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Abstract—In this paper, a novel hybrid human-robot 

recycling plant for electrical and electronic equipment is 

introduced. The proposed system will be developed in the 

context of the European research project HR-Recycler and its 

goal is to offer a hybrid collaboration environment for humans 

and robots. Through this collaboration, several currently 

manual, expensive, hazardous and time-consuming tasks of 

WEEE materials pre-processing will be substituted by 

automatic robotic-based procedures (categorization of 

electric/electronic devices, disassembling them, sorting of 

device components), before the materials enter the fine 

shredding machine. Although several solutions have been 

proposed for automation of recycling other types of waste (e.g. 

domestic), the industrial application case of WEEE recycling 

poses significant challenges and it is the first time, to the best of 

our knowledge, that a hybrid human-robot solution is 

proposed to address this problem.  

Keywords—human-robot collaboration, WEEE recycling 

I. INTRODUCTION  

 The technological advances that have been achieved 
over the past decades have led to a tremendous increase of 
both the types as well as the total amount of electrical and 
electronic equipment that is manufactured by the industry. 
On the other hand, the lowering of the industrial production 
cost together with the continuous and rapid change in the 
technology (new generations of electronic products are 
ceaselessly introduced) have resulted in the wide spread use 
of the produced devices in large quantities, along with the 
continuous need to often being upgraded/replaced. These 
facts have led to the generation of enormous amounts of 
Waste Electrical and Electronic Equipment (WEEE). 

Despite the importance of WEEE management, the 
industrial focus has so far been placed on more efficient 

methods for increasing production and lowering its cost, 
while the issue of the management and recycling of the 
generated waste has not received that increased attention. 
Until now, the registered practices for WEEE recycling 
require really expensive, extensive and time-consuming 
manual effort for pre-processing the input materials 
(categorization of electric/electronic devices, disassembling 
them, sorting of device components), before they are 
eventually introduced to a fine shredding machine and a 
subsequent material separation (using air/water flows, 
oscillating movements, magnets, etc.). This is due to the 
significant difficulty of the task of processing WEEE 
materials, compared to other types of waste (e.g. domestic), 
where the problem is more straightforward and automated 
(even robotic) solutions have already been proposed. 

The aforementioned difficulty in WEEE management 
relates to the need for fine-grained object manipulations, 
elaborate device disassembly procedures and their 
constituent components identification/sorting. The 
fundamental aim of the envisaged system (and its great 
innovation potential) will be to replace multiple currently 
manual, expensive, hazardous and time-consuming tasks of 
WEEE materials pre-processing with correspondingly 
automatic robotic-based procedures (categorization of 
devices, disassembly, sorting of device components), before 
the materials are eventually provided as input to a fine 
shredding machine and conventional material separation 
steps are applied. These innovative Human Robot 
Collaboration (HRC) procedures pose significant challenges, 
relating to establishing an inherently safe and efficient 
collaboration environment, endorsing social cognition and 
adaptive behaviors to robots and incorporating Social 
Sciences and Humanities (SSH) elements both in the design 
and the validation of the proposed system. 



 

Figure 1: Flow diagram of the hybrid human-robot collaborative processes of WEEE disassembly. 

HR-Recycler will ultimately target the development of a 
‘hybrid human-robot recycling plant for electrical and 
electronic equipment’ operating in an indoor environment, 
which will integrate a hybrid collaboration environment, 
where humans and robots will harmoniously share and 
undertake at the same time different processing and 
manipulation tasks, targeting the industrial application case 
of WEEE recycling. For achieving its goals, HR-Recycler 
will implement highly inter-disciplinary research and 
development activities, which are organized in a 5-layer 
approach (each comprising multiple modules) that focuses 
on innovative technologies for factory-level modelling, cell-
level perception, robotic actions and control, human-robot 
collaboration and smart mechatronics. 

II. SYSTEM ARCHITECTURE  

The typical non-automated procedure of WEEE recycling 
comprises specific steps from the time that the devices arrive 
at the recycling plants. The first step concerns the “Device 
Classification” where the electric/electronic devices are 
spotted, selected, categorized and transferred from the plant 
piles/containers/storing-packages to the appropriate 
workspaces for further processing. The next step involves the 
“Device Disassembly” which comprises the manual 
extraction of valuable hazardous components that may 
require particular treatment (e.g. capacitors, Cu coils, etc). 
The final step concerns the “Component Sorting” based on 
which manual categorization of the different types of device 
components and their transfer to other dedicated work cells 
in the recycling plant, e.g. transfer to shredding machines for 
further classification is performed.  

