
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 8, September-October 2004

Cite this article as follows: Benjamin Lopez, Francisco Ortin, Javier Noval: “Reflection as the
basis for Developing a Dynamic SoC Persistence System”, in Journal of Object Technology, vol.
3, no. 8, September-October 2004, pp. 121-145. http://www.jot.fm/issues/issue_2004_09/article2

Reflection as the Basis for Developing a
Dynamic SoC Persistence System

Benjamin Lopez, Francisco Ortin and Javier Noval, Computer Science
Department, University of Oviedo, Spain

Abstract
Persistence is a common application requirement that is usually taken into account
when the program is being developed. Different emerging techniques following the
Separation of Concerns principle are focused on detaching crosscutting concerns, like
persistence, from the main application code. Although this is a profitable principle,
existing tools lack two main features: runtime adaptability and language independence.
This paper shows how computational reflection can be employed as a suitable
technique to overcome the two previous limitations, offering dynamic adaptation of
persistence features in a language independent way and achieving transparent
separation of the application’s persistence concern.

1 INTRODUCTION

Persistence capabilities are usually granted to applications by the use of explicit access to
database management systems (DBMS), such as object-oriented databases or object-
relational mapping products. Tangling application functional code with explicit SQL or
OQL persistence statements makes up the final application.

A different approach is the support for persistent objects into object-oriented
languages. Taking Java as an example, PJava (Persistent Java) [Atkinson 1996] provides
a persistent programming environment for the Java programming language, based in an
orthogonal persistent variant of the Java platform and machine. Other initiatives use
persistent storage engines (like ObjectStore PSE or Jeevan Java Objects) offering an API
to endow the programming language with persistence functionality.

Whichever the previous alternative we select, application development will suffer
from the following drawbacks:

1. Legibility and maintainability. Since additional code not related to the application
logic is tangled through the source code to have the added database functionality,
legibility and maintainability of the source code suffers a fall.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_09/article2

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

2. Portability suffers as well. There is a direct dependence of the persistence
mechanism explicitly in the application implementation. Changes in persistence
issues, imply changing the application implementation.

3. Poor adaptability. Adaptation of persistence related aspects, such as adding a new
indexing technique, are commonly made by changing and recompiling the source
code. There is no possibility to adapt these features to runtime emerging
requirements, unpredicted at design time.

4. Persistence functionality reuse. Commonly, similar fragments of code achieving
the same functionality differing from data structure, implies redundant code not
being refactored and reused. With the separation of persistence concerns and the
use of reflection, this routines could be generic and, therefore, reusable.

5. Complexity. While the programmer is developing the application functionality,
she has to make explicit calls to the introduced APIs and/or the extensions added
to the programming language, not being possible to reason about application logic
in isolation.

Aspect oriented software development [Kiczales 1997] is an innovative paradigm focused
on obtaining Separations of Concerns (SoC) [Parnas 1972, Hürsch 1995] in software
development, making possible to modularize crosscutting aspects of a system. Most
existing aspect-oriented tools are language dependent and lack runtime adaptability –few
offer runtime adaptation in a very limited way.

Following the SoC principle, we have developed a different approach to the task of
adding persistence functionality to programming languages, which is based on the notion
of employing language-neutral reflection. This means that the user does not need to take
special action to make objects persist (no explicit tangled code is needed) and so,
complexity, legibility and portability problems are not a concern.

We have implemented a reflective platform called nitrO [Ortin 2002] that,
independently of the programming language selected by the programmer, offers a great
level of runtime adaptability. Over this platform, we have developed a persistence
framework that allows dynamic changes to persistence related aspects (for example,
dynamic change of indexing techniques for a given application), not needing to specify it
in the application’s code. This application adaptation is performed at runtime, not
needing to modify its functional code, and can be carried out in a programmatically way
–i.e., the application itself, or another one, may change its persistence features at runtime.

The rest of the document is organized as follows. In the next section we present
aspect-oriented programming and the main lacks of existing tools. Section 3 briefly
describes current systems that use AOP to create persistence applications. Section 4
introduces the architecture of the nitrO platform, and the persistence system design is
presented in section 5. A sample scenario demonstrating different system’s capabilities is
described in section 6. Finally, we analyze system benefits as well as its runtime
performance (section 7), and section 8 presents the ending conclusions.

