The Localization of a Commutative Ring

Anthony Bordg

May 26, 2024

Abstract

We formalize the localization [1, II, §4] of a commutative ring R with respect to a multiplicative subset (i.e. a submonoid of R seen as a multiplicative monoid).

This localization is itself a commutative ring and we build the natural homomorphism of rings from R to its localization.

Contents

1	The Localization of a Commutative Ring		1
	1.1	Localization	1
	1.2	The Natural Homomorphism from a Ring to Its Localization	7
2	Ack	nowledgements	7
\mathbf{th}	eory	Localization	
iı	npor	$\mathbf{ts}\ Main\ HOL-Algebra. Group\ HOL-Algebra. Ring\ HOL-Algebra. Abel C$	oset
be	$_{ m gin}$		

Contents:

- We define the localization of a commutative ring R with respect to a multiplicative subset, i.e. with respect to a submonoid of R (seen as a multiplicative monoid), cf. [rec-rng-of-frac].
- We prove that this localization is a commutative ring (cf. [crng-rng-of-frac]) equipped with a homomorphism of rings from R (cf. [rng-to-rng-of-frac-is-ring-hom]).

1 The Localization of a Commutative Ring

1.1 Localization

 $\begin{aligned} & \mathbf{locale} \ submonoid = monoid \ M \ \mathbf{for} \ M \ (\mathbf{structure}) + \\ & \mathbf{fixes} \ S \\ & \mathbf{assumes} \ subset : S \subseteq carrier \ M \end{aligned}$

```
and m-closed [intro, simp] : [x \in S; y \in S] \implies x \otimes y \in S
    and one-closed [simp] : \mathbf{1} \in S
lemma (in submonoid) is-submonoid: submonoid M S
  \langle proof \rangle
locale mult-submonoid-of-rng = ring R + submonoid R S for R and S
locale mult-submonoid-of-crnq = crinq R + mult-submonoid-of-rnq R S for R
and S
locale eq\text{-}obj\text{-}rng\text{-}of\text{-}frac = cring R + mult\text{-}submonoid\text{-}of\text{-}crng R S for R (structure)
and S +
 fixes rel
 defines rel \equiv (carrier = carrier R \times S, eq = \lambda(r,s) (r',s'). \exists t \in S. t \otimes ((s' \otimes r))
\ominus (s \otimes r') = \mathbf{0}
lemma (in abelian-group) minus-to-eq:
 assumes abelian-group G and x \in carrier\ G and y \in carrier\ G and x \ominus y = \mathbf{0}
 shows x = y
  \langle proof \rangle
lemma (in eq-obj-rng-of-frac) equiv-obj-rng-of-frac:
  shows equivalence rel
\langle proof \rangle
definition eq-class-of-rng-of-frac:: -\Rightarrow 'a \Rightarrow 'b \Rightarrow -set (infix | 10)
  where r \mid_{rel} s \equiv \{(r', s') \in carrier \ rel. \ (r, s) .=_{rel} (r', s')\}
lemma class-of-to-rel:
  \mathbf{shows}\ \mathit{class-of}_{\mathit{rel}}\ (r,\ s) = (r\mid_{\mathit{rel}} s)
  \langle proof \rangle
lemma (in eq-obj-rng-of-frac) zero-in-mult-submonoid:
 assumes 0 \in S and (r, s) \in carrier\ rel and (r', s') \in carrier\ rel
  shows (r \mid_{rel} s) = (r' \mid_{rel} s')
\langle proof \rangle
definition set-eq-class-of-rnq-of-frac:: - \Rightarrow -set (set'-class'-of1)
  where set-class-of rel \equiv \{(r \mid_{rel} s) | r s. (r, s) \in carrier rel \}
lemma elem-eq-class:
  assumes equivalence S and x \in carrier S and y \in carrier S and x :=_S y
 shows class-of_S x = class-of_S y
\langle proof \rangle
lemma (in abelian-group) four-elem-comm:
 assumes a \in carrier \ G and b \in carrier \ G and c \in carrier \ G and d \in carrier
```

```
G
  shows a \ominus c \oplus b \ominus d = a \oplus b \ominus c \ominus d
  \langle proof \rangle
lemma (in abelian-monoid) right-add-eq:
  assumes a = b
  shows c \oplus a = c \oplus b
  \langle proof \rangle
lemma (in abelian-monoid) right-minus-eq:
  assumes a = b
  shows c \ominus a = c \ominus b
  \langle proof \rangle
lemma (in abelian-group) inv-add:
  assumes a \in carrier \ G and b \in carrier \ G
  \mathbf{shows} \ominus (a \oplus b) = \ominus a \ominus b
  \langle proof \rangle
lemma (in abelian-group) right-inv-add:
  assumes a \in carrier \ G and b \in carrier \ G and c \in carrier \ G
  shows c \ominus a \ominus b = c \ominus (a \oplus b)
  \langle proof \rangle
context eq-obj-rng-of-frac
begin
definition carrier-rng-of-frac:: - partial-object
  where carrier-rng-of-frac \equiv (carrier = set-class-of_{rel})
definition mult-rng-of-frac:: [-set, -set] \Rightarrow -set
