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Abstract—Chaos represents interesting features that are suitable 

for the cryptography domain. One-dimensional chaotic maps are 

widely used for security issues due to their simplicity and chaotic 

behavior versus other multidimensional chaotic maps that can be 

complex for hardware implementation and hard to analyze. 

However, classical one-dimensional chaotic maps present a 

reduced range of chaotic behavior. In this paper, we propose two 

new piecewise compound one-dimensional chaotic maps; an 

Altered Sine-Logistic map based on Tent map (ASLT) and a 

combined Cubic-Tent map (CT). The proposed compound maps 

combine classical and simple one-dimensional chaotic maps to 

produce an extensive range of chaotic behavior. The ASLT 

system comprises a combined Sine-Tent map in the first piece of 

the function and a combined Logistic-Tent map in the second 

piece of the function. Then, the CT map is based on the nonlinear 

fusion operation between the Cubic map and the piecewise Tent 

map. Simulation results and chaotic behavior analysis are 

provided using the bifurcation diagram, Lyapunov exponent, 

initial sensitivity, and Shannon entropy measure. The evaluation 

results demonstrate the effectiveness of the proposed 1D maps 

with better chaotic performances, chaotic range, and complexity 

compared to their corresponding classical chaotic maps. The 

simple structure and effectiveness of the proposed systems make 

them suitable for chaos-based cryptography providing better 

security strength and more randomness. 

 

Index Terms—Chaotic map, chaotic range, Lyapunov exponent, 

bifurcation diagram, Initial sensitivity 

 

I. INTRODUCTION 

Nowadays, information security represents an important 

requirement with the advancement in communication and 

technology. In particular, the security of the transmitted 

images, which include personal information. Various 

image encryption schemes have been introduced in order 

to ensure real-time secure image transmission. 

In the past two decades, there has been a significant 

interest in the chaotic system and its use for image 

cryptography [1]–[5] among various encryption methods 

due to its interesting properties, such as initial sensitivity, 

pseudo-randomness, and unpredictability. In particular, 

standard 1D chaotic systems are widely  used  because  of  

 

 

 

their simplicity and dynamic behavior. However, they are 

not secure and cannot resist many well-known attacks such 

as chosen-plaintext attack, known-plaintext attack, brute 

force attack because of their limited and interrupted chaotic 

range, low chaotic complexity, and higher dynamic 

behavior degradation rate [4]. Therefore, researchers aim 

to improve the chaotic properties of the 1D chaotic map by 

combining standard ones to provide better security strength 

and more randomness [4], [6]–[9]. 

Zhu et al. proposed a new compound chaotic system 

based on Sine and Tent chaotic maps (STS) to extend the 

chaotic range and increase the chaotic performance of 1D 

discrete chaotic maps [10]. The new 1D map is used to 

generate S-boxes then double S-boxes are used for image 

encryption purposes making the cryptosystem more secure 

and reducing the time cost. Wang et al. introduced a new 

and improved 1D sinusoidal chaotic map (I1DS) for image 

encryption. The proposed map combines standard and 

simple one-dimensional chaotic maps (Logistic and Sine) 

[6]. The chaotic behavior of the new chaotic map is 

improved, but it is still not chaotic at some points in the 

range [0,1]. Zhu et al. proposed a new combination of 

Logistic and Tent chaotic maps to produce chaotic 

sequences [11]. Then the combined map with a proposed 

fitness function is used to generate an efficient S-box, 

which will be used for image encryption. 

Farah et al. proposed a new hybrid chaotic map that 

exhibits an excellent randomness performance and 

sensitivity. The new chaotic map is composed of the 

Logistic map, Tent map, and Sine map [12]. It presents 

high values of Lyapunov exponents and Shannon entropy. 

Li et al. proposed Compressive Sensing (CS) based image 

compression, authentication, and encryption in the cloud 

[1]. For that, a new Logistic-Tent-Sine chaotic map (LTSS) 

is proposed; the proposed map has a more extensive 

chaotic range and better chaotic behavior than standard 1D 

chaotic maps. The LTSS is used to construct a Binary Data 

Cyclic Encryption algorithm (BDCE) chaotic stream 

cipher for encrypting the low-frequency part of images. 

