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Abstract—Recent efforts have shown that the reconstruction 

performance could be improved with optimized sensing matrix 

according to a given dictionary for a compressed sensing (CS) 

system. The existed optimizing conditions are mainly used to 

address the worst-case performance of CS recovery. 

Considering the quality of a sensing matrix with respect to the 

mean squared error (MSE) performance of the Oracle estimator, 

Chen et al. proposed the sensing matrix based on Parseval tight 

frame, which exhibits superior performance in relation to other 

existed designs. However, the equivalent sensing matrix under 

this design framework couldn’t achieve the optimal mutual 

coherence. In light of the matrix decomposition theory, the 

bigger the smallest singular value, the stronger non-correlation 

of the columns of the matrix have. We further optimize the 

sensing matrix combining with the matrix decomposition theory, 

so as to achieve the optimal statistical reconstruction and the 

optimal mutual coherence performance at the same time. 

Through the approximate QR decomposition and the mean 

singular value decomposition (SVD), we adjust the singular 

values of the sensing matrix, so as to reduce the correlation of 

the matrix. A great number of experiments show that the 

proposed optimized sensing matrix realizes the minimum of the 

reconstructed error compared to other designs in the literature 

with different sparse recovery algorithms. 
 
Index Terms—compressed sensing, sensing matrix, MSE, 

Parseval tight frame, QR decomposition, SVD decomposition. 

 

I. INTRODUCTION 

Compressed sensing (CS) theory [1] has received 

much attention in recent years which states that under 

sparse conditions, the signal can be sampled via non-

adaptive linear projections and meanwhile still keeping 

the original structure. Then the original high-dimensional 

signals can be reconstructed exactly from these 

projections whose dimension is much lower by solving 

the sparse-constraint optimization problems. As the key 

step of the compressed sensing system, it is of great 

importance to construct reasonable and effective sensing 

matrix. From the restricted isometry property (RIP) [2] 

and the mutual coherence theory [3], many sensing 

methods have been proposed [4]-[6]. In 2006, Elad et al. 

pointed out that CS reconstruction accuracy could be 

improved with optimized sensing matrices according to a 

given dictionary comparing to the non-adaptive random 
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matrices. Based on this point, Elad et al. [7] put forward 

the concept of t-averaged mutual coherence firstly and 

then proposed an iterative algorithm to optimize the 

sensing matrix by minimizing the t-averaged mutual 

coherence. Elad’s method improved the reconstruction 

performance, but as iterative, it is time-consuming. Based 

on Elad’s research, Duarte-Carvajalino and Sapiro [8] 

addressed the problem by making any subset columns of 

the equivalent sensing matrix as orthogonal as possible, 

or equivalently, making the Gram matrix as closely as 

possible to identity matrix. Then they introduced an 

algorithm to iteratively optimize both the sensing matrix 

and the over-complete dictionary simultaneously. The 

reconstructed performance of this method is not ideal as 

the equivalent sensing matrix is over-complete rather than 

orthogonal. Further, Xu et al. considered the equiangular 

tight frame (ETF) as their target design and proposed an 

iterative algorithm to make the sensing matrix approach 

that design [9]. The restriction on the dimensions of the 

equiangular tight frame greatly limits this method’s 

application in compressed sensing. 

All these above optimized designs constrain the 

conditions that the sensing matrix needs to satisfy by 

taking the worst-case performance of sparse recovery as 

the target. However, the actual reconstruction 

performance is often much better than the worst-case, so 

that this viewpoint can be too conservative. In addition, 

the above designs are all inherently based on the mutual 

coherence which is difficult to operate and they are all 

complex iterative algorithms. 

Considering the statistics of the CS process, it’s of 

great practical importance to take the good expect-case 

recovery performance as the design target. In [10], from 

the statistical significance, Chen et al. demonstrated that 

the good equivalent sensing matrix should be a Parseval 

tight frame by capitalizing on the mean squared error 

(MSE) of the Oracle estimator whose performance has 

been shown to act as a benchmark to the performance of 

various common sparse recovery algorithms. However, 

the equivalent sensing matrix which is frame-based 

doesn’t achieve the optimal mutual coherence 

performance. Researches have found that, the linear 

correlation of the matrix is closed with its singular values 

[11]. Then through in-depth study of the sensing matrix 

design method based on Parseval tight frame, we further 

reduce the mutual coherence between the sensing matrix 

and the sparsifying matrix by adjusting the singular 

values of the sensing matrix through matrix 
doi:10.12720/jcm.8.7.456-462
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decomposition to achieve both the optimal reconstruction 

and the optimal non-coherence performance. 

