
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

A Case Study of LLVM-Based Analysis for
Optimizing SIMD Code Generation

Joseph Huber

Computer Science and Mathematics

15 September 2021

2

SciDAC: Computational Framework for Unbiased Studies
of Correlated Electron Systems (CompFUSE)

The parallel abstraction optimization was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. DOE,
Office of Science, Advanced Scientific Computing Research (ASCR) and Basic Energy Sciences (BES), Division of Materials Science and Engineering.

This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Support for UO through the U.S. Department of Energy, Office of Science, ASCR, RAPIDS SciDAC Institute for Computer Science and Data under
subcontract 4000159855 from ORNL.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 (LLNL-CONF-819815).

This research was also supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the US Department of Energy Office of
Science and the National Nuclear Security Administration, in particular its subproject on Scaling OpenMP with LLVM for Exascale performance and
portability (SOLLVE).

3

DCA++ (Dynamical Cluster Approximation)

3

• Scientific software for solving quantum many-body electronic correlation problems

• A numerical simulation tool to predict behaviors of co-related quantum materials (such
as superconductivity, magnetism)

• Ported to world’s largest supercomputers, e.g. Titan, Summit, Cori, Piz Daint (CSCS)
sustaining many petaflops of performance

• Gordon Bell Prize Winner 2008, a highly scalable application

• Open-source software written in morden C++ (800K+ lines of code)

[1] DCA++ 2019. Dynamical Cluster Approximation. https://github.com/CompFUSE/DCA [Licensing provisions: BSD-3-Clause]
[2] Urs R. Hähner, Gonzalo Alvarez, Thomas A. Maier, Raffaele Solcà, Peter Staar, Michael S. Summers, and Thomas C. Schulthess, DCA++: A software framework to solve correlated electron problems
with modern quantum cluster methods, Comput. Phys. Commun. 246 (2020) 106709.
[3] DCA++ ran on Titan – 18600 nodes at16 Petaflop rate (peak), sustained 1.3 Petaflop rate [Gordon Bell 2008]

Slide reused & modified from Wei. P3HPC 20’.

4

Background

• Port DCA++ to run efficiently on an A64FX cluster
– Run on the Wombat cluster at ORNL OLCF
– https://www.olcf.ornl.gov/olcf-resources/compute-systems/wombat/

• Target SVE vectorization to improve performance

• Evaluate impact of vectorization on the A64FX architecture

• Evaluation was done using Arm compiler 20.3

https://www.olcf.ornl.gov/olcf-resources/compute-systems/wombat/

5

Baseline Performance
• Measure impact of SVE vectorization on the application

– Run with vectorization explicitly disabled using netlib LAPACK and FFTW compiled
without vectorization

– Run with vectorization enabled using the Arm Performance Library

• Run on both ThunderX2 with NEON and an A64FX with SVE

• Testing done with 48 walker / accumulator threads with 100K iterations

6

Timing Breakdown

7

Timing Breakdown

• Remaining time is spent in the application code
• Efforts should be focusing on identifying SIMD parallelism in the

application

8

Efficiently Porting DCA++ Code to A64FX

• A64FX performance relies heavily on vectorization
• Need to identify important loops not being vectorized by the

compiler
• The Arm compiler is based on LLVM so we can use LLVM tools

9

Compiler Diagnostics

• LLVM provides diagnostics for its vectorization pass
$ armclang -O2 -Rpass-analysis=loop-vectorize -Rpass-missed=loop-vectorize code.c

• This will generate a lot of output, e.g.
$ make 2>&1| grep -e 'remark: loop not vectorized' | sort | uniq | wc -l

3335

• Find a way to filter out the unimportant ones

10

Using Profile Guided Optimization

• Build code with instrumentation
$ armclang -O2 -fprofile-instr-generate=profile-%m.profraw code.c -o code

• Run and convert the raw profile data for all the runs
$./code && llvm-profdata merge -output=code.profdata profile-*.profraw

• Use for the next compilation
$ armclang -O2 -fprofile-instr-use=code.profdata -o code

• Profile data provides "hotness" information

11

An LLVM-Based Methodology for Efficient Vectorization

• Identify only the hot loops that were not vectorized

• Generate profile information for the application with PGO
• Get hotness information for the diagnostics

