
Surviving in Cyberspace:  

A Game Theoretic Approach  
 

Charles A. Kamhoua, Kevin A. Kwiat 
Air Force Research Laboratory, Rome, NY 13441, USA 

charles.kamhoua.ctr @ rl.af.mil, kevin.kwiat @ rl.af.mil 

 

Joon S. Park 
Syracuse University, Syracuse, NY 13244, USA 

jspark @ syr.edu 

 

 

 
Abstract—As information systems become ever more 

complex and the interdependence of these systems 

increases, a mission-critical system should have the fight-

through ability to sustain damage yet survive with mission 

assurance in cyberspace. To satisfy this requirement, in this 

paper we propose a game theoretic approach to binary 

voting with a weighted majority to aggregate observations 

among replicated nodes. Nodes are of two types: they either 

vote truthfully or are malicious and thus lie. Voting is 

strategically performed based on a node’s belief about the 

percentage of compromised nodes in the system.  Voting is 

cast as a stage game model that is a Bayesian Zero-sum 

game.  In the resulting Bayesian Nash equilibrium, if more 

than a critical proportion of nodes are compromised, their 

collective decision is only 50% reliable; therefore, no 

information is obtained from voting. We overcome this by 

formalizing a repeated game model that guarantees a highly 

reliable decision process even though nearly all nodes are 

compromised. A survival analysis is performed to derive the 

total time of mission survival for both a one-shot game and 

the repeated game. Mathematical proofs and simulations 

support our model.  

 

Index Terms— Bayesian game, binary voting, cyberspace, 

fault-tolerant networks, fight-through, network security, 

survivability 

 

I.  INTRODUCTION 

The need for survivability is most pressing for 

mission-critical systems. As information systems become 

ever more complex and the interdependence of these 

systems increases, the survivability picture becomes more 

and more complicated.  Unfortunately, it is not always 

possible to anticipate every type of component failure and 

cyber attack within large information systems and 

attempting to predict and protect against every 

conceivable failure and attack soon becomes exceedingly 

cumbersome and costly. Additionally, some damage 

results from novel, well-orchestrated, malicious attacks 

that are simply beyond the abilities of most system 

developers to predict. Under these conditions, even 

correctly implemented systems cannot ensure that they 

will be safe from the possible damages caused by failures 

and cyber attacks. Therefore, a mission-critical system 

placed in cyberspace should have the fight-through ability 

to sustain damage yet survive with mission assurance.  

Fault-tolerant networks have been an active research 

area for decades. However, the solutions proposed for 

malicious nodes are still not robust. Generally, faults can 

be classified in two types: unintelligent and intelligent. 

Unintelligent or benign faults are irrational and random. 

Intelligent faults can be classified into two categories: 

faults from selfish nodes that manifest as not following 

group protocol or not conforming to security protocols 

that fail to promote their self-interest; and malicious 

faults that manifest as a node seeking to inflict maximum 

damage to the system. Thus, it is evident that malicious 

faults poses the most danger to a system; yet, any system 

administrator must rationally oppose malicious nodes by 

minimizing the dangers they present. Game theory is the 

unifying mathematical framework that can model the 

rational conflict between a system’s administrator and the 

malicious nodes, and can scrutinize the possible solutions 

with a precise characterization of their properties. This 

paper proposes a new game theoretic model to deal with 

malicious nodes. Game theory is one of the most 

promising approaches because the malicious attacks 

faced by system administrators are becoming 

exceptionally sophisticated and game theory deals with 

intelligent players.  

The aim of this work is to inspect critical applications 

that require the monitoring of a binary event to make a 

binary decision. For more than two centuries, binary 

voting has attracted several researchers from different 

disciplines including political science, philosophy, 

mathematic, game theory and more recently computer 

science and engineering. In fact, research in binary voting 

started in 1785 by the French Mathematician and 

Philosopher, the Marquis de Condorcet. Condorcet’s 

research currently finds tremendous applications in fault-

tolerant networks. As a strong proponent of democracy, 

Condorcet proved the well-known Condorcet Jury 
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Theorem (CJT) [16]. The CJT shows that in a population 

in which individual opinions are better than random, the 

opinion of the majority is superior to that of a smart 

dictator or a small elite group. In the context of fault-

tolerant networks, instead of letting a single node (a 

dictator) makes a critical decision, nodes are replicated 

and the final decision is generally the result of a voting 

mechanism in which the result is the majority’s opinion. 

This mechanism serves two purposes in engineering 

design: it increases the decision accuracy, and it can 

tolerate the failure or compromise of a minimum number 

of nodes. These two purposes are critical for fighting 

through attacks on applications in which the enemy’s 

strategy is to compromise some nodes.  

It is worth mentioning that even though binary voting 

seems to be an old subject, philosophers and political 

scientists over the centuries have focused on truthful 

voters having similar interest but different private 

information to reach the correct decision.  Engineers are 

thus faced with voters having a complicated mix of 

untamable faults that induce malicious behavior 

encompassing strategic attempts to defeat the voting so as 

to create an incorrect decision.  

The main contribution of this research is to use new 

insight from game theory and mechanism design to 

mitigate malicious node behavior in binary decision. Any 

network defender or decision maker can take advantage 

of, or gain insights from, the research results in this 

paper. We formulate an original Bayesian zero-sum game 

to model the conflicting and rational confrontation 

between a system administrator and the malicious nodes’ 

objectives. The system administrator’s objective is to 

maximize the aggregate node decision reliability while 

the malicious nodes want to minimize that reliability. To 

adhere to game theory’s attribute of player rationality, we 

dismiss the case of benign but untamable faults since 

failures caused by such faults would not exhibit rational 

behavior. However, any model that is able to examine 

random behavior can be combined with the present work. 

Thereafter, we challenge the recurrent assumption that 

the number of faulty nodes is fixed and develop a 

dynamic node compromising model. Node compromising 

is analyzed in real time. Our dynamic model shows the 

change in equilibrium behavior over time as the number 

of compromised nodes increases. We also design a robust 

mechanism based on a repeated game and voter 

reputation. Further, our repeated game mechanism 

achieves high decision reliability under the compromising 

of nearly all nodes. Our model is supported by 

mathematical proofs and simulations. 

This work proposes a robust and detailed binary voting 

framework for fault-tolerant networks. The remainder of 

the paper is organized as follows. Section II is dedicated 

to the related works. Section III presents an overview of 

game theory. A reader familiar with game theoretic 

concepts may skip that section. Section IV exposes our 

Bayesian Zero-sum game with its resulting equilibrium. 

Section V is about the dynamic analysis of our game. 

Section VI reveals our repeated game model. Section VII 

exhibits our simulation results and Section VIII concludes 

the paper. 

II.  RELATED WORKS 

We summarize in this section a few researches in 

binary voting. Kwiat et al. [1] analyzed the best way to 

aggregate the node observations given the nodes’ 

reliability. The nodes are assumed to be homogeneous. 

The reliability of a single node p is its probability to make 

the correct decision. They showed that Majority Rule 

(MR) performs better if the node’ observations are highly 

reliable (p close to 1). But for low value of p, (  
 

 
) 

choosing a Random Dictator (RD) is better than MR. 

Random Troika (RT) combines the advantage of those 

two strategies when the node reliability is unknown (  
   ). Generally, it can be shown that if the minority of 

nodes are compromised and        , assuming that 

an odd number of nodes is used, we will have 

MR=Random N>….>Random 5>RT>RD. However, if 

the majority of nodes are compromised, the previous 

inequality is reversed. That is because, with a majority of 

compromised nodes, increasing the size of the subset of 

deciding nodes also increases the likelihood of 

compromised nodes taking part of the decision. The 

research in [2] proposes a witness-based approach for 

data fusion in wireless sensor networks. 

