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DCA++ (Dynamical Cluster Approximation)
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• Scientific software for solving quantum many-body electronic correlation problems

• A numerical simulation tool to predict behaviors of co-related quantum materials (such 
as superconductivity, magnetism)

• Ported to world’s largest supercomputers, e.g. Titan, Summit, Cori, Piz Daint (CSCS) 
sustaining many petaflops of performance

• Gordon Bell Prize Winner 2008, a highly scalable application

• Open-source software written in morden C++ (800K+ lines of code)

[1] DCA++ 2019. Dynamical Cluster Approximation. https://github.com/CompFUSE/DCA [Licensing provisions: BSD-3-Clause]
[2] Urs R. Hähner, Gonzalo Alvarez, Thomas A. Maier, Raffaele Solcà, Peter Staar, Michael S. Summers, and Thomas C. Schulthess, DCA++: A software framework to solve correlated electron problems 
with modern quantum cluster methods, Comput. Phys. Commun. 246 (2020) 106709.
[3] DCA++ ran on Titan – 18600 nodes at16 Petaflop rate (peak), sustained 1.3 Petaflop rate [Gordon Bell 2008]

Slide reused & modified from Wei. P3HPC 20’.
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Background

• Port DCA++ to run efficiently on an A64FX cluster
– Run on the Wombat cluster at ORNL OLCF 
– https://www.olcf.ornl.gov/olcf-resources/compute-systems/wombat/

• Target SVE vectorization to improve performance

• Evaluate impact of vectorization on the A64FX architecture

• Evaluation was done using Arm compiler 20.3

https://www.olcf.ornl.gov/olcf-resources/compute-systems/wombat/
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Baseline Performance
• Measure impact of SVE vectorization on the application

– Run with vectorization explicitly disabled using netlib LAPACK and FFTW compiled 
without vectorization

– Run with vectorization enabled using the Arm Performance Library

• Run on both ThunderX2 with NEON and an A64FX with SVE

• Testing done with 48 walker / accumulator threads with 100K iterations
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Timing Breakdown
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Timing Breakdown

• Remaining time is spent in the application code
• Efforts should be focusing on identifying SIMD parallelism in the 

application
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Efficiently Porting DCA++ Code to A64FX

• A64FX performance relies heavily on vectorization
• Need to identify important loops not being vectorized by the 

compiler
• The Arm compiler is based on LLVM so we can use LLVM tools
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Compiler Diagnostics

• LLVM provides diagnostics for its vectorization pass
$ armclang -O2 -Rpass-analysis=loop-vectorize -Rpass-missed=loop-vectorize code.c

• This will generate a lot of output, e.g.
$ make 2>&1| grep -e 'remark: loop not vectorized' | sort | uniq | wc -l

3335

• Find a way to filter out the unimportant ones
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Using Profile Guided Optimization

• Build code with instrumentation
$ armclang -O2 -fprofile-instr-generate=profile-%m.profraw code.c -o code

• Run and convert the raw profile data for all the runs
$ ./code && llvm-profdata merge -output=code.profdata profile-*.profraw

• Use for the next compilation
$ armclang -O2 -fprofile-instr-use=code.profdata -o code

• Profile data provides "hotness" information
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An LLVM-Based Methodology for Efficient Vectorization

• Identify only the hot loops that were not vectorized

• Generate profile information for the application with PGO
• Get hotness information for the diagnostics

-fprofile-instr-use=code.profdata 
-fdiagnostics-show-hotness   
-fdiagnostics-hotness-threshold=100000 
-Rpass-analysis=loop-vectorize -Rpass-missed=loop-vectorize

• Sort remarks from hottest to coldest and examine
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Reduction Loop Example

