Pass-through, profits & the political economy of regulation

Felix Grey Faculty of Economics & EPRG Cambridge University & Robert A. Ritz Judge Business School & EPRG Cambridge University

September 2018

• **Research question:** What is the impact of cost-raising regulation on a firm's profits?

- **Research question:** What is the impact of cost-raising regulation on a firm's profits?
 - Market-based environmental regulation
 - Minimum wage legislation
 - Bank capital adequacy regulation

- **Research question:** What is the impact of cost-raising regulation on a firm's profits?
 - Market-based environmental regulation
 - Minimum wage legislation
 - Bank capital adequacy regulation
- Why is this question important?
 - Regulated firms
 - Policymakers and political economy of regulation
 - Institutional investors

Overview of this paper

• Theory:

- New 'generalized linear model of competition' (GLM)
- Cost pass-through as sufficient statistic for profit impact

Overview of this paper

• Theory:

- New 'generalized linear model of competition' (GLM)
- Cost pass-through as sufficient statistic for profit impact

• Empirics:

- Carbon pricing for aviation: US domestic airline market
- Substantial pass-through heterogeneity: Winners & losers

Overview of this paper

• Theory:

- New 'generalized linear model of competition' (GLM)
- Cost pass-through as sufficient statistic for profit impact

• Empirics:

- Carbon pricing for aviation: US domestic airline market
- Substantial pass-through heterogeneity: Winners & losers

• Application:

- Political economy of regulation: Lobbying & market power
- Grossman-Helpman 1994 meets Buchanan 1969

• Suppose firm *i* experiences marginal cost shock ΔMC_i

- Suppose firm *i* experiences marginal cost shock ΔMC_i
- Profit impact $\Delta \Pi_i$, in general, depends on:
 - Technology of firm i
 - Demand for *i*'s (differentiated) product
 - Competitors: how many (n), their technologies, their cost shocks (ΔMC_{-i}) , their strategies, degree of competitiveness

4/39

- Suppose firm *i* experiences marginal cost shock ΔMC_i
- Profit impact $\Delta \Pi_i$, in general, depends on:
 - Technology of firm i
 - Demand for i's (differentiated) product
 - Competitors: how many (n), their technologies, their cost shocks (ΔMC_{-i}) , their strategies, degree of competitiveness

4/39

• We try to radically simplify the problem, by remaining agnostic about most of the above

- Suppose firm *i* experiences marginal cost shock ΔMC_i
- Profit impact $\Delta \Pi_i$, in general, depends on:
 - Technology of firm i
 - Demand for *i*'s (differentiated) product
 - Competitors: how many (n), their technologies, their cost shocks (ΔMC_{-i}) , their strategies, degree of competitiveness
- We try to radically simplify the problem, by remaining agnostic about most of the above
- In the spirit of Sutton 2007: "aim to build the theory in such a way as to focus attention on those predictions which are robust across a range of model specifications which are deemed 'reasonable'."

 $\bullet\,$ Consider firm i competing a la Cournot

• Demand: $p_i = \alpha - \beta x_i - \delta(X - x_i)$

 $\bullet\,$ Consider firm i competing a la Cournot

- Demand: $p_i = \alpha \beta x_i \delta(X x_i)$
- Marginal cost: $MC_i = c_i + \tau$

- $\bullet\,$ Consider firm i competing a la Cournot
 - Demand: $p_i = \alpha \beta x_i \delta(X x_i)$
 - Marginal cost: $MC_i = c_i + \tau$
 - FOC: Linear supply schedule $x_i = (1/\beta)(p_i c_i \tau)$

- $\bullet\,$ Consider firm i competing a la Cournot
 - Demand: $p_i = \alpha \beta x_i \delta(X x_i)$
 - Marginal cost: $MC_i = c_i + \tau$
 - FOC: Linear supply schedule $x_i = (1/\beta)(p_i c_i \tau)$
 - No assumptions on rival's technologies or behaviour...

- $\bullet\,$ Consider firm i competing a la Cournot
 - Demand: $p_i = \alpha \beta x_i \delta(X x_i)$
 - Marginal cost: $MC_i = c_i + \tau$
 - FOC: Linear supply schedule $x_i = (1/\beta)(p_i c_i \tau)$
 - No assumptions on rival's technologies or behaviour...
- Suppose regulation raises i 's marginal cost by $d\tau$
 - Define *i*'s rate of cost pass-through $(dp_i/d\tau)/(dMC_i/d\tau)$

5/39

- $\bullet\,$ Consider firm i competing a la Cournot
 - Demand: $p_i = \alpha \beta x_i \delta(X x_i)$
 - Marginal cost: $MC_i = c_i + \tau$
 - FOC: Linear supply schedule $x_i = (1/\beta)(p_i c_i \tau)$
 - No assumptions on rival's technologies or behaviour...
- Suppose regulation raises i 's marginal cost by $d\tau$
 - Define *i*'s rate of cost pass-through $(dp_i/d\tau)/(dMC_i/d\tau)$

5/39

• By construction, pass-through captures margin impact

- $\bullet\,$ Consider firm i competing a la Cournot
 - Demand: $p_i = \alpha \beta x_i \delta(X x_i)$
 - Marginal cost: $MC_i = c_i + \tau$
 - FOC: Linear supply schedule $x_i = (1/\beta)(p_i c_i \tau)$
 - No assumptions on rival's technologies or behaviour...
- Suppose regulation raises i 's marginal cost by $d\tau$
 - Define *i*'s rate of cost pass-through $(dp_i/d\tau)/(dMC_i/d\tau)$
 - By construction, pass-through captures margin impact
 - By linear supply schedule, sales impact is proportional to pass-through

- $\bullet\,$ Consider firm i competing a la Cournot
 - Demand: $p_i = \alpha \beta x_i \delta(X x_i)$
 - Marginal cost: $MC_i = c_i + \tau$
 - FOC: Linear supply schedule $x_i = (1/\beta)(p_i c_i \tau)$
 - No assumptions on rival's technologies or behaviour...
- Suppose regulation raises i 's marginal cost by $d\tau$
 - Define *i*'s rate of cost pass-through $(dp_i/d\tau)/(dMC_i/d\tau)$
 - By construction, pass-through captures margin impact
 - By linear supply schedule, sales impact is proportional to pass-through
- i's pass-through = sufficient statistic for i's profit impact
 - No information needed on (α, β, δ) or c_i