Aiming towards automating this complex pipeline, we 
present herein the architecture of a new, collaborative hyper-
mechanism that entails synergies of multiple autonomous 
mechatronic devices with human workers’, integrated under 
an interconnected environment that spans the full factory 
floor of a WEEE recycling plant. A conceptual flow diagram 
of this architecture is graphically illustrated in Figure 1. 
Specifically, in the “Device Classification step”, mechatronic 
systems such as Autonomous Guided Vehicles (AGVs) and 
human workers will collaborate in a joint and synchronized 
manner for undertaking the device categorization steps. 
AGVs equipped with robotic manipulators will perform 
efficient grasping and pick-and-place of heavy devices 
dictated by humans either by pointing or with physical 
human robot interaction (HRI). Once loaded, the AGVs will 
be capable of safe and human-aware navigation [1] 
substantiated through an IoT platform available on the plant 
that constantly delivers the robot’s workspace and the human 
presence, towards the “Device Disassembly” work cells.  

There, the mechatronic system utilized for device 
disassembly comprises modular and safe collaborative 
manipulators with adaptable grippers that allow cross-
disassembly processes application. Extensive collaborative 

HRI among human workers and the mechatronic systems is 
foreseen in this step through Augmented Reality (AR) 
enabled communication modalities that exploit common 
shared information among people and machines through an 
intelligent assistive infrastructure.  

The step of “Component sorting”, is again undertaken by 
AGVs, which will be responsible for transporting the 
extracted device components or the concentrated fractions to 
their final collective destination within the factory floor. 
Given the anticipated small size of the extracted materials, 
the mechatronic systems consist of AGVs equipped with 
either conveyor belt mechatronic mechanisms or robotic 
hands for performing actual separation of the obtained 
fractions into the targeted categories.  

The overall HRC environment will be centrally managed 
by means of factory-wide cognitive perception embraced 
within an advanced factory floor HRC orchestration engine. 
This will operate on the basis of a hierarchical factory model, 
whose lower level will comprise highly adaptive factory cell 
definitions, fusing human worker models with robot and task 
models, while at the upper layer, the factory floor model will 
be composed of interconnected adaptive cells. In this 
context, the explicit actions of the plant resources (AGVs, 
workers) can be performed with event-driven prompting 
mechanisms [3] that gather observations through the 
system’s perception to synchronize the disassembly process.  

The realization of such system requires a detailed 
modular architecture, designed on a system-centred manner 
for rapid development and modular engagement of the 
components operating in different phases. Therefore, the 
current system’s architecture relies on ArchGen tool [4], a 
ROS based platform that deals with both high-level 
functional architecture and the low-level implementation.  

III. SYSTEM BUILDING BLOCKS 

A. Factory-level modelling and orchestration  

In our approach, we build upon the typical definition of a 
work cell and we extend it. A work cell typically concerns 
the physical or logical arrangement of resources (people, 
machines, material) associated with the performance of an 
activity, job, or task. In an effort to extend contemporary 
task allocation methodologies of HRC (e.g. HRC at 
individual working cell level) [5], towards more advanced, 
integrated individual team and system level orchestration, 
the notion of the adaptive Collaborative Cell (aCell) is 
introduced (Figure 2): 

An aCell is a dynamic and adaptive element in the 

proposed FOF implementation that is responsible for a 

specific task for a given time period, with responsibilities, 

involved resources and overall positioning in the factory 

dynamically assigned and adapted in real-time, with respect 



 

Figure 3: aCell examples. 

 

Figure 2: aCell definition. 

to the overall factory workflow demands, available skills 

and resources. 
 

  

As such, an aCell may consist in our case of a single 
human, factory device or robot with specific, known skills, 
operating as part of the overall human-robot collaborative 
factory team, while it may also include a human worker 
collaborating with the robot in its context (Figure 3). The 
resources, responsibilities and interconnections of each aCell 
to the further ones of the factory can be dynamically defined 
by a centralized factory floor orchestration engine, which 
is capable of overall factory floor state monitoring and real-
time tasks assignment/adaptation capabilities, through 
cognitive perception enabled by the fusion of individual 
cells’ perception and resources skills.  