ASPECT ORIENTED SOFTWARE DEVELOPMENT

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 123

2 ASPECT ORIENTED SOFTWARE DEVELOPMENT

In many cases, significant concerns in software applications are not easily expressed in a
modular way. Examples of such concerns are transactions, security, logging or
persistence. The code that addresses these concerns is often spread out over many parts of
the application. Software engineers have used the principle of SoC to manage the
complexity of software development [Parnas 1972, Hürsch 1995]; it separates main
application algorithms from special purpose concerns. Final programs are built by means
of its main functional code plus their specific problem-domain concerns. Its main benefits
are a higher level of abstraction, easier to understand the application’s functionality,
concern’s code reuse, and the increase of application development productivity.

This principle has been performed following several approaches such as
Composition Filters [Bergmans 1994], Multi-Dimensional Separation of Concerns [Tarr
1999]) or, the most extended and advanced one, Aspect Oriented Software Development
(AOSD).

Aspect-Oriented Software Development (AOSD) is a promising discipline that
follows the SoC principle at any stage of the software lifecycle. AOSD is an evolution of
the Aspect Oriented Programming (AOP) [Kiczales 1997].

AOP is an implementation technique that provides explicit language support for
modularizing application concerns that crosscut the application functional code. Aspects
express functionality that cuts across the system in a modular way, thereby allowing the
developer to design a system out of orthogonal concerns and providing a single focus
point for modifications. By separating the application functional code from its
crosscutting aspects, the application source code would not be tangled, being easy to
debug, maintain and modify [Parnas 1972].

Dynamic Weaving

Most current AOP implementations are largely based on static weaving: compile-time
modification of application source code, inserting calls to specific aspect routines. The
places where these calls are inserted are called join points. The aspect weaver is the
program that integrates aspects into the main application code. AspectJ [Kiczales 2001] is
an example of a static-weaving aspect-oriented tool: a general-purpose aspect-oriented
extension to Java that supports aspect-oriented programming.

It is commonly accepted to have preprocessor-like aspects weavers to interconnect
functional code and aspect code. However, sometimes it is desirable to postpone the
decision about whether aspect information is to be added to an application or not until
runtime. For instance, one may have a huge resource-consuming image processing
algorithm as part of an application and, depending on system load and available
computing nodes, a trade-off between data distribution, the memory allocation scheme,
and the utilization of computing power at runtime, has to be made [Schult 2002]. Both

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

memory allocation and calculation distribution are crosscutting concerns, but the
selection must be performed at runtime by the application in a programmatically way.

Our previous example identifies a weakness of traditional approaches to aspect
oriented programming. Typically, one has to decide at compile time whether an aspect
should be interwoven or not. Besides, at runtime, one can neither unweave the aspect nor
interweave another aspect with the application.

In order to overcome the static-weaving weaknesses, different dynamic-weaving
approaches have emerged: AOP/ST [Böllert 1999], PROSE [Popovici 2001], Dynamic
Aspect-Oriented Platform (DAOP) [Pinto 2001], Java Aspects Components JAC [Pawlak
2001], CLAW [Lam 2002] or LOOM.NET [Schult 2002] are different examples. These
systems give the programmer the ability to dynamically modify the aspect code assigned
to application join points. However, they offer a limited set of language join-points,
restricting the amount of application features an aspect can adapt. For instance, PROSE
cannot implement a post-condition-like aspect, since its join-point interface does not
allow accessing the value returned by a method upon exit [Popovici 2001]. They have
been used to develop different AOP programs, but the limited set of join-points they offer
do not make them suitable for real-world persistence scenarios [Rashid 2003].

Language Neutrality

Both static and dynamic weaving AOP tools do not offer the implementation of
crosscutting concerns, regardless of the language the programmer might use. They
employ fixed-language techniques to achieve separation of concerns.

We have identified computational reflection [Maes 1987] as the best technique to
overcome the two previously mentioned limitations. In this paper, we present a reflective
approach to develop a language-neutral dynamic-weaving persistence system.