5/39

Comparison with structural empirical IO

• Structural IO

- Consumer demand system (often logit structure)
- Firms' production technologies (often constant MC)
- Mode of competition (often Bertrand-Nash)

Comparison with structural empirical IO

• Structural IO

- Consumer demand system (often logit structure)
- Firms' production technologies (often constant MC)
- Mode of competition (often Bertrand-Nash)

• GLM approach

- No estimation of consumer demand system
- No assumptions on mode of competition
- Departures from Nash and/or profit-maximization
- No estimation of conduct parameters or firms' mark-ups

Comparison with structural empirical IO

• Structural IO

- Consumer demand system (often logit structure)
- Firms' production technologies (often constant MC)
- Mode of competition (often Bertrand-Nash)

• GLM approach

- No estimation of consumer demand system
- No assumptions on mode of competition
- Departures from Nash and/or profit-maximization
- No estimation of conduct parameters or firms' mark-ups

• Trade-off

- Weaker assumptions & greater simplicity vs
- Narrower set of questions & no counterfactual analysis

• Cost pass-through

• Empirics: e.g. De Loecker, Goldberg, Khandelwal & Pavcnik 2016 (< 100%); Fabra & Reguant 2014 (= 100%); Miller, Osborne & Sheu 2017 (> 100%)

• Cost pass-through

- Empirics: e.g. De Loecker, Goldberg, Khandelwal & Pavcnik 2016 (< 100%); Fabra & Reguant 2014 (= 100%); Miller, Osborne & Sheu 2017 (> 100%)
- Pass-through as a tool: Weyl & Fabinger 2013; Atkin & Donaldson 2015; Bergquist 2017; Miller, Osborne & Sheu 2017; Ganapati, Shapiro & Walker 2017

• Cost pass-through

- Empirics: e.g. De Loecker, Goldberg, Khandelwal & Pavcnik 2016 (< 100%); Fabra & Reguant 2014 (= 100%); Miller, Osborne & Sheu 2017 (> 100%)
- Pass-through as a tool: Weyl & Fabinger 2013; Atkin & Donaldson 2015; Bergquist 2017; Miller, Osborne & Sheu 2017; Ganapati, Shapiro & Walker 2017
- **This paper**: Shift from market-wide to firm-specific pass-through, further simplification of incidence analysis

• Marked-based environmental policy

• Bovenberg & Goulder 2005; Hepburn, Quah & Ritz 2013; Bushnell, Chyong & Mansur 2014; Fowlie, Reguant & Ryan 2016

• Marked-based environmental policy

- Bovenberg & Goulder 2005; Hepburn, Quah & Ritz 2013; Bushnell, Chyong & Mansur 2014; Fowlie, Reguant & Ryan 2016
- **This paper**: Shift away from electricity & heavy industry, highlight firm-level heterogeneity in profit impacts and larger industry-wide profit loss for airlines

• Marked-based environmental policy

- Bovenberg & Goulder 2005; Hepburn, Quah & Ritz 2013; Bushnell, Chyong & Mansur 2014; Fowlie, Reguant & Ryan 2016
- **This paper**: Shift away from electricity & heavy industry, highlight firm-level heterogeneity in profit impacts and larger industry-wide profit loss for airlines

• Airline competition

• Brander & Zhang 1990; Kim & Sengal 1993; Goolsbee & Syverson 2008; Ciliberto & Tamer 2009; Berry & Jia 2010

• Marked-based environmental policy

- Bovenberg & Goulder 2005; Hepburn, Quah & Ritz 2013; Bushnell, Chyong & Mansur 2014; Fowlie, Reguant & Ryan 2016
- **This paper**: Shift away from electricity & heavy industry, highlight firm-level heterogeneity in profit impacts and larger industry-wide profit loss for airlines

• Airline competition

- Brander & Zhang 1990; Kim & Sengal 1993; Goolsbee & Syverson 2008; Ciliberto & Tamer 2009; Berry & Jia 2010
- **This paper**: New results on political economy of low-cost vs legacy carriers, special role of Southwest also in terms of pass-through

• Firm *i* sells quantity x_i at price p_i

- Firm *i* sells quantity x_i at price p_i
- Emissions e_i viewed as input to production technology

- Firm *i* sells quantity x_i at price p_i
- Emissions e_i viewed as input to production technology
- Emissions price τ on each unit of *i*'s emissions e_i

9/39

- Firm *i* sells quantity x_i at price p_i
- Emissions e_i viewed as input to production technology
- Emissions price τ on each unit of *i*'s emissions e_i
- Profits $\Pi_i = p_i x_i C_i(x_i, e_i) \tau e_i$

- Firm *i* sells quantity x_i at price p_i
- Emissions e_i viewed as input to production technology
- Emissions price τ on each unit of *i*'s emissions e_i
- Profits $\Pi_i = p_i x_i C_i(x_i, e_i) \tau e_i$
- Regulation may apply to all, some or none of *i*'s rivals

Assumptions of the GLM

Four assumptions hold for firm *i* for all relevant $\tau \geq 0$:

Felix Grey and Robert Ritz Pass-through & political economy Ser

Assumptions of the GLM

Four assumptions hold for firm *i* for all relevant $\tau \geq 0$:

A1. Emissions price-taking: i takes input prices, including the emissions price τ , as given

10/39

Assumptions of the GLM

Four assumptions hold for firm *i* for all relevant $\tau \geq 0$:

A1. Emissions price-taking: i takes input prices, including the emissions price τ , as given

A2. Cost-minimizing emissions: i chooses inputs, including emissions e_i , to minimize its costs of producing output x_i

Four assumptions hold for firm *i* for all relevant $\tau \geq 0$:

A1. Emissions price-taking: i takes input prices, including the emissions price τ , as given

A2. Cost-minimizing emissions: i chooses inputs, including emissions e_i , to minimize its costs of producing output x_i