More specifically, the orchestration engine, by taking 
into account (a) worker and (b) robot models, along with (c) 
task requirements given the current factory floor state, will 
perform task allocation, by formulating a graph of aCells 
comprising robots and human workers, interconnected by 
assignment dependencies, spatial and temporal relationships 
so as to implement the current complex task (device 
classification, disassembly, component sorting) at hand. 
When deemed necessary, the orchestration engine should 
also drive dynamic, on the fly adaptations in the factory floor 
task assignments and schedule to counteract for some robot 
failure, process delay or significant change.  

Notably, a key aim is to enhance the factory process with 
aCells that comprise each, a single human collaborating with 
several robots, aiming to extend the factory throughput per 
person/hour, compared to the current situation. 

B. Cell-level perception methods 

To equip each factory cell with advanced perception and 
support robot vision tasks related to the perceiving of the 
surrounding environment, Deep Learning architectures (e.g. 
Convolutional Neural Networks) will be trained to identify 
the different WEEE objects types as well as their constituent 
parts, which can be broken down into multiple pieces of 
highly varying size. The detection step will be realized in 
highly complex and cluttered environments (e.g. pile of 
devices), which poses additional challenges. For the CNN 
training we will need to generate databases of thousands of 
labelled images of each one of the devices to be recognized 
and its constituent parts.  

The factory will need as well Human motion analysis and 
prediction, at both cell and plant level. This task involves 
detection and recognition of the exhibited human actions. 

The respective system component will rely on the use of 
deep ‘auto-encoders’ (e.g. Restricted Boltzmann Machines, 
sparse auto-encoders) for fusing multi-modal information 
(depth, 3D flow, skeleton-tracking, leap motion) and 
reaching robust recognition performance. Additionally, 
human motion analysis will be applied at multiple scales of 

granularity, including whole-body actions, hand gestures and 
finger movements. With the assumption that human motions 
are optimal with respect to an unknown cost function, we 
will use inverse optimal control (IOC) to identify the 
underlying motion models. These models rely on the 
combination of kinematic features (e.g. (angular) velocity, 
distance between dyad, etc.), and some physiologically 
motivated cost functions (e.g. energy, effort, etc.).  

In essence, the optimal combination of those model 
parameters that best describe the observed motion will be 
learned by IOC as the human and interaction specific 
personalized motion pattern. Such modelling will allow (a) 
identifying tasks that put high physical strain on the human 
worker, (b) detecting anomalies on human movement which 
might be used for gauging fatigues. 

C. Robotic actions planning and control  

A critical component of the system architecture is a 
unified framework for the planning and control of the 
manipulation tasks by the robot. The objectives are five-fold: 
First, a unified control policy is to be designed to regulate 
both the robot motion and its physical interaction with the 
environment. Second, the physical construction properties of 
unknown devices for disassembly have to be acquired by 
humanlike physical manipulation strategies. Third, a force-
adaptive grasping strategy with tactile sensing gripper fingers 
for safe grasping of different components needs to be 
introduced. In addition, a planner that ensures secure robot 
operation as well as human and material safety will be 
developed. Last but not least, a crucial objective is to provide 
a lifelong mapping strategy for navigation of AGVs and 
facilitate holistic shop-floor decision making. We identified 
five key functionalities to realize these capabilities: 

1) Force guided manipulation: A fundamental challenge 

in disassembling unknown objects are manipulation tasks 

with uncertain exact object dimensions and locations, e.g. 

the location of screws or the outer perimeter of objects are 

captured through camera systems, involving measurement 

uncertainty. The envisioned disassembly scenario requires 

different control strategies along the task axes and varying 

impedance of the controlled force depending on the 

structure of the object to be disassembled. Hence, a unified 

control policy, learned from human demonstrations, capable 

of regulating both the robot motion and its physical 

interaction with the environment needs to be constructed. 

The robot motion and its stiffness behaviors are modelled 

including the desired damping throughout the motion. The 



approach is suitable for generating motions that follow the 

same velocity profile as found in human demonstrations.  

2) Construction understanding through flexible probing: 

The shell of modern devices is usually held together through 

multiple fixtures. When disassembling devices without 

knowing their construction plan, fixtures are easily missed – 

either because they are not visible, such as snap-in fixtures, 

or because they are not properly recognized, such as 

recessed screws. Therefore, we proposed an approach, 

where a robot opens all recognized fixtures by unscrewing 

all screws and cutting open the perimeter of the enclosure 

(Sec. III.C.1). In a second step, we mimic the behavior of 

humans by prying the device case along the cut opening and 

flexing the cut-off case. We seek to identify the location of 

missing fixtures through probing the case structure from 

multiple locations and identify possible remaining fixtures. 