3 THE BACKGROUND TO PERSISTENCE AS AN ASPECT

In the AOSD literature, persistence is often described as a classical candidate for
aspectization [Mens 1997, Suzuki 1999]. Theoretically, it should be possible to:

• Modularize persistence as an effective aspect employing AOP techniques.
• Reutilize persistence aspects, independently of the kind of application.
• Develop programs unaware of the persistent nature of its data.

Analyzing different implementations of persistence aspects, we realize that the previous
goals are not easily achieved in real world examples. As a first example, PersAJ [Rashid
2000] provides a prototype to store aspects in an object-oriented database. In order to
keep the persistence model independent of a particular AOP approach, an aspect is used
to describe the persistence representation of aspects. Its aim is to provide a model for
aspect persistence, but application data and persistence code is not separated. On the
other hand, Kielze and Guerraoui [Kielze 2002] provided an assessment of AOP based on
separating concurrency control and failure handling code in a distributed system.

THE BACKGROUND TO PERSISTENCE AS AN ASPECT

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 125

However, they investigated a case study on aspectizing transactions, only one facet of
persistence –modularization of code dealing with storage and retrieval of application data
was not dealt with in detail. Another study has been performed trying to develop a
persistence system with AspectJ [Rashid 2003]. Their conclusion was that the
development of persistence aspects and applications could not be done independently one
of each other. Storage and update of persistent data does not need to be accounted for, but
retrieval and deletion must be explicitly considered.

Therefore, the existing aspect tools do not seem to be really suitable for developing
persistence aspects, following the main aim of the Separation of Concerns principle.
Apart from that, really flexible aspect tools that offer dynamic weaving are not available
and all of them are language dependent. We will show how reflection is a more suitable
technique for these purposes.

Dynamic Adaptation of Persistence Issues

Apart from being able to dynamically make objects persist and give them back to its non-
persistent state, it is interesting to adapt their persistent features in a programmatically
way. Based on conditions arisen at runtime, an application could customize features such
as the indexing mechanism or update policy employed.

Object-oriented persistence systems have special features to take into account: the
existence of inheritance and aggregation hierarchies and the potential presence of method
invocations. Thus, different indexing mechanisms are needed to allow an efficient
processing of persistent data under these circumstances.

Many indexing techniques for object-oriented models have been proposed, which
can be classified into structural and behavioral [Bertino 1995]. Depending on the most
frequent type of query on a given class (or class hierarchy), some indexing techniques are
more efficient than others. Therefore, the persistence system will allow the use of
different indexing mechanisms as well as the dynamic selection of a specific one deemed
as the most appropriate depending on the type of the class (or class hierarchy) in
question.

Another important persistence variable is the update frequency. It is a common
trade-off between safety and performance: the higher the update frequency, the lower the
loss of data plus the worse performance –and vice versa. So, depending on situations
detected at runtime, our persistence system could chose between system safety and
performance.

As we will show afterwards, our system offers dynamic selection of the storage,
indexing mechanism and update policy programmatically.

4 THE NITRO REFLECTIVE SYSTEM

The main technique we have used to achieve system goals is reflection. Reflection is the
capability of a computational system to reason about and act upon itself, adjusting itself

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

to changing conditions [Maes 1997]. Its computational domain is enhanced by its own
representation, offering its semantics and structure as computable data.

Although there exists many different classifications [Ortin 2003], we will just focus
on runtime computational reflection: customization of system structure and semantics. An
example is the dynamic modification of the message-passing semantics, in order to
update objects in a database every time their state is modified.

Meta-Object Protocols (MOPs) is the most famous mechanism employed to obtain
runtime computational reflection [Kizcales 1991]. However, they basically have two
drawbacks: all of them use a fixed programming language, and they offer a too limited
set of primitives to develop highly adaptable systems [Ortin 2002]. That was the reason
why we developed nitrO, a non-restrictive computational-reflective system [Ortin 2002].
It offers much more adaptability than existing MOPs and is language neutral –i.e. it can
be programmed in any programming language.

