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Abstract
This submission contains theories that lead to a formalization of the

proof of the Jordan-Hölder theorem about composition series of finite
groups. The theories formalize the notions of isomorphism classes of
groups, simple groups, normal series, composition series, maximal nor-
mal subgroups. Furthermore, they provide proofs of the second isomor-
phism theorem for groups, the characterization theorem for maximal
normal subgroups as well as many useful lemmas about normal sub-
groups and factor groups. The formalization is based on the work work
in my first AFP submission [vR14] while the proof of the Jordan-Hölder
theorem itself is inspired by course notes of Stuart Rankin [Ran05].
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theory MaximalNormalSubgroups
imports HOL−Algebra.Algebra
begin

1 Facts about maximal normal subgroups

A maximal normal subgroup of G is a normal subgroup which is not con-
tained in other any proper normal subgroup of G.
locale max-normal-subgroup = normal +
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assumes proper : H 6= carrier G
assumes max-normal:

∧
J . J C G =⇒ J 6= H =⇒ J 6= carrier G =⇒ ¬ (H ⊆

J )

Another characterization of maximal normal subgroups: The factor group is
simple.
theorem (in normal) max-normal-simple-quotient:

assumes finite: finite (carrier G)
shows max-normal-subgroup H G = simple-group (G Mod H )

proof
assume max-normal-subgroup H G
then interpret maxH : max-normal-subgroup H G.
show simple-group (G Mod H ) unfolding simple-group-def simple-group-axioms-def
proof (intro conjI factorgroup-is-group allI impI disjCI )

have gt0 : 0 < card (rcosets H )
by (metis gr-zeroI lagrange-finite assms mult-is-0 order-gt-0-iff-finite sub-

group-axioms)
from maxH .proper finite have carrier (G Mod H ) 6= {1G Mod H} using

fact-group-trivial-iff by auto
hence 1 6= order (G Mod H ) using factorgroup-is-group group.order-one-triv-iff

by metis
with gt0 show 1 < order (G Mod H ) unfolding order-def FactGroup-def by

auto
next

fix A ′

assume A ′normal: A ′ C G Mod H and A ′nottriv: A ′ 6= {1G Mod H}
define A where A =

⋃
A ′

have A2 : A C G using A ′normal unfolding A-def by (rule factgroup-subgroup-union-normal)
have H ∈ A ′ using A ′normal normal-imp-subgroup subgroup.one-closed un-

folding FactGroup-def by force
hence H ⊆ A unfolding A-def by auto
hence A1 : H C (G(|carrier := A|))
by (simp add: A2 normal-axioms normal-invE(1 ) normal-restrict-supergroup)

have A3 : A ′ = rcosetsG(|carrier := A|) H
unfolding A-def using factgroup-subgroup-union-factor A ′normal normal-imp-subgroup

by auto
from A1 interpret normalHA: normal H (G(|carrier := A|)) by metis
have H ⊆ A using normalHA.is-subgroup subgroup.subset by force
with A2 have A = H ∨ A = carrier G using maxH .max-normal by auto
thus A ′ = carrier (G Mod H )
proof

assume A = H
hence carrier (G(|carrier := A|) Mod H ) = {1(G(|carrier := A|) Mod H )}
using cosets-finite subgroup-in-rcosets subset assms normalHA.fact-group-trivial-iff

by force
then have A ′ = {1G Mod H}

using A3 unfolding FactGroup-def by simp
with A ′nottriv show ?thesis..

next
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assume A = carrier G
thus A ′ = carrier (G Mod H ) using A3 unfolding FactGroup-def by simp

qed
qed

next
assume simple: simple-group (G Mod H )
show max-normal-subgroup H G
proof
from simple have carrier (G Mod H ) 6= {1G Mod H} unfolding simple-group-def

simple-group-axioms-def order-def by auto
with finite fact-group-trivial-iff show H 6= carrier G by auto

next
fix A
assume A: A C G A 6= H A 6= carrier G
show ¬ H ⊆ A
proof

assume HA: H ⊆ A
hence H C (G(|carrier := A|)) by (metis A(1 ) inv-op-closed2 is-subgroup

normal-inv-iff normal-restrict-supergroup)
then interpret normalHA: normal H (G(|carrier := A|)) by simp
from finite have finiteA: finite A

by (meson A(1 ) normal-inv-iff finite-subset subgroup.subset)
have rcosets(G(|carrier := A|)) H C G Mod H

by (simp add: A(1 ) HA normal-axioms normality-factorization)
with simple have rcosets(G(|carrier := A|)) H = {1G Mod H} ∨ rcosets(G(|carrier := A|))

H = carrier (G Mod H )
unfolding simple-group-def simple-group-axioms-def by auto

thus False
proof

assume rcosetsG(|carrier := A|) H = {1G Mod H}
with finiteA have H = A

using normalHA.fact-group-trivial-iff unfolding FactGroup-def by auto
with A(2 ) show ?thesis by simp

next
assume AHGH : rcosetsG(|carrier := A|) H = carrier (G Mod H )

have A = carrier G unfolding FactGroup-def RCOSETS-def
proof
show A ⊆ carrier G using A(1 ) normal-imp-subgroup subgroup.subset by

metis
next

show carrier G ⊆ A
proof

fix x
assume x: x ∈ carrier G
hence H #> x ∈ rcosets H unfolding RCOSETS-def by auto

with AHGH have H #> x ∈ rcosetsG(|carrier := A|) H unfolding
FactGroup-def by simp

then obtain x ′ where x ′: x ′ ∈ A H #>x = H #>G(|carrier := A|) x ′
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unfolding RCOSETS-def by auto
hence H #> x = H #> x ′ unfolding r-coset-def by auto
hence x ∈ H #> x ′ by (metis is-subgroup rcos-self x)
hence x ∈ A #> x ′ using HA unfolding r-coset-def by auto
thus x ∈ A using x ′(1 ) unfolding r-coset-def using subgroup.m-closed

A(1 ) normal-imp-subgroup by force
qed

qed
with A(3 ) show ?thesis by simp

qed
qed

qed
qed

end

theory CompositionSeries
imports

MaximalNormalSubgroups Secondary-Sylow.SndSylow
begin

hide-const (open) Divisibility.prime

2 Normal series and Composition series
2.1 Preliminaries

A subgroup which is unique in cardinality is normal:
lemma (in group) unique-sizes-subgrp-normal:

assumes fin: finite (carrier G)
assumes ∃ !Q. Q ∈ subgroups-of-size q
shows (THE Q. Q ∈ subgroups-of-size q) C G

proof −
from assms obtain Q where Q ∈ subgroups-of-size q by auto
define Q where Q = (THE Q. Q ∈ subgroups-of-size q)
with assms have Qsize: Q ∈ subgroups-of-size q using theI by metis
hence QG: subgroup Q G and cardQ: card Q = q unfolding subgroups-of-size-def

by auto
from QG have Q C G apply(rule normalI )
proof

fix g
assume g: g ∈ carrier G
hence invg: inv g ∈ carrier G by (metis inv-closed)
with fin Qsize have conjugation-action q (inv g) Q ∈ subgroups-of-size q by

(metis conjugation-is-size-invariant)
with g Qsize have (inv g) <# (Q #> inv (inv g)) ∈ subgroups-of-size q

unfolding conjugation-action-def by auto
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with invg g have inv g <# (Q #> g) = Q by (metis Qsize assms(2 ) inv-inv)
with QG QG g show Q #> g = g <# Q by (rule conj-wo-inv)

qed
with Q-def show ?thesis by simp

qed

A group whose order is the product of two distinct primes p and q where
p < q has a unique subgroup of size q:
lemma (in group) pq-order-unique-subgrp:

assumes finite: finite (carrier G)
assumes orderG: order G = q ∗ p
assumes primep: prime p and primeq: prime q and pq: p < q
shows ∃ !Q. Q ∈ (subgroups-of-size q)

proof −
from primep primeq pq have nqdvdp: ¬ (q dvd p) by (metis less-not-refl3

prime-nat-iff )
define calM where calM = {s. s ⊆ carrier G ∧ card s = q ^ 1}
define RelM where RelM = {(N1 , N2 ). N1 ∈ calM ∧ N2 ∈ calM ∧ (∃ g∈carrier

G. N1 = N2 #> g)}
interpret syl: snd-sylow G q 1 p calM RelM

unfolding snd-sylow-def sylow-def snd-sylow-axioms-def sylow-axioms-def
using is-group primeq orderG finite nqdvdp calM-def RelM-def by auto

obtain Q where Q: Q ∈ subgroups-of-size q by (metis (lifting, mono-tags)
mem-Collect-eq power-one-right subgroups-of-size-def syl.sylow-thm)

thus ?thesis
proof (rule ex1I )

fix P
assume P: P ∈ subgroups-of-size q

have card (subgroups-of-size q) mod q = 1 by (metis power-one-right syl.p-sylow-mod-p)

moreover have card (subgroups-of-size q) dvd p by (metis power-one-right
syl.num-sylow-dvd-remainder)

then have card (subgroups-of-size q) = p ∨ card (subgroups-of-size q) = 1
using primep by (auto simp add: prime-nat-iff )

ultimately have card (subgroups-of-size q) = 1 using pq
by auto

with Q P show P = Q by (auto simp:card-Suc-eq)
qed

qed

... And this unique subgroup is normal.
corollary (in group) pq-order-subgrp-normal:

assumes finite: finite (carrier G)
assumes orderG: order G = q ∗ p
assumes primep: prime p and primeq: prime q and pq: p < q
shows (THE Q. Q ∈ subgroups-of-size q) C G

using assms by (metis pq-order-unique-subgrp unique-sizes-subgrp-normal)

The trivial subgroup is normal in every group.
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lemma (in group) trivial-subgroup-is-normal:
shows {1} C G

unfolding normal-def normal-axioms-def r-coset-def l-coset-def by (auto intro:
normalI subgroupI simp: is-group)

2.2 Normal Series

We define a normal series as a locale which fixes one group G and a list
G of subsets of G’s carrier. This list must begin with the trivial subgroup,
end with the carrier of the group itself and each of the list items must be a
normal subgroup of its successor.
locale normal-series = group +

fixes G
assumes notempty: G 6= []
assumes hd: hd G = {1}
assumes last: last G = carrier G
assumes normal:

∧
i. i + 1 < length G =⇒ (G ! i) C G(|carrier := G ! (i +

1 )|)

lemma (in normal-series) is-normal-series: normal-series G G by (rule normal-series-axioms)

For every group there is a "trivial" normal series consisting only of the group
itself and its trivial subgroup.
lemma (in group) trivial-normal-series:

shows normal-series G [{1}, carrier G]
unfolding normal-series-def normal-series-axioms-def
using is-group trivial-subgroup-is-normal by auto

