal.factorgroup-is-group by auto
from KGdisj show simple-group (G(carrier := K, carrier := remdups-adj (map
((N) K) &) ! (j+ 1)) Mod remdups-adj (map ((N) K) &) ! j)
proof auto
have groupGi: group (G(carrier := & ! i) using i’ normal-series-subgroups
subgroup-imp-group by auto
assume & ! i <#> KN & ! Suci=&1!14
with ¢ have ¢ € iso (G(carrier .= K N & ! (i + 1)) Mod (K N & ! ¢))
(G(carrier := & 1 i) Mod & ! i) by auto
moreover obtain ¢ where ¢ € iso (G(carrier := & | i) Mod (carrier
(G(carrier := & ! 4)))) (G(carrier := {1G(|carm'er — 6 ZD}D)
using group.self-factor-iso groupGi by force
ultimately obtain = where 7 € iso (G(carrier .= K N & ! (i + 1)) Mod (K

22

N & !19) (G(carrier :== {1})))
using iso-set-trans by fastforce
hence order (G(carrier == K N & ! (i + 1)) Mod (K N & ! 4)) = order
(G(carrier := {1}))
by (meson iso-same-order)
hence order (G(carrier := KN & ! (i + 1)) Mod (K N & !¢)) = I unfolding
order-def by auto
hence carrier (G(carrier .= KN &1 (i 4+ 1)) Mod (K N& 7)) = {lG(]carm'er =KN&! (i+ 1)) Mod (K
using group.order-one-triv-iff KGsiKGigroup by blast
moreover from fstgoal have K N & | ¢ < G(carrier .= KN & | (i + 1)) by
auto
moreover from finGSi have finite (carrier (G(carrier .= K N & ! (i + 1))))
by auto
ultimately have K N & ! ¢ = carrier (G(carrier := K N & ! (i + 1)) by
(metis normal.fact-group-trivial-iff)
hence (remdups-adj (map ((N) K) &)) ! j = (remdups-adj (map ((N) K) &))
!'(j + 1) using i by auto
with j have Fualse using remdups-adj-adjacent KGnotempty Suc-eq-plusl by
metis
thus simple-group (G(carrier := remdups-adj (map ((N) K) &) ! Suc j) Mod
remdups-adj (map ((N) K) &) ! j)..
next
assume & ! i <#> KN B! Suci=&"! Suci
with ¢ have ¢ € iso (G(carrier .= K N & ! (i + 1)) Mod (K N & ! 7))
(G(carrier := & ! (i + 1)) Mod & !)
by auto
then obtain ¢’ where ¢’ € iso (G(carrier := & | (i + 1)) Mod & | i)
(G(carrier .= KN & ! (i + 1)) Mod (K N& ! 7))
using KGsiKGigroup group.iso-set-sym by auto
with Gisimple KGsiKGigroup have simple-group (G(carrier :== K N & ! (i +
1)) Mod (K N & !4)) by (metis simple-group.iso-simple)
with ¢ show simple-group (G(carrier := remdups-adj (map ((N) K) &) ! Suc
j) Mod remdups-adj (map ((N) K) &) ! j)
by auto
qed
qed

lemma (in group) composition-series-extend:
assumes composition-series (G(carrier := H|) $
assumes simple-group (G Mod H) H < G
shows composition-series G ($ Q [carrier G))
unfolding composition-series-def composition-series-axioms-def
proof auto
from assms(1) interpret comp$): composition-series G(carrier :== H|) $.
show normal-series G () Q [carrier G]) using assms(3) comp$).is-normal-series
by (metis normal-series-extend)
fix 7
assume i: ¢ < length
show simple-group (G(carrier :== (9 Q [carrier G]) ! Suc i) Mod ($ @Q [carrier

23

G 1)
proof (cases i = length $ — 1)
case True
hence (9 Q [carrier G]) ! Suc i = carrier G by (metis i diff-Suc-1 lessE
nth-append-length)
moreover have () Q [carrier G]) ! i = 9 | iby (metis butlast-snoc i nth-butlast)
hence (9 Q [carrier G]) ! i = H using True last-conv-nth comp$).notempty
comp$.last by auto
ultimately show ?thesis using assms(2) by auto
next
case False
hence Suc i < length $ using i by auto
hence (9 Q [carrier G]) ! Suc i = $! Suc i using nth-append by metis
moreover from ¢ have () @Q [carrier G]) | i = $! i using nth-append by
metis
ultimately show ?thesis using <Suc i < length $» comp$).simplefact by auto
qed
qed

lemma (in composition-series) entries-mono:
assumes i < jj < length &
shows 1 C 6!
using assms proof (induction j — i arbitrary: i j)
case ()
hence i = j by auto
thus & ! 1 C & ! j by auto
next
case (Suc k7 j)
hence i i + (Suc k) = ji + 1 < length & by auto
hence ij: ¢+ + 1 < j by auto
have 8 ! { C & ! (i + 1) using i’ normal normal-imp-subgroup subgroup.subset
by force
moreover have j — (i + 1) = k j < length & using Suc assms by auto
hence & ! (i + 1) C & ! j using Suc(1) i by auto
ultimately show & ! ¢ C & | j by simp
qed

end

theory GrouplsoClasses
imports

HOL— Algebra.Coset
begin

3 Isomorphism Classes of Groups

We construct a quotient type for isomorphism classes of groups.