The theoretical definition of reflection [Smith 1982], considers that a reflective
computation is a computation about the computation, i.e. a computation that accesses the
interpreter (what is call reification). We have designed nitrO following this concept: if an
application would be able to access its interpreter at runtime, it could modify its structure
and customize its language semantics. In this way, we have developed a generic
interpreter (Figure 1) capable of interpreting any programming language by previously
reading its specification. This generic interpreter is language-independent: its inputs are
both the user application and the language specification.

Generic
Interpreter

runs

“B” Language
Specification

“A” Application

reads

“A” Language
Specification

“B” Application

Modification
expressed

using Python
code

Modification
expressed
using Python
code

Fig. 1. Architecture of the nitrO system.

At runtime, any application may access language specifications by using the whole
expressiveness of a meta-language: the Python programming language. There are no
previously specified restrictions imposed by a meta-object protocol –any feature can be
adapted. Runtime changes to language specifications are automatically reflected on the
application execution because the generic interpreter relies on the language specification

THE NITRO REFLECTIVE SYSTEM

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 127

while the application is running. This feature is offered by the reify statement that the
generic interpreter automatically recognizes.

This mechanism is language neutral. Any application, whatever its language would
be, may access and adapt another program in a language independent way. The meta-
language employed is always Python.

Language Specification

Programming languages are detailed in nitrO with language specification files. Their
lexical (Scanner section) and syntactic (Parser section) features are expressed by
means of context-free grammar rules; their semantics, by means of Python code, placed at
the end of each rule (between <# and #> characters).

We have specified Python and Java and some domain-specific languages. Currently
we are specifying ECMAScript. Correctness verification (e.g., type checking) is
expressed inside the semantic actions using Python code. The next specification is a first
example of a VerySimple language definition without any semantic correctness
verification:

Language = VerySimple

Scanner = {
 "Digit Token"
 digit -> "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9" ;
 "Number Token"
 NUMBER -> digit moreDigits ;
 "Zero or more digits token"
 moreDigits -> digit moreDigits
 | ;
 "Character Token"
 char -> "a"|"b"|"c"|"d"|"e"|"f"|"g"|"h"|"i"|"j"|"k"|
 "l"||"n"|"o"|"p"|"q"|"r"|"s"|"t"|"u"|"w"|"x"|
 "y"|"z" ;
 "Character or Digit Token"
 charOrDigit -> char | digit ;
 "ID Token"
 ID -> char moreCharsOrDigits ;
 "Zero or more chars or digits token"
 moreCharsOrDigits -> charOrDigit moreCharsOrDigits
 | ;
 "SEMICOLON Token" SEMICOLON -> ";" ;
 "ASSIGN token" ASSIGN -> "=" ;
}

Parser = {
 "Initial Context-Free Rule"
 S -> statement moreStatements SEMICOLON <#
 global vars
 vars={}
 nodes[1].execute()

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

 nodes[2].execute() #> ;
 "Zero or more Statements"
 moreStatements -> SEMICOLON statement moreStatements <#
 nodes[2].execute()
 nodes[3].execute() #>
 | ;
 "Statement"
 statement -> _REIFY_ <# nodes[1].execute() #>
 | assignment <# nodes[1].execute() #>
 | expression <#
 nodes[1].execute()
 write("Expression value: "+
 str(nodes[1].value)+".\n") #> ;
 "Assignment Statement"
 assignment -> ID ASSIGN expression <#
 nodes[3].execute()
 vars[nodes[1].text]= nodes[3].value #> ;
 "Binary Expr. Factor"
 expression -> ID <# nodes[0].value=vars[nodes[1].text] #>
 | NUMBER <# nodes[0].value=int(nodes[1].text) #> ;
}

Skip = {"\t"; "\n"; " ";}
NotSkip = { }

Every application must identify its programming language previously to its source code.
When the application is about to be executed, its respective language specification file is
analyzed and translated into an object representation in memory. Then, the generic
interpreter, following the language specification, will execute the application.

The _REIFY_ reserved word indicates where a reify statement might be
syntactically placed. Skip and NotSkip sections tell the interpreter which tokens have to
be automatically ignored and which ones should be appended to the scanner buffer.

Application Execution.