Wang et al. [3] analyzed the nodes decision in a 

cluster. There are n clusters of m nodes, with a total of 

n*m nodes. The attacker chooses the number of clusters 

to attack while the defender chooses how many nodes 

participate in the decision in each cluster. The authors 

formulate a zero-sum game in which the defender 

maximizes the expected number of clusters deciding 

correctly while the attacker minimizes that number. They 

proposed a general framework to find the Nash 

equilibrium of such game. However, the cluster structure 

is assumed to be fixed. In fact, the defender has a better 

optimization strategy just by changing the cluster 

structure. 

Park et al. [4-5] proposed a trusted software-

component sharing architecture in order to support the 

survivability at runtime against internal failures and cyber 

attacks in mission critical systems. They defined the 

definition of survivability using state diagrams, 

developed static and dynamic survivability models, and 

introduced the framework of multiple-aspect software 

testing and software-component immunization. 

Bhattacharjee et al [6] used a distributed binary voting 

model in cognitive radio. To compensate their noisy 

observation of channel utilization by primary spectrum 

users, each secondary user requests their neighbor’s 

opinion (vote). Those interactions are repeated and the 

Beta distribution is used to formulate a trust metric. 

Nodes with low trust are eliminated to have a more 

accurate channel evaluation.  

Ma and Krings [7] propose evolutionary game theory 

as a method to analyze reliability, survivability, and fault 

tolerance. They consider the agreement algorithm of the 

well-known Byzantine generals’ problem in a dynamic 
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environment. In their formulation, the number of generals 

as well as the number of traitors may change over time. 

Malki and Reiter [8] analyze Byzantine quorum 

systems. They propose a masking quorum system in 

which data are consistently replicated to survive an 

arbitrary failure of data repositories. Their work also 

proposes a disseminating quorum system. Faulty servers 

can fail to redistribute the data but cannot alter them.  

Gao et al. [9] use Hidden Markov Model (HMM) to 

detect compromised replicas. Their results show greater 

detection accuracy compared to others. Other work 

applying game theory to network security can be found in 

[10-13]. Becker et al. [11] develop an attacker-defender 

game in virtual coordinate system. The defender’s goal is 

to maximize the accuracy of the computed virtual 

coordinate while the attacker is opposed to that outcome. 

The defender implements a space and temporal outlier 

detection using a fixed or adaptive threshold to eliminate 

the malicious nodes’ reports. In this paper, the primary 

goal is intrusion resilience as opposed to intrusion 

detection. Thus, malicious nodes’ reports (vote) are not 

eliminated but they are constrained to adopt a strategy 

that eliminates their impact on the game outcome. 

Detailed surveys of game theory applied to network 

security can be found in [14-15]. 

Alongside the research above, there is a significant 

mathematical literature about binary voting starting with 

Condorcet [16]. Simply stated, the CJT shows that if a 

group of homogeneous and independent voters, with 

voter competence better than random, uses the simple 

majority rule to choose among two alternatives having 

equal a priori probability, then the group decision 

accuracy monotonically increases and converges to one 

as the number of voter increases. Owen et al. [17] 

generalized the CJT while considering any distribution of 

voter competence. The original CJT was restricted to a 

uniform distribution of voter competence or reliability p. 

The original CJT also considered that each player voted 

sincerely. Myerson [18] proved the CJT with strategic 

voters. In his model, the number of players is a random 

variable drawn from a Poisson distribution. Laslier and 

Weibull [19] investigate the general condition in which 

truthful voting is a Nash equilibrium. In their work, the 

players are equally competent but differ in their belief 

about the a priori likelihood of the two states of nature. 

Moreover, each player’s reliability regarding the two 

states of nature are distinct. Players also differ in their 

valuation of the cost associated with the two types of 

error (type I and type II error). However, all players agree 

on what decision should be taken in each state. Shapley 

and Grofman [20] examine binary voting in which the 

voters’ choices are statistically dependent. They show 

that nonmonotonic rules can eventually be superior to 

monotonic ones. For instance, in a committee of three 

members in which one corrupt member always votes the 

opposite way, a unanimous vote must be wrong and thus 

rejected. Goodin and Estlund [21] scrutinize the CJT 

when the voters’ reliabilities are unknown. In their 

approach, there are two ex post interpretations when 80% 

of a large population agrees to one of two outcomes in a 

binary election. First, the majority opinion may be correct 

in which case the average voter’s competence is 0.8. 

Second, the majority opinion may as well be incorrect 

and then the average voter’s competence should be 0.2. A 

mathematical survey of binary voting is provided in [22]. 

III.  OVERVIEW OF GAME THEORY 

According to Myerson [23], game theory can be 

defined as the study of mathematical models of conflict 

and cooperation between intelligent rational decision-

makers. A rational player makes decisions to satisfy his 

or her self interest. A game can be represented in 

different forms. Most of the time, it is represented in 

either extensive form or in strategic (or normal) form. 

The extensive form of a game is used to formalize 

sequential action of players. In those games, the order in 

which players act in the game is important. On the other 

hand, a strategic form of a game is formalized as: 

  (  (  )    (  )   )  

N is the set of players of game Г, i is a player in N,    
is the set of pure strategies that players i can choose from, 

ui is the utility function of player i. A mixed strategy is a 

random combination of two or more pure strategies. A 

strategy profile is a combination of strategies that the 

players can choose. The set of all possible strategy 

profiles is         . ui is a function defined from the 

set of strategy profiles S to the set of real numbers  . At 

any strategy profile, the utility function associates the 

expected utility payoff that player i would get. A game in 

strategic form can also be represented by a matrix as in 

Table I. 

For two strategies A and B, A strictly dominates B if A 

always earns a higher payoff than B. A weakly dominates 

B if A never earns a lower payoff than B and A is superior 

to B for at least one strategy. 

A. Nash Equilibrium 

 A strategy profile is a Nash equilibrium if and only if 

no player can gain by changing its strategy when other 

players do not change. Moreover, in a Nash equilibrium, 

each player’s equilibrium strategy is a best-response to 

other players’ equilibrium strategies [23]. 

Definition 1: A mixed strategy profile σ* is a Nash 

equilibrium if, for all players i, 

  (  
     

 )    (      
 ) for all                           (1) 

We have a strict Nash equilibrium if inequality (1) is 

strict. 

Theorem 1: Given any finite game Г in strategic form, 

there exists at least one Nash equilibrium. 

Theorem 2: A strictly dominated strategy is never a 

Nash equilibrium. 

Theorem 2 comes from the fact that a strictly 

dominated strategy can never be optimal. 

B. Bayesian Game  
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A Bayesian game, or game of incomplete information, 

is a game in which some payoff information is not 

common knowledge; instead it is private information 

[23]. A player’s private information is captured by its 

type. In a Bayesian Nash equilibrium strategy profile, 

each player maximizes his expected utility given his type 

and his belief about the distribution of other players’ 

types. For instance, compromised nodes do not have the 

same motivation as uncompromised nodes and then, they 

have different utilities. Moreover, an uncompromised 

node cannot distinguish between uncompromised and 

compromised nodes and must play its optimum strategy 

according to its belief about the number of compromised 

nodes. 

IV.  PROPOSED GAME THEORETIC ANALYSIS 

This section provides an analysis of strategic voting. 