24

typedef ‘a group = {G :: 'a monoid. group G}
proof
show Aa. (carrier = {a}, mult = (A\z y. z), one = a|) € {G. group G}
unfolding group-def group-axioms-def monoid-def Units-def by auto
qed

definition group-iso-rel :: 'a group = 'a group = bool
where group-iso-rel G H = (3. ¢ € iso (Rep-group G) (Rep-group H))

quotient-type ‘a group-iso-class = 'a group | group-iso-rel
morphisms Rep-group-iso Abs-group-iso
proof (rule equivpl)
show reflp group-iso-rel
proof (rule refipl)
fix G :: 'b group
show group-iso-rel G G
unfolding group-iso-rel-def using iso-set-refl by blast
qed
next
show symp group-iso-rel
proof (rule sympl)
fix G H :: 'b group
assume group-iso-rel G H
then obtain ¢ where ¢ € iso (Rep-group G) (Rep-group H) unfolding
group-iso-rel-def by auto
then obtain ¢’ where ¢’ € iso (Rep-group H) (Rep-group G) using group.iso-sym
Rep-group
using group.iso-set-sym by blast
thus group-iso-rel H G unfolding group-iso-rel-def by auto
qed
next
show transp group-iso-rel
proof (rule transpl)
fix GHI :: 'b group
assume group-iso-rel G H group-iso-rel H I
then obtain ¢ ¢ where ¢ € iso (Rep-group G) (Rep-group H) ¢ € iso
(Rep-group H) (Rep-group I)
unfolding group-iso-rel-def by auto
then obtain m where 7 € iso (Rep-group G) (Rep-group I)
using iso-set-trans by blast
thus group-iso-rel G I unfolding group-iso-rel-def by auto
qed
qed

This assigns to a given group the group isomorphism class

definition (in group) iso-class :: 'a group-iso-class
where iso-class = Abs-group-iso (Abs-group (monoid.truncate G))

Two isomorphic groups do indeed have the same isomorphism class:

25

lemma iso-classes-iff:

assumes group G

assumes group H

shows (F¢. ¢ € iso G H) = (group.iso-class G = group.iso-class H)
proof —

from assms(1,2) have groups:group (monoid.truncate G) group (monoid.truncate
H)

unfolding monoid.truncate-def group-def group-azxioms-def Units-def monoid-def
by auto

have (Fp. ¢ € iso G H) = (F¢. ¢ € iso (monoid.truncate G) (monoid.truncate

1)
unfolding iso-def hom-def monoid.truncate-def by auto
also have ... = group-iso-rel (Abs-group (monoid.truncate G)) (Abs-group (monoid.truncate
H))

unfolding group-iso-rel-def using groups group.Abs-group-inverse by (metis
mem-Collect-eq)
also have ... = (group.iso-class G = group.iso-class H) using group.iso-class-def
assms group-iso-class.abs-eq-iff by metis
finally show ?thesis.
qed

end

theory JordanHolder

imports
CompositionSeries
MazimalNormalSubgroups
HOL- Library. Multiset
GrouplsoClasses

begin

4 The Jordan-Holder Theorem

locale jordan-hoelder = group
+ comp$H ?: composition-series G $
+ comp® ?: composition-series G & for $ and &
+ assumes finite: finite (carrier Q)

Before we finally start the actual proof of the theorem, one last lemma:
Cancelling the last entry of a normal series results in a normal series with
quotients being all but the last of the original ones.