Any application code starts with its unique ID followed by its language name. The next
code is an example of a very simple application:

Application = "Very Simple App"
Language = "VerySimple"
 a=10;
 b=a;
 a;
 b;

The previous code is executed as it was specified in the VerySimple language: two
assignments are performed and the respective values of a and b variables are written. The
generic interpreter runs this code by executing its language semantics. However, using
the reify statement, python code could be run at the interpreter level, accessing and
modifying the application representation.

THE NITRO REFLECTIVE SYSTEM

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 129

Dynamic Adaptation

Independently of the language used, the generic interpreter automatically recognizes a
reify statement. Inside a reify instruction Python code can be written. It will not be
processed as the rest of the application code: it will be taken and evaluated at the same
level as the interpreter process. This code, using Python structural reflection, may access
and modify any application’s symbol-table and language specification, achieving the
theoretical definition of reflection: a computation that accesses its interpreter [Smith
1982].

The way Python code access any application running in the nitrO system
(independently of its language) is by the nitrO global object. This is the system’s
Facade [Gamma 1994]. Its attribute apps is a hash table of existing applications in the
system. Each application object has two main attributes (Figure 2):

1. Attribute language: Its language specification. Accessing this attribute, language
semantics might be dynamically modified.

2. Attribute applicationGlobalContext: Its dynamic symbol table, which
permits the programmer knowing and modifying any application’s structure at
runtime.

Language
Specification

language

Symbol
Table

applicationGlobalContext

nitrO nitrO.apps[“Very Simple App”]
apps

Fig. 2. Accessing nitrO applications by means of the nitrO object.

A reify sentence may dynamically access and modify the running application, no
matter which program or language might be used to execute them. It can be executed by
the previous very simple application or by another one to access the former.

reify <#
vars=nitrO.apps["Very Simple App"].
 applicationGlobalContext["vars"]
write(str(vars)+"\n") # Shows {b:10,a:10}
vars["a"]=vars["a"]*2 # Modifies "a"
vars["c"]=0 # Creates a new variable
del vars["b"] # Erases a variable
#>;

The code above takes the variables from the symbol table (accessing the
applicationGoblalContext attribute), shows their values, modifies the value of one,

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

creates a new variable, and erases an existing one. Note that this code is executed at the
system’s meta-level.

As a second example, we may enhance the assignment-statement semantics by
showing a trace message every time an assignment takes place. This is the reification
code that accesses the application’s language attribute:

reify <#
from langSpec import SemanticAction
assignment=nitrO.apps["Very Simple App"].
 language.syntacticSpec["assignment"]
code="write(\"Assignment of \"+nodes[1].text+\" with value \"+
 str(nodes[3].value)+\".\\n\")"
Behavior adaptation
assignment.options[0].actions.append(SemanticAction(code))
#>;

First, the assignment-statement syntactic rule is taken. Then, the code representing the
new trace semantics is created, setting it to the code variable. Finally, the assignment
semantics is enhanced in order to display a trace message. Once this code is evaluated,
the very simple application will show a trace message whenever an assignment is made
(i.e., reflection has taken place).

As a result, nitrO is a computation platform that uses a non-restrictive reflective
technique; it can be programmed using any language; is completely adaptable at runtime,
and has a great level of application interoperability.

5 THE NITRO PERSISTENCE SYSTEM

Once we have introduced a resume of the nitrO reflective platform, we are going to
present the persistence system developed. Three main subsystems (shown in Figure 3)
were employed on its design:

1. Interpreter: This is the unique module dependent of the programming language. It
is responsible for performing the contextual analysis and application execution. In
our implementation, we have developed an interpreter of a subset of the Java
Programming Language –the main simplification was the elimination of primitive
types, in order to simplify the implementation.

2. Application: This package offers the representation of every running program (its
classes, methods, objects and so on). It can be reused independently of the
language selected. It can be replaced with a new implementation by only
developing a reduced interface.

3. Persistence: The main package. Offers the language neutral persistence system. Its
design has been performed taking into account that different storages, indexing
mechanisms and update policies could be used and dynamically replaced. Due to
the use of reflection, the persistence mechanism is completely reusable regardless
of application’s structure.

THE NITRO PERSISTENCE SYSTEM

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 131

Application

Interpreter Persistence

Fig. 3: Subsystems diagram of the persistence system.