In essence, this task necessitates using the haptic and visual 

modalities jointly to learn and identify object structures and 

construction properties. In addition, the control structures 

are integrated with learning algorithms to identify physical 

probing locations to reduce model uncertainty.  

3) Versatile force-adaptive object grasping: Some 

components that have to be removed, need to be handled 

with care e.g. mercury lamps, fluorescent lamps. This 

requires force-adaptive grasping strategy with tactile sensing 

gripper fingers. Forces and torques that are applied in 

directions other than the ones desired for disassembly must 

be avoided. The first task is to evaluate suitable hardware 

components and develop a reliable sensor fusion method. 

Besides force-adaptive task-optimal gripper alignment, the 

gripper grasping force is the second crucial component for 

the success of the disassembly. For the generalization of 

robotic grippers, we propose a coupled feedback and 

feedforward controller implementation that aims at adjusting 

the gains of the forces applied based on sensory feedback 

and predictions. The controller is based on the cerebellum 

[6] and it can result in successful adaptive grasping, without 

having to implement force controllers for each object.  

4) SLAM/Navigation of AGVs: The main objective of 

this task is to provide the AGVs of the factory floor with 

appropriate mapping and navigation methods. For such 

dynamic environments, a simultaneous localization and 

mapping method will be adopted in order to progressively 

build, maintain and update a map during the operational 

phase and localize to the robots within this map. AGVs are 

to be equipped with laser scanners and RGB-D sensors that 

will be utilized for the map construction, localization, 

obstacle detection and monitoring procedures. The 

interconnectivity among the existing AGVs, that are 

facilitated with IoT infrastructure in the shopfloor, allows 

them to operate in dynamic environments, thus, update the 

global map continuously. Considering the navigation of 

AGVs, both global and local navigation strategies are 

foreseen. Global navigation is regulated by the shop-floor 

orchestration engine (Sec. III.A). Local navigation is 

responsible for realizing the AGV’s mobility and includes 

human aware global and local path planning techniques. 

Moreover, this task is responsible to address the active 

monitoring (Sec. III.B) by implementing the requests for 

maneuvering the AGVs to obtain a better viewpoint. 

5) Implementing safety control in robotic planning: The 

goal of this task is the generation of different action policies 

based on a value system for safe operation. The HR-

Recycler project investigates scenarios where humans and 

robots are jointly acting in a common workspace. To 

achieve safe interaction, one of the key aims of the project is 

to develop novel stochastic trajectory optimization and 

constrained policy improvement methods to enable the robot 

to proactively collaborate with the human partners. 

Additionally, the robots will pursue distinct goals derived 

from a unique cognitive architecture based on Distributed 

Adaptive Control (DAC [7]) In DAC’s decision-making 

model, actions depend on perception, memory, valence, and 

goal availability. Here, we plan to expand DAC’s decision-

making model by incorporating a, so called, ethics engine 

(Sec. III.D). which modulates the valence of the decision-

making model, as it constitutes a crucial component in 

reaching the robot's goal. The safety-control model 

addresses the following issues: robot safety, material safety, 

and human physical and perceived safety. The model is 

informed by the human worker model (WM) (Sec. III.E.2), 

the ethics engine (Sec. III.D), the proprioceptive properties 

of the robot, the information acquired from the environment 

and the outputs of the tasks defined in this section. The 

safety-control model includes the modulation of the speed 

and amplitude of the robot’s movements, the speed of the 

conveyor belt, the distance of the robot from the human co-

worker, obstacle/human avoidance as well as modulation of 

the speed during the transportation of the material. 

D. Principles of moral actions and ethics engine 

We plan to deliver an ethics engine responsible for the 

safe and robust operation of all the components of HR-

Recycler, based on principles of human moral judgment. To 

ensure a suitable robot control system in collaborative 

schemes, we will primarily base the ethics engine on the 

reactive layer of the DAC architecture in which priors on 

morals will be defined. The ethics engine is based on an 

allostatic control regulation, which explicitly manages how 

to reach a compromised equilibrium between conflicting 

variables that have to be regulated. An example of 

conflicting variables is the compromise of robot safety, the 

safety of the handling material and most importantly, the 

safety of the human coworker. We further plan to enhance 

the ethics engine with a cognitive component, so that 

decision-making is based on context by employing the 

contextual layer of the DAC architecture. The ethics engine 

will be an inherent component of the safety control 

mechanism (section III.C.5). 