A3. Constant returns to scale: i's unit costs are linear in output $C_i(x_i, e_i) + \tau e_i = k_i(\tau)x_i$, with unit cost $k_i(\tau) = c_i(\tau) + \tau z_i(\tau)$ • $z_i(\tau) \equiv e_i(\tau)/x_i$ is its emissions intensity Four assumptions hold for firm *i* for all relevant $\tau \geq 0$:

A1. Emissions price-taking: i takes input prices, including the emissions price τ , as given

A2. Cost-minimizing emissions: i chooses inputs, including emissions e_i , to minimize its costs of producing output x_i

A3. Constant returns to scale: i's unit costs are linear in output $C_i(x_i, e_i) + \tau e_i = k_i(\tau)x_i$, with unit cost $k_i(\tau) = c_i(\tau) + \tau z_i(\tau)$ • $z_i(\tau) \equiv e_i(\tau)/x_i$ is its emissions intensity

A4. Linear product market behaviour: i's supply satisfies the linear schedule $x_i(\tau) = \psi_i[p_i(\tau) - k_i(\tau)]$

• $[p_i(\tau) - k_i(\tau)] > 0$ is its profit margin, $\psi_i > 0$ is a constant

• Weaker assumptions than many standard oligopoly models

- Weaker assumptions than many standard oligopoly models
- No assumptions on technology or behaviour of i's rivals

- Weaker assumptions than many standard oligopoly models
- No assumptions on technology or behaviour of i's rivals
- No assumptions on demand system or nature of consumer behaviour
 - No assumptions on number of competing products, or extent to which these are substitutes or complements, or whether competition is in strategic substitutes or complements

- Weaker assumptions than many standard oligopoly models
- No assumptions on technology or behaviour of i's rivals
- No assumptions on demand system or nature of consumer behaviour
 - No assumptions on number of competing products, or extent to which these are substitutes or complements, or whether competition is in strategic substitutes or complements
- No equilibrium concept
 - Departures from Nash and/or profit-maximization
 - Rule of thumb behaviour

A4 is satisfied by a *very* wide range of IO models:

• Cournot-Nash with linear demand, including with firm-specific conjectural variations, and linear Stackelberg

- Cournot-Nash with linear demand, including with firm-specific conjectural variations, and linear Stackelberg
- Bertrand & Cournot with horizontally and/or vertically differentiated products

- Cournot-Nash with linear demand, including with firm-specific conjectural variations, and linear Stackelberg
- Bertrand & Cournot with horizontally and/or vertically differentiated products
- Two-stage models with linear competition in 2nd stage, e.g.,
 - Strategic forward contracting (Allaz & Vila 1993)
 - Managerial delegation (Fershtman & Judd 1987)

- Cournot-Nash with linear demand, including with firm-specific conjectural variations, and linear Stackelberg
- Bertrand & Cournot with horizontally and/or vertically differentiated products
- Two-stage models with linear competition in 2nd stage, e.g.,
 - Strategic forward contracting (Allaz & Vila 1993)
 - Managerial delegation (Fershtman & Judd 1987)
- Supply function equilibrium (Klemperer & Meyer 1989)

- Cournot-Nash with linear demand, including with firm-specific conjectural variations, and linear Stackelberg
- Bertrand & Cournot with horizontally and/or vertically differentiated products
- Two-stage models with linear competition in 2nd stage, e.g.,
 - Strategic forward contracting (Allaz & Vila 1993)
 - Managerial delegation (Fershtman & Judd 1987)
- Supply function equilibrium (Klemperer & Meyer 1989)
- Behavioural biases (Al-Najjar, Baliga & Besanko 2008)

- Cournot-Nash with linear demand, including with firm-specific conjectural variations, and linear Stackelberg
- Bertrand & Cournot with horizontally and/or vertically differentiated products
- Two-stage models with linear competition in 2nd stage, e.g.,
 - Strategic forward contracting (Allaz & Vila 1993)
 - Managerial delegation (Fershtman & Judd 1987)
- Supply function equilibrium (Klemperer & Meyer 1989)
- Behavioural biases (Al-Najjar, Baliga & Besanko 2008)
- Common ownership of firms (O'Brien & Salop 2000)

Main result

• Define *i*'s marginal pass-through rate $\rho_i(\tau) \equiv \frac{dp_i(\tau)/d\tau}{dk_i(\tau)/d\tau}$, and let average pass-through $\overline{\rho}_i(\tau) \equiv \frac{1}{\tau} \int_{s=0}^{\tau} \rho_i(s) ds$.

• Define *i*'s marginal pass-through rate $\rho_i(\tau) \equiv \frac{dp_i(\tau)/d\tau}{dk_i(\tau)/d\tau}$, and let average pass-through $\overline{\rho}_i(\tau) \equiv \frac{1}{\tau} \int_{s=0}^{\tau} \rho_i(s) ds$.

Proposition (1)

In the GLM, the profit impact of emissions pricing τ on firm i satisfies $\Delta \Pi_i(\tau) \equiv -\gamma_i(\tau) [\tau e_i(0)]$ where:

(a) if τ is small, $\gamma_i(\tau) \simeq 2[1 - \overline{\rho}_i(\tau)]$, where $\overline{\rho}_i(\tau) \simeq \rho_i(0)$

(b) in general, $\gamma_i(\tau) \leq \max\{2[1-\overline{\rho}_i(\tau)], 0\}$

• So ρ_i is a sufficient statistic for $\Delta \Pi_i$, given $\tau \& e_i(0)$

- So ρ_i is a sufficient statistic for $\Delta \Pi_i$, given $\tau \& e_i(0)$
 - ρ_i contains *all* relevant information about *i*'s demand & supply conditions (incl. rivals' technologies & behaviour)
 - No extra information on conduct parameters & mark-ups
 - No estimation of ψ_i : $\Delta \Pi_i \& e_i(0)$ both proportional to ψ_i

- So ρ_i is a sufficient statistic for $\Delta \Pi_i$, given $\tau \& e_i(0)$
 - ρ_i contains *all* relevant information about *i*'s demand & supply conditions (incl. rivals' technologies & behaviour)
 - No extra information on conduct parameters & mark-ups
 - No estimation of ψ_i : $\Delta \Pi_i \& e_i(0)$ both proportional to ψ_i