Interpreter Subsystem

The nitrO system takes the specification of the Java Programming Language and
automatically generates the parse tree of the application to be executed. Then, nitrO
executes (following the Command design pattern [Gamma 1994]) the semantic rule
specified at the end of the first syntactic production. This process returns the program’s
Abstract Syntax Tree (AST), a simplification of its parse tree.

The simple interpreter takes the program’s AST and performs its interpretation. A
reduced class diagram of the interpreter’s design is shown in Figure 4. The interpretation
mechanism is based on performing different decorations of the AST, following the
Visitor pattern [Gamma 1994]. The parse method takes an AST, analyzes the node
structure and calls the appropriate visit_xxx method –there are as many visit
methods as syntactic constructions in the Java language. Following this scheme, semantic
analysis, application representation (code generation into memory) and execution is
performed.

At execution time, the interpreter context should be managed. It is composed of
references to current class, instance, method and a stack of local references.

Interpreter

pars e()
visit_xxx ()

JClass JMethod

JInstanceJRef

RuntimeSymbolTable

1symbolTable 1
1

curren tClass

1 1

currentMetho d

1

1

currentInstance

10..n

stack

0..n

Fig. 4: Interpreter subsystem class diagram.

Application Subsystem

Figure 5 shows the straightforward class diagram of the elements that represent a Java
application at runtime. Classes (JClass) are made up of fields (JField), methods

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

(JMethod) and constructors (JConstructor); the two last elements are grouped by
JMethodGroup instances. JRef denotes a reference to an instance.

Instance

makePersistent()
makeTrans ient()
store()
res tore()
getID()

<<Interface>>

JConstructor

JField

JMethodGroup

JMe thod

0..n
methods
0..n JClas s

1
parent

1

0..nfields 0..n

1
methodGroup

1

1

class

1

JRef

1 owner1
JInstance

guid
modified
persistent

makePersistent(m : Manager)
makeTransient()
store(s : Storage)
restore(s : Storage)
getID()

1 class1

1

instance

1
0..n

f ields

0..n

Fig. 5: Application subsystem class diagram.

One important thing of this module is that it has been designed indicating the interface
that should be implemented to make an element persist, whatever its language would be.
Implementing the Instance interface1, any object could be persistent. In our design,
only objects are persistent because classes (code) are stored in the file system. However,
if we prefer a complete persistence system, we should implement these five operations in
every class in Figure 5.
Persistence ID
A common persistence issue is the persistence ID of every element to be stored. As
application’s objects are going to survive to program execution, a reference to them (its
memory address) will not be valid. Therefore, any object must have a unique global ID.

The persistence ID of an element should be returned at its getID method invocation.
The JInstance implementation returns the concatenation of the following values: the IP
address, the PID of the process, the UID of the user, the TID of the active thread and
milliseconds went by from January the 1st, 1970.

We have selected a complex reference implementation trying to avoid any possible
collision, taking into account that different storages and applications can be used and the
system could be extended to support distribution in the future.

1 Python do not have interfaces, so any object that implements the five methods shown in the diagram would be capable
of being persistent.

THE NITRO PERSISTENCE SYSTEM

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 133

Persistence Subsystem

Figure 6 shows the persistence subsystem. The Manager class is the Facade of the
module and it has been implemented with a Singleton instance [Gamma 1994]. The
behavior of the persistence system will be established by the selection of specific
Storage and StoragePolicy instances.

DBMStorageSim pleStorage BSDDStorage SimplePolicy TimedPolicy

Storage

has_key()
retrieveObject()
doRetrieveObject()
storeObject()
doStoreObject()
commit()
terminate()

InstanceTable

addInstance()
getInstance()
deleteInstance()Manage r

getStorage ()
se tStorage()
getPolicy()
se tPolicy()
retrie veObject()
storeObject()
makePersistent()
makeTransient()
commit()
noti fyModif ied()
commitStorag e()

0..n

storage s

0..n

1currentStorage 1
11

JInstance
0..n0..n

StoragePol icy

addInsta nce()
deleteI nstance()
storeInstances()
notif yModified()
commit()
terminate()

0..n

p olicies

0..n

1

currentP olicy

1

0..nmod ified Instances 0..n

Fig. 6: Persistence subsystem class diagram

Different update policies and storage systems can be employed in the system. The
Storage and StoragePolicy abstract classes are partial implementations offered by
the framework to facilitate the addition of new elements. Storages are different ways to
keep information persistently and its indexing mechanisms; policies are the way objects
should be updated into the storage selected. Runtime selection and swap of this two
variables could be performed in a programmatically way.