We can also show that the normal series presented above is the only such
with a length of two:
lemma (in normal-series) length-two-unique:

assumes length G = 2
shows G = [{1}, carrier G]

proof(rule nth-equalityI )
from assms show length G = length [{1}, carrier G] by auto

next
show G ! i = [{1}, carrier G] ! i if i: i < length G for i
proof −

have i = 0 ∨ i = 1 using that assms by auto
thus G ! i = [{1}, carrier G] ! i
proof(rule disjE)

assume i: i = 0
hence G ! i = hd G by (metis hd-conv-nth notempty)
thus G ! i = [{1}, carrier G] ! i using hd i by simp

next
assume i: i = 1
with assms have G ! i = last G by (metis diff-add-inverse last-conv-nth

nat-1-add-1 notempty)
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thus G ! i = [{1}, carrier G] ! i using last i by simp
qed

qed
qed

We can construct new normal series by expanding existing ones: If we append
the carrier of a group G to a normal series for a normal subgroup H C G
we receive a normal series for G.
lemma (in group) normal-series-extend:

assumes normal: normal-series (G(|carrier := H |)) H
assumes HG: H C G
shows normal-series G (H @ [carrier G])

proof −
from normal interpret normalH : normal-series (G(|carrier := H |)) H.
from normalH .hd have hd H = {1} by simp
with normalH .notempty have hdTriv: hd (H @ [carrier G]) = {1} by (metis

hd-append2 )
show ?thesis unfolding normal-series-def normal-series-axioms-def using is-group
proof auto

fix x
assume x ∈ hd (H @ [carrier G])
with hdTriv show x = 1 by simp

next
from hdTriv show 1 ∈ hd (H @ [carrier G]) by simp

next
fix i
assume i: i < length H
show (H @ [carrier G]) ! i C G(|carrier := (H @ [carrier G]) ! Suc i|)
proof (cases i + 1 < length H)

case True
with normalH .normal have H ! i C G(|carrier := H ! (i + 1 )|) by auto

with i have (H @ [carrier G]) ! i C G(|carrier := H ! (i + 1 )|) using
nth-append by metis

with True show (H @ [carrier G]) ! i C G(|carrier := (H @ [carrier G]) !
(Suc i)|) using nth-append Suc-eq-plus1 by metis

next
case False
with i have i2 : i + 1 = length H by simp
from i have (H @ [carrier G]) ! i = H ! i by (metis nth-append)

also from i2 normalH .notempty have ... = last H by (metis add-diff-cancel-right ′

last-conv-nth)
also from normalH .last have ... = H by simp
finally have (H @ [carrier G]) ! i = H .
moreover from i2 have (H @ [carrier G]) ! (i + 1 ) = carrier G by (metis

nth-append-length)
ultimately show ?thesis using HG by auto

qed
qed

qed
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All entries of a normal series for G are subgroups of G.
lemma (in normal-series) normal-series-subgroups:

shows i < length G =⇒ subgroup (G ! i) G
proof −

have i + 1 < length G =⇒ subgroup (G ! i) G
proof (induction length G − (i + 2 ) arbitrary: i)

case 0
hence i: i + 2 = length G by simp
hence ii: i + 1 = length G − 1 by force
from i normal have G ! i C G(|carrier := G ! (i + 1 )|) by auto

with ii last notempty show subgroup (G ! i) G using last-conv-nth nor-
mal-imp-subgroup by fastforce

next
case (Suc k)
from Suc(3 ) normal have i: subgroup (G ! i) (G(|carrier := G ! (i + 1 )|))

using normal-imp-subgroup by auto
from Suc(2 ) have k: k = length G − ((i + 1 ) + 2 ) by arith
with Suc have subgroup (G ! (i + 1 )) G by simp
with i show subgroup (G ! i) G

using incl-subgroup by blast
qed
moreover have i + 1 = length G =⇒ subgroup (G ! i) G
using last notempty last-conv-nth by (metis add-diff-cancel-right ′ subgroup-self )

ultimately show i < length G =⇒ subgroup (G ! i) G by force
qed

The second to last entry of a normal series is a normal subgroup of G.
lemma (in normal-series) normal-series-snd-to-last:

shows G ! (length G − 2 ) C G
proof (cases 2 ≤ length G)

case False
with notempty have length: length G = 1 by (metis Suc-eq-plus1 leI length-0-conv

less-2-cases plus-nat.add-0 )
with hd have G ! (length G − 2 ) = {1} using hd-conv-nth notempty by auto
with length show ?thesis by (metis trivial-subgroup-is-normal)

next
case True
hence (length G − 2 ) + 1 < length G by arith
with normal last have G ! (length G − 2 ) C G(|carrier := G ! ((length G − 2 )

+ 1 )|) by auto
have 1 + (1 + (length G − (1 + 1 ))) = length G

using True le-add-diff-inverse by presburger
then have G ! (length G − 2 ) C G(|carrier := G ! (length G − 1 )|)

by (metis ‹G ! (length G − 2 ) C G (|carrier := G ! (length G − 2 + 1 )|)›
add.commute add-diff-cancel-left ′ one-add-one)

with notempty last show ?thesis using last-conv-nth by force
qed

Just like the expansion of normal series, every prefix of a normal series is
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again a normal series.
lemma (in normal-series) normal-series-prefix-closed:

assumes i ≤ length G and 0 < i
shows normal-series (G(|carrier := G ! (i − 1 )|)) (take i G)

unfolding normal-series-def normal-series-axioms-def
using assms
apply (auto simp: hd del:equalityI )

apply (simp add: is-group normal-series-subgroups subgroup.subgroup-is-group)
apply (simp add: last-conv-nth min.absorb2 notempty)

using assms(1 ) normal apply simp
done

If a group’s order is the product of two distinct primes p and q, where p <
q, we can construct a normal series using the only subgroup of size q.
lemma (in group) pq-order-normal-series:

assumes finite: finite (carrier G)
assumes orderG: order G = q ∗ p
assumes primep: prime p and primeq: prime q and pq: p < q
shows normal-series G [{1}, (THE H . H ∈ subgroups-of-size q), carrier G]

proof −
define H where H = (THE H . H ∈ subgroups-of-size q)
with assms have HG: H C G by (metis pq-order-subgrp-normal)
then interpret groupH : group G(|carrier := H |) unfolding normal-def by

(metis subgroup-imp-group)
have normal-series (G(|carrier := H |)) [{1}, H ] using groupH .trivial-normal-series

by auto
with HG show ?thesis unfolding H-def by (metis append-Cons append-Nil

normal-series-extend)
qed

The following defines the list of all quotient groups of the normal series:
definition (in normal-series) quotients

where quotients = map (λi. G(|carrier := G ! (i + 1 )|) Mod G ! i) [0 ..<((length
G) − 1 )]

The list of quotient groups has one less entry than the series itself:
lemma (in normal-series) quotients-length:

shows length quotients + 1 = length G
proof −

have length quotients + 1 = length [0 ..<((length G) − 1 )] + 1 unfolding
quotients-def by simp

also have ... = (length G − 1 ) + 1 by (metis diff-zero length-upt)
also with notempty have ... = length G

by (simp add: ac-simps)
finally show ?thesis .

qed

lemma (in normal-series) last-quotient:
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assumes length G > 1
shows last quotients = G Mod G ! (length G − 1 − 1 )

proof −
from assms have lsimp: length G − 1 − 1 + 1 = length G − 1 by auto
from assms have quotients 6= [] unfolding quotients-def by auto
hence last quotients = quotients ! (length quotients − 1 ) by (metis last-conv-nth)
also have . . . = quotients ! (length G − 1 − 1 ) by (metis add-diff-cancel-left ′

quotients-length add.commute)
also have . . . = G(|carrier := G ! ((length G − 1 − 1 ) + 1 )|) Mod G ! (length

G − 1 − 1 )
unfolding quotients-def using assms by auto

also have . . . = G(|carrier := G ! (length G − 1 )|) Mod G ! (length G − 1 −
1 ) using lsimp by simp

also have . . . = G Mod G ! (length G − 1 − 1 ) using last last-conv-nth notempty
by force

finally show ?thesis .
qed

The next lemma transports the constituting properties of a normal series
along an isomorphism of groups.
lemma (in normal-series) normal-series-iso:

assumes H : group H
assumes iso: Ψ ∈ iso G H
shows normal-series H (map (image Ψ) G)

apply (simp add: normal-series-def normal-series-axioms-def )
using H notempty apply simp
proof (rule conjI )
from H is-group iso have group-hom: group-hom G H Ψ unfolding group-hom-def

group-hom-axioms-def iso-def by auto
have hd (map (image Ψ) G) = Ψ ‘ {1} by (metis hd-map hd notempty)
also have . . . = {Ψ 1} by (metis image-empty image-insert)
also have . . . = {1H} using group-hom group-hom.hom-one by auto
finally show hd (map ((‘) Ψ) G) = {1H}.

next
show last (map ((‘) Ψ) G) = carrier H ∧ (∀ i. Suc i < length G −→ Ψ ‘ G ! i

C H (|carrier := Ψ ‘ G ! Suc i|))
proof (auto del: equalityI )

have last (map ((‘) Ψ) G) = Ψ ‘ (carrier G) using last last-map notempty by
metis

also have . . . = carrier H using iso unfolding iso-def bij-betw-def by simp
finally show last (map ((‘) Ψ) G) = carrier H .

next
fix i
assume i: Suc i < length G
hence norm: G ! i C G(|carrier := G ! Suc i|) using normal by simp

moreover have restrict Ψ (G ! Suc i) ∈ iso (G(|carrier := G ! Suc i|))
(H (|carrier := Ψ ‘ G ! Suc i|))

by (metis H i is-group iso iso-restrict normal-series-subgroups)
moreover have group (G(|carrier := G ! Suc i|)) by (metis i normal-series-subgroups
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subgroup-imp-group)
moreover hence subgroup (G ! Suc i) G by (metis i normal-series-subgroups)
hence subgroup (Ψ ‘ G ! Suc i) H

by (simp add: H iso subgroup.iso-subgroup)
hence group (H (|carrier := Ψ ‘ G ! Suc i|)) by (metis H subgroup.subgroup-is-group)
ultimately have restrict Ψ (G ! Suc i) ‘ G ! i C H (|carrier := Ψ ‘ G ! Suc i|)

using is-group H iso-normal-subgroup by (auto cong del: image-cong-simp)
moreover from norm have G ! i ⊆ G ! Suc i unfolding normal-def sub-

group-def by auto
hence {y. ∃ x∈G ! i. y = (if x ∈ G ! Suc i then Ψ x else undefined)} = {y.