- Formula for γ_i holds *approximately* even with modest departures from GLM (e.g. from A3 or A4)
 - No systematic upward or downward bias in γ_i

• To progress further, two possible approaches:

- To progress further, two possible approaches:
- **(**) Choose specific theory of competition to determine ρ_i

- To progress further, two possible approaches:
- e.g. Cournot-Nash gives $\rho_i = \frac{\sum_i \Delta k_i}{(n+1)\Delta k_i}$, so $\frac{\rho_i}{\rho_j} = \frac{\Delta k_j}{\Delta k_i}$

- To progress further, two possible approaches:
- e.g. Cournot-Nash gives $\rho_i = \frac{\sum_i \Delta k_i}{(n+1)\Delta k_i}$, so $\frac{\rho_i}{\rho_i} = \frac{\Delta k_j}{\Delta k_i}$
- **2** Estimate ρ_i empirically

- To progress further, two possible approaches:
- e.g. Cournot-Nash gives $\rho_i = \frac{\sum_i \Delta k_i}{(n+1)\Delta k_i}$, so $\frac{\rho_i}{\rho_i} = \frac{\Delta k_j}{\Delta k_i}$
- **2** Estimate ρ_i empirically
 - e.g. next part of this talk on US airlines

• Global aviation:

- CO₂ emissions are 2.5% of total but 5% by impact
- Set to rise to 25% in 2050 without new policies

• Global aviation:

- CO₂ emissions are 2.5% of total but 5% by impact
- Set to rise to 25% in 2050 without new policies

• Policy problem:

• Aviation is growing fast but hard to decarbonise

• Global aviation:

- CO₂ emissions are 2.5% of total but 5% by impact
- Set to rise to 25% in 2050 without new policies

• Policy problem:

• Aviation is growing fast but hard to decarbonise

• Policy so far:

- 2012 inclusion of aviation in EU ETS politically fraught...
- Chinese regional ETSs
- 2016 ICAO agreement emissions offset system
- 2018 Swedish carbon tax on aviation

• Global aviation:

- CO₂ emissions are 2.5% of total but 5% by impact
- Set to rise to 25% in 2050 without new policies

• Policy problem:

• Aviation is growing fast but hard to decarbonise

• Policy so far:

- 2012 inclusion of aviation in EU ETS politically fraught...
- Chinese regional ETSs
- 2016 ICAO agreement emissions offset system
- 2018 Swedish carbon tax on aviation

• US aviation:

- $\bullet\,$ World's largest market, with 30% of global aviation emissions
- 2014: 172 million tCO_2 , value \$8.6 billion at $50/tCO_2$

• Research question: What is the impact of a \$50/tCO₂ carbon price on US airlines' profits?

- Research question: What is the impact of a \$50/tCO₂ carbon price on US airlines' profits?
- Product: a flight on carrier i on route j

- Research question: What is the impact of a \$50/tCO₂ carbon price on US airlines' profits?
- Product: a flight on carrier i on route j
- GLM: Aggregate profit impact on carrier i across its j routes:

$$\Delta \Pi_i \simeq -2(1-\rho_i)\tau e_i(0)$$

where $\rho_i = \sum_j \frac{e_{ij}(0)}{e_i(0)} \rho_{ij}$ is weighted-average pass-through

- Research question: What is the impact of a \$50/tCO₂ carbon price on US airlines' profits?
- Product: a flight on carrier i on route j
- GLM: Aggregate profit impact on carrier i across its j routes:

$$\Delta \Pi_i \simeq -2(1-\rho_i)\tau e_i(0)$$

where $\rho_i = \sum_j \frac{e_{ij}(0)}{e_i(0)} \rho_{ij}$ is weighted-average pass-through

- Predict carbon cost pass-through by estimating fuel cost pass-through
 - Wide variation in fuel costs over time (factor of 5)
 - Airlines cannot influence fuel price

• Example route: Phoenix Sky Harbor International Airport, (PHX) to San Antonio International Airport (SAT)

- Example route: Phoenix Sky Harbor International Airport, (PHX) to San Antonio International Airport (SAT)
- Example product: i =Southwest, j =PHX-SAT

- Example route: Phoenix Sky Harbor International Airport, (PHX) to San Antonio International Airport (SAT)
- Example product: i =Southwest, j =PHX-SAT
- Important heterogeneities across carrier-routes:
 - Product differentiation: leg room, service, refreshments, loyalty rewards, airports, etc
 - Cost structure
 - Routes flown (product mix)
 - Competitors on a given route: their identity, products, prices, costs, strategies

• We use data from the Bureau of Transportation Statistics

- We use data from the Bureau of Transportation Statistics
- $\bullet\,$ Time period: 2002Q1 to 2014Q4

- We use data from the Bureau of Transportation Statistics
- Time period: 2002Q1 to 2014Q4
- Average quarterly price p_{ijt} , from a 10% sample of all tickets (DB1A)
 - One way (split returns), ignore direction
 - Exclude: international, frequent fliers, non-economy, prices >5 times 'standard', some others

- We use data from the Bureau of Transportation Statistics
- Time period: 2002Q1 to 2014Q4
- Average quarterly price p_{ijt} , from a 10% sample of all tickets (DB1A)
 - One way (split returns), ignore direction
 - Exclude: international, frequent fliers, non-economy, prices >5 times 'standard', some others
- Per-passenger fuel cost k_{ijt} constructed from fuel expenditure by aircraft (Form 41), and aircraft share by route (T-100)

• Keep all carrier-routes which are:

- direct flights (standard in airlines literature)
- continuously operated (to enable regression)

- Keep all carrier-routes which are:
 - direct flights (standard in airlines literature)
 - continuously operated (to enable regression)
- Focus on 7 largest carriers:
 - Legacy carriers: Alaska, American, Delta, Hawaiian, United, US Airways
 - Low cost carrier: Southwest

- Keep all carrier-routes which are:
 - direct flights (standard in airlines literature)
 - continuously operated (to enable regression)
- Focus on 7 largest carriers:
 - Legacy carriers: Alaska, American, Delta, Hawaiian, United, US Airways
 - Low cost carrier: Southwest
- Resulting sample is a balanced panel:
 - N = 615 carrier-routes over T = 52 quarters
 - 26% by revenue of all US aviation activity over the period