We also provide a general equilibrium property of binary 

voting game with malicious voters. A node may be a 

sensor or radar involved in any monitoring activity. For 

example, radars are used in a battlefield to monitor 

enemy activity in a given region. In respect to wireless 

sensor networks, monitored data are transmitted via 

multi-hop communication. This work does not consider 

multi-hop interaction in the presence of malicious voters; 

instead, the monitored results (votes) are directly 

transmitted in one hop communication (via wired or 

wireless connection) to a trusted decision center in charge 

to aggregate the votes. Given the criticality of the 

decision to be made, a single node cannot be trusted. 

Rather, several nodes monitor the same environment or 

event. The number of nodes is generally odd to avoid a 

tie when using the simple majority rule. 

Another problem to consider is the possibility of a 

malicious node to abstain. However, abstention has two 

drawbacks for malicious nodes: it facilitates their 

detection at the decision center, and abstention is a 

dominated strategy. A strategic vote from a malicious 

node (either true or false) is always better than abstention. 

Therefore, this work assumes that there is no abstention. 

Without loss of generality, we assume in this paper 

that the nodes are homogeneous and that each node’s 

reliability is p. We also consider that        . 

Therefore, in the framework of Condorcet [16], using a 

simple majority and without malicious nodes, the 

certainty of the decision monotonically increases and 

converges to one as the number of voters grows to 

infinity. 

A. Game Model 

The players are the nodes. The set of players is   
{      }. There are two types of nodes: regular (r) or 

compromised (c). The set of types is   {   }. Let q be 

the probability distribution over the type of players. 

Specifically, we have: 

{
 ( )                  

 ( )                                    
                              ( ) 

The proportion of compromised nodes is respresented 

by λ. We consider λ as well as the total number of nodes 

to be common knowledge among the nodes. We will 

relax this assumption in Section V where we conduct a 

dynamic analysis. 

There are two states of the nature with equal a priori 

probability. The state-of-nature is a set   {   }, whose 

element s indicates that the monitored target is safe and 

the element a indicates that the target is under attack. 

At a given time, the nodes are required to observe the 

state of nature and cast a binary vote indicating their 

observation of that state. Each node has two available 

strategies: report its observation truthfully (T) or falsify 

its observation (F). Thus, the set of attackers’ strategies 

is   {   }. Likewise, the defender (decision maker or 

network owner) has a binary choice. Considering that 

there are compromised nodes, the defender chooses 

between the majority’s opinions (M) or the minority’s 

opinions (m) to detect the correct state of nature. We will 

see that choosing the minority’s opinions may be more 

effective when the majority of nodes are compromised. 

Thus, the set of defender’s strategies is   {   }. 
All regular nodes are under the control of the defender 

and they always vote truthfully. Without loss of 

generality, we distinguish three cases for malicious 

nodes. First, all the compromised nodes are under the 

control of a single attacker. Second, there are several 

attackers but all of the attackers collude to mislead the 

voting mechanism. Third, there are multiple independent 

attackers adopting identical strategy, an attacker 

symmetric strategy profile. In all three cases, the 

malicious nodes have the same motivation and can 

mathematically be modeled as a single player: the 

attacker. We use this approach to model the voting game 

as a two-player’s game: an attacker-defender game.  

Considering the case of independent malicious nodes, 

adopting a different strategy will necessitate at least as 

many players (or as many independent games) as there 

are malicious nodes. This is the approach that will be 

adopted in Section VI. 

Moreover, since the attacker and the defender have 

strictly conflicting objectives, our voting game will be 

modeled as a two-player zero sum game. The utility 

function or payoff of the defender will be the system-of-

nodes’ reliability or the probability to find the correct 

state of nature while that of the attacker is the opposite. 

The game also considers the following practical 

situations. First, the attacker distinguishes between the 

compromised and the regular nodes while the defender 

does not. Otherwise, the defender should simply remove 

the compromised node from the system to maximize its 

utility. Therefore, our game model is a Bayesian game. 

Second, we assume that nodes have common knowledge 

of the game; each node is rational and wants to maximize 

its expected utility. Therefore, the case of faulty 

unintelligent nodes with random irrational behavior is 

outside the scope of the current paper. Finally, when a 

regular node truthfully reports its observation, its 

reliability or its probability to make a correct observation 

is p and that of an incorrect observation is 1-p. Recall our 

assumption that        . In fact, a fair coin tosses 
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will perform better if we have        . Recall that 

regular nodes always vote truthfully.  

Let A be the probability that the majority’s opinion is 

correct when the malicious nodes vote truthfully. 

Similarly, let B be the probability that the majority’s 

opinion is correct when the compromised nodes falsify 

their observation. It can be seen that A and B are the 

system-of-nodes’ reliability when the attacker uses the 

strategies (T and F respectively) and the defender uses the 

majority’s opinion. Further, the defender has a binary 

choice: the majority or minority opinion. Therefore, the 

probability that the minority’s opinion is correct when the 

malicious nodes play T (F respectively) must be 1-A (1-B 

respectively). Also, the game is zero-sum. Then, the 

attacker’s payoffs are calculated by taking the opposite of 

the defender’s payoffs. We summarize those payoffs in 

the strategic form of the game as represented in Table I. 

TABLE I: VOTING GAME IN NORMAL FORM 

 
Defender 

M m 

Attacker 
T -A; A A-1; 1-A 

F -B; B B-1; 1-B 

B. Equilibrium Analysis 

This subsection explores all possible Nash 

equilibrium profiles in the voting game in Table I. From 

the payoff definition above, we must always have    . 

This is because we assume that         and then the 

majority’s opinion is more reliable when malicious nodes 

play T as opposed to F. In addition, since increasing the 

number of nodes increases the majority’s opinion 

reliability and a single node’s reliability is      , we 

must have        . 

The value of the payoff B is more ambiguous. 

However, it is evident that B monotonically decreases 

with the proportion of compromised nodes λ. We note 

that function  ( ). To be specific, if there is no 

compromised node, all nodes are truthful and we 

have  ( )   ( )       . In the other extreme case, 

if all the nodes are malicious and play F, a malicious 

node may reveal the truth state, but with a probability less 

than 0.5 because        , then the majority’s 

opinion is more likely to be wrong. This means 

that  ( )   ( )     . Thus, when we consider the 

discrete nature of the number of malicious nodes and λ, 

by the intermediate value theorem, there must be a 

number     (      ) such that, 

{
 ( )                 

 ( )                     
                                ( ) 

In summary, when      we have 

                                        ( ) 

The defender’s dominant strategy in Table I is M. The 

defender chooses the majority’s opinion. The attacker’s 

best response is to play F. Thus, (   ) is the only Nash 

equilibrium profile. 

When      we have 

                                        ( ) 

There is no dominant strategy. If the attacker believes 

that the defender will choose M, its best response is to 

play F. If the attacker plays F, the defender’ best 

response is the minority’s opinion or m. However, if the 

attacker believes that the defender will choose the 

minority’s opinion, he is better off telling the truth or 

playing T. If the attacker plays T, the defender will prefer 

M and so on. Clearly, there is no stable solution. No pure 

strategy Nash equilibrium exists. As a fact, any game in 

strategic form has a Nash equilibrium. Thus, there must 

be a mixed strategy Nash equilibrium. 

 Let      (   )  be the mixed strategy Nash 

equilibrium of the attacker. From basic principles of 

game theory, the attacker optimum strategy is to 

randomize or choose α such that the defender is 

indifferent when choosing between the strategy M and m. 