∃ x∈G ! i. y = Ψ x} by auto
ultimately show Ψ ‘ G ! i C H (|carrier := Ψ ‘ G ! Suc i|) unfolding restrict-def

image-def by auto
qed

qed

2.3 Composition Series

A composition series is a normal series where all consecutive factor groups
are simple:
locale composition-series = normal-series +

assumes simplefact:
∧

i. i + 1 < length G =⇒ simple-group (G(|carrier := G
! (i + 1 )|) Mod G ! i)

lemma (in composition-series) is-composition-series:
shows composition-series G G

by (rule composition-series-axioms)

A composition series for a group G has length one if and only if G is the
trivial group.
lemma (in composition-series) composition-series-length-one:

shows (length G = 1 ) = (G = [{1}])
proof

assume length G = 1
with hd have length G = length [{1}] ∧ (∀ i < length G. G ! i = [{1}] ! i) using

hd-conv-nth notempty by force
thus G = [{1}] using list-eq-iff-nth-eq by blast

next
assume G = [{1}]
thus length G = 1 by simp

qed

lemma (in composition-series) composition-series-triv-group:
shows (carrier G = {1}) = (G = [{1}])

proof
assume G: carrier G = {1}
have length G = 1
proof (rule ccontr)
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assume length G 6= 1
with notempty have length: length G ≥ 2 by (metis Suc-eq-plus1 length-0-conv

less-2-cases not-less plus-nat.add-0 )
with simplefact hd hd-conv-nth notempty have simple-group (G(|carrier := G

! 1 |) Mod {1}) by force
moreover have SG: subgroup (G ! 1 ) G using length normal-series-subgroups

by auto
hence group (G(|carrier := G ! 1 |)) by (metis subgroup-imp-group)

ultimately have simple-group (G(|carrier := G ! 1 |)) using group.trivial-factor-iso
simple-group.iso-simple by fastforce

moreover from SG G have carrier (G(|carrier := G ! 1 |)) = {1} unfolding
subgroup-def by auto

ultimately show False using simple-group.simple-not-triv by force
qed
thus G = [{1}] by (metis composition-series-length-one)

next
assume G = [{1}]
with last show carrier G = {1} by auto

qed

The inner elements of a composition series may not consist of the trivial
subgroup or the group itself.
lemma (in composition-series) inner-elements-not-triv:

assumes i + 1 < length G
assumes i > 0
shows G ! i 6= {1}

proof
from assms have (i − 1 ) + 1 < length G by simp
hence simple: simple-group (G(|carrier := G ! ((i − 1 ) + 1 )|) Mod G ! (i − 1 ))

using simplefact by auto
assume i: G ! i = {1}
moreover from assms have (i − 1 ) + 1 = i by auto
ultimately have G(|carrier := G ! ((i − 1 ) + 1 )|) Mod G ! (i − 1 ) = G(|carrier

:= {1}|) Mod G ! (i − 1 ) using i by auto
hence order (G(|carrier := G ! ((i − 1 ) + 1 )|) Mod G ! (i − 1 )) = 1 unfolding

FactGroup-def order-def RCOSETS-def by force
thus False using i simple unfolding simple-group-def simple-group-axioms-def

by auto
qed

A composition series of a simple group always is its trivial one.
lemma (in composition-series) composition-series-simple-group:

shows (simple-group G) = (G = [{1}, carrier G])
proof

assume G = [{1}, carrier G]
with simplefact have simple-group (G Mod {1}) by auto
moreover have the-elem ∈ iso (G Mod {1}) G by (rule trivial-factor-iso)
ultimately show simple-group G by (metis is-group simple-group.iso-simple)

next
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assume simple: simple-group G
have length G > 1
proof (rule ccontr)

assume ¬ 1 < length G
hence length G = 1 by (simp add: Suc-leI antisym notempty)
hence carrier G = {1} using hd last by (metis composition-series-length-one

composition-series-triv-group)
hence order G = 1 unfolding order-def by auto
with simple show False unfolding simple-group-def simple-group-axioms-def

by auto
qed
moreover have length G ≤ 2
proof (rule ccontr)

define k where k = length G − 2
assume ¬ (length G ≤ 2 )
hence gt2 : length G > 2 by simp
hence ksmall: k + 1 < length G unfolding k-def by auto

from gt2 have carrier : G ! (k + 1 ) = carrier G using notempty last last-conv-nth
k-def

by (metis Nat.add-diff-assoc Nat.diff-cancel ‹¬ length G ≤ 2 › add.commute
nat-le-linear one-add-one)

from normal ksmall have G ! k C G(| carrier := G ! (k + 1 )|) by simp
from simplefact ksmall have simplek: simple-group (G(|carrier := G ! (k + 1 )|)

Mod G ! k) by simp
from simplefact ksmall have simplek ′: simple-group (G(|carrier := G ! ((k −

1 ) + 1 )|) Mod G ! (k − 1 )) by auto
have G ! k C G using carrier k-def gt2 normal ksmall by force
with simple have (G ! k) = carrier G ∨ (G ! k) = {1} unfolding sim-

ple-group-def simple-group-axioms-def by simp
thus False
proof (rule disjE)

assume G ! k = carrier G
hence G(|carrier := G ! (k + 1 )|) Mod G ! k = G Mod (carrier G) using

carrier by auto
with simplek self-factor-not-simple show False by auto

next
assume G ! k = {1}
with ksmall k-def gt2 show False using inner-elements-not-triv by auto

qed
qed
ultimately have length G = 2 by simp
thus G = [{1}, carrier G] by (rule length-two-unique)

qed

Two consecutive elements in a composition series are distinct.
lemma (in composition-series) entries-distinct:

assumes finite: finite (carrier G)
assumes i: i + 1 < length G
shows G ! i 6= G ! (i + 1 )
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proof
from finite have finite (G ! (i + 1 ))

using i normal-series-subgroups subgroup.subset rev-finite-subset by metis
hence fin: finite (carrier (G(|carrier := G ! (i + 1 )|))) by auto
from i have norm: G ! i C (G(|carrier := G ! (i + 1 )|)) by (rule normal)
assume G ! i = G ! (i + 1 )
hence G ! i = carrier (G(|carrier := G ! (i + 1 )|)) by auto
hence carrier ((G(|carrier := (G ! (i + 1 ))|)) Mod (G ! i)) = {1(G(|carrier := G ! (i + 1 )|)) Mod G ! i}

using norm fin normal.fact-group-trivial-iff by metis
hence ¬ simple-group ((G(|carrier := (G ! (i + 1 ))|)) Mod (G ! i)) by (metis

simple-group.simple-not-triv)
thus False by (metis i simplefact)

qed

The normal series for groups of order p ∗ q is even a composition series:
lemma (in group) pq-order-composition-series:

assumes finite: finite (carrier G)
assumes orderG: order G = q ∗ p
assumes primep: prime p and primeq: prime q and pq: p < q
shows composition-series G [{1}, (THE H . H ∈ subgroups-of-size q), carrier G]

unfolding composition-series-def composition-series-axioms-def
apply(auto)
using assms apply(rule pq-order-normal-series)
proof −

define H where H = (THE H . H ∈ subgroups-of-size q)
from assms have exi: ∃ !Q. Q ∈ (subgroups-of-size q) by (auto simp: pq-order-unique-subgrp)
hence Hsize: H ∈ subgroups-of-size q unfolding H-def using theI ′ by metis
hence HsubG: subgroup H G unfolding subgroups-of-size-def by auto
then interpret Hgroup: group G(|carrier := H |) by (metis subgroup-imp-group)
fix i
assume i < Suc (Suc 0 )
hence i = 0 ∨ i = 1 by auto
thus simple-group (G(|carrier := [H , carrier G] ! i|) Mod [{1}, H , carrier G] ! i)
proof

assume i: i = 0
from Hsize have orderH : order (G(|carrier := H |)) = q unfolding sub-

groups-of-size-def order-def by simp
hence order-eq-q: order (G(|carrier := H |) Mod {1}) = q

using Hgroup.trivial-factor-iso iso-same-order by auto
have normal {1} (G(|carrier := H |))

by (simp add: HsubG group.normal-restrict-supergroup subgroup.one-closed
trivial-subgroup-is-normal)

hence group (G(|carrier := H |) Mod {1}) by (metis normal.factorgroup-is-group)
with orderH primeq have simple-group (G(|carrier := H |) Mod {1})

by (metis order-eq-q group.prime-order-simple)
with i show ?thesis by simp

next
assume i: i = 1

from assms exi have H C G unfolding H-def by (metis pq-order-subgrp-normal)
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hence groupGH : group (G Mod H ) by (metis normal.factorgroup-is-group)
from primeq have q 6= 0 by (metis not-prime-0 )
from HsubG finite orderG have card (rcosets H ) ∗ card H = q ∗ p unfolding

subgroups-of-size-def using lagrange by simp
with Hsize have card (rcosets H ) ∗ q = q ∗ p unfolding subgroups-of-size-def

by simp
with ‹q 6= 0 › have card (rcosets H ) = p by auto
hence order (G Mod H ) = p unfolding order-def FactGroup-def by auto

with groupGH primep have simple-group (G Mod H ) by (metis group.prime-order-simple)
with i show ?thesis by auto

qed
qed

Prefixes of composition series are also composition series.
lemma (in composition-series) composition-series-prefix-closed:

assumes i ≤ length G and 0 < i
shows composition-series (G(|carrier := G ! (i − 1 )|)) (take i G)

unfolding composition-series-def composition-series-axioms-def
proof auto

from assms show normal-series (G(|carrier := G ! (i − Suc 0 )|)) (take i G) by
(metis One-nat-def normal-series-prefix-closed)
next

fix j
assume j: Suc j < length G Suc j < i
with simplefact show simple-group (G(|carrier := G ! Suc j|) Mod G ! j) by

(metis Suc-eq-plus1 )
qed

The second element in a composition series is simple group.
lemma (in composition-series) composition-series-snd-simple:

assumes 2 ≤ length G
shows simple-group (G(|carrier := G ! 1 |))

proof −
from assms interpret compTake: composition-series G(|carrier := G ! 1 |) take

2 G by (metis add-diff-cancel-right ′ composition-series-prefix-closed one-add-one
zero-less-numeral)

from assms have length (take 2 G) = 2 by (metis add-diff-cancel-right ′ ap-
pend-take-drop-id diff-diff-cancel length-append length-drop)

hence (take 2 G) = [{1(G(|carrier := G ! 1 |))}, carrier (G(|carrier := G ! 1 |))]
by (rule compTake.length-two-unique)

thus ?thesis by (metis compTake.composition-series-simple-group)
qed

As a stronger way to state the previous lemma: An entry of a composition
series is simple if and only if it is the second one.
lemma (in composition-series) composition-snd-simple-iff :

assumes i < length G
shows (simple-group (G(|carrier := G ! i|))) = (i = 1 )
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proof
assume simpi: simple-group (G(|carrier := G ! i|))
hence G ! i 6= {1} using simple-group.simple-not-triv by force
hence i 6= 0 using hd hd-conv-nth notempty by auto
then interpret compTake: composition-series G(|carrier := G ! i|) take (Suc i)

G
using assms composition-series-prefix-closed by (metis diff-Suc-1 less-eq-Suc-le

zero-less-Suc)
from simpi have (take (Suc i) G) = [{1G(|carrier := G ! i|)}, carrier (G(|carrier

:= G ! i|))]
by (metis compTake.composition-series-simple-group)

hence length (take (Suc i) G) = 2 by auto
hence min (length G) (Suc i) = 2 by (metis length-take)
with assms have Suc i = 2 by force
thus i = 1 by simp

next
assume i: i = 1
with assms have 2 ≤ length G by simp
with i show simple-group (G(|carrier := G ! i|)) by (metis composition-series-snd-simple)

qed

The second to last entry of a normal series is not only a normal subgroup
but actually even a maximal normal subgroup.
lemma (in composition-series) snd-to-last-max-normal:

assumes finite: finite (carrier G)
assumes length: length G > 1
shows max-normal-subgroup (G ! (length G − 2 )) G

unfolding max-normal-subgroup-def max-normal-subgroup-axioms-def
proof (auto del: equalityI )

show G ! (length G − 2 ) C G by (rule normal-series-snd-to-last)
next

define G ′ where G ′ = G ! (length G − 2 )
from length have length21 : length G − 2 + 1 = length G − 1 by arith
from length have length G − 2 + 1 < length G by arith
with simplefact have simple-group (G(|carrier := G ! ((length G − 2 ) + 1 )|)