The remainder of this paper is organized as follows. 

We mainly describe the CS theory in Section II. Section 

III present the design method of statistical compressed 

sensing matrix by capitalizing on the MSE of the Oracle 

estimator whose performance has been shown to act as a 

benchmark to the performance of standard sparse 

recovery algorithms. In Section IV, we introduce the 

relationship between the singular values of a matrix and 

its correlation. Further we put forth the matrix 

decomposition methods for reducing the correlation and 

proved the related theories, including mean singular value 

based SVD decomposition and approximate QR 

decomposition. In Section V, the sensing matrix is 

optimized by combining the Parseval tight frame-based 

method with the matrix decomposition theory mentioned 

in section IV. By adjusting the singular values, we further 

reduce the correlation and propose the sensing matrix 

design method which can achieve the optimal statistical 

reconstruction performance and optimal non-coherence. 

Section VI are the experiments, the proposed method is 

compared with other state-of-the-art methods. Finally, 

concluding remarks are presented in Section VII. 

II. COMPRESSED SENSING THEORY 

The sampling model of compressed sensing is  

        y =Φf + n                                  (1) 

where mRy is the measurement signal vector, 

nRf is the original signal vector, ( )m nR m n  is 

the sensing matrix, ~ N(0 )2

m
,σn I is a zero-mean white 

Gaussian noise vector with variance 2σ .We assume that 

the original signal is sparse in some basis, i.e., 

f =Ψx                                      (2) 

where ˆ ˆ( )n nR n n Ψ is a matrix that represents the 

sparsifying basis, e.g., an orthonormal or over-complete 

dictionary [12], and x  is a sparse representation vector 

of f , i.e., 
0l

nx .Then we can rewrite (1) as 

y x n Ax n                       (3) 

where 
ˆm nR  A   is called the equivalent sensing 

matrix. 

To recover the sparse signal representation x  from the 

measurement y, one can resort to the 1l  norm constrained 

optimization problems:  

1 2
ˆ argmin   . .s t  x x Ax - y              (4) 

by solving (4), we can get x̂  and further the 

reconstructed original signal by ˆ ˆf =Ψx  exactly. In (4), 

  is an estimate of the noise level. The Eq. (4) is also 

known as the basis pursuit de-noise (BPDN) problem. 

It has been established that the well-known RIP [1] 

provides a guarantee for exact or near exact recovery of a 

sparse signal representation x from the measurement 

vector y via the 1l  minimization in (4). Note that the RIP 

is a sufficient but not necessary condition for successful 

reconstruction and it may be too strict. It’s also too 

difficult to use the RIP property to guide the design of 

sensing matrix in practice. Another way to evaluate a 

sensing matrix is the mutual coherence between the 

sensing matrix Φ  and the sparsifying matrix Ψ  which is 

defined as below: 

1 ,
( ) max ,k j

k j n
n

 
Φ,Ψ               (5) 

The smaller , the greater probability that Φ satisfies 

RIP [2]. As mentioned above, Elad’s method [7], Sapiro’s 

method [8], and Xu et al.’s method [9] are all inherently 

mutual coherence based approaches. 

III. THE SENSING MATRIX DESIGN METHOD BASED ON 

PARSEVAL TIGHT FRAME 

From the viewpoint of statistics, Chen deduced the 

conditions that the sensing matrix should satisfy by 

taking the good expected-case reconstruction 

performance as the target. Specifically, the goal of the 

sensing matrix design relates to the minimization of the 

MSE in estimating a sparse random vector x corrupted by 

a random Gaussian noise vector n from the 

measurement y , given by: 

2

2
MSE( ) E ( F( ) )  x,n x n x            (6) 

where ( )F  denotes a specified estimator, here 

corresponding to sparse recovery algorithms such as the 

basis pursuit de-noise (BPDN) and orthogonal matching 

pursuit (OMP), etc. E ( )x,n  denotes the expectation with 

respect to the joint distribution of the random signal 

vector x and the noise vector n . More representatively, 

choosing the oracle MSE, which represents the best 

achievable performance for any unbiased estimator, as a 

benchmark to the performance of various sparse recovery 

algorithms. Accordingly, the oracle estimator MSE 

incurred in the estimation of a sparse deterministic vector 

x in the presence of a standard Gaussian noise vector n , 

according to the model in (1), is given by: 

oracle

2
oracle

2
2 T T 1

MSE ( )