E. Human-robot collaboration schemes  

One of the key goals of HR-Recycler is to foster 
collaborations between humans and robots so that robots can 
assist them with the task at hand. Collaboration is defined as: 

 “the mutually beneficial and well-defined relationship 

of two or more entities to achieve a common goal” [8].  
 



In HRC settings, for collaboration to be efficient, the 
robot is required to robustly perform a given task, be 
trustworthy and effectively communicate with the human 
co-worker. Additionally, we highlight the importance of 
safe operation, as the robot will be required to function in 
close proximity to humans. To be accepted by humans as 
co-workers and communication partners, autonomous and 
transparent behaviors are essential, as they can be 
understood and explained [9]. Behaviors can become more 
easily predictable and interpretable when they use 
communication channels that resemble those of humans, as 
they provide an intuitive anthropomorphic interface [9]. 
Humans tend to intuitively apply the same social rules when 
they interact with machines or robots as when they interact 
with other humans [10]: they may use speech, gestures, 
prosodic features, emotion expression and gaze patterns to 
communicate. Thus, robots should not only be able to 
adequately “read” such communication channels employed 
by their human co-workers but also use similar ones.  

The use of AGVs is beneficial for the project as they are 
suitable for efficient grasping of the electric/electronic 
devices, however, comparing to humanoid robots, they do 
have access to an anthropomorphic communication channel. 
We propose an interaction system (Interaction Manager – 
IM) based on theories drawn from human communication 
[11] that will deliver novel ways of interaction suitable for 
non-anthropomorphic robots. More specifically, we will 
develop a multi-level Augmented Reality (AR)-based 
worker-robot communication system to guide the worker via 
projective and optical see-through based techniques 
(wearable glasses). Projection-based communication will 
provide high priority signals that are mostly related to safety 
or parameters that need special and immediate attention (e.g. 
on robot intention). Furthermore, we will validate the 
theoretical approaches that affect HRI and provide socially 
relevant percepts and behavioral sets that allow for 
successful social interactions such as proactive behaviors 
and the motivation to interact [12].  

The goal of the IM is to not only generate (when 
necessary) continuous interaction primitives from which 
communication can be bootstrapped but also, guarantee 
robust and personalized interactions. More specifically, 
information for the IM is drawn from the environment and 
the Worker Model (WM) which define the state space for 
the evaluation of and the reaction to the user. We are not 
aware of any non-humanoid robotic systems that are capable 
of effectively and centrally entrain with human behavior. 
We believe that the integration of social cognition and 
adaptive behaviors to robots in a centralized system will 
open the door to new HRI and HRC possibilities. The IM is 
central to UX, WM and learning from human input: 

1) Human factors for UX analysis: explicit models of 

human factors that affect interaction and collaboration are 

necessary for the generation of behaviors according to 

context and human restrictions. Our aim is to identify these 

factors by integrating descriptors of human cognition and 

behavior acquired from physical and personal capabilities, 

ergonomics as well as emotional and cognitive perspectives 

(such as fatigue, distraction, workload, and trust). Using 

these models as a basis, we can adjust the performance 

degree of HRI through strategic collaborative task 

assignment, thereby leading to effective HRC. Within the 

field of human factors research, the main shortcoming of a 

huge number of recognition approaches that have been 

developed is that they assess human states at one level: 

either on the physical, emotional or cognitive level. So far, 

we are not aware of the existence of fully integrated 

approaches. We propose, that the combination of physical, 

emotional and cognitive human factors is necessary to 

discriminate between state patterns, enable a higher 

personalization, increase the situation awareness of humans 

and robots as well as the user acceptance, experience, and 

trust in the joint human-robot teamwork. We will define 

integrated classifiers capable to detect and discriminate a 

broad range of relevant human states by integrating 

physical, physiological, emotional and cognitive levels. 

More specifically, we will identify key variables (like age, 

gender, ethnicity, personality) that affect how users perceive 

the robot. On the emotional level, we will detect relevant 

feelings and emotions that potentially have an impact on 

how humans process and evaluate information such as 

frustration [13], the capability for sustained attention [14] or 

stress [15]. For the detection of human internal states, we 

will employ a combination of physical and physiological 

measurement methods (heart rate, pupil dilation, skin 

conductance or body temperature), video images and speech 

recordings. To estimate the worker’s cognitive level, we will 

assess critical human factors like levels of workload 

(cognitive tunnel) and distraction. The integration of such 

classifiers will enable the design and implementation of new 

adaptive human-robot interfaces The outcome of this section 

will provide valuable information for the generation of a 

human Worker Model (WM) and a set of robot behaviors. 