Mod G ′) unfolding G ′-def by auto
with length21 have simple-last: simple-group (G Mod G ′) using last notempty

last-conv-nth by fastforce
{

assume snd-to-last-eq: G ′ = carrier G
hence carrier (G Mod G ′) = {1G Mod G ′}
using normal-series-snd-to-last finite normal.fact-group-trivial-iff unfolding

G ′-def by metis
with snd-to-last-eq have ¬ simple-group (G Mod G ′) by (metis self-factor-not-simple)
with simple-last show False unfolding G ′-def by auto

}
{

have G ′G: G ′ C G unfolding G ′-def by (rule normal-series-snd-to-last)
fix J
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assume J : J C G J 6= G ′ J 6= carrier G G ′ ⊆ J
hence JG ′GG ′: rcosets(G(|carrier := J |)) G ′ C G Mod G ′ using normal-

ity-factorization normal-series-snd-to-last unfolding G ′-def by auto
from G ′G J (1 ,4 ) have G ′J : G ′C (G(|carrier := J |)) by (metis normal-imp-subgroup

normal-restrict-supergroup)
from finite J (1 ) have finJ : finite J by (auto simp: normal-imp-subgroup

subgroup-finite)
from JG ′GG ′ simple-last have rcosetsG(|carrier := J |) G ′ = {1G Mod G ′} ∨

rcosetsG(|carrier := J |) G ′ = carrier (G Mod G ′)

unfolding simple-group-def simple-group-axioms-def by auto
thus False
proof

assume rcosetsG(|carrier := J |) G ′ = {1G Mod G ′}
hence rcosetsG(|carrier := J |) G ′ = {1(G(|carrier := J |)) Mod G ′} unfolding

FactGroup-def by simp
hence G ′ = J using G ′J finJ normal.fact-group-trivial-iff unfolding Fact-

Group-def by fastforce
with J (2 ) show False by simp

next
assume facts-eq: rcosetsG(|carrier := J |) G ′ = carrier (G Mod G ′)

have J = carrier G
proof

show J ⊆ carrier G using J (1 ) normal-imp-subgroup subgroup.subset by
force

next
show carrier G ⊆ J
proof

fix x
assume x: x ∈ carrier G

hence G ′ #> x ∈ carrier (G Mod G ′) unfolding FactGroup-def
RCOSETS-def by auto

hence G ′ #> x ∈ rcosetsG(|carrier := J |) G ′ using facts-eq by auto
then obtain j where j: j ∈ J G ′#> x = G ′#> j unfolding RCOSETS-def

r-coset-def by force
hence x ∈ G ′ #> j using G ′G normal-imp-subgroup x repr-independenceD

by fastforce
then obtain g ′ where g ′: g ′ ∈ G ′ x = g ′ ⊗ j unfolding r-coset-def by

auto
hence g ′ ∈ J using G ′J normal-imp-subgroup subgroup.subset by force

with g ′(2 ) j(1 ) show x ∈ J using J (1 ) normal-imp-subgroup sub-
group.m-closed by fastforce

qed
qed
with J (3 ) show False by simp

qed
}

qed
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For the next lemma we need a few facts about removing adjacent duplicates.
lemma remdups-adj-obtain-adjacency:

assumes i + 1 < length (remdups-adj xs) length xs > 0
obtains j where j + 1 < length xs
(remdups-adj xs) ! i = xs ! j (remdups-adj xs) ! (i + 1 ) = xs ! (j + 1 )

using assms proof (induction xs arbitrary: i thesis)
case Nil
hence False by (metis length-greater-0-conv)
thus thesis..

next
case (Cons x xs)
then have xs 6= []

by auto
then obtain y xs ′ where xs: xs = y # xs ′

by (cases xs) blast
from ‹xs 6= []› have lenxs: length xs > 0 by simp
from xs have rem: remdups-adj (x # xs) = (if x = y then remdups-adj (y #

xs ′) else x # remdups-adj (y # xs ′)) using remdups-adj.simps(3 ) by auto
show thesis
proof (cases x = y)

case True
with rem xs have rem2 : remdups-adj (x # xs) = remdups-adj xs by auto
with Cons(3 ) have i + 1 < length (remdups-adj xs) by simp
with Cons.IH lenxs obtain k where j: k + 1 < length xs remdups-adj xs ! i

= xs ! k
remdups-adj xs ! (i + 1 ) = xs ! (k + 1 ) by auto

thus thesis using Cons(2 ) rem2 by auto
next

case False
with rem xs have rem2 : remdups-adj (x # xs) = x # remdups-adj xs by auto
show thesis
proof (cases i)

case 0
have 0 + 1 < length (x # xs) using lenxs by auto
moreover have remdups-adj (x # xs) ! i = (x # xs) ! 0
proof −

have remdups-adj (x # xs) ! i = (x # remdups-adj (y # xs ′)) ! 0 using xs
rem2 0 by simp

also have . . . = x by simp
also have . . . = (x # xs) ! 0 by simp
finally show ?thesis.

qed
moreover have remdups-adj (x # xs) ! (i + 1 ) = (x # xs) ! (0 + 1 )
proof −

have remdups-adj (x # xs) ! (i + 1 ) = (x # remdups-adj (y # xs ′)) ! 1
using xs rem2 0 by simp

also have . . . = remdups-adj (y # xs ′) ! 0 by simp
also have . . . = (y # (remdups (y # xs ′))) ! 0 by (metis nth-Cons ′

remdups-adj-Cons-alt)
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also have . . . = y by simp
also have . . . = (x # xs) ! (0 + 1 ) unfolding xs by simp
finally show ?thesis.

qed
ultimately show thesis by (rule Cons.prems(1 ))

next
case (Suc k)
with Cons(3 ) have k + 1 < length (remdups-adj (x # xs)) − 1 by auto
also have . . . ≤ length (remdups-adj xs) + 1 − 1 by (metis One-nat-def

le-refl list.size(4 ) rem2 )
also have . . . = length (remdups-adj xs) by simp
finally have k + 1 < length (remdups-adj xs).
with Cons.IH lenxs obtain j where j: j + 1 < length xs remdups-adj xs ! k

= xs ! j
remdups-adj xs ! (k + 1 ) = xs ! (j + 1 ) by auto

from j(1 ) have Suc j + 1 < length (x # xs) by simp
moreover have remdups-adj (x # xs) ! i = (x # xs) ! (Suc j)
proof −

have remdups-adj (x # xs) ! i = (x # remdups-adj xs) ! i using rem2 by
simp

also have . . . = (remdups-adj xs) ! k using Suc by simp
also have . . . = xs ! j using j(2 ) .
also have . . . = (x # xs) ! (Suc j) by simp
finally show ?thesis .

qed
moreover have remdups-adj (x # xs) ! (i + 1 ) = (x # xs) ! (Suc j + 1 )
proof −

have remdups-adj (x # xs) ! (i + 1 ) = (x # remdups-adj xs) ! (i + 1 )
using rem2 by simp

also have . . . = (remdups-adj xs) ! (k + 1 ) using Suc by simp
also have . . . = xs ! (j + 1 ) using j(3 ).
also have . . . = (x # xs) ! (Suc j + 1 ) by simp
finally show ?thesis.

qed
ultimately show thesis by (rule Cons.prems(1 ))

qed
qed

qed

lemma hd-remdups-adj[simp]: hd (remdups-adj xs) = hd xs
by (induction xs rule: remdups-adj.induct) simp-all

lemma remdups-adj-adjacent:
Suc i < length (remdups-adj xs) =⇒ remdups-adj xs ! i 6= remdups-adj xs ! Suc i

proof (induction xs arbitrary: i rule: remdups-adj.induct)
case (3 x y xs i)
thus ?case by (cases i, cases x = y) (simp, auto simp: hd-conv-nth[symmetric])

qed simp-all

Intersecting each entry of a composition series with a normal subgroup of G
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and removing all adjacent duplicates yields another composition series.
lemma (in composition-series) intersect-normal:

assumes finite: finite (carrier G)
assumes KG: K C G
shows composition-series (G(|carrier := K |)) (remdups-adj (map (λH . K ∩ H )

G))
unfolding composition-series-def composition-series-axioms-def normal-series-def
normal-series-axioms-def
apply (auto simp only: conjI del: equalityI )
proof −
show group (G(|carrier := K |)) using KG normal-imp-subgroup subgroup-imp-group

by auto
next

— Show, that removing adjacent duplicates doesn’t result in an empty list.
assume remdups-adj (map ((∩) K ) G) = []
hence map ((∩) K ) G = [] by (metis remdups-adj-Nil-iff )
hence G = [] by (metis Nil-is-map-conv)
with notempty show False..

next
— Show, that the head of the reduced list is still the trivial group
have G = {1} # tl G using notempty hd by (metis list.sel(1 ,3 ) neq-Nil-conv)
hence map ((∩) K ) G = map ((∩) K ) ({1} # tl G) by simp
hence remdups-adj (map ((∩) K ) G) = remdups-adj ((K ∩ {1}) # (map ((∩)

K ) (tl G))) by simp
also have . . . = (K ∩ {1}) # tl (remdups-adj ((K ∩ {1}) # (map ((∩) K ) (tl

G)))) by simp
finally have hd (remdups-adj (map ((∩) K ) G)) = K ∩ {1} using list.sel(1 )

by metis
thus hd (remdups-adj (map ((∩) K ) G)) = {1G(|carrier := K |)}

using KG normal-imp-subgroup subgroup.one-closed by force
next

— Show that the last entry is really K ∩ G. Since we don’t have a lemma ready
to talk about the last entry of a reduced list, we reverse the list twice.

have rev G = (carrier G) # tl (rev G) by (metis list.sel(1 ,3 ) last last-rev
neq-Nil-conv notempty rev-is-Nil-conv rev-rev-ident)

hence rev (map ((∩) K ) G) = map ((∩) K ) ((carrier G) # tl (rev G)) by (metis
rev-map)

hence rev: rev (map ((∩) K ) G) = (K ∩ (carrier G)) # (map ((∩) K ) (tl (rev
G))) by simp

have last (remdups-adj (map ((∩) K ) G)) = hd (rev (remdups-adj (map ((∩) K )
G)))

by (metis hd-rev map-is-Nil-conv notempty remdups-adj-Nil-iff )
also have . . . = hd (remdups-adj (rev (map ((∩) K ) G))) by (metis remdups-adj-rev)
also have . . . = hd (remdups-adj ((K ∩ (carrier G)) # (map ((∩) K ) (tl (rev

G))))) by (metis rev)
also have . . . = hd ((K ∩ (carrier G)) # (remdups-adj ((K ∩ (carrier G)) #

(map ((∩) K ) (tl (rev G)))))) by (metis list.sel(1 ) remdups-adj-Cons-alt)
also have . . . = K using KG normal-imp-subgroup subgroup.subset by force
finally show last (remdups-adj (map ((∩) K ) G)) = carrier (G(|carrier := K |))
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by auto
next