E ( F ( + ) )

Tr(( ) ) 

 



n

n

A, x

Ax n x

E A AEJ J

                  (7) 

where E ( )n denotes expectation with respect to the 

distribution of the random vector n , Tr( ) denotes the 

trace of a matrix and EJ denotes the matrix that results 

from the identity matrix by deleting the set of columns 

out of the support J . 

Consequently, the average value of the oracle MSE is 

given by 
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oracle

2 T T T 1

MSE ( ) E (MSE ( )

                  E (Tr(( ) ))

oracle

J 





 x n

J J

Φ, x

E D Φ ΦDE
      (8) 

where E ( )x
denote the expectation with respect to the 

distribution of the random vector x . In order to obtain the 

optimal reconstruction performance, the MSE above 

should be as small as possible. Then posing the 

optimization problem: 

 

T 1min E (Tr(( ) ))

s.t. 0,Tr( ) , rank( )

Q
E QE

Q Q Q



 m m

J J J
                (9) 

In (9), T
Q A A  is the coherence matrix of the 

equivalent sensing matrix A , 0Q means that the 

matrix Q is positive semi-defined, E ( )J denotes 

expectation with respect to the random support J, 

Tr( ) and rank( )  stand for the trace and the rank of a 

matrix, respectively. 

The optimization problem (9) is solved by considering 

the closest convex-relaxation problem by ignoring the 

rank constraint in (9) .i.e., 

T 1

J J Jmin E (Tr(( ) ))  s.t. 0,Tr( ) m 
Q

E QE Q Q   (10) 

It has been proven that the solution to (10) is a ˆ ˆn n  

matrix ˆ
ˆ( ) nm n I , n̂I denotes the ˆ ˆn n  identity matrix. 

Obviously, ˆ
ˆ( ) nm n I is not the feasible solution to the 

original optimization problem (9), because 

ˆ
ˆ ˆrank(( ) )nm n n m I . Therefore，The ˆm n  matrix 

A  whose coherence matrix T
Q A A  is closest to the 

matrix ˆ
ˆ( ) nm n I  can be used. i.e., 

2

ˆ

F

min s.t. Tr( )
ˆ

T T

n

m
m

n
 

A
A A I A A            (11) 

It can be proven that the solution to (11) is the ˆm n  

Parseval tight frame [13]. 

Based on the above analysis, good equivalent sensing 

matrices ought to be close to a Parseval tight frame [13]. 

In addition, in order to achieve good sensing performance, 

the sensing energy cost should be as small as possible. 

Then getting the following optimization problem: 

2
T T

ˆ F

ˆ ˆ ˆmin s.t. m I


               (12) 

The solution to (12) is  

 T
ˆ ˆ

ˆ
n ΨΦ Φ

Φ = U Λ J U                          (13) 

where ˆU


is an arbitrary orthonormal matrix and 

 ˆ -1 )Diag 1 ,1 , ,1m m m (n mO    
  
 1

  


 is a matrix 

whose main diagonal entries are the singular values of  , 

among it 1 , , m Ψ Ψ  are the m singular values of  . 

Unlike the design methods in [7]-[9], the proposed 

sensing matrix has closed form instead of iterative and it 

can reach the minimum MSE for image recovery. 

IV. REDUCE THE CORRELATION OF A MATRIX BASED 

ON THE MATRIX DECOMPOSITION 

A. The Approximate QR Decomposition 

From the matrix decomposition theory, the linear 

correlation of a matrix is closely related with its smallest 

singular value [11]. If the smallest singular value is 

bigger, then it can result in more non-correlation. The 

approximate QR decomposition can increase the smallest 

singular value and narrow the range of singular values of 

a matrix.  

Theorem 1: After making standard QR decomposition 

to the matrixΦ , we get an upper triangular matrix R  and 

a square matrix Q , i.e, QR . Then we get a new 

matrix R̂  by keeping the main diagonal elements of R  

unchanged and setting all the other elements to zero, 

further getting ˆΦ = QR . So the smallest singular value of 

  is bigger than that of Φ , and the biggest singular 

value of   is smaller than that of Φ . 