This means that we must have for the defender: 

  (   )    (   ) 

    (   )   (   )  (   )(   ) 

   
    

 (   )
            ( ) 

Then,  

  (   )    (   )     (   )            ( ) 

Similarly, let        (   )  be the mixed 

strategy Nash equilibrium of the defender. The defender 

randomizes between T and F in such a way that the 

attacker is indifferent between voting truthfully and 

falsifying the vote. This can be translated by: 

  (   )    (   ) 

  (  )  (   )(   ) 

  (  )  (   )(   ) 

                    ( ) 

Then, 

  (   )    (   ) 

    (  )     (   )                    ( ) 

Consequently, at the mixed Nash equilibrium 

profile (   )  (   (   )            ), the 

defender payoff or probability of a correct aggregate 

observation is 0.5 and that of the defender is the opposite. 

From (6), the value of α is positive only if        
which only happens when the attacker has compromised 

more than the proportion of nodes   . One interpretation 

of α is to be the probability by which each compromised 

node votes truthfully. Another interpretation is that the 

attackers organize the compromised nodes such that a 

proportion α votes truthfully while the proportion (   ) 
falsifies their vote. In this case, if the voting game is 

repeated and a simple majority rule is used, a proportion 

α of compromised nodes may exhibit the same voting 

record as regular nodes and there will be no easy way to 

detect them. Observe also that a single attacker 
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recommending all the malicious nodes to play T with 

probability α has a quite similar effect than numerous 

independent attackers that play T with probability α. 

Thus, modeling all malicious nodes as a single attacker 

and restricting our study to a two-player’s game does not 

change the game’s dynamic that much. 

It is important to note that the game we have designed 

in this section and the Nash equilibrium analysis we 

perform are general enough to capture most of the 

fundamental essences of binary voting games with 

malicious voters. We did not assume any specific number 

of nodes. This analysis shows that the minimum decision 

reliability or defender’s payoff is 0.5 even though all the 

nodes are malicious. Further, if more than a critical 

proportion of nodes    are compromised, the defender 

cannot improve the system of nodes’ reliability above 

0.5. In this case, the nodes’ binary votes give no 

information to the defender. One may believe that when 

more than a critical proportion of nodes    are 

compromised, a defender should just choose the 

minority’s opinion and achieve a payoff above 0.5. 

However, this belief underestimates the attacker’s 

intelligence and his ability to understand the rule of the 

voting game. We highly discourage such belief as it 

increases the system vulnerability. 

C. Attack Strategies Classification 

In a voting game, malicious nodes can perform several 

types of strategic attacks. These attacks can be divided in 

two general categories: symmetric and asymmetric attack. 

In a symmetric attack, compromised nodes not only 

coordinate their actions but also communicate to perform 

a partial aggregation of their results with the goal of 

reporting the same observation. After observing the state 

of nature, the compromised nodes first communicate with 

each other. They perform an exploratory vote among 

themselves and find their majorities’ opinion. That 

opinion will be more reliable as the number of 

compromised nodes grows. The compromised nodes’ 

majority opinion is reported by the entire set of 

compromised nodes if they choose the strategy T and the 

opposite is reported when they choose F. In this case, 

compromised nodes behave as a block. All 

the    compromised nodes play T or they play F.  

A symmetric attack is also possible when the attacker 

has other means to detect the state of nature besides 

monitoring. This is the case when the action being 

monitored is performed by the attacker itself. For 

instance, if an airplane belonging to the attacker is under 

radar monitoring and the attacker also controls the 

malicious nodes, then all the malicious nodes should 

know the state of nature with certainty. Thus, in a 

symmetric attack, we consider that when a node falsifies 

its observation, its probability to make an incorrect vote 

is one and that of a correct vote is zero. 

On the other hand, in an asymmetric attack, 

compromised nodes coordinate to mislead the system but 

do not have time to communicate or have an exploratory 

vote. Moreover, malicious nodes do not have any other 

way to detect the state of nature besides monitoring. 

Actually, a monitored airplane may belong to a different 

enemy than the attacker controlling the malicious nodes.  

In this case, malicious nodes can falsify their result but do 

not necessarily report the same results. The reported 

results depend on each node’s individual observation. 

Therefore, when the attacker chooses to play F, each 

node falsifies its observation. However, the probability 

that a node reports the correct state of nature after vote 

falsification is 1-p. 

This is justified by the fact that when a node observes, 

for instance, that the target is under attack but chooses to 

falsify its observation and reports that the target is safe, 

there is still a probability 1-p that the target is really safe. 

That is because 1-p is the probability of an incorrect 

observation. Similarly, p is the probability of a correct 

observation or a correct vote when a malicious node 

strategically chooses to report truthfully under 

asymmetric attack. 

Another way to understand the main difference 

between an asymmetric attack and a symmetric attack is 

to use the average node decision reliability  ̅. An increase 

in the proportion of malicious nodes λ causes the decrease 

of  ̅. In case of an asymmetric attack, we have: 

 ̅  (   )   (   )                       (  ) 

This is because malicious nodes still tell the truth with 

probability (   ). We can verify in (10) that, if     
    as we assume, we will have  ̅      when       

and   ̅      when      . 

However, in case of a symmetric attack, malicious 

nodes never tell the truth. Thus, we have: 

  ̅  (   )       (   )            (  ) 

Similarly, if we take        , we will have   ̅  

    when (   )  
 

  
 and   ̅      when (   )  

 

  
. 

To summarize, if the number of nodes is large, the 

defender should use the majority’s opinion if   ̅      

and otherwise use the mixed strategy Nash equilibrium 

described above. The Nash equilibrium of the game can 

also be formulated as a function of the average node 

reliability. Specifically, for a large number of nodes, (3) 

can be reformulated as: 

{
      ( )        ̅         

      ( )        ̅            
            (  ) 

The critical proportion of compromised nodes    can 

simply be interpreted as the minimum proportion that will 

make the average node reliability  ̅ falls below 0.5. 

However, this is generally not true for small number of 

nodes. The work in [20] provides a few contradictory 

examples with 3 to 5 nodes in which  ̅      and 

      and vice versa. 

V.  DYNAMIC ANALYSIS 

In Section IV, the ratio of compromised nodes   was 

common knowledge among the players. However, in 

practice, the defender can only estimate the number of 

compromised nodes and hereby  . This section considers 

a single attacker with compromised nodes that know the 

true state of nature. The compromised node may know 
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the true state of nature if the attacker is also responsible 

of the event being monitored. The attacker knows the 

exact number of compromised nodes while the defender 

can only estimate that number. To estimate the number of 

compromised nodes, the defender follows the framework 

described in [24-25].  

The framework in [24-25] divides the attacker’s 

action into three statistical processes: 

Process 1-when the attacker has identified one or 

more known vulnerabilities and has one or more exploits 

on hand. 

Process 2-when the attacker has identified one or 

more known vulnerabilities but doesn’t have an exploit 

on hand. 

Process 3-when no known vulnerabilities or exploits 

are available. 

Initially, we consider the nodes to have no known 

vulnerabilities and no known exploits are available to the 

attacker. This assumption is reasonable for critical 

applications in which no node should be deployed with a 

known vulnerability.  Therefore, in the estimation of the 

mean time to compromise a node, process 1 and process 2 

[24-25] are eliminated and we are only left with process 

3. Process 3 is the identification of new vulnerabilities 

and exploits. Researchers in [24-26] suggest that the 

vulnerability-discovery rate is constant over time. We 

also take the pessimistic assumption that the attacker has 

the expertise to exploit a new vulnerability as soon as 

they are discovered. Therefore, the time to compromise a 

node will have an exponential distribution. Clearly, for a 

given node at time t, the probability that that node is 

compromised is 

 ( )                                     (  ) 

We consider the N nodes that are independently 

designed and fabricated to increase their security and 

fault tolerance. In fact, diversity is one of the fundamental 

characteristics of fault-tolerance. Providing multiple 

different design fabrications and implementations denies 

the attacker the power to exploit the same vulnerability to 

compromise all the replicas. The correlation between the 

nodes failure is eliminated. Thus, the node failures are 

assumed to be statistically independent and the 

probability distribution of the number of compromised 

nodes l is a binomial distribution or, 

  ( )  (
 

 
) (      ) (    )                            (  ) 

The expected number of compromised nodes is: 

  [  ( )]   (   
   )                         (  ) 

Moreover, 

   
   

  ( )           
    

  ( )                          (  ) 

Therefore, the number of compromised nodes is 

initially zero and increases with time up to N. The fixed 

proportion of compromised node λ is replaced by  ( )  
      . 