— The induction step, using the second isomorphism theorem for groups.
fix j
assume j: j + 1 < length (remdups-adj (map ((∩) K ) G))
have KGnotempty: (map ((∩) K ) G) 6= [] using notempty by (metis Nil-is-map-conv)
with j obtain i where i: i + 1 < length (map ((∩) K ) G)
(remdups-adj (map ((∩) K ) G)) ! j = (map ((∩) K ) G) ! i
(remdups-adj (map ((∩) K ) G)) ! (j + 1 ) = (map ((∩) K ) G) ! (i + 1 )
using remdups-adj-obtain-adjacency by force

from i(1 ) have i ′: i + 1 < length G by (metis length-map)
hence GiSi: G ! i C G(|carrier := G ! (i + 1 )|) by (metis normal)
hence GiSi ′: G ! i ⊆ G ! (i + 1 ) using normal-imp-subgroup subgroup.subset

by force
from i ′ have finGSi: finite (G ! (i + 1 )) using normal-series-subgroups finite

by (metis subgroup-finite)
from GiSi KG i ′ normal-series-subgroups have GSiKnormGSi: G ! (i + 1 ) ∩ K

C G(|carrier := G ! (i + 1 )|)
using second-isomorphism-grp.normal-subgrp-intersection-normal
unfolding second-isomorphism-grp-def second-isomorphism-grp-axioms-def by

auto
with GiSi have G ! i ∩ (G ! (i + 1 ) ∩ K ) C G(|carrier := G ! (i + 1 )|)
by (metis group.normal-subgroup-intersect group.subgroup-imp-group i ′ is-group

is-normal-series normal-series.normal-series-subgroups)
hence K ∩ (G ! i ∩ G ! (i + 1 )) C G(|carrier := G ! (i + 1 )|) by (metis

inf-commute inf-left-commute)
hence KGinormGSi: K ∩ G ! i C G(|carrier := G ! (i + 1 )|) using GiSi ′ by

(metis le-iff-inf )
moreover have K ∩ G ! i ⊆ K ∩ G ! (i + 1 ) using GiSi ′ by auto
moreover have groupGSi: group (G(|carrier := G ! (i + 1 )|)) using i nor-

mal-series-subgroups subgroup-imp-group by auto
moreover have subKGSiGSi: subgroup (K ∩ G ! (i + 1 )) (G(|carrier := G ! (i

+ 1 )|)) by (metis GSiKnormGSi inf-sup-aci(1 ) normal-imp-subgroup)
ultimately have fstgoal: K ∩ G ! i C G(|carrier := G ! (i + 1 ), carrier := K

∩ G ! (i + 1 )|)
using group.normal-restrict-supergroup by force

thus remdups-adj (map ((∩) K ) G) ! j C G(|carrier := K , carrier := remdups-adj
(map ((∩) K ) G) ! (j + 1 )|)

using i by auto
from simplefact have Gisimple: simple-group (G(|carrier := G ! (i + 1 )|) Mod

G ! i) using i ′ by simp
hence Gimax: max-normal-subgroup (G ! i) (G(|carrier := G ! (i + 1 )|))

using normal.max-normal-simple-quotient GiSi finGSi by force
from GSiKnormGSi GiSi have G ! i <#>G(|carrier := G ! (i + 1 )|) G ! (i + 1 )

∩ K C (G(|carrier := G ! (i + 1 )|))
using groupGSi group.normal-subgroup-set-mult-closed set-mult-consistent by

fastforce
hence G ! i <#> G ! (i + 1 ) ∩ K C G(|carrier := G ! (i + 1 )|) unfolding

set-mult-def by auto
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hence G ! i <#> K ∩ G ! (i + 1 ) C G(|carrier := G ! (i + 1 )|) using
inf-commute by metis

moreover have G ! i ⊆ G ! i <#>G(|carrier := G ! (i + 1 )|) K ∩ G ! (i + 1 )
using second-isomorphism-grp.H-contained-in-set-mult
unfolding second-isomorphism-grp-def second-isomorphism-grp-axioms-def
using subKGSiGSi GiSi normal-imp-subgroup by fastforce

hence G ! i ⊆ G ! i <#> K ∩ G ! (i + 1 ) unfolding set-mult-def by auto
ultimately have KGdisj: G ! i <#> K ∩ G ! (i + 1 ) = G ! i ∨ G ! i <#> K

∩ G ! (i + 1 ) = G ! (i + 1 )
using Gimax unfolding max-normal-subgroup-def max-normal-subgroup-axioms-def
by auto

obtain ϕ where ϕ ∈ iso (G(|carrier := K ∩ G ! (i + 1 )|) Mod (G ! i ∩ (K ∩
G ! (i + 1 ))))

(G(|carrier := G ! i <#>G(|carrier := G ! (i + 1 )|) K ∩ G ! (i + 1 )|)
Mod G ! i)

using second-isomorphism-grp.normal-intersection-quotient-isom
unfolding second-isomorphism-grp-def second-isomorphism-grp-axioms-def
using GiSi subKGSiGSi normal-imp-subgroup by fastforce

hence ϕ ∈ iso (G(|carrier := K ∩ G ! (i + 1 )|) Mod (K ∩ G ! (i + 1 ) ∩ G ! i))
(G(|carrier := G ! i <#>G(|carrier := G ! (i + 1 )|) K ∩ G ! (i +

1 )|) Mod G ! i)
by (metis inf-commute)

hence ϕ ∈ iso (G(|carrier := K ∩ G ! (i + 1 )|) Mod (K ∩ (G ! (i + 1 ) ∩ G !
i)))

(G(|carrier := G ! i <#>G(|carrier := G ! (i + 1 )|) K ∩ G ! (i + 1 )|)
Mod G ! i)

by (metis Int-assoc)
hence ϕ ∈ iso (G(|carrier := K ∩ G ! (i + 1 )|) Mod (K ∩ G ! i))

(G(|carrier := G ! i <#>G(|carrier := G ! (i + 1 )|) K ∩ G ! (i + 1 )|)
Mod G ! i)

by (metis GiSi ′ Int-absorb2 Int-commute)
hence ϕ: ϕ ∈ iso (G(|carrier := K ∩ G ! (i + 1 )|) Mod (K ∩ G ! i))

(G(|carrier := G ! i <#> K ∩ G ! (i + 1 )|) Mod G ! i)
unfolding set-mult-def by auto

from fstgoal have KGsiKGigroup: group (G(|carrier := K ∩ G ! (i + 1 )|) Mod
(K ∩ G ! i)) using normal.factorgroup-is-group by auto

from KGdisj show simple-group (G(|carrier := K , carrier := remdups-adj (map
((∩) K ) G) ! (j + 1 )|) Mod remdups-adj (map ((∩) K ) G) ! j)

proof auto
have groupGi: group (G(|carrier := G ! i|)) using i ′ normal-series-subgroups

subgroup-imp-group by auto
assume G ! i <#> K ∩ G ! Suc i = G ! i
with ϕ have ϕ ∈ iso (G(|carrier := K ∩ G ! (i + 1 )|) Mod (K ∩ G ! i))

(G(|carrier := G ! i|) Mod G ! i) by auto
moreover obtain ψ where ψ ∈ iso (G(|carrier := G ! i|) Mod (carrier

(G(|carrier := G ! i|)))) (G(|carrier := {1G(|carrier := G ! i|)}|))
using group.self-factor-iso groupGi by force

ultimately obtain π where π ∈ iso (G(|carrier := K ∩ G ! (i + 1 )|) Mod (K
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∩ G ! i)) (G(|carrier := {1}|))
using iso-set-trans by fastforce

hence order (G(|carrier := K ∩ G ! (i + 1 )|) Mod (K ∩ G ! i)) = order
(G(|carrier := {1}|))

by (meson iso-same-order)
hence order (G(|carrier := K ∩ G ! (i + 1 )|) Mod (K ∩ G ! i)) = 1 unfolding

order-def by auto
hence carrier (G(|carrier := K ∩ G ! (i + 1 )|) Mod (K ∩ G ! i)) = {1G(|carrier := K ∩ G ! (i + 1 )|) Mod (K ∩ G ! i)}

using group.order-one-triv-iff KGsiKGigroup by blast
moreover from fstgoal have K ∩ G ! i C G(|carrier := K ∩ G ! (i + 1 )|) by

auto
moreover from finGSi have finite (carrier (G(|carrier := K ∩ G ! (i + 1 )|)))

by auto
ultimately have K ∩ G ! i = carrier (G(|carrier := K ∩ G ! (i + 1 )|)) by

(metis normal.fact-group-trivial-iff )
hence (remdups-adj (map ((∩) K ) G)) ! j = (remdups-adj (map ((∩) K ) G))

! (j + 1 ) using i by auto
with j have False using remdups-adj-adjacent KGnotempty Suc-eq-plus1 by

metis
thus simple-group (G(|carrier := remdups-adj (map ((∩) K ) G) ! Suc j|) Mod

remdups-adj (map ((∩) K ) G) ! j)..
next

assume G ! i <#> K ∩ G ! Suc i = G ! Suc i
with ϕ have ϕ ∈ iso (G(|carrier := K ∩ G ! (i + 1 )|) Mod (K ∩ G ! i))

(G(|carrier := G ! (i + 1 )|) Mod G ! i)
by auto
then obtain ϕ ′ where ϕ ′ ∈ iso (G(|carrier := G ! (i + 1 )|) Mod G ! i)

(G(|carrier := K ∩ G ! (i + 1 )|) Mod (K ∩ G ! i))
using KGsiKGigroup group.iso-set-sym by auto

with Gisimple KGsiKGigroup have simple-group (G(|carrier := K ∩ G ! (i +
1 )|) Mod (K ∩ G ! i)) by (metis simple-group.iso-simple)

with i show simple-group (G(|carrier := remdups-adj (map ((∩) K ) G) ! Suc
j|) Mod remdups-adj (map ((∩) K ) G) ! j)

by auto
qed

qed

lemma (in group) composition-series-extend:
assumes composition-series (G(|carrier := H |)) H
assumes simple-group (G Mod H ) H C G
shows composition-series G (H @ [carrier G])

unfolding composition-series-def composition-series-axioms-def
proof auto

from assms(1 ) interpret compH: composition-series G(|carrier := H |) H .
show normal-series G (H @ [carrier G]) using assms(3 ) compH.is-normal-series

by (metis normal-series-extend)
fix i
assume i: i < length H
show simple-group (G(|carrier := (H @ [carrier G]) ! Suc i|) Mod (H @ [carrier
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G]) ! i)
proof (cases i = length H − 1 )

case True
hence (H @ [carrier G]) ! Suc i = carrier G by (metis i diff-Suc-1 lessE

nth-append-length)
moreover have (H @ [carrier G]) ! i = H ! iby (metis butlast-snoc i nth-butlast)

hence (H @ [carrier G]) ! i = H using True last-conv-nth compH.notempty
compH.last by auto

ultimately show ?thesis using assms(2 ) by auto
next

case False
hence Suc i < length H using i by auto
hence (H @ [carrier G]) ! Suc i = H ! Suc i using nth-append by metis
moreover from i have (H @ [carrier G]) ! i = H ! i using nth-append by