-fprofile-instr-use=code.profdata
-fdiagnostics-show-hotness
-fdiagnostics-hotness-threshold=100000
-Rpass-analysis=loop-vectorize -Rpass-missed=loop-vectorize

• Sort remarks from hottest to coldest and examine

12

Reduction Loop Example

Problems
• IEEE Floating point numbers are not

commutative
• Parallel reductions reorder the

operations
• IEEE compliance must be explicitly

disabled

remark: loop not vectorized: cannot prove it is safe to
reorder floating−point operations; allow reordering by
specifying ’#pragma clang loop vectorize(enable)’ before
the loop or by providing the compiler option ’−ffast−math’

for (int i = 0; i < j; i++)
 x_val −= x_ptr[i] ∗ G_ptr[i]

13

Reduction Loop Example

Solution
• Explicitly enable relaxed IEEE semantics
• OpenMP SIMD supports explicit

reductions to make intent clear
• Cross-platform

#pragma omp simd reduction(−:x_val)
for (int i = 0; i < j; i++)
 x_val −= x_ptr[i] ∗ G_ptr[i]

remark: vectorized loop

14

Gather Loop Example

Problems
• This loop performs a non-continuous

load from memory, a gather.
• SVE supports fast gathering operations
• The compiler cannot statically

determine the access bounds
• If pointer aliasing is present

vectorization will create incorrect
results

• Pointer aliasing can be checked at
runtime if the bounds are statically
known

• Compiler cannot statically determine
the array bounds for this gather

for (int j = start_index_right[orb_j]; j < end_index_right[orb_j]; ++j) {
 const int out_j = j - start_index_right[orb_j];
 for (int i = start_index_left[orb i]; i < end_index_left[orb_i]; ++i) {
 const int out_i = i - start_index_left [orb_i];
 M_ij(out_i, out_j) = M(config_left[i].idx, config_right[j].idx);
 }
}

remark: loop not vectorized: Unknown array bounds

15

Gather Loop Example

Solution
• We can use OpenMP SIMD to assert

that pointer aliasing doesn't occur
• Must be verified by the user that the

two arrays do not overlap

for (int j = start_index_right[orb_j]; j < end_index_right[orb_j]; ++j) {
 const int out_j = j - start_index_right[orb_j];
 #pragma omp simd
 for (int i = start_index_left[orb i]; i < end_index_left[orb_i]; ++i) {
 const int out_i = i - start_index_left [orb_i];
 M_ij(out_i, out_j) = M(config_left[i].idx, config_right[j].idx);
 }
}

remark: vectorized loop:

16

Math Library Example

Problems
• This loop contains calls to math library

functions
• Calls to functions cannot be vectorized

unless a special vectorized version is
provided

• Remarks suggest using -ffast-math or
-fno-math-errno for relaxed error
handling

• This will only allow the loop to be
vectorized, without a math library the
function calls will not be vectorized

for (int j = 0; j < n_v; ++j) {
 for (int i = 0; i < n_w; ++i) {
 const ScalarType x = configuration[j].get tau() * w_[i];
 T_[0](i, j) = std::cos(x);
 T_[1](i, j) = std::sin(x);
 }
}

remark: loop not vectorized : library call cannot be
vectorized. Try compiling with −fno−math−errno,
−ffast−math, -fsimdmath or similar flags

17

Math Library Example

Solution
• Compile with -fsimdmath on Arm or

-fveclib=libmvec using LLVM
• This tells the compiler to use the

vectorized math-library

for (int j = 0; j < n_v; ++j) {
#pragma omp simd
 for (int i = 0; i < n_w; ++i) {
 const ScalarType x = configuration[j].get tau() * w_[i];
 T_[0](i, j) = std::cos(x);
 T_[1](i, j) = std::sin(x);
 }
}

remark: vectorized loop.