Let  ( | ) be the probability that k nodes report the 

correct state of nature given that l nodes are compromised 

and play the strategy F. We consider an odd number of 

nodes. Let    
   

 
 . The law of total probability 

indicates that the simple majority rule will be correct with 

probability 

 ( )  ∑∑   ( | )

 

   

  ( )

 

   

 ∑  ( ) ∑   ( | )

 

   

 

   

 

 ∑(
 

 
) (      ) (    )   ∑   ( | )

 

   

 

   

   (  ) 

Recall that B is the system-of-nodes’ reliability when 

the attacker uses the strategy F and the defender uses the 

majority’s opinion. In this dynamic analysis, B is 

obviously a function of time and therefore, represented 

as  ( ). 

A. Average Node Reliability and Time of Mission Survival 

The reliability of the system of nodes can be captured 

by the average node reliability. We consider the 

pessimistic case when the attacker is responsible of the 

even being monitored. Then all the malicious nodes know 

the true state of nature. Thus, when the malicious nodes 

play F, the average node reliability is: 

 ̅  
         (      )

 
                          (  ) 

The mission can survive or keep minimum acceptable 

level of functionality as long as  ( )     . For a large 

number of nodes, this is equivalent to  ̅     . Then, 

 ̅                  
    

 
                   (  ) 

Equation (19) shows the maximum mission time. It 

allows us to avoid solving the more complex equation in 

(17). 

We can see that  ̅( ) decreases over time. The critical 

moment at which the defender starts to randomize as 

described in Subsection IV-B is when  ( )      or 

 ̅     . 

Obviously, the time of mission survival (19) can be 

extended if the nodes are repaired during the mission. 

The mission can survive even longer if the rate of node 

repair is higher than the rate of node compromising. 

However, in a contested cyber environment, the severity 

of threats (including completely unforeseen attacks – 

known as zero-day attacks) and intensity of attacks can 

preclude the use of repair to assure a mission.  Repair of a 

compromised node can be a time-consuming process 

involving a forensics analysis and the dispatching of 

computer-recovery personnel. Without adequate 

defenses, attacks perpetuated during the repair period can 

deplete any spare on-line nodes and thus cause mission 

failure. We propose in the next section a repeated game 

framework coupled with a reputation mechanism to 

overcome this shortcoming. 

VI.  REPEATED GAME ANALYSIS 
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Section V shows that for the one-shot voting game the 

result heavily depends on when the vote takes place. 

Above a given time, the system reliability is 50%. In the 

context of binary vote, this means that the vote gives no 

information to the defender. Moreover, the maximum 

mission time we calculated appears to be short (19). For 

instance, if we consider that the nodes are 80% 

reliable (     ), the mean time to compromise a node 

is 30 days and is exponentially distributed (  
 

  
), then 

the mission survival time must only be 14 days as 

calculated using (19). We are now presenting a repeated 

game model reinforced by rules that substantially 

increase that survival time. In fact, fault-tolerance is not 

just the property of individual machines; it may also 

characterize the rules by which they strategically interact 

over time. 

In Section VI-A, the defender formulates optimum 

rules governing multiple independent and self-interested 

nodes (regular and malicious), each with private 

information about their preferences. Once the rules are in 

place, the nodes play their optimum strategy in a repeated 

game in Section VI-B. The rules of the repeated game 

will be such that the nodes unavoidably achieve the 

defender’s goal: squeeze potential attackers or malicious 

nodes into behaviors that are fault tolerable and extend 

the maximum mission survival time. 

A. Repeated Game Rules Implemented by the Defender. 

The defender periodically requests all nodes to cast a 

binary vote to report the state of nature. The initial 

reputation of all nodes is 0.5. We set the value of initial 

reputation as 0.5, considering that that reputation will 

increase for any node that perform better than random 

and decrease otherwise. Behaviors of nodes are used to 

build their future reputation. To avoid the possibility that 

malicious nodes may misbehave with impunity after 

accumulating a high reputation, the defender uses an 

exponentially weighted moving average to update the 

node’s reputation. Specifically, a node i reputation   ( ) 
at times t is updated according to the following recursive 

formula. 

{

  ( )                                                                                  

  ( )  (   )  (   )                            

  ( )  (   )  (   )                              

(  ) 

γ is the smoothing factor,      . 

Observe that the defender should choose a smoothing 

factor γ that is neither too large nor very small. A very 

large smoothing factor disproportionally allocates more 

weight to the last action. On the other hand, a too small 

smoothing factor will slow the increase of the reputation 

of regular nodes. A tradeoff value of the smoothing factor 

may be chosen around 0.1 to balance those opposing 

factors.      

The research in [20] shows that in a heterogeneous 

group, with each voter characterized by its reliability    , 
the decision procedure that maximizes the likelihood of 

the aggregate decision to be correct is a weighted voting 

rule that assigns weights    such that: 

      
  

    
                             (  ) 

The decision procedure of [20] only considers one-

step voting with no malicious voter. We extend it by 

considering malicious nodes and repeated interactions. 

Moreover, voter competence    is replaced by their 

reputation   ( ) updated according to (20). In fact, in 

repeated voting interaction, a voter competence    can be 

derived from the frequency by which it votes correctly 

and that is captured in our reputation model. Clearly, 

      
  ( )

    ( )
                             (  ) 

The vote weight in (22) takes advantage of misleading 

information from malicious nodes. For instance, if the 

defender knows that a specific malicious node lies all the 

time (e.g. the node has zero reputation, negative infinite 

weight). The information from that node should be 

inverted and used to get the true state all the time (100% 

sure). Equation (22) generalizes this concept when 

aggregating the vote from several nodes. Clearly, a node 

having a negative weight (or a reputation less than 0.5) 

has its binary vote flipped before computing the final 

result. Nodes with positive weight have their vote 

unchanged. A node with zero weight has its vote 

practically eliminated if at least one other node has a 

weight different to zero. We summarize our voting 

algorithm in Table II. 

TABLE II: VOTING ALGORITHM 

Repeated Binary Voting Algorithm 

Initial Voting Round:             for all nodes i. 

If a node i vote is consistent with the majority of nodes, 

     Then, increase    according to (20). 

     Else, decrease    according to (20). 

End If. 

     Update    according to (22).  

Subsequent Voting Round: 

     //Nodes have different    and    from past votes 

If a node i has  a weight     , keep node i vote 

          unchanged. 

     Else, (    ) flip node i' s vote and changes the sign 

          of    
     Then, take the aggregate result as that of the outcome 

          for which the nodes sum up more than the majority 

          of weight. 

End If. 

Update    according to (20) and    according to (22) 

while taking the aggregate result to be the correct vote. 

Initially, all nodes have a reputation of 0.5. Therefore, 

from (22), that corresponds to a weight of zero, since all 

nodes have the same weight, the weighting voting rule is 

similar to the simple majority rule. However, it is clear 

from the voting procedure of Table II that a node with 

zero weight has a vote that does not count if at least one 

other node has a weight different to zero. 