This paper proposes new combined one-dimensional 

chaotic maps based on the standard 1D chaotic maps. The 

first map is based on altering the Sine and the Logistic map 

into the piecewise Tent map (ASLT). Furthermore, the 

second 1D proposed chaotic map is the Cubic-Tent map 

(CT), it is based on the Cubic and the Tent maps. The 
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compound maps have an improved extensive chaotic range 

and better chaotic performance and efficiency than the 

standard one-dimensional systems. To demonstrate the 

effectiveness of proposed systems, they are evaluated in 

terms of the bifurcation diagram, Lyapunov exponent, 

initial state sensitivity, and Shannon entropy. The 

simulation results and chaotic behavior analysis prove the 

extensive chaotic range of the ASLT without any 

interruption and the CT map with some interruptions. In 

addition, the results prove the high sensitivity of the 

proposed combined chaotic maps, thus a good randomness 

property suitable for a good level of security for an 

efficient cryptosystem. The paper is organized as follows. 

Section 2 introduces the standard maps and the new 

proposed 1D maps. Section 3 presents the simulation 

results, the performance analysis, and the comparison of 

the new proposed chaotic maps with their corresponding 

standard maps. Finally, some concluding remarks and 

perspectives are given in Section 4. 

II. THE PROPOSED 1D COMBINED CHAOTIC SYSTEMS 

Different chaotic functions are proposed to build the 

chaotic maps, which can be complex for hardware 

implementation and challenging to analyze. For these 

reasons, simpler one-dimensional chaotic maps are chosen 

for image encryption instead of complicated and 

multidimensional chaotic maps. This section first reviews 

four standard 1D chaotic maps: The Logistic, Sine, Tent, 

and Cubic maps. Second, these maps will be used for 

constructing two new 1D chaotic systems. 

A. Standard One Dimensional Chaotic Maps 

1) Logistic Map: The Logistic map is one of the simplest 

chaotic maps, which has been frequently exploited by 

research for many applications like image encryption [11]-

[13]. It is a polynomial mapping of degree 2, introduced 

by Robert in 1976 [14]. One dimensional Logistic map 

generates 1-D sequences in [0, 1], it is described as follows: 

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛) (1) 

where n is the map iteration index, 0 ≤ 𝑟 ≤ 4  is the 

control parameter and 𝑥0 is the initial condition. From the 

bifurcation diagram Fig. 1.b we notice some periodic (non-

chaotic) discontinuous chaotic windows before 𝑟 = 3.99.  

 

(a) (b) 

Fig. 1. Lyapunov graph (a) and bifurcation diagram (b) of the Logistic 

map. 

To address this problem, values corresponding to positive 

Lyapunov exponents should be selected for parameter 𝑟 to 

keep the effectiveness of the cryptosystem. Therefore, the 

values of 𝑟  should be ∈ [3.5699456,4] , this interval 

represents the chaotic region of the Logistic map as shown 

in Fig. 1.a, but some points in this region still did not 

present a chaotic behavior. Then, the Logistic map has a 

limited chaotic and interrupted chaotic range that can be 

beneficial for brute-force attacks. 

2) Tent Map: The Tent map is a piecewise function that 

generates chaotic sequences in [0 1]. Mathematically, its 

generalized form can be defined as [15]:  

𝑥𝑛+1 = {
𝑟𝑥𝑛,                𝑖𝑓 𝑥𝑛 < 1/2

𝑟(1 − 𝑥𝑛),     𝑖𝑓 𝑥𝑛 ≥ 1/2
 

(2) 

Here the range of 𝑟 is [0,2], but the Tent map exhibits 

chaotic behavior for every value of the control parameter 

𝑟 ∈ [1,2] as shown in Fig. 2, which chaotic range is better 

than that of the Logistic map. 

 
(a)  (b) 

Fig. 2. Lyapunov graph (a) and bifurcation diagram (b) of the Tent map 

3) Sine Map: The Sine map is another commonly used 

one-dimensional chaotic map; it is based on the sine 

function that maps the input angle within the interval [0, 1] 

into the same interval [16]. Mathematically, the Sine map 

is described by 

𝑥𝑛+1 = 𝑟 sin(𝜋𝑥𝑛), (3) 

where the control parameter 𝑟 ∈ [0,1] . To observe the 

chaotic behaviors of the Sine map, its Lyapunov exponent 

and bifurcation diagram are presented in Fig. 3.a and Fig. 

