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Abstract—Strong PUFs provide low-cost authentication prim-
itive for resource constrained devices. They use inherent process
variation as basis to generate a unique fingerprint, which often
lacks the required reliability. Environmental factors, and time
varying aging mechanisms can further compromise reliability.
In this paper, we investigate the impact of power supply voltage
and temperature screens to improve strong PUF performance
metrics. Our simulation and measurement results in 65 nm
show reliability of 97.4% when operating at 0.6V, with 50.1%
uniformity and 46.7% uniqueness. A new double arbitration
circuit is proposed to assist in detecting unstable challenges.
When compared with Majority Voting, the proposed Double
Arbiter circuit achieves comparable reliability performance of
99.6% with only half the evaluations.

Index Terms—puf, arbiter, reliability, low-voltage

I. INTRODUCTION

Internet of Things (IoT) is enabling networking of billions
of devices world-wide. With limited computing resources, such
devices often lack mechanisms for secure authentication. The
traditional solution adopted by manufacturers is to use secret
IDs programmed during test. The IDs are typically imple-
mented with one-time programmable fuses, or non-volatile
memories, making the device susceptible to external tampering
attacks and counterfeiting. The so-called Physical Unclonable
Functions (PUFs) are a class of low area/energy circuits that
harvest intra/inter-die process variations to generate a device
fingerprint. A subclass of PUF circuits known as strong PUF
is the focus of this paper. Strong PUFs generate chip-unique
responses to externally provided challenges. They require an
enrollment phase which is typically run during test, or at
a later stage in the product assembly line. The enrollment
consists of applying a randomly selected subset of challenges
and reading the associated responses, storing the challenge-
response pairs (CRPs) in a secure database. After deployment,
the PUF is inquired with a subset of the stored challenges, and
the responses must match the stored values (within a system
defined error threshold).

Ideally strong PUFs should not leak any information about
its internal characteristics. In real implementations however,
it’s been widely shown that PUF responses carry significant
information about its internal entropy source. Using a small
subset of challenge-response pairs, machine learning attacks
are able to accurately predict the PUF output [11]. Modeling
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Fig. 1. Low voltage exploration to improve arbiter PUF reliability. The
increased sensitivity to process variations flattens the delay difference dis-
tribution when transistors operate at lower voltages.

resistant PUF architectures are an active field of research,
where numerous tactics are explored. In particular, researchers
observed that machine learning resistance can be significantly
improved by using several smaller PUFs to generate interme-
diate responses, which are then used as input challenge to a
second layer PUF that produces the final response [14]. Such
architectures are often limited by reliability performance of
every individual PUF in it. When PUF decisions are made,
they insert quantization errors that propagate in a compound
fashion to the next level PUF. This reasoning can be expanded
to other architectures such as lightweight PUF and XOR
arbiter PUF with respect to the number of forward loops and
the number of parallel arbiter PUF instances XORed [10], [12].

This work is driven by our desire to improve the overall
reliability of delay based strong PUFs, in particular, the arbiter
PUF. We investigate how reliability can be improved by
means of two different approaches: i) low-voltage operation;
and ii) challenge selection during enrollment. MOSFET drain
current has increased sensitivity to process variations when
supply voltage approaches the threshold voltage [19]. Fig. 1
plots a flattened delay difference distribution for delay based
strong PUFs operating at low/nominal voltages. With early
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Fig. 2. Circuit level implementation of the multiple components used in this
work. The chip was fabricated in 65nm technology.

selection of challenges during enrollment, we seek to exclude
unstable challenges from the pool used for authentication. The
technique is referred to as challenge qualification. The main
idea is to add extra circuitry for early detection of unstable
challenges.

II. PREVIOUS WORK

The topic of low-voltage PUF design was initially discussed
in [13], where the author simulates ring oscillator PUFs from
0.2V to 1V. In [6], [7] a 64-bit arbiter PUF is simulated
and validated in 45nm CMOS process. Authors reported that
at low-voltage many challenge-response pairs (CPRs) were
noisy and unreliable, and were excluded. In [4], the authors
advocated better temperature reliability by operating delay
based PUFs in a supply voltage known as zero temperature
coefficient. In [9] and [5], the high sensitivity of leakage
current to process variations is investigated; the first used
an analog sense amplifier as quantizer for different currents,
while the second implemented two arrays of half-latches, and
uses an arbiter to evaluate which half-latch toggles first. In
[3] a sub-threshold current array is implemented, and two
voltages produced by nominally identical arrays structures are
compared. Among the issues faced by this architecture are the
small voltage from which the decision is derived, and also the
overall low-reliability when compared to typical arbiter PUF
values. In [2], a pool of oscillators runs at low-voltages, but
the authors add extra circuitry to compensate for variability
induced effects.