Proof: Firstly, the smallest singular value of  is, 

T T

min min min

T T T T

T T

T T
T

minT

min

( ) ( ) ( )

ˆ ˆ
min

ˆ ˆ

min ( )

( )

  





 

 

  



ν

ν

RR

v RR v ν RR ν

ν ν ν ν

ν ν

ν ν

 


 



            (14) 

On the other hand, the biggest singular value of is, 

T T

max max max

T T T T

T T

T T
T

maxT

max

( ) ( ) ( )

ˆ ˆ
max

ˆ ˆ

max ( )

( )

  





 

 

  



ν

ν

RR

ν RR ν ν RR ν

ν ν ν ν

ν ν

ν ν

 


 



         (15) 

where ˆ,  are column vectors, they corresponding to the 

diagonal of matrix R  after making the smallest and the 

biggest element to be 1, and the other elements all to 0, 

respectively. 

B. The Mean SVD Decomposition Theory 

Assume that A is a m n  singular matrix, the singular 

value decomposition of A is: 
T

0

0 0

 
  

 
A U V


, the 

generalized inverse matrix of A  is 
1

T0

0 0




 
  

 
A V U


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where U  and V  are m m  , n n  unit orthogonal 

matrices, respectively. 

1 2( , , , )mdiag     , 1 2 m     are the singular 

values of A .  

Theorem 2: Assume that vectors 1x , 2x  satisfying 

1 1Ax y , 2 2Ax y , respectively, after making 

1 pp
d  1 2 1x x x , 

2 1 2 1p p
d  y y y , then 

1 2/ ( )d d k A , where ( ) *
p p

k A A A . 

Proof: Because 1 2 1 2( ) +
x x = A y y   

p pp p
   + +

1 2 1 2 1 2= ( )x x A y y A y y  

and so  

p p p
1 1*y A x , 

than is 

p

p

p


1

1

y
x

A
 

plugging it into the above inequality, we get the 

following result: 

1

-- p pp p

p p

d 

+

1 21 2

1 1

* *
=

A A y yx x

x y
 

-
p

2

p

k k d
1 2

1

= ( )* = ( )*
y y

A A
y

. 

Based on the above analysis, the smaller ( )k A , the 

better reconstruction performance is. Through SVD, we 

can use the mean singular values so as to reduce the 

correlation of the matrix. In addition, the reduced ( )k A  

can result in good sensing performance. 

Deduction: Assume that A is the original matrix with 

the biggest singular value p  and the smallest singular 

value q , then the biggest singular value of A
  is 1/q . 

After SVD of A , replacing all the singular values with 

their mean value l and getting matrix 'A . Then, 

( ') 1/
1

( ) 1/

p p

p p

k l l

k p q





 
  



' 'A AA

A A A
, i.e., ( ) ( )k k'A A . 

V. OPTIMIZED SENSING MATRIX DESIGN BASED ON 

PARSEVAL TIGHT FRAME AND MATRIX 

DECOMPOSITION 

Considering the oracle estimator MSE, the equivalent 

sensing matrix ought to be close to a Parseval tight frame. 

But the sensing matrix based on this theory doesn’t have 

the optimal non-coherence. In this section, we optimize 

the performance of the sensing matrix by further reducing 

the mutual coherence between the sensing and the 

sparsifying matrix combining with the matrix 

decomposition theory described in part IV. 

A. An Optimized Sensing Matrix Design Based on 

Approximate QR Matrix Decomposition 

According to the approximate decomposition theory, 

the correlation of the matrix can be further reduced by 

adjusting its singular values. The following are the 

specific steps of the proposed optimized sensing matrix 

design algorithm based on approximate QR 

decomposition, supposing the sparsifying matrix is 

known. 

step1:Constructing the sensing matrix m n  according to 

(13); 

step2:After making standard QR decomposition to the 

matrix  , getting an upper triangular matrix R and 

a square matrix Q, noted as QR ; 

step3:Getting a new matrix R̂ by keeping the main 

diagonal elements of R  unchanged and setting the 

other elements all to zero, further getting the new 

sensing matrix ˆQR . 