  where mult-rng-of-frac X Y \equiv
let x' = (SOME \ x. \ x \in X) in
let y' = (SOME \ y. \ y \in Y) in
(fst \ x' \otimes fst \ y')|_{rel} \ (snd \ x' \otimes snd \ y')
\textbf{definition} \ \textit{rec-monoid-rng-of-frac} :: - \ \textit{monoid}
 \mathbf{where}\ \mathit{rec-monoid-rng-of-frac} \equiv \ (\mathit{carrier} = \mathit{set-class-of}_{\mathit{rel}}, \mathit{mult} = \mathit{mult-rng-of-frac},
one = (1|_{rel} \ 1)
{\bf lemma}\ member-class-to-carrier:
  assumes x \in (r \mid_{rel} s) and y \in (r' \mid_{rel} s')
  shows (fst \ x \otimes fst \ y, \ snd \ x \otimes snd \ y) \in carrier \ rel
  \langle proof \rangle
{\bf lemma}\ member-class-to-member-class:
  assumes x \in (r \mid_{rel} s) and y \in (r' \mid_{rel} s')
  shows (fst x \otimes fst y \mid_{rel} snd x \otimes snd y) \in set\text{-}class\text{-}of_{rel}
  \langle proof \rangle
```

```
{f lemma}\ closed-mult-rng-of-frac:
      assumes (r, s) \in carrier \ rel \ and \ (t, u) \in carrier \ rel
      shows (r \mid_{rel} s) \otimes_{rec\text{-}monoid\text{-}rnq\text{-}of\text{-}frac} (t \mid_{rel} u) \in set\text{-}class\text{-}of_{rel}
\langle proof \rangle
lemma non-empty-class:
      assumes (r, s) \in carrier\ rel
      shows (r \mid_{rel} s) \neq \{\}
      \langle proof \rangle
\mathbf{lemma}\ \mathit{mult-rng-of-frac-fundamental-lemma}:
      assumes (r, s) \in carrier \ rel \ and \ (r', s') \in carrier \ rel
      shows (r \mid_{rel} s) \otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac} (r' \mid_{rel} s') = (r \otimes r' \mid_{rel} s \otimes s')
\langle proof \rangle
lemma member-class-to-assoc:
      assumes x \in (r \mid_{rel} s) and y \in (t \mid_{rel} u) and z \in (v \mid_{rel} w)
      shows ((fst \ x \otimes fst \ y) \otimes fst \ z \mid_{rel} (snd \ x \otimes snd \ y) \otimes snd \ z) = (fst \ x \otimes (fst \ y \otimes snd \ z)) = (fst \ x \otimes (fst \ y \otimes snd \ z))
fst \ z) \mid_{rel} snd \ x \otimes (snd \ y \otimes snd \ z))
      \langle proof \rangle
lemma assoc-mult-rng-of-frac:
      assumes (r, s) \in carrier \ rel \ and \ (t, u) \in carrier \ rel \ and \ (v, w) \in carrier \ rel
     shows ((r \mid_{rel} s) \otimes_{rec\text{-}monoid\text{-}rnq\text{-}of\text{-}frac} (t \mid_{rel} u)) \otimes_{rec\text{-}monoid\text{-}rnq\text{-}of\text{-}frac} (v \mid_{rel} u))
                              (r\mid_{rel}s)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}((t\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng\text{-}of\text{-}frac}(v\mid_{rel}u)\otimes_{rec\text{-}monoid\text{-}rng
w))
\langle proof \rangle
{f lemma}\ left-unit-mult-rng-of-frac:
      assumes (r, s) \in carrier\ rel
      shows \mathbf{1}_{rec-monoid-rnq-of-frac} \otimes_{rec-monoid-rnq-of-frac} (r \mid_{rel} s) = (r \mid_{rel} s)
      \langle proof \rangle
lemma right-unit-mult-rng-of-frac:
      assumes (r, s) \in carrier\ rel
      shows (r \mid_{rel} s) \otimes_{rec\text{-}monoid\text{-}rnq\text{-}of\text{-}frac} \mathbf{1}_{rec\text{-}monoid\text{-}rnq\text{-}of\text{-}frac} = (r \mid_{rel} s)
      \langle proof \rangle
lemma monoid-rng-of-frac:
      shows monoid (rec-monoid-rng-of-frac)
\langle proof \rangle
\mathbf{lemma}\ \mathit{comm-mult-rng-of-frac}\colon
     assumes (r, s) \in carrier \ rel \ and \ (r', s') \in carrier \ rel
    shows (r \mid_{rel} s) \otimes_{rec\text{-}monoid\text{-}rnq\text{-}of\text{-}frac} (r' \mid_{rel} s') = (r' \mid_{rel} s') \otimes_{rec\text{-}monoid\text{-}rnq\text{-}of\text{-}frac}
(r \mid_{rel} s)
\langle proof \rangle
```

```
lemma comm-monoid-rng-of-frac:
  shows comm-monoid (rec-monoid-rng-of-frac)
definition add-rng-of-frac:: [-set, -set] \Rightarrow -set
   where add-rng-of-frac X Y \equiv
let x' = (SOME \ x. \ x \in X) in
let y' = (SOME \ y. \ y \in Y) in
(\mathit{snd}\ y'\otimes\mathit{fst}\ x'\oplus\mathit{snd}\ x'\otimes\mathit{fst}\ y')\mid_{\mathit{rel}}(\mathit{snd}\ x'\otimes\mathit{snd}\ y')
definition rec-rng-of-frac:: - ring
  where rec-rng-of-frac \equiv
(||carrier|| = set\text{-}class\text{-}of_{rel}, mult = mult\text{-}rng\text{-}of\text{-}frac, one = (\mathbf{1}||rel||\mathbf{1}), zero = (\mathbf{0}||rel||