As opposed to Section IV where the entire set of 

malicious nodes is mathematically modeled as a single 
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attacker, this section considers that each malicious node 

acts independently. Therefore, each malicious node is 

involved in an independent game against the defender.  

Finally, the defender keeps the nodes’ reputation 

private. This is to prevent a malicious node from using 

other nodes’ reputation to mount an attack. Nevertheless, 

each node can infer its own reputation from its past 

behavior. Those inferences should be easier if the 

defender can record the node reputation without noise. 

However, since the defender takes the aggregate result as 

that of the outcome for which the nodes sum up more 

than the majority of weight and because that outcome 

does not perfectly detect the true state of nature, then 

each malicious node is involved in a game of imperfect 

monitoring with the defender. A game is of imperfect 

monitoring if the players cannot observe each other’s 

actions without error. For instance, a node may observe 

the true state and vote truthfully while the aggregate 

result is incorrect because some nodes with high 

reputation have mistakenly observed the wrong state. 

That node will have its reputation decrease although it 

has voted correctly. In short, there are several reasons of 

inconsistencies between the defender’s observation and a 

node’s action. The next subsection analyzes a malicious 

node’s optimum behavior under perfect monitoring as a 

starting point. We start by assuming perfect monitoring to 

facilitate the explosion. Subsection VI-C will deal with 

imperfect monitoring. 

B. Malicious Nodes’ Optimum Strategy in the Game  

We consider that future node’s payoffs are discounted 

by a factor δ (     )and that each malicious node 

wants to maximize its δ-discounted payoff average. 

Nodes are dynamically compromised according to the 

process we described in Section V. At the beginning of 

the game, there are only regular nodes; the rule of the 

game is common knowledge among all the nodes. We 

assume that any attacker that compromises a node will 

also acquire the rule of the game. Moreover, the attacker 

will believe that those rules are implemented because 

they are optimum to the defender as we will see in this 

section. Therefore, after compromising, each malicious 

node will play its optimum strategy given the voting rule. 

Recall that regular nodes always vote truthfully 

and        . Then, after the first round, the 

reputation of regular nodes is more likely to increase 

above 0.5, and yields a positive weight (22) and a 

positive contribution into the aggregate decision. After all 

calculations, in the long run, the reputation of regular 

nodes   ( ) will oscillate around p and as a consequence, 

their weight will be close to 

      
 

   
                              (  ) 

   is the weight of a regular node. 

Let us analyze the optimum decision of a malicious 

node that is only concerned with the short term benefit. 

Starting with a reputation of 0.5, if a malicious node 

falsifies the vote or play F, its reputation is more likely to 

decrease below 0.5, and yields a negative weight (22). A 

negative weight technically means that the defender will 

flip the malicious node’s vote in the next round. Thus, a 

dishonest malicious node with a negative weight will see 

its vote have a positive contribution in the aggregate 

decision. Then a malicious node with a negative weight is 

better off being honest when it expects its vote to be 

flipped. Further, voting truthfully is also not optimum for 

a malicious node that has a positive weight. Therefore, a 

malicious node with a positive weight should play F 

while a malicious node with a negative weight must play 

T. We summarize a malicious node’s vote consequence 

on the aggregate decision in Table III. 

TABLE III: CONSEQUENCES OF A MALICIOUS NODE’S VOTE 

Malicious node’s  

weight 

Malicious node’s 

strategy 

Consequences 

to the defender 

Positive Truthful (T) Positive (P) 

Positive Falsify (F) Negative (N) 

Zero Truthful (T) Not any 

Zero Falsify (F) Not any 

Negative Truthful (T) Negative (N) 

Negative Falsify (F) Positive (P) 

Moreover, if a node weight is zero and at least one 

other node has a weight different to zero, the vote of a 

node with weight zero will simply not count. In fact, from 

(20), after the initial period, at least one node will have a 

weight different to zero. We take that into account in this 

analysis. Thus, a node that has a weight zero is simply 

indifferent between playing T or F and is willing to 

randomize between the two. It can be seen that, in the 

long run, the weight of a compromised node will be near: 

      
   

     
     ( )                   (  ) 

 To summarize, anytime a malicious node with a short 

term goal has a positive weight (reputation above 0.5), it 

should falsify its votes (play F). As a consequence, its 

reputation will decrease (20) and eventually fall below 

0.5 to yield a negative weight (22). When a malicious 

node has a negative weight, it should vote truthfully (play 

T) to impose a negative consequence to the defender (see 

Table III). Equation (25) represents the malicious node 

strategy we just described.   

{

            ( )                                           

                              ( )           

            ( )                                            

                (  ) 

Note that (25) is a deterministic strategy. We call this 

strategy N since it has a negative consequence to the 

defender as shown in Table III. Also, we can see from 

Table III that a deviation from the strategy (25) has a 

positive consequence to the defender and we will call that 

strategy P. 

To continue our equilibrium analysis, note that    is a 

symmetric function of   ( ) around 0.5 (22). One 

consequence is that a malicious node with a reputation of 

0.99 that chooses to play F has the same effect as a 

malicious node with a reputation of 0.01 that chooses to 

play T. This argument holds for any two reputation values 

that are symmetric around 0.5, say also 0.6 and 0.4. 
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Furthermore, looking into the long term effect, a 

malicious node with a positive weight that plays T loses 

the opportunity to damage the system in the current 

period but increases its reputation and weight for causing 

future damage. By the same token, a malicious node with 

a negative weight that plays F loses the opportunity to 

damage the system in the current period but decreases its 

reputation and weight for causing damage in the future as 

we explained above for the node with a reputation of 

0.01. The two strategies we just described represent the 

strategy P that departs from the strategy N in (25). Thus, 

a malicious node’s immediate payoff when playing N 

(25) is higher than when deviating or playing P. A 

malicious node’s immediate payoff when playing the 

strategy N is   ( ) while its immediate payoff is   ( ) 
when playing the strategy P. Those payoffs have a 

negative sign because the game is zero-sum. Any loss to 

the defender is a win to the malicious node. Recall the 

defender’s payoff is the opposite. We have   ( )  
  ( ). The only case in which   ( )    ( ) will 

correspond to a malicious node that has zero weight. That 

is because it has no influence on the decision process 

when at least one other node has a weight different from 

zero. In all other cases, the malicious node has a weight 

different from zero and we have   ( )    ( ). 
A malicious node’s payoff at any time t will depend 

on the binary strategy adopted (P or N), the discount 

factor δ and the smoothing factor γ. Let    
 ( ) and  

   
 ( ) denote a malicious node’s payoff at time t when it 

chooses to play P or N respectively. Also, let    
 (   ) 

and    
 (   ) represent a malicious node’s future 

payoffs after playing P or N respectively. 

The Bellman equation [27] allows us to represent a 

malicious node payoff at any time t as a function of its 

immediate payoff (-C or -D) and his future payoff. It can 

be seen that, when there is no noise in recording node’s 

reputation, we must have: 

{
   
 ( )   (   ) ( )      

 (   )

   
 ( )   (   ) ( )      

 (   )
                    (  ) 

At any time a malicious node with a weight different 

from zero plays P, its immediate payoff is lower, but its 

reputation moves faraway from 0.5 and thus increases its 

future payoff. On the contrary, at any time a malicious 

node with a weight different from zero plays N, its 

immediate payoff is higher, but its reputation moves 

closer to 0.5 and thus decreases its future payoff. Since 

playing P allows a node to accumulate a reputation, 

(positively or negatively) and increase its potential for 

future damage, then for a malicious node with a weight 

different from zero, we must have:  

   
 (   )     

 (   )                   (  ) 

We have    
 (   )     

 (   ) if and only if a 

node has zero weight at time t. That is because its future 

reputation after playing P or N will be symmetric around 

0.5 and thus yields the same effect as explained above in 

the case 0.99 and 0.01.  Note that (27) holds regardless of 

the continuation strategy. We can see from (26) that a 

malicious node must perform an inter-temporal 

optimization that depends on the discount factor δ. 