lemma (in normal-series) quotients-butlast:

assumes length & > 1

shows butlast quotients = normal-series.quotients (G(carrier := & ! (length &
— 1 — 1)) (take (length & — 1) &)
proof (rule nth-equalityl)

define n where n = length & — 1

26

hence n = length (take n &) n > 0 n < length & using assms notempty by
auto
interpret normal®butlast: normal-series (G(carrier :== & ! (n — 1)) take n &

using normal-series-prefiz-closed <n > 0> «n < length &> by auto
have length (butlast quotients) = length quotients — 1 by (metis length-butlast)

also have ... = length & — I — 1 by (metis add-diff-cancel-right’ quotients-length)
also have ... = length (take n) — 1 by (metis <n = length (take n &) n-def)
also have ... = length normal®butlast. quotients by (metis normal®butlast. quotients-length

diff-add-inverse2)
finally show length (butlast quotients) = length normal®butlast.quotients .
have Vi<length (butlast quotients). butlast quotients | i = normal® butlast.quotients
g
proof auto
fix ¢
assume i: i < length quotients — Suc 0
hence i i < length & — 1 i < ni + 1 < n unfolding n-def using quo-
tients-length by auto

from ¢ have butlast quotients | i = quotients ! ¢ by (metis One-nat-def
length-butlast nth-butlast)
also have ... = G(carrier := & ! (i + 1)) Mod & ! i unfolding quotients-def
using i'(1) by auto
also have ... = G(carrier := (take n &) ! (i + 1)) Mod (take n ®) ! i using
i'(2,8) nth-take by metis
also have ... = normal®butlast. quotients ! i unfolding normal® butlast. quotients-def

using i’ by fastforce

finally show butlast (normal-series.quotients G ®) ! i = normal-series.quotients
(G(carrier := & ! (n — Suc 0)) (take n &) ! i by auto

qed

thus Ai. i < length (butlast quotients)

—> butlast quotients ! i
= normal-series.quotients (G(carrier := & ! (length & — 1 — 1))
(take (length & — 1) &) 1 ¢
unfolding n-def by auto

qed

The main part of the Jordan Holder theorem is its statement about the
uniqueness of a composition series. Here, uniqueness up to reordering and
isomorphism is modelled by stating that the multisets of isomorphism classes
of all quotients are equal.

theorem jordan-hoelder-multisets:

assumes group G

assumes finite (carrier G)

assumes composition-series G

assumes composition-series G §)

shows mset (map group.iso-class (normal-series.quotients G &))

= mset (map group.iso-class (normal-series.quotients G $))

using assms
proof (induction length & arbitrary: & $ G rule: full-nat-induct)

27

case (1 & 9 G)
then interpret comp®: composition-series G & by simp
from 1 interpret comp$: composition-series G $) by simp
from 1 interpret grpG: group G by simp
show ?Zcase
proof (cases length & < 2)
next
case True
hence length & = 0 V length & = 1 V length & = 2 by arith
with comp®.notempty have length & = 1 V length & = 2 by simp
thus ?thesis
proof (auto simp del: mset-map)
— First trivial case: ® is the trivial group.
assume length & = Suc 0
hence length: length & = 1 by simp
hence length [| + 1 = length & by auto
moreover from length have char®: & = [{14}] by (metis comp®.composition-series-length-one)
hence carrier G = {15} by (metis comp®.composition-series-triv-group)
with length char® have & = §) using comp$).composition-series-triv-group
by simp
thus “thesis by simp
next
— Second trivial case: & is simple.
assume length & = 2
hence Gchar: & = [{14}, carrier G] by (metis comp®.length-two-unique)
hence simple: simple-group G by (metis comp®.composition-series-simple-group)
hence 9 = [{14}, carrier G| using comp$).composition-series-simple-group
by auto
with &char have & = § by simp
thus ?thesis by simp
qed
next
case Fulse
— Non-trivial case: ® has length at least 3.
hence length: length & > 3 by simp
— First we show that $ must have a length of at least 3.
hence — simple-group G using comp®.composition-series-simple-group by auto
hence 9 # {14}, carrier G] using comp$).composition-series-simple-group by
auto
hence length $ # 2 using comp$.length-two-unique by auto
moreover from length have carrier G # {1} using comp®.composition-series-length-one
comp®.composition-series-triv-group by auto
hence length $ # 1 using comp$).composition-series-length-one comp$).composition-series-triv-group
by auto
moreover from comp$).notempty have length $ # 0 by simp
ultimately have length$Hbig: length $ > 3 using comp$.notempty by arith
define m where m = length $ — 1
define n where n = length & — 1
from length$Hbig have m” m > 0 m < length (m — 1) + 1 < length $H m