With respect to challenge selection on enrollment, the work
in [15] uses a machine learning model to compute predicted
delay differences that are likely to be unreliable for a given
PUF (excluding those challenges from the pool used for
authentication). In [17], [18], the authors use multiple flip-
flops to design arbiters that can detect unstable states (encoded
by multiple valued outputs). The work in [16] proposed a
reliability checker circuit that uses signals from various stages
to produce an internal bit for sanity check.
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III. CIRCUIT LEVEL IMPLEMENTATION

To investigate the impact of low-voltage operation on the
reliability of delay based PUFs, we designed a full-custom,
64-bit arbiter PUF in a 65nm technology. The relevant cells
are shown in Fig. 2. Our implemented mux cell uses tri-state
inverters and requires an inverted challenge input (which is
derived from the register that stores the challenge).

The design of the arbiter circuit (Fig. 2 (b)) is crucial to
ensure reliable performance of the PUF. We carefully laid
out arbiter circuit ensuring symmetrical implementation. The
cross-coupled NAND gates can generate metastable outputs
when the delay difference of the signals at the input is too
small (see Fig. 3 (a)). To enhance the reliability of our
implemented arbiter, we added a glitch suppression circuit
after the cross coupled NANDs, shown in Fig. 2 (b). The
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circuit consists of four MOSFETs, from M1 to M4, that keep
the arbiter output low until one of the NAND outputs differs
from the other by more than one Vth, as shown in Fig. 3
(b). Although not represented on the schematic diagram, both
request signals arrive at the same topological input on its
corresponding NAND gate, to ensure identical loads on both
signal paths.

To improve reliability of the arbiter PUF, we added extra
circuitry to enable the early detection of unstable challenges.
We propose an enrollment process where “bad” challenges, are
removed from the pool and not used for chip authentication.
To qualify good and bad challenges, we introduce a circuit
topology called Double Arbiter (Fig. 2 (d)). The newly added
arbiter component does not change the circuit critical path,
its decision is only used for error detection. The Double
Arbiter explores the offset spread of two arbiter instances to
detect challenges that generate small delay differences. For
a correct decision, the two arbiters should always present
complementary outputs. Fig. 4 (a) plots the distribution of a
single arbiter offset, obtained with 4000 Monte Carlo sim-
ulation runs (µ = −0.19 ps and σ = 0.87 ps). In order
to demonstrate the Double Arbiter’s effectiveness to remove
unreliable responses, we performed Monte Carlo simulations
with 4,000 instances and 5,000 challenges each. Each instance
had a unique Double Arbiter circuit, which was able to was
able detect approximately 2.50% responses as unreliable.

IV. TESTCHIP AND MEASUREMENT RESULTS

We fabricated a 65nm chip with 10 instances of a 64-
stages arbiter PUF using single arbiter circuit, and 10 other
instances of 64-stages arbiter PUF using Double Arbiter
circuit. Furthermore, we also added one arbiter PUF instance
without the arbiter circuit, and instead, two level converters
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Fig. 6. Uniformity (a) and uniqueness (b) of an arbiter PUF in different
supply voltages. Low voltage operation suggests a trend of improvement in
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that connect the mux path outputs to IO pads (details are
discussed in section V). The responses of each instance was
measured across different temperature corners to evaluate
uniformity, uniqueness, and reliability. Measurements were
performed with supply voltages from 0.6V, up to 1.1V (steps of
0.1V). All PUF instances were evaluated with 5000 challenges,
where every one of those challenges was applied 1000 times
– at aforementioned supply voltages and temperature corners
of -35C, 25C, and 80C. To ensure correctness of results,
chip reset was applied after every challenge (clearing the
state of all sequential elements). The automated measurement
software iterates over all unique challenges before starting a
re-evaluation loop, i.e., repeating the challenges.