We have implemented three reference storages:
• SimpleStorage: It is a simple dictionary that is saved and load from a file. It is

the default storage selected by the manager.
• BSDDBStorage: Provides access to Berkeley DB Library. The user can create

extended linear hash, B+tree or variable-length record storages, depending on
parameters passed to the BSDDBStorage constructor. This storage might be used
to dynamically change indexing mechanism depending of runtime emerging
requirements or even program’s structure.

• DBMStorage: This storage offers a Unix (n)dbm library. Dbm objects behave like
mappings, except that keys and values must be always strings.

We have also implemented two reference update policies:
• SimplePolicy: The update of the storage selected will be performed (called its

commit method) whenever a persistent object has been modified a specified

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

number of times. This is the default policy, with only one modification needed to
update each instance.

• TimedPolicy: A timer is employed to do the updating. The policy is
parameterized with a number of seconds. When the timer reaches the number of
selected seconds, a commit is performed: every persistent object that has been
modified is updated on the storage.

Obviously, each of the parameters of the previous policies can be modified at runtime
depending on runtime requirements –as well as exchanging the whole policy.
Instance Storing
In the storages implemented, we have used the pickle Python module to serialize
objects, i.e. converting any object to a stream of bytes and back. Although this module
marshals any Python object, it does not handle the issue of naming persistence objects.
So, we have defined our own system of unique persistent-object IDs (section 5). The
process of converting an object’s reference to its corresponding persistent ID is called
pointer swizzling; the converse operation is termed unswizzling.

The persistence Manager does the process of swizzling on the fly, meaning that the
reference translation is performed when the object is about to be stored. Its fields, that are
also persistent, are translated following the same scheme.

The reverse mechanism (unswizzling) is performed in two steps. The objects
demanded (using its persistence ID) are searched in the storage at first. In this step, the
streams of bytes are retrieved and converted into Python objects. Afterwards, the
reference unswizzling is performed, recovering memory links between objects.

This process is achieved by means of an InstanceTable instance (Figure 6). This
table is a Python’s weak dictionary that establishes a mapping between persistence ids
and their respective memory references. Any time an object is set as persistent, an entry is
assigned in this table. Therefore, acting as a cache, if a persistent object is needed and it
has an entry in this table, its associated instance will be used.

Notice that this table uses weak references: if the persistent object is no more
referenced, the garbage collector might discard it. If a persistent object is reclaimed and it
has not an entry on the InstanceTable, the Manager will recover it from the storage
registered.
Modification of a Persistent Instance
In order to make possible the implementation of the update policy, the interpreter will
have to notify the persistence manager of instances modification. This is performed by
the notifyModified method, as shown by the sequence diagram in Figure 7. This way,
the update policy will collect every modified instance in order to do the future storage as
appropriate.

THE NITRO PERSISTENCE SYSTEM

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 135

inst : JInstance : Manager : StoragePolicy inst.fields :
JIn stance

storage :
Storage

notifyModified(inst)
notifyModified(inst)

addInstance(inst)

storeInstances()

storeObject(inst)

s tore(s torage)

store(storage)

commitStorage()

sto reObject(inst)

commit()

Policy resolution or
explicit user call

With any modified
in stance

Recursively, for any
instance field

Fig. 7: Sequence diagram of the modification of a persistent instance.

Once the registered policy resolves to do the update (the user may also do it explicitly) its
storeInstances method is executed. This call causes the invocation of the
storeObject method of the manager as many times as modified instances have been
collected. Then, each instance must prepare to serialization doing the swizzling as
mentioned in the previous point –this produces recursive calls to each instance’s field.
Finally, once the modified instances have been swizzled in the InstanceTable, the
commit operation will synchronize the table with the storage, making the modified
instances persist by committing the corresponding update transaction.