28

—1=lengthH —2m —1+1=length$H — 1 m — 1 < length §
unfolding m-def by auto
from length have n: n > 0n < length & (n — 1) + 1 < length & n — 1 <
length & Suc n < length &
n—1=length® — 2n — 1 + 1 = length & — 1 unfolding n-def by auto
define & Pn where &Pn = G(carrier := & ! (n — 1))
define $Pm where HPm = G(carrier := H ! (m — 1))
then interpret grp® Pn: group & Pn unfolding & Pn-def using n’ by (metis
comp®.normal-series-subgroups comp®.subgroup-imp-group)
interpret grp$ Pm: group $ Pm unfolding $) Pm-def using m’ comp$).normal-series-subgroups
1(2) group.subgroup-imp-group by force
have finGbl: finite (carrier ®Pn) using «n — 1 < length &> 1(3) unfolding
& Pn-def using comp®.normal-series-subgroups comp®.subgroup-finite by auto
have finHbl: finite (carrier HPm) using «<m — 1 < length £ 1(3) unfolding
HPm-def using comp$.normal-series-subgroups comp®.subgroup-finite by auto
have quots®notempty: comp®.quotients # [using comp®.quotients-length
length by auto
have quots$notempty: comp$).quotients # [| using comp$).quotients-length
length$Hbig by auto

— Instantiate truncated composition series since they are used for both cases
interpret $Hbutlast: composition-series Pm take m $ using comp$).composition-series-prefiz-closed
m'(1,2) HPm-def by auto
interpret Gbutlast: composition-series & Pn take n & using comp®.composition-series-prefiz-closed
n'(1,2) &Pn-def by auto
have ltaken: n = length (take n ®) using length-take n'(2) by auto
have ltakem: m = length (take m $) using length-take m’(2) by auto
show ?thesis
proof (cases H ! (m — 1) =& ! (n — 1))
— I H!(l— 1)=& 1, everything is simple...
case True
— The last quotients of & and £ are equal.
have lasteq: last comp®.quotients = last comp$).quotients
proof —
from length have lg: length & — 1 — 1 + 1 = length & — 1 by (metis
Suc-diff-1 Suc-eq-plusl n'(1) n-def)
from length$big have lh: length § — 1 — 1 + 1 = length $ — 1 by (metis
Suc-diff-1 Suc-eq-plusl <0 < my m-def)
have last comp®.quotients = G Mod ! (n — 1) using length comp®.last-quotient
unfolding n-def by auto
also have ... = G Mod ! (m — 1) using True by simp
also have ... = last comp$).quotients using length$Hbig comp$.last-quotient
unfolding m-def by auto
finally show ?thesis .
qed
from ltaken have ind: mset (map group.iso-class &butlast.quotients) = mset
(map group.iso-class Hbutlast.quotients)
using 1(1) True n’'(5) grp® Pn.is-group finGbl &butlast.is-composition-series
Hbutlast.is-composition-series unfolding & Pn-def $Pm-def by metis

29

have mset (map group.iso-class comp®.quotients)
= mset (map group.iso-class (butlast comp®.quotients Q@ [last
comp®.quotients])) by (simp add: quots¬empty)

also have ... = mset (map group.iso-class (B butlast.quotients Q [last (comp®B.quotients)]))
using comp®.quotients-butlast length unfolding n-def & Pn-def by auto

also have ... = mset ((map group.iso-class Bbutlast.quotients) @ [group.iso-class
(last (comp®.quotients))]) by auto

also have ... = mset (map group.iso-class Gbutlast.quotients) + {# group.iso-class
(last (comp®.quotients)) #} by auto

also have ... = mset (map group.iso-class Hbutlast.quotients) + {# group.iso-class
(last (comp®.quotients)) #} using ind by simp

also have ... = mset (map group.iso-class $Hbutlast. quotients) + {# group.iso-class
(last (comp$).quotients)) #} using lasteq by simp

also have ... = mset ((map group.iso-class Hbutlast. quotients) Q [group.iso-class
(last (comp$).quotients))]) by auto

also have ... = mset (map group.iso-class ($Hbutlast.quotients Q [last (comp$.quotients)]))
by auto

also have ... = mset (map group.iso-class (butlast comp$).quotients Q [last

comp$). quotients))) using length$big comp$. quotients-butlast unfolding m-def $Pm-def
by auto
also have ... = mset (map group.iso-class comp$).quotients) using ap-
pend-butlast-last-id quots$Hnotempty by simp
finally show ?thesis .
next
case Fulse
define $PmInt® Pn where HPmIntGPn = G(carrier :=H! (m — 1) N &
'(n— 1))
interpret & Pnmax: maz-normal-subgroup & ! (n — 1) G unfolding n-def
by (metis add-lessD1 diff-diff-add n'(3) add.commute one-add-one 1(8)
comp®.snd-to-last-maz-normal)
interpret $Pmmaz: maz-normal-subgroup $! (m — 1) G unfolding m-def
by (metis add-lessD1 diff-diff-add m'(3) add.commute one-add-one 1(3)
comp$).snd-to-last-maz-normal)
have HPmnormG: ! (m — 1) < G using comp$).normal-series-snd-to-last
m'(4) unfolding m-def by auto
have & PnnormG: & | (n — 1) < G using comp®.normal-series-snd-to-last
n'(6) unfolding n-def by auto
have $Pmint&PnnormG: H! (m — 1) N & ! (n — 1) < G using HPmnormG
& PnnormG by (rule comp®.normal-subgroup-intersect)
have Intnorm®Pn: H ! (m — 1) N & ! (n — 1) < &Pn using & PnnormG
HPmnormG Int-lower2 unfolding & Pn-def
by (metis comp®.normal-restrict-supergroup comp®.normal-series-subgroups
comp®.normal-subgroup-intersect n'(4))
then interpret grp® PnMod$Pmint® Pn: group &Pn Mod $H ! (m — 1) N &
I'(n — 1) by (rule normal.factorgroup-is-group)
have Intnorm$HPm: H! (m — 1) N & ! (n — 1) < HPm using HPmnormG
& PnnormG Int-lower2 Int-commute unfolding $ Pm-def
by (metis comp®.normal-restrict-supergroup comp®.normal-subgroup-intersect
comp$).normal-series-subgroups m'(6))