metis
ultimately show ?thesis using ‹Suc i < length H› compH.simplefact by auto

qed
qed

lemma (in composition-series) entries-mono:
assumes i ≤ j j < length G
shows G ! i ⊆ G ! j

using assms proof (induction j − i arbitrary: i j)
case 0
hence i = j by auto
thus G ! i ⊆ G ! j by auto

next
case (Suc k i j)
hence i ′: i + (Suc k) = j i + 1 < length G by auto
hence ij: i + 1 ≤ j by auto
have G ! i ⊆ G ! (i + 1 ) using i ′ normal normal-imp-subgroup subgroup.subset

by force
moreover have j − (i + 1 ) = k j < length G using Suc assms by auto
hence G ! (i + 1 ) ⊆ G ! j using Suc(1 ) ij by auto
ultimately show G ! i ⊆ G ! j by simp

qed

end

theory GroupIsoClasses
imports

HOL−Algebra.Coset
begin

3 Isomorphism Classes of Groups

We construct a quotient type for isomorphism classes of groups.
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typedef ′a group = {G :: ′a monoid. group G}
proof

show
∧

a. (|carrier = {a}, mult = (λx y. x), one = a|) ∈ {G. group G}
unfolding group-def group-axioms-def monoid-def Units-def by auto

qed

definition group-iso-rel :: ′a group ⇒ ′a group ⇒ bool
where group-iso-rel G H = (∃ϕ. ϕ ∈ iso (Rep-group G) (Rep-group H ))

quotient-type ′a group-iso-class = ′a group / group-iso-rel
morphisms Rep-group-iso Abs-group-iso

proof (rule equivpI )
show reflp group-iso-rel
proof (rule reflpI )

fix G :: ′b group
show group-iso-rel G G

unfolding group-iso-rel-def using iso-set-refl by blast
qed

next
show symp group-iso-rel
proof (rule sympI )

fix G H :: ′b group
assume group-iso-rel G H

then obtain ϕ where ϕ ∈ iso (Rep-group G) (Rep-group H ) unfolding
group-iso-rel-def by auto

then obtain ϕ ′ where ϕ ′∈ iso (Rep-group H ) (Rep-group G) using group.iso-sym
Rep-group

using group.iso-set-sym by blast
thus group-iso-rel H G unfolding group-iso-rel-def by auto

qed
next

show transp group-iso-rel
proof (rule transpI )

fix G H I :: ′b group
assume group-iso-rel G H group-iso-rel H I

then obtain ϕ ψ where ϕ ∈ iso (Rep-group G) (Rep-group H ) ψ ∈ iso
(Rep-group H ) (Rep-group I )

unfolding group-iso-rel-def by auto
then obtain π where π ∈ iso (Rep-group G) (Rep-group I )

using iso-set-trans by blast
thus group-iso-rel G I unfolding group-iso-rel-def by auto

qed
qed

This assigns to a given group the group isomorphism class
definition (in group) iso-class :: ′a group-iso-class

where iso-class = Abs-group-iso (Abs-group (monoid.truncate G))

Two isomorphic groups do indeed have the same isomorphism class:
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lemma iso-classes-iff :
assumes group G
assumes group H
shows (∃ϕ. ϕ ∈ iso G H ) = (group.iso-class G = group.iso-class H )

proof −
from assms(1 ,2 ) have groups:group (monoid.truncate G) group (monoid.truncate

H )
unfolding monoid.truncate-def group-def group-axioms-def Units-def monoid-def

by auto
have (∃ϕ. ϕ ∈ iso G H ) = (∃ϕ. ϕ ∈ iso (monoid.truncate G) (monoid.truncate

H ))
unfolding iso-def hom-def monoid.truncate-def by auto

also have . . . = group-iso-rel (Abs-group (monoid.truncate G)) (Abs-group (monoid.truncate
H ))

unfolding group-iso-rel-def using groups group.Abs-group-inverse by (metis
mem-Collect-eq)

also have . . . = (group.iso-class G = group.iso-class H ) using group.iso-class-def
assms group-iso-class.abs-eq-iff by metis

finally show ?thesis.
qed

end

theory JordanHolder
imports

CompositionSeries
MaximalNormalSubgroups
HOL−Library.Multiset
GroupIsoClasses

begin

4 The Jordan-Hölder Theorem
locale jordan-hoelder = group
+ compH?: composition-series G H
+ compG?: composition-series G G for H and G
+ assumes finite: finite (carrier G)

Before we finally start the actual proof of the theorem, one last lemma:
Cancelling the last entry of a normal series results in a normal series with
quotients being all but the last of the original ones.
lemma (in normal-series) quotients-butlast:

assumes length G > 1
shows butlast quotients = normal-series.quotients (G(|carrier := G ! (length G

− 1 − 1 )|)) (take (length G − 1 ) G)
proof (rule nth-equalityI )

define n where n = length G − 1
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hence n = length (take n G) n > 0 n < length G using assms notempty by
auto

interpret normalGbutlast: normal-series (G(|carrier := G ! (n − 1 )|)) take n G

using normal-series-prefix-closed ‹n > 0 › ‹n < length G› by auto
have length (butlast quotients) = length quotients − 1 by (metis length-butlast)
also have . . . = length G − 1 − 1 by (metis add-diff-cancel-right ′ quotients-length)
also have . . . = length (take n G) − 1 by (metis ‹n = length (take n G)› n-def )
also have . . . = length normalGbutlast.quotients by (metis normalGbutlast.quotients-length

diff-add-inverse2 )
finally show length (butlast quotients) = length normalGbutlast.quotients .
have ∀ i<length (butlast quotients). butlast quotients ! i = normalGbutlast.quotients

! i
proof auto

fix i
assume i: i < length quotients − Suc 0
hence i ′: i < length G − 1 i < n i + 1 < n unfolding n-def using quo-

tients-length by auto
from i have butlast quotients ! i = quotients ! i by (metis One-nat-def

length-butlast nth-butlast)
also have . . . = G(|carrier := G ! (i + 1 )|) Mod G ! i unfolding quotients-def

using i ′(1 ) by auto
also have . . . = G(|carrier := (take n G) ! (i + 1 )|) Mod (take n G) ! i using

i ′(2 ,3 ) nth-take by metis
also have . . . = normalGbutlast.quotients ! i unfolding normalGbutlast.quotients-def

using i ′ by fastforce
finally show butlast (normal-series.quotients G G) ! i = normal-series.quotients

(G(|carrier := G ! (n − Suc 0 )|)) (take n G) ! i by auto
qed
thus

∧
i. i < length (butlast quotients)
=⇒ butlast quotients ! i

= normal-series.quotients (G(|carrier := G ! (length G − 1 − 1 )|))
(take (length G − 1 ) G) ! i

unfolding n-def by auto
qed

The main part of the Jordan Hölder theorem is its statement about the
uniqueness of a composition series. Here, uniqueness up to reordering and
isomorphism is modelled by stating that the multisets of isomorphism classes
of all quotients are equal.
theorem jordan-hoelder-multisets:

assumes group G
assumes finite (carrier G)
assumes composition-series G G
assumes composition-series G H
shows mset (map group.iso-class (normal-series.quotients G G))
= mset (map group.iso-class (normal-series.quotients G H))

using assms
proof (induction length G arbitrary: G H G rule: full-nat-induct)
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case (1 G H G)
then interpret compG: composition-series G G by simp
from 1 interpret compH: composition-series G H by simp
from 1 interpret grpG: group G by simp
show ?case
proof (cases length G ≤ 2 )
next

case True
hence length G = 0 ∨ length G = 1 ∨ length G = 2 by arith
with compG.notempty have length G = 1 ∨ length G = 2 by simp
thus ?thesis
proof (auto simp del: mset-map)

— First trivial case: G is the trivial group.
assume length G = Suc 0
hence length: length G = 1 by simp
hence length [] + 1 = length G by auto

moreover from length have charG: G = [{1G}] by (metis compG.composition-series-length-one)
hence carrier G = {1G} by (metis compG.composition-series-triv-group)
with length charG have G = H using compH.composition-series-triv-group

by simp
thus ?thesis by simp

next
— Second trivial case: G is simple.
assume length G = 2
hence Gchar : G = [{1G}, carrier G] by (metis compG.length-two-unique)

hence simple: simple-group G by (metis compG.composition-series-simple-group)
hence H = [{1G}, carrier G] using compH.composition-series-simple-group

by auto
with Gchar have G = H by simp
thus ?thesis by simp

qed
next

case False
— Non-trivial case: G has length at least 3.
hence length: length G ≥ 3 by simp
— First we show that H must have a length of at least 3.
hence ¬ simple-group G using compG.composition-series-simple-group by auto
hence H 6= [{1G}, carrier G] using compH.composition-series-simple-group by

auto
hence length H 6= 2 using compH.length-two-unique by auto

moreover from length have carrier G 6= {1G} using compG.composition-series-length-one
compG.composition-series-triv-group by auto

hence length H 6= 1 using compH.composition-series-length-one compH.composition-series-triv-group
by auto

moreover from compH.notempty have length H 6= 0 by simp
ultimately have lengthHbig: length H ≥ 3 using compH.notempty by arith
define m where m = length H − 1
define n where n = length G − 1
from lengthHbig have m ′: m > 0 m < length H (m − 1 ) + 1 < length H m
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− 1 = length H − 2 m − 1 + 1 = length H − 1 m − 1 < length H
unfolding m-def by auto

from length have n ′: n > 0 n < length G (n − 1 ) + 1 < length G n − 1 <
length G Suc n ≤ length G

n − 1 = length G − 2 n − 1 + 1 = length G − 1 unfolding n-def by auto
define GPn where GPn = G(|carrier := G ! (n − 1 )|)
define HPm where HPm = G(|carrier := H ! (m − 1 )|)
then interpret grpGPn: group GPn unfolding GPn-def using n ′ by (metis

compG.normal-series-subgroups compG.subgroup-imp-group)
interpret grpHPm: group HPm unfolding HPm-def using m ′ compH.normal-series-subgroups

1 (2 ) group.subgroup-imp-group by force
have finGbl: finite (carrier GPn) using ‹n − 1 < length G› 1 (3 ) unfolding

GPn-def using compG.normal-series-subgroups compG.subgroup-finite by auto
have finHbl: finite (carrier HPm) using ‹m − 1 < length H› 1 (3 ) unfolding

HPm-def using compH.normal-series-subgroups compG.subgroup-finite by auto
have quotsGnotempty: compG.quotients 6= [] using compG.quotients-length

length by auto
have quotsHnotempty: compH.quotients 6= [] using compH.quotients-length

lengthHbig by auto

— Instantiate truncated composition series since they are used for both cases
interpret Hbutlast: composition-series HPm take m H using compH.composition-series-prefix-closed

m ′(1 ,2 ) HPm-def by auto
interpret Gbutlast: composition-series GPn take n G using compG.composition-series-prefix-closed

n ′(1 ,2 ) GPn-def by auto
have ltaken: n = length (take n G) using length-take n ′(2 ) by auto
have ltakem: m = length (take m H) using length-take m ′(2 ) by auto
show ?thesis
proof (cases H ! (m − 1 ) = G ! (n − 1 ))