The results in Fig. 5 show the boxplot for 32-bit response
measurements across supply voltages at 25C of 10 PUF
instances. The Y-axis represent the PUF reliability, it evaluates
the response consistency of each of 5,000 challenges which
are repeated 1,000 times. Dashed lines refer median reliability
values at temperature corners, and outliers represent a single
PUF instance. For example, at 0.8V the measured reliability
median is 97.4% for 25C, 95.4% for -35C, and 95.9% for 80C.
We observe a trend of modest improvement for median values
of reliability at lower supply voltages and at 25C. Possible rea-
sons for the limited gains when operating at low voltage relate
to increased noise components and are discussed in section V.
At the temperature corners, the arbiter PUF reliability values
suggest a downturn trend, which might be explained as an
effect of the transition from strong to weak inversion. In this
region, the current shifts towards an increasingly exponential
relationship between device current and temperature, given by
I ∝ exp(VGS/VT ), with VT = kT/q. The term k denotes the
Boltzmann constant, q the electron charge, and T the absolute
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temperature.
Fig. 6 shows the uniformity (a), and uniqueness (b) per-

formance of the PUF instances. Uniformity is calculated with
the intra-die hamming-weight of all PUF responses, across in-
stances – outliers in the uniformity plot refer to individual PUF
instances. The uniqueness is the inter-die hamming distance,
and it is calculated with the method proposed in [8]. The data
suggests a trend of improvement in uniformity when operating
at low voltages. The uniformity median remains near 50%,
but the distribution spread reduces showing smaller values for
standard deviation. Uniqueness also shows improvements in
both the median values and standard deviation when operating
at lower voltages. The difference between the uniqueness and
uniformity plots may be explained by the fact that uniformity
sets a ceiling for uniqueness. In other words, if there is a
bias in the responses of a strong PUF, it will necessarily
be more difficult to differentiate between two chip instances.
Both uniformity and uniqueness did not present significant
variations across temperature corners of -35C, and 85C.

V. NOISE ANALYSIS

The arbiter PUF captures process induced variations through
the cumulative delay difference of two paths designed to be
identical. To further understand and characterize the arbiter
PUF behavior at low-voltages, we measured the delay differ-
ence distribution between arbiter PUF paths with an oscillo-
scope. We implemented a PUF instance without an arbiter; the
output of delay lines were terminated on level converters. Each
level converter output is connected to an IO pad, allowing an
external oscilloscope to measure the delay difference between
the two racing signals. Fig. 7 shows the measured delay
difference distribution at 0.2V, and 0.3V. The measurement
at 0.2V was repeated again. The low-voltage operation (at
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0.2V) flattens the distribution as expected. Nevertheless, we
can see the impact of noise in the histogram plot, where the
bin counter for the same set of challenges shows deviations
when evaluated a second time.

Fig. 8 provides a summary of delay difference measure-
ments together with SPICE simulation results covering supply
voltage from 0.55V down to 0.2V. The standard deviation
of delay difference is evaluated for 1000 challenges and is
increased exponentially with supply voltage reduction. Fig.
8 also plots the standard deviation of path delay, where the
delay of a single mux chain is measured 1000 times, but with
the same challenge. Thus, from the data presented in Fig. 8,
one may observe that an arbiter PUF, when operating at low-
voltage, presents significantly larger delay difference values
(being more sensitive to manufacture variations, as expected).
Nevertheless, the standard deviation of path delay (for a single
challenge) increases nearly at the same rate, suggesting that
the noise components are also rising when it operates at low
voltages.

To validate this result, we performed circuit level simulation
of mismatch and noise. Current state of the art commercial
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simulators are not able to evaluate transient noise and mis-
match in the same simulation run. To overcome this limitation,
we adopted a characterization based methodology where the
delay and noise of a single mux cell are simulated using two
different runs, one for parameter mismatch, and another for
transient noise analysis. The electrical simulation tool used is
HSPICE with BSIM 4.5 models. The used MOSFET model
was obtained from the foundry, it calculates the noise com-
ponents with options fnoimod=1 and tnoimod=0. These
options select a unified physical model for flicker noise, and
a charge based model for channel thermal noise, respectively.
Once the mean and standard deviation values are character-
ized for the mismatch and noise at every voltage, a custom
script samples the mismatch and noise delay contribution for
each mux cell in the path (assuming a normal distribution).
The computed path delay and delay difference are shown
by the dashed lines in Fig. 8. The simulation results track
the measurement results but do not exactly match due to
model, and measurement limitations. The data suggests that
the increased sensitivity to manufacture variability achieved in
lower voltages, might not translate into substantial reliability
gains due to the increasing contribution of noise components.

As mentioned before, for measurement results shown in
Figs. 7 and 8, delay lines are terminated on a level con-
verter. The level converters operating at nominal supply add
delay uncertainties in measurements. Fig. 9 illustrates stan-
dard deviations of the level converter and delay chain as a
function of supply voltage. At supply voltage below 0.6 V,
the level converter’s variability contribution is relatively small
compared to that of the delay chain. On the other hand, as
supply voltage of the delay chain is increased, it results in
corresponding decrease in its standard deviation while that of
the level converter is flat. Therefore the delay data captured
by the oscilloscope for voltages higher than 0.6 V in Fig. 8
may not reflect the standard deviation of the delay chain, and
is not presented.