3.b, respectively. The Sine map is chaotic when 𝑟  is ∈
[0.867,1], thus chaotic range is limited and interrupted, 

having the same behavior as the Logistic map. 

  
(a) (b) 

Fig. 3. Lyapunov graph (a) and bifurcation diagram (b) of the Sine map. 

4) Cubic Map: The Cubic map is another commonly 

used map to generate chaotic sequences. It produces 

chaotic sequences in [0,1]. It is defined by [17]: 

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛
2), (4) 
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𝑟 represents the control parameter of the map, it is ranged 

in [0,3]. The Cubic map is chaotic when 𝑟 is ∈ [2.59,3], 
therefore, the chaotic range is also limited and presents 

many interruptions, as shown in Fig. 4. 

         
                                   (a)                                                                    (b) 

Fig. 4. Lyapunov graph (a) and bifurcation diagram (b) of the Cubic map. 

B. New Proposed Combined 1D Chaotic Maps 

Motivated by compound one-dimensional chaotic maps, 

this section proposes two new 1D piecewise maps based 

on combinations of existing 1-D chaotic maps. 

1) Altered Sine-Logistic based Tent map: In our paper, 

we propose a new combined one-dimensional chaotic map 

based on piecewise Tent map by altering the Sine map and 

the Logistic map. The ASLT is defined as follows: 

𝑥𝑛+1 = {

4 − 𝑟

4
sin(𝜋𝑥𝑛) +

𝑟

2
𝑥𝑛                     𝑖𝑓  𝑥𝑛 < 0.5

(4 − 𝑟)𝑥𝑛(1 − 𝑥𝑛) +
𝑟

2
(1 − 𝑥𝑛)  𝑖𝑓  𝑥𝑛 ≥ 0.5

 
(5) 

where 𝑟  is the control parameter in the range [0,4], the 

combined map exhibits a chaotic behavior when 𝑟 ∈ [0,4] 
as shown in Fig. 5, meaning that the proposed map is 

always chaotic in the definition domain. Fig. 5.a and Fig. 

5.b represent the Lyapunov exponent and the bifurcation 

diagram of the ASLT system, respectively. We can see that 

the chaotic range of the ASLT map is much larger than 

their corresponding chaotic maps (Logistic, Sine, and Tent 

maps). The proposed map outputs uniformly distributed 

sequences within [0, 1] (see Fig. 5.b). Hence, the proposed 

ASLT map exhibits better chaotic performances. 

       
(a)                                                     (b)  

Fig. 5. Lyapunov graph (a) and bifurcation diagram (b) of the New 

proposed ASLT map.  

2) Cubic-Tent map: The second proposed 1D chaotic 

map is the piecewise Cubic-Tent (CT) map. It is composed 

of the Cubic map and the Tent map as follows: 

𝑥𝑛+1 =

{
 
 

 
 𝑚𝑜𝑑 ((4 −

3

4
𝑟)𝑥𝑛(1 − 𝑥𝑛

2) +
𝑟

2
𝑥𝑛, 1)  𝑖𝑓 𝑥𝑛 < 0.5

𝑚𝑜𝑑 ((4 −
3

4
𝑟)𝑥𝑛(1 − 𝑥

2) +
𝑟

2
(1 − 𝑥𝑛), 1)  𝑖𝑓 𝑥𝑛 ≥ 0.5

 

(6) 

where 𝑟 is the control parameter, 𝑛 is the iteration number, 

and the 𝑚𝑜𝑑  is the modulo operation. The modulo 

operation is to ensure output data within the range of [0,1]. 

Fig. 6 presents the Lyapunov exponent and the bifurcation 

diagram of the CT map, respectively; it shows a chaotic 

behavior in the entire interval [0,4] , with some 

interruptions. 

        
                                       (a)                                                        (b) 

Fig. 6. Lyapunov graph (a) and bifurcation diagram (b) of the New 

proposed Cubic-Tent map. 

III. RESULTS AND DISCUSSIONS 

This section presents the experimental setup and results 

of the presented paper. Initially, chaotic maps were 

implemented using MATLAB R2018b on a 64-bit 

machine having a Corei5 processor and 8 GB RAM. The 

chaotic performance and dynamic properties of the 

proposed maps compared to their corresponding 1D maps 

are studied in this section. The comparison is performed 

using the bifurcation diagram, Lyapunov Exponent (LE), 

initial sensitivity, and Shannon Entropy (SE). We use the 

same range, 𝑟 ∈ [0,4], in all experiments. The analysis and 

comparison results demonstrate that the proposed ALST 

map and the CT map have better chaotic performance than 

their corresponding standard chaotic maps. 