1), add = add-rng-of-frac
lemma add-rnq-of-frac-fundamental-lemma:
  assumes (r, s) \in carrier \ rel \ and \ (r', s') \in carrier \ rel
  shows (r \mid_{rel} s) \oplus_{rec\text{-}rng\text{-}of\text{-}frac} (r' \mid_{rel} s') = (s' \otimes r \oplus s \otimes r' \mid_{rel} s \otimes s')
\langle proof \rangle
lemma closed-add-rng-of-frac:
  assumes (r, s) \in carrier \ rel \ and \ (r', s') \in carrier \ rel
  shows (r \mid_{rel} s) \oplus_{rec\text{-}rnq\text{-}of\text{-}frac} (r' \mid_{rel} s') \in set\text{-}class\text{-}of_{rel}
\langle proof \rangle
lemma closed-rel-add:
  assumes (r, s) \in carrier \ rel \ and \ (r', s') \in carrier \ rel
  shows (s' \otimes r \oplus s \otimes r', s \otimes s') \in carrier\ rel
\langle proof \rangle
lemma assoc-add-rng-of-frac:
  assumes (r, s) \in carrier \ rel \ and \ (r', s') \in carrier \ rel \ and \ (r'', s'') \in carrier \ rel
  shows (r \mid_{rel} s) \oplus_{rec\text{-}rng\text{-}of\text{-}frac} (r' \mid_{rel} s') \oplus_{rec\text{-}rng\text{-}of\text{-}frac} (r'' \mid_{rel} s'') = (r \mid_{rel} s) \oplus_{rec\text{-}rng\text{-}of\text{-}frac} ((r' \mid_{rel} s') \oplus_{rec\text{-}rng\text{-}of\text{-}frac} (r'' \mid_{rel} s''))
\langle proof \rangle
lemma add-rng-of-frac-zero:
  shows (0 \mid_{rel} 1) \in set\text{-}class\text{-}of_{rel}
   \langle proof \rangle
{f lemma}\ \emph{l-unit-add-rng-of-frac}:
  assumes (r, s) \in carrier \ rel
  shows \mathbf{0}_{rec\text{-}rnq\text{-}of\text{-}frac} \oplus_{rec\text{-}rnq\text{-}of\text{-}frac} (r \mid_{rel} s) = (r \mid_{rel} s)
\langle proof \rangle
lemma r-unit-add-rng-of-frac:
  assumes (r, s) \in carrier\ rel
  shows (r \mid_{rel} s) \oplus_{rec-rnq-of-frac} \mathbf{0}_{rec-rnq-of-frac} = (r \mid_{rel} s)
```

```
\langle proof \rangle
\mathbf{lemma}\ \textit{comm-add-rng-of-frac}:
  assumes (r, s) \in carrier \ rel \ and \ (r', s') \in carrier \ rel
  shows (r \mid_{rel} s) \oplus_{rec\text{-rnq-of-frac}} (r' \mid_{rel} s') = (r' \mid_{rel} s') \oplus_{rec\text{-rnq-of-frac}} (r \mid_{rel} s)
\langle proof \rangle
lemma class-of-zero-rng-of-frac:
  assumes s \in S
  \mathbf{shows}\ (\mathbf{0}\mid_{rel}s) = \mathbf{0}_{rec\text{-}rng\text{-}of\text{-}frac}
\langle proof \rangle
lemma r-inv-add-rnq-of-frac:
  assumes (r, s) \in carrier \ rel
  shows (r \mid_{rel} s) \oplus_{rec\text{-}rnq\text{-}of\text{-}frac} (\ominus r \mid_{rel} s) = \mathbf{0}_{rec\text{-}rnq\text{-}of\text{-}frac}
\langle proof \rangle
\mathbf{lemma}\ l-inv-add-rng-of-frac:
  assumes (r, s) \in carrier\ rel
  shows (\ominus r \mid_{rel} s) \oplus_{rec-rnq-of-frac} (r \mid_{rel} s) = \mathbf{0}_{rec-rnq-of-frac}
\langle proof \rangle
lemma abelian-group-rng-of-frac:
  shows abelian-group (rec-rng-of-frac)
\langle proof \rangle
lemma r-distr-rng-of-frac:
  assumes (r, s) \in carrier \ rel \ and \ (r', s') \in carrier \ rel \ and \ (r'', s'') \in carrier \ rel
  \mathbf{shows}\ ((r\mid_{rel}s)\oplus_{rec\text{-}rng\text{-}of\text{-}frac}\ (r'\mid_{rel}s'))\otimes_{rec\text{-}rng\text{-}of\text{-}frac}\ (r''\mid_{rel}s'') =
     (r \mid_{rel} s) \otimes_{rec\text{-rng-of-frac}} (r'' \mid_{rel} s'') \oplus_{rec\text{-rng-of-frac}} (r' \mid_{rel} s') \otimes_{rec\text{-rng-of-frac}}
(r^{\prime\prime}|_{rel}\;s^{\prime\prime})
\langle proof \rangle
lemma l-distr-rng-of-frac:
  assumes (r, s) \in carrier \ rel \ and \ (r', s') \in carrier \ rel \ and \ (r'', s'') \in carrier \ rel
  shows (r'' \mid_{rel} s'') \otimes_{rec\text{-}rng\text{-}of\text{-}frac} ((r \mid_{rel} s) \oplus_{rec\text{-}rng\text{-}of\text{-}frac} (r' \mid_{rel} s')) =
    (r''|_{rel}\ s'')\otimes_{rec\text{-rng-of-frac}}(r|_{rel}\ s)\oplus_{rec\text{-rng-of-frac}}(r''|_{rel}\ s'')\otimes_{rec\text{-rng-of-frac}}
(r' \mid_{rel} s')
\langle proof \rangle
lemma rng-rng-of-frac:
  shows ring (rec-rng-of-frac)
\langle proof \rangle
lemma crng-rng-of-frac:
  shows cring (rec-rng-of-frac)
   \langle proof \rangle
lemma simp-in-frac:
```

```
assumes (r, s) \in carrier \ rel \ and \ s' \in S
shows (r \mid_{rel} s) = (s' \otimes r \mid_{rel} s' \otimes s)
\langle proof \rangle
```