— If H ! (l − 1 ) = G ! 1, everything is simple...
case True
— The last quotients of G and H are equal.
have lasteq: last compG.quotients = last compH.quotients
proof −

from length have lg: length G − 1 − 1 + 1 = length G − 1 by (metis
Suc-diff-1 Suc-eq-plus1 n ′(1 ) n-def )

from lengthHbig have lh: length H − 1 − 1 + 1 = length H − 1 by (metis
Suc-diff-1 Suc-eq-plus1 ‹0 < m› m-def )

have last compG.quotients = G Mod G ! (n − 1 ) using length compG.last-quotient
unfolding n-def by auto

also have . . . = G Mod H ! (m − 1 ) using True by simp
also have . . . = last compH.quotients using lengthHbig compH.last-quotient

unfolding m-def by auto
finally show ?thesis .

qed
from ltaken have ind: mset (map group.iso-class Gbutlast.quotients) = mset

(map group.iso-class Hbutlast.quotients)
using 1 (1 ) True n ′(5 ) grpGPn.is-group finGbl Gbutlast.is-composition-series

Hbutlast.is-composition-series unfolding GPn-def HPm-def by metis
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have mset (map group.iso-class compG.quotients)
= mset (map group.iso-class (butlast compG.quotients @ [last

compG.quotients])) by (simp add: quotsGnotempty)
also have . . . = mset (map group.iso-class (Gbutlast.quotients @ [last (compG.quotients)]))

using compG.quotients-butlast length unfolding n-def GPn-def by auto
also have . . . = mset ((map group.iso-class Gbutlast.quotients) @ [group.iso-class

(last (compG.quotients))]) by auto
also have . . . = mset (map group.iso-class Gbutlast.quotients) + {# group.iso-class

(last (compG.quotients)) #} by auto
also have . . . = mset (map group.iso-class Hbutlast.quotients) + {# group.iso-class

(last (compG.quotients)) #} using ind by simp
also have . . . = mset (map group.iso-class Hbutlast.quotients) + {# group.iso-class

(last (compH.quotients)) #} using lasteq by simp
also have . . . = mset ((map group.iso-class Hbutlast.quotients) @ [group.iso-class

(last (compH.quotients))]) by auto
also have . . . = mset (map group.iso-class (Hbutlast.quotients @ [last (compH.quotients)]))

by auto
also have . . . = mset (map group.iso-class (butlast compH.quotients @ [last

compH.quotients])) using lengthHbig compH.quotients-butlast unfolding m-def HPm-def
by auto

also have . . . = mset (map group.iso-class compH.quotients) using ap-
pend-butlast-last-id quotsHnotempty by simp

finally show ?thesis .
next

case False
define HPmIntGPn where HPmIntGPn = G(|carrier := H ! (m − 1 ) ∩ G

! (n − 1 )|)
interpret GPnmax: max-normal-subgroup G ! (n − 1 ) G unfolding n-def

by (metis add-lessD1 diff-diff-add n ′(3 ) add.commute one-add-one 1 (3 )
compG.snd-to-last-max-normal)

interpret HPmmax: max-normal-subgroup H ! (m − 1 ) G unfolding m-def
by (metis add-lessD1 diff-diff-add m ′(3 ) add.commute one-add-one 1 (3 )

compH.snd-to-last-max-normal)
have HPmnormG: H ! (m − 1 ) C G using compH.normal-series-snd-to-last

m ′(4 ) unfolding m-def by auto
have GPnnormG: G ! (n − 1 ) C G using compG.normal-series-snd-to-last

n ′(6 ) unfolding n-def by auto
have HPmintGPnnormG: H ! (m − 1 ) ∩ G ! (n − 1 ) C G using HPmnormG

GPnnormG by (rule compG.normal-subgroup-intersect)
have IntnormGPn: H ! (m − 1 ) ∩ G ! (n − 1 ) C GPn using GPnnormG

HPmnormG Int-lower2 unfolding GPn-def
by (metis compG.normal-restrict-supergroup compG.normal-series-subgroups

compG.normal-subgroup-intersect n ′(4 ))
then interpret grpGPnModHPmintGPn: group GPn Mod H ! (m − 1 ) ∩ G

! (n − 1 ) by (rule normal.factorgroup-is-group)
have IntnormHPm: H ! (m − 1 ) ∩ G ! (n − 1 ) C HPm using HPmnormG

GPnnormG Int-lower2 Int-commute unfolding HPm-def
by (metis compG.normal-restrict-supergroup compG.normal-subgroup-intersect

compH.normal-series-subgroups m ′(6 ))
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then interpret grpHPmModHPmintGPn: group HPm Mod H ! (m − 1 ) ∩
G ! (n − 1 ) by (rule normal.factorgroup-is-group)

— Show that the second to last entries are not contained in each other.
have notHPmSubGPn: ¬ (H ! (m − 1 ) ⊆ G ! (n − 1 )) using HPm-

max.max-normal GPnnormG False[symmetric] GPnmax.proper by simp
have notGPnSubHPm: ¬ (G ! (n − 1 ) ⊆ H ! (m − 1 )) using GPn-

max.max-normal HPmnormG False HPmmax.proper by simp

— Show that G Mod H ! (m − 1 ) ∩ G ! (n − 1 ) is a simple group.
have HPmSubSetmult: H ! (m − 1 ) ⊆ H ! (m − 1 ) <#>G G ! (n − 1 )
using GPnmax.subgroup-axioms HPmnormG second-isomorphism-grp.H-contained-in-set-mult

second-isomorphism-grp-axioms-def second-isomorphism-grp-def by blast
have GPnSubSetmult: G ! (n − 1 ) ⊆ H ! (m − 1 ) <#>G G ! (n − 1 )
by (metis GPnmax.subset GPnnormG HPmSubSetmult HPmmax.max-normal

HPmmax.subgroup-axioms HPmnormG
compG.normal-subgroup-set-mult-closed compG.set-mult-inclusion)

have G ! (n − 1 ) 6= (H ! (m − 1 )) <#>G (G ! (n − 1 )) using HPmSubSetmult
notHPmSubGPn by auto

hence set-multG: (H ! (m − 1 )) <#>G (G ! (n − 1 )) = carrier G
by (metis GPnSubSetmult GPnmax.max-normal GPnnormG HPmnormG

compG.normal-subgroup-set-mult-closed)
then obtain ϕ where ϕ ∈ iso (GPn Mod (H ! (m − 1 ) ∩ G ! (n − 1 )))

(G(|carrier := carrier G|) Mod H ! (m − 1 ))
by (metis second-isomorphism-grp.normal-intersection-quotient-isom HPm-

normG
GPn-def GPnmax.subgroup-axioms second-isomorphism-grp-axioms-def

second-isomorphism-grp-def )
hence ϕ: ϕ ∈ iso (GPn Mod (H ! (m − 1 ) ∩ G ! (n − 1 ))) (G Mod H ! (m

− 1 )) by auto
then obtain ϕ2 where ϕ2 : ϕ2 ∈ iso (G Mod H ! (m − 1 )) (GPn Mod (H

! (m − 1 ) ∩ G ! (n − 1 )))
using group.iso-set-sym grpGPnModHPmintGPn.is-group by auto

moreover have simple-group (G(|carrier := H ! (m − 1 + 1 )|) Mod H ! (m
− 1 )) using compH.simplefact m ′(3 ) by simp

hence simple-group (G Mod H ! (m − 1 )) using compH.last last-conv-nth
compH.notempty m ′(5 ) by fastforce

ultimately have simpleGPnModInt: simple-group (GPn Mod (H ! (m − 1 )
∩ G ! (n − 1 )))

using simple-group.iso-simple grpGPnModHPmintGPn.is-group by auto
interpret grpGModHPm: group (G Mod H ! (m − 1 )) by (metis HPmnormG

normal.factorgroup-is-group)

— Show analogues of the previous statements for H ! (m − 1 ) instead of G !
(n − 1 ).

have HPmSubSetmult ′: H ! (m − 1 ) ⊆ G ! (n − 1 ) <#>G H ! (m − 1 )
by (metis GPnnormG HPmSubSetmult compG.commut-normal HPmnormG

normal-imp-subgroup)
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have GPnSubSetmult ′: G ! (n − 1 ) ⊆ G ! (n − 1 ) <#>G H ! (m − 1 )
by (metis HPmnormG normal-imp-subgroup GPnSubSetmult GPnnormG

compG.commut-normal)
have H ! (m − 1 ) 6= (G ! (n − 1 )) <#>G (H ! (m − 1 )) using GPnSub-

Setmult ′ notGPnSubHPm by auto
hence set-multG: (G ! (n − 1 )) <#>G (H ! (m − 1 )) = carrier G
using HPmmax.max-normal GPnnormG compG.normal-subgroup-set-mult-closed

HPmSubSetmult ′ HPmnormG by blast
from set-multG obtain ψ where

ψ ∈ iso (HPm Mod (G ! (n − 1 ) ∩ H ! (m − 1 ))) (G(|carrier := carrier
G|) Mod G ! (n − 1 ))

by (metis HPm-def HPmnormG second-isomorphism-grp-axioms-def sec-
ond-isomorphism-grp-def

second-isomorphism-grp.normal-intersection-quotient-isom GPnnormG
normal-imp-subgroup)

hence ψ: ψ ∈ iso (HPm Mod (H ! (m − 1 ) ∩ (G ! (n − 1 )))) (G(|carrier :=
carrier G|) Mod G ! (n − 1 )) using Int-commute by metis

then obtain ψ2 where
ψ2 : ψ2 ∈ iso (G Mod G ! (n − 1 )) (HPm Mod (H ! (m − 1 ) ∩ G ! (n

− 1 )))
using group.iso-set-sym grpHPmModHPmintGPn.is-group by auto

moreover have simple-group (G(|carrier := G ! (n − 1 + 1 )|) Mod G ! (n
− 1 )) using compG.simplefact n ′(3 ) by simp

hence simple-group (G Mod G ! (n − 1 )) using compG.last last-conv-nth
compG.notempty n ′(7 ) by fastforce

ultimately have simpleHPmModInt: simple-group (HPm Mod (H ! (m − 1 )
∩ G ! (n − 1 )))

using simple-group.iso-simple grpHPmModHPmintGPn.is-group by auto
interpret grpGModGPn: group (G Mod G ! (n − 1 )) by (metis GPnnormG

normal.factorgroup-is-group)

— Instantiate several composition series used to build up the equality of
quotient multisets.

define K where K = remdups-adj (map ((∩) (H ! (m − 1 ))) G)
define L where L = remdups-adj (map ((∩) (G ! (n − 1 ))) H)
interpret K: composition-series HPm K using compG.intersect-normal 1 (3 )

HPmnormG unfolding K-def HPm-def by auto
interpret L: composition-series GPn L using compH.intersect-normal 1 (3 )