From a physical/device perspective, the strong impact of
noise in the arbiter PUF operating at low-voltages can be
explained using the work reported in [1]. Authors carried out
phase noise analysis in ring oscillators, and deriving expres-
sions to calculate jitter and phase noise in strong inversion.
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In one of the intermediate results, they show that the mean-
square value of the integrated voltage noise,

〈
v2n

〉
, is given

by 〈
v2n

〉
=

Sin

2C2
td ∝ td, (1)

where Sin is the spectral density of the noise current, C
is the loading stage capacitance, and td the interval over
which the noise is integrated (propagation delay of the driving
inverter). Eq. 1 depicts that noise is proportional to the inverter
delay, and as the supply voltage is reduced the inverter delay
is increased which results in higher noise voltage. If the
supply voltage is further reduced to weak inversion, the noise
voltage related delay variation becomes comparable to the
delay mismatch caused by the process variation which results
in poor PUF reliability.

VI. CHALLENGE SELECTION WITH QUALIFIERS

We also investigated other techniques to improve PUF relia-
bility by an improved arbiter circuit that is capable of detecting



unreliable CRPs during the enrollment phase. Needless to say,
these unreliable responses are excluded from authentication
pool. If the evaluations do not yield all the same response,
the challenge is rejected; this approach does not require extra
circuitry, and we refer to it as Majority Voting. We propose
a new circuit to support the challenge qualification process
during enrollment, the Double Arbiter Qualifier, described in
section III and shown in Fig. 2 (d), provides an additional
output that identifies unstable (bad) challenges, increasing the
number of unstable challenges detected during enrollment,
and consequently, removed from the authentication pool to
improve reliability.

The measurements in Fig. 10 show the percentage of
challenges that have failed the qualification test during enroll-
ment (at 25C) for different challenge qualifiers, across several
voltages. Data is labeled in the format TXX, where the XX
corresponds to the number of repeated evaluations a challenge
has been submitted during enrollment. The Double Arbiter
Qualifier rejects more challenges than Majority Voting in any
supply voltage. In particular, the Double Arbiter Qualifier data
suggests a trend of increasingly more challenges being rejected
at higher supply voltages; e.g. at 1.1V, a single evaluation with
Double Arbiter rejects nearly the same number of challenges
as 10 evaluations of Majority Voting.

Fig. 11 (a) plots the reliability measurements for Double
Arbiter Qualifier and Majority Voting. The data labeled as
No Challenge Qualifier refers to the usage of a single ar-
biter, without any repeated evaluations (no challenges were
excluded from the authentication pool). If no reevaluations
are performed (T1), the Double Arbiter Qualifier achieves a
1% improvement in reliability compared to the No Qualifier
option; when the Double Arbiter is evaluated 5 times (T5),
it achieves reliability levels comparable to Majority Voting
with 10 evaluations (T10). The uniformity and uniqueness
distributions for Double Arbiter Qualifier with 10 evaluations
(T10) are plotted in Fig. 11 (b) and (c); both metrics show a
trend of improvement towards lower voltages.

VII. CONCLUSION

Delay-based strong PUFs are widely used as building blocks
for composite PUF architectures, which are known to be
limited by reliability constraints. We presented circuit sim-
ulation and measurement results of two techniques to improve
reliability of arbiter PUFs, low-voltage operation and challenge
selection during enrollment.

Running an arbiter PUF at lower supply voltages, to benefit
from increased sensitivity to process variations, showed mod-
est improvements in reliability at 25C. Noise components are
analyzed and suggested as possible reason. Other performance
metrics such as uniformity and uniqueness show a trend of im-
provement at lower supplies, with smaller standard deviation
values and medians that approach the ideal value of 50%. At
0.6 V, the measured median reliability value is 97.4%, with
50.1% uniformity and 46.7% uniqueness.

The proposed Double Arbiter challenge qualifier showed
promising results for early detection of unstable challenges

during the enrollment phase. The Double Arbiter circuit
requires only 5 repeated evaluations to achieve comparable
reliability performance to Majority Voting with 10 evalua-
tions which translates to faster enrollment time. At 0.6 V,
the Double Arbiter obtained reliability of 99.85% when 10
repeated evaluations were used (T10). In addition to that, even
when repeated evaluations are not used (T1 and No Challenge
Qualifier) the Double Arbiter improves reliability in nearly 1%
for all supply voltages evaluated.
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