Problems
• IEEE Floating point numbers are not 

commutative
• Parallel reductions reorder the 

operations
• IEEE compliance must be explicitly 

disabled

remark: loop not vectorized: cannot prove it is safe to 
reorder floating−point operations; allow reordering by 
specifying ’#pragma clang loop vectorize(enable)’ before 
the loop or by providing the compiler option ’−ffast−math’

for (int i = 0; i < j; i++)
  x_val −= x_ptr[i] ∗ G_ptr[i]
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Reduction Loop Example

Solution
• Explicitly enable relaxed IEEE semantics
• OpenMP SIMD supports explicit 

reductions to make intent clear
• Cross-platform

#pragma omp simd reduction(−:x_val)
for (int i = 0; i < j; i++)
  x_val −= x_ptr[i] ∗ G_ptr[i]

remark: vectorized loop
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Gather Loop Example

Problems
• This loop performs a non-continuous 

load from memory, a gather.
• SVE supports fast gathering operations
• The compiler cannot statically 

determine the access bounds
• If pointer aliasing is present 

vectorization will create incorrect 
results

• Pointer aliasing can be checked at 
runtime if the bounds are statically 
known

• Compiler cannot statically determine 
the array bounds for this gather

for (int j = start_index_right[orb_j]; j < end_index_right[orb_j]; ++j) {
  const int out_j = j - start_index_right[orb_j];
  for (int i = start_index_left[orb i]; i < end_index_left[orb_i]; ++i) {
    const int out_i = i - start_index_left [orb_i];
    M_ij(out_i, out_j) = M(config_left[i].idx, config_right[j].idx);
  }
}

remark: loop not vectorized: Unknown array bounds



15

Gather Loop Example

Solution
• We can use OpenMP SIMD to assert 

that pointer aliasing doesn't occur
• Must be verified by the user that the 

two arrays do not overlap

for (int j = start_index_right[orb_j]; j < end_index_right[orb_j]; ++j) {
  const int out_j = j - start_index_right[orb_j];
  #pragma omp simd
  for (int i = start_index_left[orb i]; i < end_index_left[orb_i]; ++i) {
    const int out_i = i - start_index_left [orb_i];
    M_ij(out_i, out_j) = M(config_left[i].idx, config_right[j].idx);
  }
}

remark: vectorized loop:
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Math Library Example

Problems
• This loop contains calls to math library 

functions
• Calls to functions cannot be vectorized 

unless a special vectorized version is 
provided

• Remarks suggest using -ffast-math or 
-fno-math-errno for relaxed error 
handling

• This will only allow the loop to be 
vectorized, without a math library the 
function calls will not be vectorized

for (int j = 0; j < n_v; ++j) {
  for (int i = 0; i < n_w; ++i) {
    const ScalarType x = configuration[j].get tau() * w_[i];
    T_[0](i, j) = std::cos(x);
    T_[1](i, j) = std::sin(x);
  }
}

remark: loop not vectorized : library call cannot be 
vectorized. Try compiling with −fno−math−errno, 
−ffast−math, -fsimdmath or similar flags
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Math Library Example

Solution
• Compile with -fsimdmath on Arm or 

-fveclib=libmvec using LLVM
• This tells the compiler to use the 

vectorized math-library

for (int j = 0; j < n_v; ++j) {
#pragma omp simd
  for (int i = 0; i < n_w; ++i) {
    const ScalarType x = configuration[j].get tau() * w_[i];
    T_[0](i, j) = std::cos(x);
    T_[1](i, j) = std::sin(x);
  }
}

remark: vectorized loop.
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Loop Transformation