30

then interpret grp$HPmMod$HPmint® Pn: group HPm Mod $H ! (m — 1) N
& ! (n — 1) by (rule normal.factorgroup-is-group)

— Show that the second to last entries are not contained in each other.
have notHPmSubBPn: = (H! (m — 1) C & ! (n — 1)) using HPm-
maz.maz-normal & PnnormG False[symmetric] & Pnmaz.proper by simp
have not®&PnSubHPm: - (& ! (n — 1) C H ! (m — 1)) using &Pn-
max.mazx-normal HPmnormG False $Pmmazx.proper by simp

— Show that G Mod ! (m — 1) N & ! (n — 1) is a simple group.
have HPmSubSetmult: H! (m — 1) CTH!(m — 1) <#F>5 6! (n — 1)
using & Pnmazx.subgroup-azioms $PmnormG second-isomorphism-grp. H-contained-in-set-mult

second-isomorphism-grp-azxioms-def second-isomorphism-grp-def by blast
have & PnSubSetmult: & ! (n — 1) CH! (m — 1) <#>a 6! (n— 1)
by (metis & Pnmaz.subset & PnnormG $PmSubSetmult $ Pmmaz.maz-normal
HH Pmmax.subgroup-axioms $PmnormG
comp®.normal-subgroup-set-mult-closed comp®.set-mult-inclusion)
have & ! (n—1)# (H!(m— 1)) <#>g (B! (n — 1)) using HPmSubSetmult
notH PmSub® Pn by auto
hence set-multG: (H ! (m — 1)) <#>a (& ! (n — 1)) = carrier G
by (metis & PnSubSetmult & Pnmaz.maz-normal & PnnormG $PmnormG
comp®.normal-subgroup-set-mult-closed)
then obtain ¢ where ¢ € iso (6Pn Mod ($H! (m — 1) N & ! (n — 1))
(G(carrier := carrier G)) Mod $! (m — 1))
by (metis second-isomorphism-grp.normal-intersection-quotient-isom $)Pm-
normG
& Pn-def & Pnmax.subgroup-axioms second-isomorphism-grp-axioms-def
second-isomorphism-grp-def)
hence ¢: ¢ € iso (BPn Mod (H! (m — 1) NG ! (n— 1)) (G Mod H! (m
— 1)) by auto
then obtain 2 where p2: p2 € iso (G Mod $H ! (m — 1)) (&Pn Mod (9
'(m—1)N&! (n— 1))
using group.iso-set-sym grp® PnMod$H Pmint® Pn.is-group by auto
moreover have simple-group (G(carrier := 9! (m — 1 + 1)) Mod H ! (m
— 1)) using comp$).simplefact m’(3) by simp
hence simple-group (G Mod $! (m — 1)) using comp$).last last-conv-nth
comp$).notempty m'(5) by fastforce
ultimately have simple® PnModInt: simple-group (&Pn Mod (! (m — 1)
NGl (n—1))
using simple-group.iso-simple grp® PnMod$ Pmint® Pn.is-group by auto
interpret grpGMod$HPm: group (G Mod $! (m — 1)) by (metis $HPmnormG
normal.factorgroup-is-group)

— Show analogues of the previous statements for ! (m — 1) instead of & !
(n—1).
have $PmSubSetmult’: H ! (m — 1) C & (n — 1) <#>aH!(m — 1)
by (metis ® PnnormG $ PmSubSetmult comp®.commut-normal $PmnormG
normal-imp-subgroup)