Descriptive statistics

		Southwest				Legacy			
	mean	s.d.	min	max	mean	s.d.	min	max	
Price (\$)	157.31	40.52	74.78	298.91	230.82	78.21	52.14	683.50	
Fuel cost (\$)	29.22	15.69	5.29	101.52	50.08	31.05	2.33	366.63	
Distance (miles)	688	407	148	2,106	1,097	706	84	3,784	
Emissions (tCO_2)	0.13	0.06	0.03	0.44	0.21	0.11	0.02	1.18	
Emissions cost (\$)	6.70	2.92	1.71	21.92	10.47	5.54	1.12	59.12	
Passengers (000s)	195	172	5	1,172	153	135	4	1,263	
No. firms	3.28	2.41	1.00	17.00	3.67	2.24	1.00	17.00	
Fraction seats filled	0.72	0.10	0.33	0.97	0.79	0.10	0.23	0.97	
Revenue (\$ million)	24.76	18.78	0.83	135.07	28.99	24.92	0.33	238.11	
Revenue in sample	0.42	-	_	_	0.34	_	_	_	
No. routes	212	-	-	_	403	-	-	_	
No. observations	$11,\!024$	-	-	-	20,956	-	-	-	

Felix Grey and Robert Ritz

September 2018

Fuel prices and fuel costs

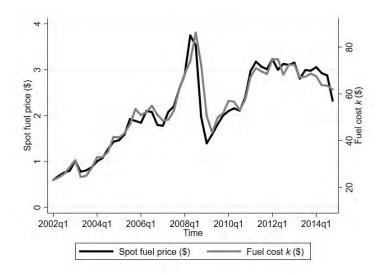


Figure: Average per-passenger fuel cost k_t and the spot price of jet fuel.

Fuel costs and ticket prices

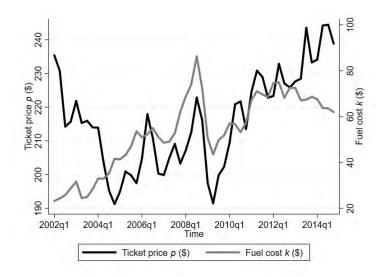


Figure: Ticket prices (left axis), and per-passenger fuel and non-fuel costs (right axis).

Baseline regression specification

• Estimate cost pass-through at the carrier-route level:

$$p_{ijt} = \rho_{ij}^m \sum_{m=0}^3 k_{ij,t-m} + X'_{ijt}\beta_{ij} + \epsilon_{ijt}$$
(1)

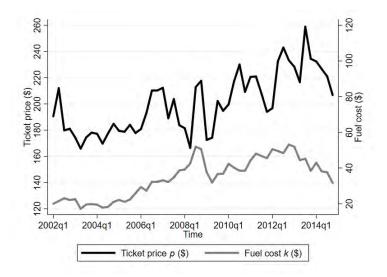
where:

- "Equilibrium" pass-through $\rho_{ij} = \sum_{m=o}^{3} \rho_{ij}^{m}$
- X_{ijt} is a vector of covariates:
 - GDP growth g_{jt} , proxy for demand
 - Index of labour and maintenance costs c_{it}
 - Number of competitor firms n_{jt}
 - Number of potential entrants n_{it}^p
 - Quarterly dummies q_t

- We find Mean Group (Pesaran & Smith 1995) estimates for carrier pass-through rates:
 - run a separate regression for each ij
 - calculate emissions-weighted average for airline i

- We find Mean Group (Pesaran & Smith 1995) estimates for carrier pass-through rates:
 - run a separate regression for each ij
 - calculate emissions-weighted average for airline i
- Endogeneity: k_{ijt} constructed by dividing whole plane's fuel consumption by number of filled seats, which depends on p_{ijt}

- We find Mean Group (Pesaran & Smith 1995) estimates for carrier pass-through rates:
 - run a separate regression for each ij
 - calculate emissions-weighted average for airline i
- Endogeneity: k_{ijt} constructed by dividing whole plane's fuel consumption by number of filled seats, which depends on p_{ijt}
- Hence, k_{ijt} endogenous use spot fuel price as an instrument. First stage regression:


$$k_{ij,t-m} = \sum_{q=0}^{7} \gamma_{ij}^{m,q} f_{t-q} + X'_{ijt} \beta_{ij}^{m} + \epsilon_{ijt}^{m} \quad \text{for each } m \in \{0, 1, 2, 3\}$$

- We find Mean Group (Pesaran & Smith 1995) estimates for carrier pass-through rates:
 - run a separate regression for each ij
 - calculate emissions-weighted average for airline i
- Endogeneity: k_{ijt} constructed by dividing whole plane's fuel consumption by number of filled seats, which depends on p_{ijt}
- Hence, k_{ijt} endogenous use spot fuel price as an instrument. First stage regression:

$$k_{ij,t-m} = \sum_{q=0}^{7} \gamma_{ij}^{m,q} f_{t-q} + X'_{ijt} \beta_{ij}^m + \epsilon_{ijt}^m \quad \text{for each } m \in \{0, 1, 2, 3\}$$

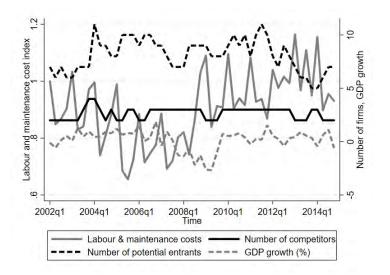

• 2SLS estimate using \hat{k}_{ijt} in Equation (1)

Illustration for Southwest on PHX-SAT

Felix Grey and Robert Ritz

Illustration for Southwest on PHX-SAT

Felix Grey and Robert Ritz

Illustration for Southwest on PHX-SAT

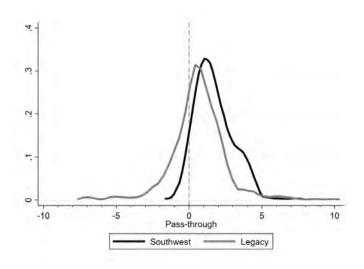
Results	
Pass through	$1.38 \\ (0.32)$
Profit impact (% of revenue)	2.22 (1.83)