Theorem 3: If there is at least one regular node with a 

weight that is strictly positive and the discount factor δ is 

low, then a malicious node must play according to the 

strategy in (25) which is its dominant strategy. 

Proof:  We use one-shot deviation principle of 

dynamic programming [28]. Then, we just need to show 

that there is no profitable one-shot deviation. A deviation 

from (25) is profitable to a malicious node if: 

   
 ( )     

 ( )   

 (   ) ( )      
 (   ) 

  (   ) ( )      
 (   ) 

    
 (   )   

   
 (   )  (

   

 
) [ ( )   ( )]   (  ) 

We can distinguish two cases. In the first case, the 

malicious node has a weight different from zero, and then 

we have  ( )   ( )   . Since (27) holds and the right 

hand side of (28) monotonically grows to infinity as the 

discount factor is small, there exists  , with      , 

such that for any    , (28) does not hold and thus 

deviation is unprofitable. In the second case, a node with 

a zero weight does not participate at all in the decision if 

at least one node has a weight different to zero. This 

means that  ( )   ( )   . Moreover, when a node has 

zero weight,    
 (   )     

 (   ). Thus,    
 ( )  

   
 ( ). Such a node is indifferent from T and F and thus, 

is consistent with our strategy. 

                                                                                      ■ 

Notice that as opposed to other game theoretic models 

that require a high discount factor to enforce an 

equilibrium profile, this work needs a low discount 

factor. When the discount factor is large (     ), the 

malicious nodes are tempted to accumulate a reputation 

for a potential future damage. To prevent this, the 

defender must divide the game using the framework 

originally proposed by Ellison [29]. With this framework, 

the defender divides the game in M separate games and 

record separate reputations for each game. The first game 

taking place in period 1, M+1, 2M+1,3M+1…. The 

second in period 2, M+2, 2M+2,…, and so on. Since the 

games are separate, the outcome of one game does not 

influence the outcome of the other game; a malicious 

node’s best response must be independent across the 

different games. 

 As a result, the new discount factor in each of the 

separate game becomes   , which monotonically 

decreases as M increases. Therefore, there exists    such 

that for all       
    . The defender may choose 

M to be the least greatest integer such that M is greater 

than    up to the time the last regular node is 

compromised. The more intuitive way to understand the 

mechanism we just described is that it will take a longer 
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time for a malicious node to accumulate reputation in 

each separate game. Say, for instance, that the nodes vote 

once a day and possibly accumulate a reputation. If the 

defender divides the game into 365 parts, a malicious 

node that accumulates any reputation today must wait a 

year before creating any damage. Therefore, after game 

separation, it becomes optimal for all compromised nodes 

to cast bad votes (play N) and not accumulate any 

reputation at all. Also, in our game model, we assume 

that the defender or system administrator can divide the 

game as many times as he wants and enforce the strategy 

in (25) to be the dominant strategy for malicious nodes 

for any discount factor. Thus, we have the following 

theorem. 

Theorem 4: If there is at least one regular node with a 

weight that is strictly positive, then a malicious node 

must play according to the strategy in (25) which is its 

dominant strategy for any discount factor δ.   

Proof: The proof of this theorem derives from the 

proof of Theorem 3 and Ellison [29 (lemma 2, pg 586)]. 

                                                                                      ■ 

There are four main advantages for the defender when 

the malicious nodes are rationally constrained to play the 

strategy above (25). First, this strategy ensures that the 

malicious nodes always have a weight close to zero and 

then never participate in the decision process when there 

is at least one regular node. Second, the system can 

survive as long as there is at least one regular node. This 

is opposed to the single-shot voting game in which 

system survivability ends with the compromising of a 

majority of nodes. The extension of the mission survival 

time under malicious nodes intervention, which 

constitutes one of the principal goals of this paper, can 

then be achieved by the defender’s rule in Section VI-A. 

Third, there is a separating equilibrium, so regular nodes 

vote truthfully while the malicious nodes play the 

strategy (25). Fourth, malicious nodes eliminate 

themselves from the decision process. 

C. Repeated Voting Game under Imperfect Monitoring 

We now consider noise in the defender’s detection of 

the malicious nodes’ vote. For instance, a malicious node 

may play T while the defender observes F. Therefore, we 

have an imperfect monitoring game. There is a signal 

  {   } indicating the past vote of a node.  

Let ε denotes the error in the defender’s vote 

recording. The distribution of the signal y is given by: 

 ( |    ) 

 {
                                   
                                            

   (  ) 

We assume that            This ensures that 

it is more likely that the defender observes the high 

quality signal   when a malicious node vote correctly and 

also observes the low quality signal   otherwise. It should 

not be confused with noise when the nodes detect the 

state of nature, nor should it be confused with noise when 

the defender records a node’ vote according to the 

algorithm in Table II. We are dealing here with the 

second type of noise. 

The strategy we describe in (25) cannot directly be 

applied as a node may not know its exact reputation. 

However, a malicious node can update its belief about its 

reputation and weight over time according to Bayes Rule 

[28] and play (25) while conditioning its action on its 

belief about its weight instead of its true weight. In fact, 

the defender can also constraint the malicious nodes to 

play such a strategy under noise. This follows from the 

argument of theorem 3 and 4. To see why, under noise, 

(26) is transformed as below 

{
   
 ( )   (   ) ( )   [(   )   

 (   )      
 (   )]

   
 ( )   (   ) ( )   [    

 (   )  (   )   
 (   )]

 

After calculation, a deviation is profitable if: 

   
 (   )     

 (   )  (
   

 
)
[ ( )   ( )]

(    )
   (  ) 

Equation (30) is similar to (28) and then all arguments 

developed Theorem 3 and 4 hold when      .  

D. Analysis of Survivability Improvement 

The model of Section V holds. The time to 

compromise a node has an exponential distribution. The 

node failures are assumed to be statistically independent. 

The probability distribution of the number of 

compromised nodes is given by (14). Under repeated 

interactions as described in this section, the aggregate 

decision can survive when there is at least one regular 

node. This is because the regular node will more likely 

vote correctly, have a positive weight, while all the 

malicious nodes have a weight close to zero after a short 

time. From (14), the probability that there is at least one 

regular node among the N node is   (      ) . The 

aggregate decision survives the malicious nodes if that 

probability is greater than 0.5. This means: 

  (      )                                (  ) 

After all calculation, (31) gives 

  
   (    

   
 )

 
                           (  ) 

This is a huge improvement in the maximum mission 

times compared to (19).  

  
    

 
                           (  ) 

As an additional strategy, the defender can increase 

the number of nodes to improve its survival time. 

Equation (32) compares to (19) when only one node is 

used. We can see that if     in (32) and     in (19), 

then (19) and (32) become identical. Above one node, 

(32) and then repeated votes are always superior. 

We did not emphasize the optimum decision rule of 

(21) in Section IV because it is equivalent to a simple 

majority rule if all the nodes have the same weight. 

However, repeated interactions allow us to build trust - a 

metric that enables distinguishing of voter competence. 
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Finally, since newly-compromised nodes have the same 

reputation as regular nodes, the defender may 

periodically request phony votes to accelerate the 

dissipation of that reputation by (20). 

VII.  SIMMULATION RESULTS 

This section contains MATLAB simulations to 

support the different game-theoretic techniques analyzed 

in this paper. Notice that this work has proposed a high 

level game-theoretic modeling of decision survivability in 

cyberspace based on binary voting mechanism. 