Problems
• This loop cannot be vectorized 

efficiently with being transformed
• The matrices are stored in 

column-major while this loop iterates 
across a row

• This creates non-contiguous memory 
accesses

• Each conditional must be computed 
unconditionally and selected

• The diagonal update is uncommon, 
but computed every time

for (int i = 0; i < Gamma.Rows(); i++) {
  for (int j = 0; j < Gamma.Cols(); j++) {
    int spin_idx i = random_vertex_vector[i];
    int spin_idx j = random_vertex_vector[j];

    if (spin_idx_j < vertex_index) {
      Real delta = (spin_idx_i == spin_idx_j) ? 1. : 0.;
      Real N_ij = N(spin_idx_i, spin_idx_j);
      Gamma(i, j) = (N_ij * exp_V[j] - delta) / (exp_V[j] - 1.);
    } else
      Gamma(i, j) = G_precomputed(spin_idx_i, spin_idx_j -
                                                        vertex_index);
    if (i == j) {
      Real gamma_k = exp_delta_V[j];
      Gamma(i, j) -= (gamma_k) / (gamma_k - 1.);
    }
  }
}
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Loop Transformation

Problems after Transformation
• Transposed loop for contiguous 

memory accesses
• Hoisted conditional to the end of the 

loop
• Contains a gather so still cannot be 

vectorized automatically
• Potential Division by zero prevents 

conditional masking

for (int j = 0; j < Gamma.Cols(); j++) {
  for (int i = 0; i < Gamma.Rows(); i++) {
    int spin_idx i = random_vertex_vector[i];
    int spin_idx j = random_vertex_vector[j];

    if (spin_idx_j < vertex_index) {
      Real delta = (spin_idx_i == spin_idx_j) ? 1. : 0.;
      Real N_ij = N(spin_idx_i, spin_idx_j);
      Gamma(i, j) = (N_ij * exp_V[j] - delta) / (exp_V[j] - 1.);
    } else
      Gamma(i, j) = G_precomputed(spin_idx_i, spin_idx_j -   
                                                        vertex_index);
  }
  Real gamma_k = exp_delta_V[j];
  Gamma(j, j) -= (gamma_k) / (gamma_k - 1.);
}

remark: loop not vectorized: Unknown array bounds

remark: loop not vectorized: Control flow cannot be 
substituted for a select
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Loop Transformation

Solution
• Use OpenMP SIMD to prevent aliasing
• Division by zero can be ignored by 

compiling with -ffast-math or using 
OpenMP SIMD.

for (int j = 0; j < Gamma.Cols(); j++) {
  #pragma omp simd
  for (int i = 0; i < Gamma.Rows(); i++) {
    int spin_idx i = random_vertex_vector[i];
    int spin_idx j = random_vertex_vector[j];

    if (spin_idx_j < vertex_index) {
      Real delta = (spin_idx_i == spin_idx_j) ? 1. : 0.;
      Real N_ij = N(spin_idx_i, spin_idx_j);
      Gamma(i, j) = (N_ij * exp_V[j] - delta) / (exp_V[j] - 1.);
    } else
      Gamma(i, j) = G_precomputed(spin_idx_i, spin_idx_j -   
                                                        vertex_index);
  }
  Real gamma_k = exp_delta_V[j];
  Gamma(j, j) -= (gamma_k) / (gamma_k - 1.);
}
remark: vectorized loop
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Loop Level Timing Results
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Going Further: Assumptions

Assumptions

• LLVM supports built-in assumptions that 
can generate more efficient code

• This is not portable

void foo(double *X, int N) {
    __builtin_assume(N > 32 && N % 32 == 0);
    for (int i = 0; i < N; ++i)
        X[i] = X[i] * X[i];
}

void foo(double *X, int N) {
#pragma omp assume holds(N > 32 && N % 32 == 0);
    for (int i = 0; i < N; ++i)
        X[i] = X[i] * X[i];
}

• OpenMP 5.1 assumptions should allow 
this to be made portable.

• This is not implemented in LLVM yet.
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Conclusions & Future Work

• Improved performance portability for DCA++ using OpenMP 
and LLVM tools

• Used profiling and diagnostics to filter for candidate loops

• This workflow could be automated, creating an LLVM-based 
vectorization Advisor tool

• Improve remarks and OpenMP support in the LLVM framework
– Create more documentation to explain remarks like LLVM's 

OpenMPOpt
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Questions?