Descriptive statistics

Price (\$)	200.32
Fuel cost (\$)	32.59
Number of firms	2.57
Number of potential entrants	8.10
Distance (miles)	843
Emissions (tCO_2)	0.13
Emissions cost $(\$)$	6.40
Passengers, annual	76,014
Proportion of seats filled	0.73
Revenue in 2014 (\$ million)	17.36
No. of observations	52

September 2018

Main empirical results


• Repeat 2SLS estimation for N = 615 carrier-routes, calculate weighted average pass-through and profit impact

Main empirical results

• Repeat 2SLS estimation for N = 615 carrier-routes, calculate weighted average pass-through and profit impact

	Southwest	Legacy	All
Pass through	1.48 (0.04)	0.55 (0.06)	0.78 (0.05)
Profit impact (% revenue)	2.95 (0.22)	-3.56 (0.51)	-1.59 (0.36)
Profit neutral permit allocation	-0.96 (0.07)	$0.90 \\ (0.13)$	$0.43 \\ (0.10)$
No. routes No. obs.	212 11,024	403 20,956	615 31,980
Felix Grey and Robert Ritz Pass-throu	gh & political economy	·□ › · · □ › · · ≥	▶ ৰ≣ ► ≣ ∽)৭০ mber 2018 29 / 39

Pass-through heterogeneity

Felix Grey and Robert Ritz

Pass-through & political economy

September 2018

Estimated profit impacts of carbon pricing

- Substantial heterogeneity of profit impact:
 - Southwest +2.95% (± 0.44) of revenue
 - Legacy -3.56% (± 1.02) of revenue

Estimated profit impacts of carbon pricing

- Substantial heterogeneity of profit impact:
 - Southwest +2.95% (\pm 0.44) of revenue
 - Legacy -3.56% (± 1.02) of revenue
- Assuming our routes are representative of all routes flown by the airlines, total profit impacts:
 - Southwest +\$0.51 (\pm 0.07) billion
 - Legacy $-\$1.46 \ (\pm \ 0.41)$ billion

Estimated profit impacts of carbon pricing

- Substantial heterogeneity of profit impact:
 - Southwest +2.95% (± 0.44) of revenue
 - Legacy -3.56% (± 1.02) of revenue
- Assuming our routes are representative of all routes flown by the airlines, total profit impacts:
 - Southwest +\$0.51 (± 0.07) billion
 - Legacy $-\$1.46 \ (\pm \ 0.41)$ billion
- For comparison, reported 5-year average profits:
 - Southwest \$1.17 billion
 - Legacy \$4.26 billion

What explains differences in pass-through?

	Southwest			Legacy			
	Short $distance \in [0, 570)$	$\begin{array}{l} \text{Medium} \\ distance \in \\ [570, 1034) \end{array}$	$\begin{array}{l} \text{Long} \\ distance \in \\ [1034, 3784] \end{array}$	Short $distance \in [0, 570)$	$\begin{array}{l} \text{Medium} \\ distance \in \\ [570, 1034) \end{array}$	$\begin{array}{l} \text{Long} \\ distance \in \\ [1034, 3784] \end{array}$	
Small $n \in [1, 2.3)$	$2.00 \\ (0.10) \\ 34$	$1.03 \\ (0.07) \\ 30$	$0.80 \\ (0.07) \\ 24$	$1.03 \\ (0.22) \\ 39$	$0.26 \\ (0.29) \\ 29$	$0.73 \\ (0.09) \\ 49$	
$\begin{array}{l} \text{Medium} \\ n \in [2.3, 4.3) \end{array}$	$2.48 \\ (0.10) \\ 35$	$0.90 \\ (0.09) \\ 19$	$0.60 \\ (0.08) \\ 11$	$0.58 \\ (0.31) \\ 34$	$0.78 \\ (0.21) \\ 56$	$0.00 \\ (0.12) \\ 53$	
Large $n \in [4.3, 12.5]$	$2.55 \\ (0.10) \\ 33$	$0.87 \\ (0.09) \\ 20$	$0.64 \\ (0.16) \\ \gamma$	-0.18 (1.28) 27	$0.87 \\ (0.12) \\ 60$	$0.68 \\ (0.08) \\ 59$	
All n	$2.40 \\ (0.56) \\ 102$	$0.91 \\ (0.38) \\ 68$	$0.70 \\ (0.33) \\ 42$	$0.46 \\ (2.35) \\ gg$	$0.75 \\ (1.14) \\ 143$	$0.46 \\ (0.59) \\ 161$	

Felix Grey and Robert Ritz

September 2018

What explains differences in pass-through?

		Southwest			Legacy			
	All weighted	All un- weighted	Common un- weighted	All weighted	All un- weighted	Common un- weighted		
Pass through	1.48 (0.04)	1.72 (0.04)	1.61 (0.09)	0.55 (0.06)	0.69 (0.06)	0.98 (0.18)		
No. routes	212	212	49	403	403	49		

Standard errors in parentheses, number of routes in italics.

Decomposition of pass-through difference

(1) Southwest flies different routes:

- Pass-through on all routes vs on common routes
- Explains 62% of the original difference

Decomposition of pass-through difference

(1) Southwest flies different routes:

- $\bullet\,$ Pass-through on all routes vs on common routes
- Explains 62% of the original difference

(2) Southwest is more fuel efficient on like-for-like routes:

- Fuel cost: $k_{Southwest} = \$26$ and $k_{Legacy} = \$31$
- If products are homogenous, then $\frac{\rho_i}{\rho_i} = \frac{\Delta k_j}{\Delta k_i}$
- Explains 26% of original difference

Decomposition of pass-through difference

(1) Southwest flies different routes:

- $\bullet\,$ Pass-through on all routes vs on common routes
- Explains 62% of the original difference

(2) Southwest is more fuel efficient on like-for-like routes:

- Fuel cost: $k_{Southwest} = 26 and $k_{Legacy} = 31
- If products are homogenous, then $\frac{\rho_i}{\rho_i} = \frac{\Delta k_j}{\Delta k_i}$
- Explains 26% of original difference
- (3) Residual: Southwest has a different demand profile on like-for-like routes:
 - Differentiated-product demand-side asymmetries
 - Pass-through heterogeneity even for a uniform cost shock

Felix Grey and Robert Ritz Pass-through & political economy Sept.