Therefore, our model is more reusable and has a broad 

scope of application. The specific value we have used in 

this MATLAB simulation is just to illustrate a few 

specific scenarios. In general, performance results will 

depend on the specific implementation that in turn 

depends on a particular network. We examine the 

changes in system reliability and equilibrium behavior 

over time based on our dynamic analysis of Section V. 

We also compare our one-shot game to our repeated 

game. 

Figure 1 summarizes the change in the attacker’s 

behavior in the one-shot game of Section IV. Three nodes 

are used for illustration with the node reliability chosen to 

be      . Nevertheless, our model is scalable. Thus a 

larger number of nodes can be used with any reliability p 

in the range        . Initially, there is no 

compromised node and the defender chooses the majority 

opinion. Over time, nodes are compromised according to 

our dynamic analysis of Section V. 

At the beginning, any compromised node plays F, 

with certainty, up to time 0.47 as indicated by (19). We 

have chosen     compromising per month. One month 

is just for illustration. It makes no difference if the time 

unit is changed to a week or a year.  

 

Figure 1: Attacker behavior in the one-shot voting game 

After the time 0.47, where the three nodes reliability 

falls below 0.5, both the attacker and the defender start 

their mixed strategy. To avoid being exploited by the 

defender, the probability at which the attacker plays T 

increases over time. In fact, that probability must even be 

larger as node reliability decreases. 

Figure 2 shows our repeated game model simulated 

with 5 nodes. Malicious nodes are considered to be very 

patient with a corresponding discount factor of       . 

As described in Section VI, such a high discount factor is 

among the worst case scenarios for the defender. Node 

reputation is updated using a smoothing factor of    
   . As indicated in Section VI, the defender should 

choose a smoothing factor γ that is neither too large nor 

too small. A very large smoothing factor 

disproportionally allocates more weight to the last action 

whereas a too small smoothing factor will slow the 

increase of the reputation of regular nodes. A tradeoff 

value of the smoothing factor may be chosen around 0.1 

to balance those opposing factors. Recall that choosing a 

smoothing factor is totally under the control of the 

defender. The 5 nodes have the same reliability      . 

We consider that every 10 minutes there is an event for 

which the nodes are requested to vote. We make the 

conjecture that, with a large discount factor of 0.99, the 

inequality in (28) holds and thus it is optimum for 

malicious nodes to accumulate a reputation for future 

attack. To prevent that, the defender divides the game in 

432 parts (     ) as explained in Subsection VI-B. In 

each separate game, the nodes vote every three days. The 

new discount factor, after game separation, 

becomes                    which is quite low. 

As a consequence, all malicious nodes are forced to play 

our strategy represented in (25). The time to compromise 

a node is exponentially distributed with mean one month 

or 30 days. In our MATLAB simulation, nodes 1 to 5 are 

compromised at time (in days) 93.399, 42.468, 24.465, 

11.229, and 8.433 respectively. This is only a specific 

scenario generated according to an exponential 

distribution with mean 30 days. Different simulations 

may yield different values but the trend presented here 

will be preserved. Observe that a node’s behavior over 

time goes through three phases. In the first phase, a node 

is not yet compromised so its reputation globally 

increases (with the possibility of occasional decrease 

because nodes are not perfectly reliable). In the second 

phase, the node has just become compromised and 

misbehaves, so its weight decreases to a point slightly 

below zero. In the third phase, the node’s weight 

alternately goes up and down around zero. Figure 2 

illustrates all of those phases for each of these nodes. 

Figure 2 also shows the aggregate decision. A 1 (one) 

represents a correct aggregate decision while a 0 (zero) 

show that the decision is incorrect. We can see in this 

simulation that, from day 60 to 93, the aggregate decision 

remains correct although 4 out of 5 nodes are 

compromised. The aggregate decision actually survives 

until the last node is compromised. 
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Figure 2: Repeated game simulation with five nodes 

 Figure 2 also shows that the defender must choose an 

appropriate smoothing factor γ (20). A very low 

smoothing factor will slow the increase in reputation (and 

weight) of regular nodes in the first phase. Moreover, the 

reputation of compromised nodes in the second phase 

will decrease slowly. However, with a very high 

smoothing factor, the weight of compromised nodes will 

be relatively high in the third phase. Figure 2 also shows 

that in addition to intrusion resilience, our model can 

achieve intrusion detection by looking into the behavior 

of the nodes that have a weight up and down around zero.  

One limitation of our model is the case in which the 

nodes have a very low mean time to compromise. When 

the mean time to compromise is very low, the entire node 

can be compromised before any regular node has time to 

build any reputation. 

The maximum mission times (or the time before which 

the votes can give any information to the defender) are 

compared in the two scenarios we have evaluated: the 

one-shot voting game and repeated voting game. Figure 3 

shows that the mission survival time is always superior in 

the repeated game model. This comparison was done with 

only three nodes. The difference dramatically increases as 

the number of node increases. This is because, in the one-

shot game, the mission survival time does not change 

with the number of nodes while it does increase in 

repeated game. As you can see, the simulation results are 

encouraging for implementation in a mission essential 

function in cyberspace.  

 

Figure 3: Comparison of the maximum mission times 
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VIII.  CONCLUSION AND FUTURE WORKS 

This research has used several approaches from game 

theory and mechanism design to support binary decision 

survival subject to influence from malicious nodes. The 

prospect of the paper was oriented toward a scenario 

pitting a network attacker against a network defender. In 

most cases, a failure rate is completely ignored. Our 

models capture the failure dynamic of attacker-induced 

faults in real time. Recognizing that any attempt to 

consider only benign node failures will be defeated when 

subjected to the maliciousness of intelligent attacks, we 

have restricted the scope of this paper to such malicious 

attacks. We have proposed two models, a one-shot game 

model and a repeated game model. Our one-shot game 

demonstrates a fundamental property of binary game. If 

the number of compromised nodes is above some quota, 

(generally less than 50% of the nodes) the maximum 

decision reliability will be 50%. This means in the 

context of binary vote that no useful information can be 

derived from the votes. Our repeated game model 

overcomes this intrinsic deficiency, by proposing a model 

in which the aggregate vote reliability stays above 50% 

even though nearly all the nodes are compromised. That 

is because regular nodes have a higher weight in the 

aggregate decision. The defender designs, implements, 

and announces the rules of the repeated game. Those 

rules are such that all the malicious nodes are squeezed 

toward behaviors that are fault tolerable. In the extreme 

case, a single regular node may surpass the vote of 

hundreds of malicious nodes. For example, in a set of 115 

nodes, a single node with a reputation of 0.99 cannot 

have its vote overturn by 114 compromised nodes having 

a reputation of 0.51. Our repeated game model considers 

two elements: a node’s reliability and a node’s rate of 

being compromised. From these elements, a three-part 

mechanism - totally controlled by the defender - ensures a 

high decision reliability. The first part of our mechanism 

is an exponentially weighted moving average to 

accurately update the node reputation according to the 

most recent behavior. The second part is a 

mathematically proven optimum weight derived from the 

node’s reputation. The third part is a game separation 

method that discourages malicious nodes to accumulate 

any reputation or have any weight in the decision process. 

Our model is supported by mathematical proofs and 

extensive simulation results. Using the framework 

described in this paper, a mission can have its failures 

masked, prolong its survival in cyberspace, and fight 

through attacks by assuring accuracy of critical decisions 

in highly-contested environments. The case of correlated 

nodes’ failure will be the subject of our future 

investigation. Also, the case of possible collusions among 

the malicious nodes in our repeated game model needs 

further analysis. 
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