From Theorem 1, approximate QR decomposition can 

well reduce the original sensing matrix’s condition 

number and narrow the range of singular values of the 

original matrix. This method further reduced the mutual 

coherence between the sensing matrix and the sparsifying 

dictionary. It has been evaluated that the new sensing 

matrix has better RIP constant which is more applicable 

to compressed sensing. 

B. An Optimized Sensing Matrix Design Based on Mean 

Singular Value Decomposition 

According to the SVD decomposition theory, we can 

optimize the sensing matrix by replacing all the singular 

values with their average value. The following are the 

specific steps of the proposed optimized sensing matrix 

design algorithm, supposing the sparsifying matrix is 

known. 

Step1: Constructing the sensing matrix m n  according to 

(13); 

Step2: Adopting SVD decomposition to m n , denoted as 

T 
  

 

0

0 0
U V


 ; 

Step3: After step2, getting all the singular values of m n , 

1 2 m     . Then calculating the mean of 

all these singular values 

1 2( ) /mmean m      ; 

Step4: Making ' '

1diag( , , )m  , where 

1 2

' ' '

m
= mean     ; 

  

  

 

Step5: Getting the new sensing matrix T
 

  
 

0

0 0
U V


 .

From the Theorem 2 and its deduction, after adopting 

SVD decomposition to the sensing matrix m n , noted as 

T 
  

 

0

0 0
U V


 , we get the new sensing matrix m n
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by modifying its singular values through mean value 

algorithm. Using 
m n  can achieve higher reconstruction 

accuracy than m n  in compressed sensing. 

VI. EXPERIMENTAL RESULTS AND ANALYSIS 

In order to verify the effectiveness of the proposed 

methods, firstly we test for 1-D sparse signals with 

several typical existed sensing matrices and the proposed 

optimized matrices, respectively, and compare the 

relative MSE of reconstruction signals with different 

reconstruction algorithms; Secondly, we calculate the 

PSNR (dB) of reconstructed 2-D image based on block 

compressed sensing with different sampling rate. And we 

use the dictionary trained by the K-SVD algorithm [12] 

for sparse representation for image patches. At last, we 

give the histograms of the distribution of the off-diagonal 

entries of the coherence matrices with respect to the 

equivalent sensing matrices of the sensing matrix. 

A. Comparing the Relative Error Rate of the 

Reconstructed Signals for Different Measurements 

 
Figure 1.  The relative reconstructed error rate vs. the number of 

measurements m using BPDN 
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Figure 2.  The relative reconstructed error rate vs. the number of 

measurements m using OMP 

We generate a sparse signal with the length 64n  and 

the sparsity 10s   randomly by drawing its elements 

from i.i.d. zero mean and unit variance Gaussian 

distributions. The experimental result is calculated by 

averaging over 1000 trials. In each trial the relative error 

rate was evaluated as a function of m  for different 

measurement matrices, in which m  is the number of 

measurements. The measurements are corrupted by 

additive zero-mean Gaussian noise with variance 

42 10 .The specific results based on BPDN and 

orthogonal matching pursuit (OMP) [14] recovery 

algorithm are respectively shown in Fig. 1 and Fig. 2. 

From Fig. 1 and Fig. 2, it’s clear that the optimized 

sensing matrices in this paper are effective for 1-D sparse 

signals. Especially with OMP, the relative error rate with 

the optimized projections is much lower than others. 

    

(a)                                                    (b) 

    
(c)                                                  (d) 

    

(e)                                                (f) 

    
(g)                                               (h) 

Figure 3.  The reconstructed images based on different sensing 
matrices: (a) Original image, (b) Gaussian matrix, PSNR =28.40dB, (c) 

Elad’s matrix, PSNR =29.13dB, (d) Sapario’s matrix, PSNR =30.58dB, 
(e) Xu’s matrix, PSNR =29.36dB, (f) Chen’s matrix  PSNR =30.85dB, 

(g)proposed QR based matrix, PSNR =32.30dB, (h) proposed SVD 

based matrix, PSNR =32.33dB. 