• Entry and exit

- Allow $\rho_{ij}(n_{ijt})$ by including an interaction term in regression
- Look at subset of routes where n_{ijt} is stable over time

- Entry and exit
 - Allow $\rho_{ij}(n_{ijt})$ by including an interaction term in regression
 - Look at subset of routes where n_{ijt} is stable over time
- Competition from Southwest
 - Dummy for Southwest presence and *potential* entry

- Entry and exit
 - Allow $\rho_{ij}(n_{ijt})$ by including an interaction term in regression
 - Look at subset of routes where n_{ijt} is stable over time
- Competition from Southwest
 - Dummy for Southwest presence and *potential* entry
- Input price volatility
 - Implications for emissions trading vs carbon tax

- Entry and exit
 - Allow $\rho_{ij}(n_{ijt})$ by including an interaction term in regression
 - Look at subset of routes where n_{ijt} is stable over time
- Competition from Southwest
 - Dummy for Southwest presence and *potential* entry
- Input price volatility
 - Implications for emissions trading vs carbon tax
- Asymmetric cost pass-through: Rockets and feathers

- Entry and exit
 - Allow $\rho_{ij}(n_{ijt})$ by including an interaction term in regression
 - Look at subset of routes where n_{ijt} is stable over time
- Competition from Southwest
 - Dummy for Southwest presence and *potential* entry
- Input price volatility
 - Implications for emissions trading vs carbon tax
- Asymmetric cost pass-through: Rockets and feathers
- Bankruptcy of legacy carriers

- Entry and exit
 - Allow $\rho_{ij}(n_{ijt})$ by including an interaction term in regression
 - Look at subset of routes where n_{ijt} is stable over time
- Competition from Southwest
 - Dummy for Southwest presence and *potential* entry
- Input price volatility
 - Implications for emissions trading vs carbon tax
- Asymmetric cost pass-through: Rockets and feathers
- Bankruptcy of legacy carriers
- Fixed effects estimation

- Entry and exit
 - Allow $\rho_{ij}(n_{ijt})$ by including an interaction term in regression
 - Look at subset of routes where n_{ijt} is stable over time
- Competition from Southwest
 - Dummy for Southwest presence and *potential* entry
- Input price volatility
 - Implications for emissions trading vs carbon tax
- Asymmetric cost pass-through: Rockets and feathers
- Bankruptcy of legacy carriers
- Fixed effects estimation
- Log specification: Pass-through elasticity

Application: Political economy of regulation

- GLM brings together two strands of literature:
 - Second-best emissions tax with market power (Buchanan 1969; Requate 2006; Fowlie, Reguant & Ryan 2016)
 - Political contributions to lobby government "for sale" (Grossman & Helpman 1994; Goldberg & Maggi 1999; Bombardini 2008)

Application: Political economy of regulation

- GLM brings together two strands of literature:
 - Second-best emissions tax with market power (Buchanan 1969; Requate 2006; Fowlie, Reguant & Ryan 2016)
 - Political contributions to lobby government "for sale" (Grossman & Helpman 1994; Goldberg & Maggi 1999; Bombardini 2008)
- Government payoff: $U_{gov}(\tau) = W(\tau) + \lambda \sum_{i=1}^{n} K_i(\tau)$
 - K_i is *i*'s political contribution (in eqm, linear in profit)

Application: Political economy of regulation

- GLM brings together two strands of literature:
 - Second-best emissions tax with market power (Buchanan 1969; Requate 2006; Fowlie, Reguant & Ryan 2016)
 - Political contributions to lobby government "for sale" (Grossman & Helpman 1994; Goldberg & Maggi 1999; Bombardini 2008)
- Government payoff: $U_{gov}(\tau) = W(\tau) + \lambda \sum_{i=1}^{n} K_i(\tau)$
 - K_i is *i*'s political contribution (in eqm, linear in profit)
- $\bullet\,$ Now assume GLM (A1–A4) holds for each i
- Constant emissions intensity for each i
- Utility-maximizing consumers (differentiated products)
- Emissions damages function D(E)

The political equilibrium carbon price

Proposition (2)

At an interior solution:

$$\tau^{\bigstar}(\lambda) = \left[\frac{D'(E(\tau))}{1 - \frac{(1+2\lambda)}{\eta(\tau)} \sum_{i=1}^{n} \frac{e_i(\tau)}{E(\tau)} [1 - \rho_i(\tau)]}\right]_{\tau = \tau^{\bigstar}(\lambda)}$$

where $\eta \equiv \left[dE(\tau)/E(\tau) \right] / \left[d\tau/\tau \right] < 0$ is the carbon price elasticity of industry-level emissions.

Political equilibrium carbon price for US airlines

Social cost of carbon $50/tCO_2$

		Carbon price elasticity of emissions (η)		
i	Lobbying nfluence (λ))	-0.16	-0.26
	0	\$10.71 (100%)	\$21.05 (100%)	27.08 (100%)
	0.1	\$9.26 (96%)	\$18.87 (93%)	\$24.81 (91%)
	0.2	\$8.15 (94%)	\$17.09 <i>(88%)</i>	\$22.89 (85%)
	0.5	\$6.00 $(89%)$	\$13.33 <i>(79%)</i> =	\$18.57 (<i>73%)</i> •
Felix Grey and Rob	ert Ritz Pas	ss-through & politi	cal economy	Septemb

• Understanding the profit impact of regulation is important for regulated firms, policymakers and investors

- Understanding the profit impact of regulation is important for regulated firms, policymakers and investors
- We introduce a new, simple, flexible theoretical framework allowing large-scale estimation based on pass-through as a sufficient statistic

- Understanding the profit impact of regulation is important for regulated firms, policymakers and investors
- We introduce a new, simple, flexible theoretical framework allowing large-scale estimation based on pass-through as a sufficient statistic
- For US airlines, we find large heterogeneities in carbon cost pass-through between Southwest and legacy carriers