31

have & PnSubSetmult: & ! (n — 1) C & (n— 1) <#>aH ! (m — 1)
by (metis HPmnormG normal-imp-subgroup & PnSubSetmult & PnnormG
comp®.commut-normal)
have H ! (m — 1) # (& ! (n — 1)) <#>q5 (H ! (m — 1)) using & PnSub-
Setmult’ not® PnSub$HPm by auto
hence set-multG: (& ! (n — 1)) <#>a H ! (m — 1)) = carrier G
using 9 Pmmaz.maz-normal & PnnormG comp®.normal-subgroup-set-mult-closed
$HPmSubSetmult’ $PmnormG by blast
from set-multG obtain v where
P € iso (HPm Mod (! (n— 1) NH! (m — 1)) (G(carrier := carrier
G) Mod & ! (n — 1))
by (metis HPm-def HPmnormG second-isomorphism-grp-azioms-def sec-
ond-isomorphism-grp-def
second-isomorphism-grp.normal-intersection-quotient-isom & PnnormG
normal-imp-subgroup)

hence ¢: ¢ € iso (HPm Mod (H! (m — 1) N (B! (n — 1)))) (G(carrier :=
carrier G)) Mod ® ! (n — 1)) using Int-commute by metis
then obtain ¢¥2 where
¥2: Y2 € iso (G Mod & ! (n— 1)) (HPm Mod (H! (m — 1) N&! (n
1)

using group.iso-set-sym grp$HPmMod$H Pmint® Pn.is-group by auto
moreover have simple-group (G(carrier :== & ! (n — 1 + 1)) Mod & ! (n
— 1)) using comp®.simplefact n'(3) by simp
hence simple-group (G Mod & ! (n — 1)) using comp®.last last-conv-nth
comp®.notempty n'(7) by fastforce
ultimately have simple$) PmModInt: simple-group ($HPm Mod (H ! (m — 1)
N&G!(n—1))
using simple-group.iso-simple grp$HPmMod$ Pmint® Pn.is-group by auto
interpret grpGMod® Pn: group (G Mod & ! (n — 1)) by (metis & PnnormG
normal.factorgroup-is-group)

— Instantiate several composition series used to build up the equality of

quotient multisets.

define 8 where 8 = remdups-adj (map ((N) (H! (m — 1))) &)

define £ where £ = remdups-adj (map ((N) (B! (n — 1))) H)

interpret &: composition-series $Pm £ using comp®.intersect-normal 1(3)
HPmnormG unfolding R-def $Pm-def by auto

interpret £: composition-series & Pn £ using comp$).intersect-normal 1(8)
& PnnormG unfolding £-def & Pn-def by auto

— Apply the induction hypothesis on &butlast and £
from n'(2) have Suc (length (take n &)) < length & by auto
hence multisets®butlastL: mset (map group.iso-class &butlast.quotients) =
mset (map group.iso-class £.quotients)
using 1.hyps grp® Pn.is-group finGbl & butlast.is-composition-series L£.is-composition-series
by metis
hence length: n = length £ using &butlast.quotients-length £.quotients-length

32

length-map size-mset ltaken by metis
hence lengthL” length £ > 1 length £ — 1 > 0 length £ — 1 < length £
using n'(6) length by auto
have Inteq€sndlast: H! (m — 1) N & ! (n—1)=2L! (length £ — 1 — 1)
proof —
have length £ — 1 — 1 + 1 < length £ using lengthL’ by auto
moreover have KGnotempty: (map ((N) (& ! (n — 1)))) # [| using
comp$).notempty by (metis Nil-is-map-conv)
ultimately obtain ¢ where i: i + 1 < length (map (N) (& ! (n — 1))) H)
L1 (length £ — 1 — 1) = (map (N) (B! (n— 1)) H)!iL! (length £
— =4 1) = (map () (B (n— 1))) ! (i + 1)
using remdups-adj-obtain-adjacency unfolding £-def by force
hence £! (length £ — 1 —1)=9H!1iNn& ! (n—1)L! (length £ — 1 —
1+1)=9!10G+1)N&! (n—1)by auto
hence £! (length £ — 1) =9 (i + 1) N & ! (n —) using lengthL'(2)
by (metis Suc-diff-1 Suc-eg-plusl)
hence BPnsubHPm: & ! (n — 1) C H ! (i + 1) using L.last £.notempty
last-conv-nth unfolding & Pn-def by auto
from i(1) have ¢ + 1 < m + 1 unfolding m-def by auto
moreover have — (i + 1 < m — 1) using comp$.entries-mono m'(6)
not® PnSub$H Pm & Pnsub$Pm by fastforce
ultimately have m — I = i by auto
with ¢ show ?thesis by auto
qed
hence Lsndlast: HPmInt®Pn = (&Pncarrier := £ (length £ — 1 — 1))
unfolding $PmiInt® Pn-def & Pn-def by auto
then interpret Lbutlast: composition-series $PmInt® Pn take (length £ —
1) £ using lengthL’ £.composition-series-prefiz-closed by metis
from <length £ > 1) have quotsCnotemtpy: L£.quotients # [] unfolding
£.quotients-def by auto