B. Block Compressed Sensing and Reconstruction for 

the Image 

In this part, we calculate the PSNR of the 

reconstructed image based on block compressed sensing 
 

[15] using different sensing matrices. Taking the 

‘Cameraman’ image of size 256 256  for example. The 
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image is partitioned into 1024 nonoverlapping patches of 

size 8 8 , i.e., 64n  . Instead of orthogonal basis, we 

use a dictionary of size 64 81  trained by the K-SVD for 

sparse representation of nonoverlapping patches. The 

number m of measurements for each patch is set to be 

equal to 40. And the measurements are corrupted by 

additive zero-mean Gaussian noise with the variance 
32 10 . We use OMP to reconstruct each patch from 

its measurements owing to its fast execution. Fig. 3 gives 

the visual effect and the PSNR of reconstructed images 

with different sensing matrices. 

From Fig. 3, we can easily find that the reconstruction 

performance is highly improved with matrices proposed 

in this paper, about 1.5dB higher than that of Chen’s 

sensing matrix. In this test, the performance based on the 

SVD decomposition is close to the QR decomposition. In 

order to make further comparison, we give out the PSNR 

of reconstructed images based on various sensing 

matrices with different sampling rates in Table I. Fig. 4 

shows us the PSNR curves versus subrate based on 

different sensing matrices. 

From Table I and Fig. 4, for any sampling rate, the 

PSNR of reconstructed images can be improved 

significantly with the optimized sensing matrices 

proposed in this paper than other matrices. 

TABLE I.  THE PSNR (DB) OF RECONSTRUCTED IMAGE BASED ON 

DIFFERENT SENSING MATRICES WITH DIFFERENT SAMPLING RATES  

Sensing matrix 

Subrate 

0.3 0.4 0.5 0.6 0.7 

Gaussian matrix 22.04 24.41 27.03 28.87 30.14 

Elad’s matrix 22.94 24.68 26.73 29.08 30.41 

Sapiro’s matrix 21.28 24.05 29.17 30.42 30.55 

Xu’s matrix 22.55 24.59 29.09 30.53 30.64 

Chen’s matrix 23.44 24.53 30.26 30.85 30.72 

QR matrix 23.60 26.53 31.05 32.18 32.72 

SVD matrix 24.71 25.60 31.08 32.33 32.96 
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Figure 4.  PSNR curves vs. subrate based on different sensing matrices 
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Figure 5.  The histogram of the absolute off-diagonal entries of the 
Gram matrices of various measurement matrices: (a) Gaussian matrix, 

μ=0.7, (b) Elad matrix, μ=0.78, (c) Sapiro’s matrix, μ=0.63, (d) Xu’s 
matrix, μ=0.64, (e) Chen’s matrix, μ=0.66, (f) proposed QR based 

matrix, μ=0.61 (g) proposed SVD based matrix, μ=0.60.  

C. Distribution of the Absolute Values of the off-

Diagonal Entries of the Coherence Matrix 

In this part, we compare the histograms of the absolute 

values of the off-diagonal entries of the Gram matrices of 

the proposed sensing matrices with other existed sensing 

matrices, namely, Gaussian random matrix, Elad’s 

optimized matrix, Sapiro’s learned matrix, Xu’s matrix 

and Chen’s frame based matrix. Fig. 5 gives the detailed 

results in which we use a random orthogonal dictionary 
200 400R   with entries drawn from i.i.d. zero mean and 

unit variance Gaussian distributions. In Fig. 5, the 

abscissa stands for the value of the elements and the 

ordinate stands for the number of elements fallen in each 

range. The measurement number m is equal to 30 . From 

Fig. 5, the distributions of the off-diagonal entries of the 
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two proposed approaches are obviously better than 

Gaussian matrix. In order to make comparison more 

clearly, the values of μ defined in Eq. (5) for various 

sensing matrices are given in Fig. 5. It’s well known that 

the smaller the  , the weaker the mutual coherence 

between the sensing matrix and the sparsifying dictionary 

is. We can find from Fig.5 that the proposed optimized 

sensing matrices have smaller   than others. 

VII. CONCLUSION 

It’s of great importance to design good and efficient 

sensing matrices for compressed sensing. The design 

method based on Parseval tight frame proposed by Chen 

is proven superior to the state-of-art designs. Based on 

this method, we propose optimized approaches to further 

reduce the mutual coherence of the coherence matrix 

combining with the matrix decomposition theory. The 

simulation results show that our proposed algorithm 

obviously improve the signal reconstruction performance. 

It offers a new idea to optimize the sensing matrix by 

considering the mutual coherence and the MSE 

performance at the same time. 
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