2) Human Worker Model (WM) for process 

management and safety assurance: The WM will be used by 

robots when interacting with humans or when humans are 

present in the same physical space, to adapt the behavior of 

the robot to different users. Here, we will identify key 

variables that could potentially affect the interaction and 

perceived safety of the humans that include: proxemics, age, 

gender, ethnicity, personality, user experience and 

validation of user preferences acquired from the human 

factors. We plan to achieve user classification by the 

learning and acquisition of social affordances. Affective, 

social cues (like body posture, gesture or prosody) can 

signal the potential of social actions. We will extract social 

affordances using correlative rules. Additionally, the WM 

will: act as an active inference system, be used as a 

complementary hypothesis-testing component of the human 

factors for UX analysis, contribute to the factory process 

modeling and orchestration, and be continuously executed 

and updated, to include new action possibilities and ensure a 

robust interaction. The robot’s behavior, proximity, 

amplitude and speed of motion may also affect the co-

worker’s perceived safety. For this reason, these parameters 

will be included when extracting user preferences and will 

be incorporated to the WM. 

3) Learning from human input: HR-Recycler will be 

required to operate in dynamic and unstructured 

environments. However, it is possible that its perceptual 



system will not converge. To deal with uncertainty, we will 

implement a confidence measure that will define the 

certainty for its perceptions and generated actions that are to 

be executed. We propose that action selection is further 

biased by the confidence measure calculated for each of the 

factors. In this proactive tagging process, the robot will 

report its current knowledge to the human co-worker and 

ask them to rebalance its state-space, by either confirming 

its current knowledge or “injecting” to the contextual layer 

of the DAC architecture the appropriate information. The 

IM will further be enhanced to include such probing 

interactions. 

IV. APPLICATION CASES 

The proposed framework has been designed for real-
world operational environments to support real user needs. 
As previously described, in a typical WEEE recycling plant, 
the process consists of the following three steps: device 
classification, device disassembly and components 
sorting. In the first step, a considerable amount of manual 
labor can be avoided by using a robot arm equipped with 
artificial vision to recognize each type of equipment and to 
transfer it to the appropriate disassembly workstation.  

The second step, device disassembly, is highly complex 
and can vary significantly with the type of device. Four 
different types of WEEE have been selected to demonstrate 
the capabilities of the proposed system, which constitute the 
four main Use Cases. 

1) Emergency lamps: the main goal is to remove the 

fluorescent lamps without causing any damage to it; in a 

possible human-robot process, the robot may recognise the 

type of closure and apply the necessary mechanism to open 

(remove the clip, unscrew, etc.).   

2) Microwave ovens: the components that need to be 

extracted are Capacitors and Cu coil (if possible). In a 

human-robot collaboration scenario, the robot can move the 

microwave oven to an appropriate position, allow access to 

screws and open it.  

3) PC towers: in this case, the robot can locate the PC 

tower to an appropriate position, allow access to screws and 

open the equipment, while humans can undertake the more 

complicated task to remove the batteries and other 

components.  

4) Flat panel displays (FPDs): components to be 

extracted during the disassembly step include Hg lamps 

(LCDs), Cu coil (if possible), PCBs (if available). The tasks 

to be undertaken by a robot involve positioning of the 

display in the same way, possibly open the equipment, move 

the element to a tape or container for further processing.   
The last step involves the components sorting 

procedure. Here, the components from the previous 
processes are separated manually, which is a highly time-
consuming task. The remainings of the devices (i.e. after 
extracting the valuable components) typically follow a fine 
shredding step. In this phase, the robot can make the visual 
recognition of the type of material and remove it directly, 
depositing it in the appropriate container, while the human 
can assist by making sure that the materials do not 
accumulate, preventing every piece from being within sight 

and reach of the robot and observe elements that may have to 
be returned at the beginning. 

V. CONCLUSIONS 

A novel approach for hybrid human-robot collaboration 
in a WEEE recycling environment has been proposed for the 
first time in this paper. The architecture of the system and its 
constituent parts are described, with emphasis on the 
definition of eCell notion, cell-level perception, robotic 
actions planning and human-robot collaboration. Indicative 
application cases are also described, showing the 
applicability of the system to an industrial WEEE recycling 
environment. Future work involves research to advance the 
technology on each of the aforementioned constituent parts, 
in order to better address the real application needs.   
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