18

Loop Transformation

Problems
• This loop cannot be vectorized

efficiently with being transformed
• The matrices are stored in

column-major while this loop iterates
across a row

• This creates non-contiguous memory
accesses

• Each conditional must be computed
unconditionally and selected

• The diagonal update is uncommon,
but computed every time

for (int i = 0; i < Gamma.Rows(); i++) {
 for (int j = 0; j < Gamma.Cols(); j++) {
 int spin_idx i = random_vertex_vector[i];
 int spin_idx j = random_vertex_vector[j];

 if (spin_idx_j < vertex_index) {
 Real delta = (spin_idx_i == spin_idx_j) ? 1. : 0.;
 Real N_ij = N(spin_idx_i, spin_idx_j);
 Gamma(i, j) = (N_ij * exp_V[j] - delta) / (exp_V[j] - 1.);
 } else
 Gamma(i, j) = G_precomputed(spin_idx_i, spin_idx_j -
 vertex_index);
 if (i == j) {
 Real gamma_k = exp_delta_V[j];
 Gamma(i, j) -= (gamma_k) / (gamma_k - 1.);
 }
 }
}

19

Loop Transformation

Problems after Transformation
• Transposed loop for contiguous

memory accesses
• Hoisted conditional to the end of the

loop
• Contains a gather so still cannot be

vectorized automatically
• Potential Division by zero prevents

conditional masking

for (int j = 0; j < Gamma.Cols(); j++) {
 for (int i = 0; i < Gamma.Rows(); i++) {
 int spin_idx i = random_vertex_vector[i];
 int spin_idx j = random_vertex_vector[j];

 if (spin_idx_j < vertex_index) {
 Real delta = (spin_idx_i == spin_idx_j) ? 1. : 0.;
 Real N_ij = N(spin_idx_i, spin_idx_j);
 Gamma(i, j) = (N_ij * exp_V[j] - delta) / (exp_V[j] - 1.);
 } else
 Gamma(i, j) = G_precomputed(spin_idx_i, spin_idx_j -
 vertex_index);
 }
 Real gamma_k = exp_delta_V[j];
 Gamma(j, j) -= (gamma_k) / (gamma_k - 1.);
}

remark: loop not vectorized: Unknown array bounds

remark: loop not vectorized: Control flow cannot be
substituted for a select

20

Loop Transformation

Solution
• Use OpenMP SIMD to prevent aliasing
• Division by zero can be ignored by

compiling with -ffast-math or using
OpenMP SIMD.

for (int j = 0; j < Gamma.Cols(); j++) {
 #pragma omp simd
 for (int i = 0; i < Gamma.Rows(); i++) {
 int spin_idx i = random_vertex_vector[i];
 int spin_idx j = random_vertex_vector[j];

 if (spin_idx_j < vertex_index) {
 Real delta = (spin_idx_i == spin_idx_j) ? 1. : 0.;
 Real N_ij = N(spin_idx_i, spin_idx_j);
 Gamma(i, j) = (N_ij * exp_V[j] - delta) / (exp_V[j] - 1.);
 } else
 Gamma(i, j) = G_precomputed(spin_idx_i, spin_idx_j -
 vertex_index);
 }
 Real gamma_k = exp_delta_V[j];
 Gamma(j, j) -= (gamma_k) / (gamma_k - 1.);
}
remark: vectorized loop

21

Loop Level Timing Results

22

Going Further: Assumptions

Assumptions

• LLVM supports built-in assumptions that
can generate more efficient code

• This is not portable

void foo(double *X, int N) {
 __builtin_assume(N > 32 && N % 32 == 0);
 for (int i = 0; i < N; ++i)
 X[i] = X[i] * X[i];
}

void foo(double *X, int N) {
#pragma omp assume holds(N > 32 && N % 32 == 0);
 for (int i = 0; i < N; ++i)
 X[i] = X[i] * X[i];
}

• OpenMP 5.1 assumptions should allow
this to be made portable.

• This is not implemented in LLVM yet.

23

Conclusions & Future Work

• Improved performance portability for DCA++ using OpenMP
and LLVM tools

• Used profiling and diagnostics to filter for candidate loops

• This workflow could be automated, creating an LLVM-based
vectorization Advisor tool

• Improve remarks and OpenMP support in the LLVM framework
– Create more documentation to explain remarks like LLVM's

OpenMPOpt

24

Questions?