- Understanding the profit impact of regulation is important for regulated firms, policymakers and investors
- We introduce a new, simple, flexible theoretical framework allowing large-scale estimation based on pass-through as a sufficient statistic
- For US airlines, we find large heterogeneities in carbon cost pass-through between Southwest and legacy carriers
- We hope the GLM will also be useful in other contexts in IO, public economics, international trade and networks

Thank you

Appendix: Southwest, PHX-SAT

Pass through	1.38^{***}
	(0.32)
No. firms	2.05
	(3.26)
No. potential entrants	-2.11
	(2.03)
Labour & maintenance cost index	166.81
	(99.12)
GDP growth	537.72^{*}
	(281.76)
Quarter 1	-3.87
	(7.87)
Quarter 2	5.55
	(4.54)
Quarter 3	15.81^{***}
	(5.58)
Constant	113.99^{***}
	(17.20)
No. of observations	52
Standard errors in parenthese	
* $p < 0.1$, ** $p < 0.05$, *** $p < 0.05$	0.01
	 < < >>

Felix Grey and Robert Ritz

September 2018

3

Appendix: Full Mean Group Estimates

	Southwest	Legacy
Pass-through	1.48^{***}	0.55^{***}
	(0.03)	(0.06)
GDP growth	173.85***	93.21^{*}
	(18.44)	(53.27)
No. firms	-1.91***	-7.08***
	(0.37)	(0.84)
No. potential entrants	-1.13***	-1.13**
	(0.15)	(0.42)
Labour and maintenance cost index	122.66***	97.88***
	(8.69)	(6.53)
Quarter 1	-5.75***	-7.97***
	(0.53)	(1.69)
Quarter 2	4.32^{***}	10.94^{***}
	(0.48)	(1.23)
Quarter 3	-1.71***	12.77^{***}
	(0.50)	(1.47)
No. routes	212	403
No. obs.	11,024	20,956

Felix Grey and Robert Ritz

September 2018

Appendix: Descriptive statistics by carrier

	WN	AA	AS	DL	HA	UA	US
Price (\$)	157.31	226.29	205.46	230.86	166.68	245.56	240.44
Fuel cost $(\$)$	29.22	54.52	43.36	47.20	41.54	55.32	42.15
Distance (miles)	688	$1,\!163$	726	$1,\!041$	1,110	1,277	957
Emissions (tCO_2)	0.13	0.24	0.18	0.19	0.17	0.22	0.18
Emissions cost $(\$)$	6.70	12.04	9.13	9.39	8.33	11.15	9.06
Passengers (000s)	195	159	158	155	331	141	127
No. firms	3.28	3.79	2.57	3.35	2.78	4.65	3.05
Fraction seats filled	0.72	0.79	0.70	0.81	0.81	0.81	0.79
Revenue (\$ million)	24.76	31.46	24.82	29.36	35.12	29.46	24.19
Revenue in sample	0.42	0.39	0.41	0.26	0.40	0.45	0.27
No. routes	212	111	35	90	10	101	56
No. observations	$11,\!024$	5,772	1,820	4,680	520	5,252	2,912

Felix Grey and Robert Ritz

Pass-through & political economy

September 2018

Appendix: Pass-through estimates by carrier

	WN	AA	AS	DL	HA	UA	US
Pass through	1.48 (0.04)	$0.90 \\ (0.08)$	$0.21 \\ (0.09)$	$0.79 \\ (0.14)$	$0.92 \\ (0.18)$	-0.09 (0.09)	$0.69 \\ (0.40)$
Profit impact (%)	2.95 (0.22)	-0.80 (0.69)	-6.41 (0.70)	-1.39 (0.94)	-0.54 (1.31)	-9.58 (0.76)	-2.31 (2.93)
No. routes No. observations	212 11,024	111 5,772	35 1,820	90 4,680	10 520	101 5,252	56 2,912

Appendix: Further pass-through results

	Southwest	Legacy
(a) Baseline (2SLS)	1.48	0.55
	(0.03)	(0.06)
	212	403
(b) OLS	1.34	0.43
	(0.03)	(0.04)
	212	403
(c) Late period: 2005-2014	4 only 1.50	0.62
	(0.06)	(0.06)
	229	413
(d) <i>n</i> -interaction	1.45	0.64
	(0.04)	(0.07)
	212	403
(e) Baseline with $\Delta n = 0$	1.54	0.66
	(0.12)	(0.19)
	24	17
(f) Baseline with $\Delta n < 1$	1.63	0.82
	(0.08)	(0.12)
	50	57
(g) Fixed effects specificat	ion 1.31	0.57
	(0.05)	(0.06)
	212	403
(h) Log specification	0.21	0.15
	(0.01)	
	212	
y and Robert Ritz Pa	ss-through & political ecor	nomy September 2018

Appendix: Interaction coefficients

	Southwest	Legacy
a) No. firms n	0.00	-0.01
·	(1.45)	(0.21)
	183	<i>379</i> ´
b) Volatility	-0.018	-0.010
	(0.001)	(0.001)
	212	403
) Bankruptcy dummy	-	0.15
, 1000	_	(0.03)
	-	358
d) Southwest present dummy	-	-0.24
· · ·	_	(0.08)
	-	209
e) Southwest present dummy	-	0.05
,	_	(0.20)
	_	108
Southwest potential	_	-0.91
-	_	(0.36)
	_	108

Standard errors in parentheses, number of routes in italics.

Felix Grey and Robert Ritz Pass-through &

Appendix: Emissions elasticity estimation

Fuel price elasticity	-0.16^{***} (0.04)
No. firms	-0.05 (0.04)
No. potential entrants	$ \begin{array}{c} 0.02 \\ (0.02) \end{array} $
Labour & maintenance cost index	-0.67^{**} (0.25)
GDP growth	-0.79 (0.84)
Quarter 1	-0.02 (0.02)
Quarter 2	-0.02 (0.02)
Quarter 3	-0.05^{***} (0.01)
Constant	15.73^{***} (0.34)
No. observations	52
Standard errors in parentl * $p < 0.1$, ** $p < 0.05$, ***	p < 0
	• • •

Felix Grey and Robert Ritz

September 2018