— Apply the induction hypothesis on Lbutlast and Kbutlast
have length 8 > 1
proof (rule ccontr)
assume — length R > 1
with R.notempty have length & = 1 by (metis One-nat-def Suc-less]
length-greater-0-conv)
hence carrier §Pm = {1gpy,} using K.composition-series-length-one
R.composition-series-triv-group by auto
hence carrier SPm = {1} unfolding $Pm-def by auto
hence carrier HSPm C & | (n — 1) using ®Pnmaz.is-subgroup sub-
group.one-closed by auto
with not$) PmSub® Pn show Fulse unfolding $Pm-def by auto
qed
hence lengthf": length & — 1 > 0 length 8 — 1 < length & by auto
have InteqRsndlast: H ! (m — 1) N &S (n —1)=RK! (length R — 1 — 1)
proof —
have length & — 1 — 1 + 1 < length K& using lengthR’ by auto
moreover have KGnotempty: (map ((N) (H! (m — 1))) &) # || using

33

comp®.notempty by (metis Nil-is-map-conv)
ultimately obtain ¢ where i: ¢ + 1 < length (map ((N) (H! (m — 1)))
&)
B! (length R — 1 — 1) = (map (N) (9! (m — 1)) &) ! i KR! (length &
S L= 1t 1) = (map () (9! (m— 1))) 1 (i + 1)
using remdups-adj-obtain-adjacency unfolding K-def by force
hence 8! (length 8 — 1 — 1) =61iNnH!(m — 1) KR! (length B — 1 —
1+1)=610G+1)NnH! (m— 1) by auto
hence 8! (length R — 1) =& ! (i+ 1) N H ! (m — 1) using lengthR'(1)
by (metis Suc-diff-1 Suc-eq-plusi)
hence HPmsub®Pn: H! (m — 1) C & ! (i + 1) using K.last K.notempty
last-conv-nth unfolding $HPm-def by auto
from i(1) have i + 1 < n + 1 unfolding n-def by auto
moreover have = (i + I < n — 1) using comp®.entries-mono n'(2)
notH PmSub® Pn $H Pmsub® Pn by fastforce
ultimately have n — 1 = i by auto
with ¢ show ?thesis by auto
qed
have composition-series (G(carrier :== R (length & — 1 — 1)) (take (length
R-1)R)
using lengthR’ R.composition-series-prefiz-closed unfolding $ Pmint® Pn-def
HPm-def by fastforce
then interpret Rbutlast: composition-series HPmInt® Pn (take (length & —
1) R) using InteqRsndlast unfolding $PmInt® Pn-def by auto
from finGbl have finInt: finite (carrier $PmInt® Pn) unfolding $ PmInt® Pn-def
& Pn-def by simp
moreover have Suc (length (take (length £ — 1) £)) < length & using
length€ unfolding n-def using n’(2) by auto
ultimately have multisetsRCbutlast: mset (map group.iso-class Lbutlast. quotients)
= mset (map group.iso-class Kbutlast.quotients)
using 1.hyps Lbutlast.is-group Kbutlast.is-composition-series Lbutlast.is-composition-series
by auto
hence length (take (length & — 1)) = length (take (length £ — 1) £)
using Rbutlast. quotients-length Lbutlast.quotients-length length-map size-mset
by metis
hence length (take (length 8 — 1) 8) = n — 1 using length£ n'(1) by auto
hence lengthf: length & = n by (metis Suc-diff-1 K.notempty butlast-conv-take
length-butlast length-greater-0-conv n'(1))

— Apply the induction hypothesis on & and $butlast
from InteqRsndlast have Rsndlast: HPmInt&Pn = (HPm(carrier := K |
(length & — 1 — 1)) unfolding $ PmiInt® Pn-def $Pm-def R-def by auto
from lengthR have Suc (length &) < length ® using n’'(2) by auto
hence multisetsHbutlastR: mset (map group.iso-class Hbutlast.quotients) =
mset (map group.iso-class K.quotients)
using 1.hyps grp$)Pm.is-group finHbL Hbutlast.is-composition-series R.is-composition-series
by metis
hence lengthR: m = length & using $Hbutlast.quotients-length K.quotients-length
length-map size-mset ltakem by metis