GPnnormG unfolding L-def GPn-def by auto

— Apply the induction hypothesis on Gbutlast and L
from n ′(2 ) have Suc (length (take n G)) ≤ length G by auto
hence multisetsGbutlastL: mset (map group.iso-class Gbutlast.quotients) =

mset (map group.iso-class L.quotients)
using 1 .hyps grpGPn.is-group finGbl Gbutlast.is-composition-series L.is-composition-series

by metis
hence lengthL: n = length L using Gbutlast.quotients-length L.quotients-length
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length-map size-mset ltaken by metis
hence lengthL ′: length L > 1 length L − 1 > 0 length L − 1 ≤ length L

using n ′(6 ) length by auto
have InteqLsndlast: H ! (m − 1 ) ∩ G ! (n − 1 ) = L ! (length L − 1 − 1 )
proof −

have length L − 1 − 1 + 1 < length L using lengthL ′ by auto
moreover have KGnotempty: (map ((∩) (G ! (n − 1 ))) H) 6= [] using

compH.notempty by (metis Nil-is-map-conv)
ultimately obtain i where i: i + 1 < length (map ((∩) (G ! (n − 1 ))) H)

L ! (length L − 1 − 1 ) = (map ((∩) (G ! (n − 1 ))) H) ! i L ! (length L
− 1 − 1 + 1 ) = (map ((∩) (G ! (n − 1 ))) H) ! (i + 1 )

using remdups-adj-obtain-adjacency unfolding L-def by force
hence L ! (length L − 1 − 1 ) = H ! i ∩ G ! (n − 1 ) L ! (length L − 1 −

1 + 1 ) = H ! (i + 1 ) ∩ G ! (n − 1 ) by auto
hence L ! (length L − 1 ) = H ! (i + 1 ) ∩ G ! (n − 1 ) using lengthL ′(2 )

by (metis Suc-diff-1 Suc-eq-plus1 )
hence GPnsubHPm: G ! (n − 1 ) ⊆ H ! (i + 1 ) using L.last L.notempty

last-conv-nth unfolding GPn-def by auto
from i(1 ) have i + 1 < m + 1 unfolding m-def by auto

moreover have ¬ (i + 1 ≤ m − 1 ) using compH.entries-mono m ′(6 )
notGPnSubHPm GPnsubHPm by fastforce

ultimately have m − 1 = i by auto
with i show ?thesis by auto

qed
hence Lsndlast: HPmIntGPn = (GPn(|carrier := L ! (length L − 1 − 1 )|))

unfolding HPmIntGPn-def GPn-def by auto
then interpret Lbutlast: composition-series HPmIntGPn take (length L −

1 ) L using lengthL ′ L.composition-series-prefix-closed by metis
from ‹length L > 1 › have quotsLnotemtpy: L.quotients 6= [] unfolding

L.quotients-def by auto

— Apply the induction hypothesis on Lbutlast and Kbutlast
have length K > 1
proof (rule ccontr)

assume ¬ length K > 1
with K.notempty have length K = 1 by (metis One-nat-def Suc-lessI

length-greater-0-conv)
hence carrier HPm = {1HPm} using K.composition-series-length-one

K.composition-series-triv-group by auto
hence carrier HPm = {1G} unfolding HPm-def by auto

hence carrier HPm ⊆ G ! (n − 1 ) using GPnmax.is-subgroup sub-
group.one-closed by auto

with notHPmSubGPn show False unfolding HPm-def by auto
qed
hence lengthK ′: length K − 1 > 0 length K − 1 ≤ length K by auto
have InteqKsndlast: H ! (m − 1 ) ∩ G ! (n − 1 ) = K ! (length K − 1 − 1 )
proof −

have length K − 1 − 1 + 1 < length K using lengthK ′ by auto
moreover have KGnotempty: (map ((∩) (H ! (m − 1 ))) G) 6= [] using
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compG.notempty by (metis Nil-is-map-conv)
ultimately obtain i where i: i + 1 < length (map ((∩) (H ! (m − 1 )))

G)
K ! (length K − 1 − 1 ) = (map ((∩) (H ! (m − 1 ))) G) ! i K ! (length K

− 1 − 1 + 1 ) = (map ((∩) (H ! (m − 1 ))) G) ! (i + 1 )
using remdups-adj-obtain-adjacency unfolding K-def by force

hence K ! (length K − 1 − 1 ) = G ! i ∩ H ! (m − 1 ) K ! (length K − 1 −
1 + 1 ) = G ! (i + 1 ) ∩ H ! (m − 1 ) by auto

hence K ! (length K − 1 ) = G ! (i + 1 ) ∩ H ! (m − 1 ) using lengthK ′(1 )
by (metis Suc-diff-1 Suc-eq-plus1 )

hence HPmsubGPn: H ! (m − 1 ) ⊆ G ! (i + 1 ) using K.last K.notempty
last-conv-nth unfolding HPm-def by auto

from i(1 ) have i + 1 < n + 1 unfolding n-def by auto
moreover have ¬ (i + 1 ≤ n − 1 ) using compG.entries-mono n ′(2 )

notHPmSubGPn HPmsubGPn by fastforce
ultimately have n − 1 = i by auto
with i show ?thesis by auto

qed
have composition-series (G(|carrier := K ! (length K − 1 − 1 )|)) (take (length

K − 1 ) K)
using lengthK ′ K.composition-series-prefix-closed unfolding HPmIntGPn-def

HPm-def by fastforce
then interpret Kbutlast: composition-series HPmIntGPn (take (length K −

1 ) K) using InteqKsndlast unfolding HPmIntGPn-def by auto
from finGbl have finInt: finite (carrier HPmIntGPn) unfolding HPmIntGPn-def

GPn-def by simp
moreover have Suc (length (take (length L − 1 ) L)) ≤ length G using

lengthL unfolding n-def using n ′(2 ) by auto
ultimately have multisetsKLbutlast: mset (map group.iso-class Lbutlast.quotients)

= mset (map group.iso-class Kbutlast.quotients)
using 1 .hyps Lbutlast.is-group Kbutlast.is-composition-series Lbutlast.is-composition-series

by auto
hence length (take (length K − 1 ) K) = length (take (length L − 1 ) L)
using Kbutlast.quotients-length Lbutlast.quotients-length length-map size-mset

by metis
hence length (take (length K − 1 ) K) = n − 1 using lengthL n ′(1 ) by auto

hence lengthK: length K = n by (metis Suc-diff-1 K.notempty butlast-conv-take
length-butlast length-greater-0-conv n ′(1 ))

— Apply the induction hypothesis on K and Hbutlast
from InteqKsndlast have Ksndlast: HPmIntGPn = (HPm(|carrier := K !

(length K − 1 − 1 )|)) unfolding HPmIntGPn-def HPm-def K-def by auto
from lengthK have Suc (length K) ≤ length G using n ′(2 ) by auto
hence multisetsHbutlastK: mset (map group.iso-class Hbutlast.quotients) =

mset (map group.iso-class K.quotients)
using 1 .hyps grpHPm.is-group finHbl Hbutlast.is-composition-series K.is-composition-series

by metis
hence lengthK: m = length K using Hbutlast.quotients-length K.quotients-length

length-map size-mset ltakem by metis
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hence length K > 1 length K − 1 > 0 length K − 1 ≤ length K using m ′(4 )
lengthHbig by auto

hence quotsKnotemtpy: K.quotients 6= [] unfolding K.quotients-def by auto

interpret KbutlastaddGPn: composition-series GPn (take (length K − 1 ) K)
@ [G ! (n − 1 )]

using grpGPn.composition-series-extend Kbutlast.is-composition-series sim-
pleGPnModInt IntnormGPn

unfolding GPn-def HPmIntGPn-def by auto
interpret LbutlastaddHPm: composition-series HPm (take (length L − 1 ) L)

@ [H ! (m − 1 )]
using grpHPm.composition-series-extend Lbutlast.is-composition-series sim-

pleHPmModInt IntnormHPm
unfolding HPm-def HPmIntGPn-def by auto

— Prove equality of those composition series.
have mset (map group.iso-class compG.quotients)

= mset (map group.iso-class ((butlast compG.quotients) @ [last
compG.quotients])) using quotsGnotempty by simp

also have . . . = mset (map group.iso-class (Gbutlast.quotients @ [G Mod G
! (n − 1 )]))

using compG.quotients-butlast compG.last-quotient length unfolding n-def
GPn-def by auto

also have . . . = mset (map group.iso-class ((butlast L.quotients) @ [last
L.quotients])) + {# group.iso-class (G Mod G ! (n − 1 )) #}

using multisetsGbutlastL quotsLnotemtpy by simp
also have . . . = mset (map group.iso-class (Lbutlast.quotients @ [GPn Mod

H ! (m − 1 ) ∩ G ! (n − 1 )])) + {# group.iso-class (G Mod G ! (n − 1 )) #}
using L.quotients-butlast L.last-quotient ‹length L > 1 › Lsndlast In-

teqLsndlast unfolding n-def by auto
also have . . . = mset (map group.iso-class Kbutlast.quotients) + {# group.iso-class

(GPn Mod H ! (m − 1 ) ∩ G ! (n − 1 )) #} + {# group.iso-class (G Mod G ! (n
− 1 )) #}

using multisetsKLbutlast by simp
also have . . . = mset (map group.iso-class Kbutlast.quotients) + {# group.iso-class

(G Mod H ! (m − 1 )) #} + {# group.iso-class (HPm Mod H ! (m − 1 ) ∩ G ! (n
− 1 )) #}

using ϕ ψ2 iso-classes-iff grpGPnModHPmintGPn.is-group grpGModHPm.is-group
grpGModGPn.is-group grpHPmModHPmintGPn.is-group

by metis
also have . . . = mset (map group.iso-class Kbutlast.quotients) + {# group.iso-class

(HPm Mod H ! (m − 1 ) ∩ G ! (n − 1 )) #} + {# group.iso-class (G Mod H ! (m
− 1 )) #}

by simp
also have . . . = mset (map group.iso-class ((butlast K.quotients) @ [last

K.quotients])) + {# group.iso-class (G Mod H ! (m − 1 )) #}
using K.quotients-butlast K.last-quotient ‹length K > 1 › Ksndlast In-

teqKsndlast unfolding m-def by auto
also have . . . = mset (map group.iso-class Hbutlast.quotients) + {# group.iso-class
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(G Mod H ! (m − 1 )) #}
using multisetsHbutlastK quotsKnotemtpy by simp

also have . . . = mset (map group.iso-class ((butlast compH.quotients) @ [last
compH.quotients]))

using compH.quotients-butlast compH.last-quotient lengthHbig unfolding
m-def HPm-def by auto

also have . . . = mset (map group.iso-class compH.quotients) using quotsHnotempty
by simp

finally show ?thesis .
qed

qed
qed

As a corollary, we see that the composition series of a fixed group all have
the same length.
corollary (in jordan-hoelder) jordan-hoelder-size:

shows length G = length H
proof −

have length G = length compG.quotients + 1 by (metis compG.quotients-length)
also have . . . = size (mset (map group.iso-class compG.quotients)) + 1 by (metis

length-map size-mset)
also have . . . = size (mset (map group.iso-class compH.quotients)) + 1
using jordan-hoelder-multisets is-group finite is-composition-series compH.is-composition-series

by metis
also have . . . = length compH.quotients + 1 by (metis size-mset length-map)
also have . . . = length H by (metis compH.quotients-length)
finally show ?thesis.

qed

end
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