A. Bifurcation Diagram 

The bifurcation diagram shows the quantitative behavior 

of a chaotic system; it represents the relationship between 

the chaotic system and the control parameter. Chaotic 

system offers a chaotic behavior when the orbits released 

from an initial value can cover the whole phase space. Fig. 

5.b and Fig. 6.b display the bifurcation diagrams of the 

newly altered Sine-Logistic-based Tent map and the 

Cubic-Tent map, respectively. We notice that their entire 

phase spaces along with their control parameters are totally 

covered with points. Then, the distributions of their 

densities are more uniform than their corresponding 

standard maps. In contrast, the classical chaotic maps 

outputs are not spread out in the entire data range, and they 

have a sizeable non-chaotic range. Thus, the ASLT map 

and the CT map ensured property makes them suitable for 

image encryption. To get more precision about the chaotic 

range, we need more tools, such as the method of 

Lyapunov exponent, to justify the chaotic behavior. 

B. Lyapunov Exponent 

Lyapunov Exponent (LE) represents an important tool 

to test the chaotic behavior. It is widely used in the world 

of chaos [18]. The Lyapunov exponent 𝜆  quantifies the 

sensitivity dependence on the initial condition of a 

dynamic system at a given point. The much larger is the 

Lyapunov exponent, the better are the chaotic proprieties 

[1]. As is well known, for a dynamical system, a positive 
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Lyapunov exponent means chaotic behavior occurs in the 

dynamical system [10]. For a non-linear one-dimensional 

discrete chaotic map 𝑓, its Lyapunov exponent is given by: 

𝜆 = lim
𝑛→+∞

1

𝑛
∑ ln|𝑓𝑟

′(𝑥𝑖)|

𝑛−1

𝑖=0

, 
(7) 

Lyapunov exponents represent the strength of the 

sensitivity to the initial conditions. where n is the iteration 

number and 𝑟 is the control parameter. Fig. 7 and Fig. 8 

illustrated the Lyapunov exponents, with the variation of 

the parameter r, of the proposed maps (ALST and CT) and 

the standard maps. The LE of ALST and CT maps is larger 

than the Logistic, Tent, Sine, and Cubic maps. We notice 

that the maximum LE of the proposed ALST and CT maps 

are more significant than their corresponding standard 

maps with values 0.6995 and 1.0373, respectively (see 

Table I). The LE values of the enhanced maps are always 

positive in the entire range of the parameter settings 𝑟 ∈
[0,4] except for some points of the CT map. These results 

indicate that our chaotic compound maps exhibit a wider 

chaotic range and better chaotic performance that provides 

a high security level. 

TABLE I: MAXIMUM LE AND MEAN SHANNON ENTROPY OF DIFFERENT 

CHAOTIC MAPS 

Chaotic maps   Maximum LE Mean SE  

Logistic map 0.6930 0.9222 

Tent map 0.6931 2.8827 

Sine map 0.6850 1.1066 

Cubic map 1.0980 1.3591 

ASLT map 0.6995 7.9158 

Cubic-Tent map 1.0373 7.7239 

 

 
Fig. 7. Lyapunov Exponents of standards 1D chaotic systems vs the 

proposed ASLT map. 

 
Fig. 8. Lyapunov Exponents of standards 1D chaotic systems vs the 

proposed CT map. 

C. Sensitivity of New Maps 

To measure the sensitivity of the new combined maps to 

the initial value and control parameter, we apply a tiny 

change to the initial value and generate two trajectories 

with the same control parameter. Then, we apply a tiny 

change to the control parameter and generate two 

trajectories with the same initial value, respectively. Figure 

9.a shows four orbits 𝑋𝑛 with fixed control parameter and 

a very close initial values 𝑥1(0) = 0.1  and 𝑥2(0) =
0.1001  of the CT map and ASLT map, respectively. 