34

hence length & > 1 length 8 — 1 > 0 length & — 1 < length & using m’(4)
length$Hbig by auto
hence quotsfnotemtpy: K.quotients # [] unfolding R.quotients-def by auto

interpret Rbutlastadd® Pn: composition-series & Pn (take (length & — 1) &)
QB! (n— 1)
using grp® Pn.composition-series-extend KRbutlast.is-composition-series sim-
ple® PnModInt Intnorm® Pn
unfolding & Pn-def $PmliInt® Pn-def by auto
interpret Loutlastadd$HPm: composition-series HPm (take (length £ — 1) £)
@[5! (m— 1))
using grp$H Pm.composition-series-extend Lbutlast.is-composition-series sim-
pleHY PmModInt Intnorm$H Pm
unfolding 9 Pm-def $PmiInt® Pn-def by auto

— Prove equality of those composition series.
have mset (map group.iso-class comp®.quotients)
= mset (map group.iso-class ((butlast comp®.quotients) Q [last
comp®.quotients])) using quots®notempty by simp
also have ... = mset (map group.iso-class (Sbutlast.quotients @ [G Mod &
! (n - 1))
using comp®.quotients-butlast comp®.last-quotient length unfolding n-def
& Pn-def by auto
also have ... = mset (map group.iso-class ((butlast £.quotients) Q [last
£.quotients])) + {# group.iso-class (G Mod & ! (n — 1)) #}
using multisets® butlastL quotsLnotemtpy by simp
also have ... = mset (map group.iso-class (Lbutlast.quotients @ [&Pn Mod
Hlm—-—1)N&! (n—1)])) + {# group.iso-class (G Mod & ! (n — 1)) #}
using £.quotients-butlast £.last-quotient <length £ > 1) Lsndlast In-
tegLsndlast unfolding n-def by auto
also have ... = mset (map group.iso-class Rbutlast.quotients) + {# group.iso-class
(BPn Mod $H! (m — 1) N & (n— 1)) #} + {# group.iso-class (G Mod & ! (n
— 1) #)
using multisetsRLbutlast by simp
also have ... = mset (map group.iso-class Rbutlast.quotients) + {# group.iso-class
(G Mod ! (m — 1)) #} + {# group.iso-class (HPm Mod H! (m — 1) N & ! (n
— 1) #)
using ¢ ¥ 2 iso-classes-iff grp® PnMod$ Pmint® Pn.is-group grp GMod$) Pm.is-group
grpGMod® Pn.is-group grp$)PmMod$ Pmint® Pn.is-group

by metis
also have ... = mset (map group.iso-class Rbutlast.quotients) + {# group.iso-class
(HPm Mod H ! (m — 1) NS (n— 1)) #} + {# group.iso-class (G Mod $! (m
~ 1)) #)
by simp
also have ... = mset (map group.iso-class ((butlast R.quotients) Q [last

R.quotients])) + {# group.iso-class (G Mod $! (m — 1)) #}
using R.quotients-butlast RK.last-quotient <length R > 1) RKsndlast In-
teqgRsndlast unfolding m-def by auto
also have ... = mset (map group.iso-class $Hbutlast.quotients) + {# group.iso-class

35

(G Mod 1 (m — 1)) #}
using multisetsHbutlastR quotsRnotemtpy by simp
also have ... = mset (map group.iso-class ((butlast comp$).quotients) Q [last
comp$). quotients]))
using comp$.quotients-butlast comp$.last-quotient length$Hbig unfolding
m-def $HPm-def by auto

also have ... = mset (map group.iso-class comp$).quotients) using quots$Hnotempty
by simp
finally show ?Zthesis .
qed
qed
qed

As a corollary, we see that the composition series of a fixed group all have
the same length.

corollary (in jordan-hoelder) jordan-hoelder-size:
shows length & = length 9

proof —
have length = length comp®.quotients + 1 by (metis comp®.quotients-length)
also have ... = size (mset (map group.iso-class comp®.quotients)) + 1 by (metis
length-map size-mset)
also have ... = size (mset (map group.iso-class comp$).quotients)) + 1

using jordan-hoelder-multisets is-group finite is-composition-series comp$).is-composition-series
by metis

also have ... = length comp$).quotients + 1 by (metis size-mset length-map)
also have ... = length) by (metis comp$).quotients-length)
finally show ?thesis.

qed

end

References

[Ran05] Stuart Rankin. The jordan-holder theorem, 2005.

[VR14] Jakob von Raumer. Secondary sylow theorems. Archive of For-
mal Proofs, January 2014. http://isa-afp.org/entries/Secondary
Sylow.shtml, Formal proof development.

36

http://isa-afp.org/entries/Secondary_Sylow.shtml
http://isa-afp.org/entries/Secondary_Sylow.shtml

	Facts about maximal normal subgroups
	Normal series and Composition series
	Preliminaries
	Normal Series
	Composition Series

	Isomorphism Classes of Groups
	The Jordan-Hölder Theorem