1.2 The Natural Homomorphism from a Ring to Its Localization

```
definition rng-to-rng-of-frac :: 'a \Rightarrow ('a \times 'a) set where
\textit{rng-to-rng-of-frac} \ r \equiv (r \mid_{rel} \mathbf{1})
lemma rng-to-rng-of-frac-is-ring-hom:
  shows rng-to-rng-of-frac \in ring-hom R rec-rng-of-frac
\langle proof \rangle
lemma Im-rng-to-rng-of-frac-unit:
  assumes x \in rng-to-rng-of-frac ' S
  shows x \in Units rec-rng-of-frac
\langle proof \rangle
lemma eq-class-to-rel:
  assumes (r, s) \in carrier \ R \times S \ \text{and} \ (r', s') \in carrier \ R \times S \ \text{and} \ (r \mid_{rel} s) =
(r'|_{rel} s')
  shows (r, s) :=_{rel} (r', s')
\langle proof \rangle
\mathbf{lemma} \ \textit{rng-to-rng-of-frac-without-zero-div-is-inj}:
  assumes \mathbf{0} \notin S and \forall a \in carrier \ R. \forall \ b \in carrier \ R. \ a \otimes b = \mathbf{0} \longrightarrow a = \mathbf{0} \lor b
  shows a-kernel R rec-rng-of-frac rng-to-rng-of-frac = \{0\}
end
```

end

2 Acknowledgements

The author was supported by the ERC Advanced Grant ALEXANDRIA (Project 742178) funded by the European Research Council and led by Professor Lawrence Paulson at the University of Cambridge, UK.

References

[1] S. Lang. Algebra. Springer, revised third edition edition, 2002.