Figure 9.b presents four orbits of 𝑋𝑛  with fixed initial 

values and a very close control parameter 𝑟1 = 3.8  and 

𝑟2 = 3.8001. We can see from Fig. 9 and Table II that the 

orbits of the ASLT map follow different ways after eight 

iterations when the initial condition changes and ten 

iterations when the control parameter changes. The orbits 

of the CT map follow different ways after three iterations 

and ten iterations with the changes of the initial condition 

and the control parameter values, respectively, as shown in 

Table III. These results show the high sensitivity of the 

proposed combined maps next to the initial condition and 

control parameter. The initial sensitivity results reflect the 

higher randomness of the proposed ASLT and CT maps.  

TABLE II: SENSITIVITY ANALYSIS OF ASLT MAP 

Iteration n 𝒙𝟏 = 𝟎. 𝟏 𝒙𝟐 = 𝟎. 𝟏𝟎𝟎𝟏 𝒓𝟏 = 𝟑. 𝟖 𝒓𝟐 = 𝟑. 𝟖𝟎𝟎𝟏 

1 0.10 0.10 0.10 0.10 

2 0.21 0.21 0.21 0.21 

3 0.42 0.42 0.42 0.42 

4 0.85 0.85 0.85 0.85 

5 0.31 0.31 0.32 0.32 

6 0.64 0.64 0.64 0.64 

7 0.73 0.73 0.73 0.73 

8 0.56 0.55 0.56 0.56 

9 0.88 0.90 0.88 0.88 

10 0.24 0.19 0.24 0.25 

TABLE III: SENSITIVITY ANALYSIS OF CUBIC-TENT MAP 

Iteration n 𝒙𝟏 = 𝟎. 𝟏 𝒙𝟐 = 𝟎. 𝟏𝟎𝟎𝟏 𝒓𝟏 = 𝟑. 𝟖 𝒓𝟐 = 𝟑. 𝟖𝟎𝟎𝟏 

1 0.10 0.10 0.10 0.10 

2 0.30 0.30 0.30 0.30 

3 0.89 0.90 0.90 0.90 

4 0.41 0.40 0.41 0.41 

5 0.16 0.15 0.16 0.16 

6 0.49 0.47 0.49 0.49 

7 0.36 0.31 0.36 0.36 

8 0.03 0.90 0.03 0.03 

9 0.10 0.38 0.10 0.10 

10 0.29 0.09 0.29 0.30 

 

(a) 
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(b) 

Fig. 9. The sensitivity of ASLT an CT maps to (a) changes of the initial 

value 𝑥0 (b) changes of control parameter r. 

 
Fig. 10. Shannon Entropy of the proposed maps and their corresponding 

classical maps. 

D. Shannon Entropy 

The Shannon Entropy (SE) is used to measure the 

randomness of a sequence [16]. We calculate the SE for 

each control parameter 𝑟 ∈ [0,4]  f chaotic maps for 

10000-time series to test the randomness of the output 

sequences of different chaotic maps. Fig. 10 shows the 

Shannon entropy values of the ASLT and CT maps; 

proposed maps present much larger entropy values than 

classical maps. ASLT and CT maps Shannon entropies are 

very close to 8 when 𝑟 ≥ 1.5. Moreover, these maps have 

a large SE in the entire parameter interval. The obtained 

mean SE values, shown in Table I, prove the random 

distribution of the sequences generated by the proposed 

maps with SE ≈ 8. As shown in Fig. 7 and 8, the SE curves 

(Red and black) of the improved maps lie above their 

corresponding standards maps in the entire range of r, 

showing great randomness property. While the classical 

maps have randomness in small intervals, and their SE 

values are much less than the proposed maps. 

IV. CONCLUSION 

This paper proposed two compound one-dimensional 

chaotic maps: The Altered Sine-Logistic based on a 

piecewise Tent map (ASLT) and the Cubic-Tent map (CT). 

The proposed maps are based on the nonlinear fusion 

operation of standards 1D chaotic maps. The chaotic 

behaviors of the newly proposed ASLT and CT systems 

were evaluated using the bifurcation diagram, Lyapunov 

exponent, initial sensitivity, and Shannon entropy, 

presenting better chaotic performance and sensitivity 

compared to existing 1D chaotic maps. The results show 

the good performances of the proposed 1D maps 

exhibiting more uniform distribution, an extended range of 

the chaotic region, more initial sensitivity, and more 

randomness than their corresponding standards 1D chaotic 

maps. Furthermore, future work will use the ASLT and CT 

maps to generate S-boxes for image encryption 

applications. 
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