6 A SAMPLE BIBLIOGRAPHY APPLICATION

Within this section we will present a sample bibliography application derived from
information stored on the DBLP server [Ley 2003]. The data model, represented as a
UML class diagram, is shown in Figure 8.

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

Conference

conferenceName
contents

Article
startPage
endPage

Archive

isbn
pages
articles

Journal

volume
number

Series

subject
contents
volume

Book

Publis herLo cation
town
country

Publisher

name
email
location

11

BibliographyItem
title
publicationDate
URL
publis her
authorEditor

AuthorEd itor
firstName
surname
email
address

11

BiblioApp
publishers
publisherLocations
authorEditors
bibliographyItems

inserPublisher()
inserPublisherLocation()
insertAuthorEditor()
insertConference()
insertSeries()
insertArticle()
insetJournal()
insertBook()
insertRandomBibliographyItem()
showAll()
run()
clear()
main()

nn
nn

nn

nn

Fig. 8: Data model for the sample application.

The whole application has been developed in Java and it is no persistent at all. Its main
class is BiblioApp, which randomly creates different bibliography elements, modifies
all of them (by means of the run method) and, finally, restores its initial state (with the
clear method). The following code is the run method of the BiblioApp class. It
measures the time employed to insert and modify an established number of bibliography
items. The cons reference represents the console of the application’s graphic window.

Application = "Biblio"
Language = "Java"
...
class class BiblioApp {
...
 void run() {
 Integer insertions = 5000;
 Timer timer = new Timer();
 cons.println('Measuring '+insertions.toString()+
 ' insertions...');
 insertPublisherLocation();
 insertPublisher();
 timer.start();
 for(Integer i = 0; i < insertions; ++i) {
 insertRandomBibliographyItem();
 }

A SAMPLE BIBLIOGRAPHY APPLICATION

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 137

 timer.stop();
 cons.println(insertions.toString() + ' insertions: ' +
 timer.getTime() + ' seconds');
 cons.println('Measuring '+data.numItems.toString()+
 ' updates...');
 timer.start();
 for(Integer i = 1; i <= data.numItems; ++i) {
 BibliographyItem item = (BibliographyItem)data.
 bibliographyItems.getItem('Title' + i.toString());
 item.setUrl('http://www.anotherURL.com');
 }
 timer.stop();
 cons.println(insertions.toString() + ' updates: ' +
 timer.getTime() + ' seconds');
 }

Persistence Assignment

This application is executed in the nitrO system with the Biblio ID. Its execution shows
the time employed to insert and modify 5,000 instances stored in RAM. Once this
application has been started, we may develop another program that, using the reflective
persistence system, will set and dynamically modify persistent features of the Biblio
application. Moreover, this new application will be capable of calling methods of the
Biblio program, although they have been written in different programming languages.

The new program (called Benchmark) is going to execute nested loops in which
different storages, update policies and indexing mechanisms will be assigned to the Biblio
application. During each loop iteration, the benchmark calls the run and clear methods
of the bibliography application causing insertion, modification and deletion of persistent
objects with different persistence settings. The following code is a fragment of the
benchmark application:

[1] reify <#
[2] import persistence

[3] try:
[4] biblioApp = nitrO.apps['Biblio']
[5] except KeyError, e:
[6] raise SystemExit('"Biblio" is not running.')

[7] biblioInterpreter=biblioApp.applicationGlobalContext
 ['theInterpreter']
[8] biblioManager = biblioInterpreter.getPersistenceManager()
[9] biblioPrint=nitrO.apps["Biblio"].window.writeText
[10] symtable = biblioInterpreter.getSymbolTable()

[11] def setStorage(storage):
[12] biblioManager.setStorage(storage)
[13] print("Setting "+storage+" persistence storage")
[14] biblioPrint("Setting "+storage+
 " persistence storage\n")

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

[15] def setPolicy(policy):
[16] biblioManager.setPolicy(policy)
[17] print("Setting "+policy+" update policy")
[18] biblioPrint("Setting "+policy+" update policy\n")

[19] appInstance = symtable.getVar('app').getInstance()
[20] appClass = appInstance.getClass()

[21] print("\nDYNAMIC PERSISTENCE BENCHMARK")
[22] biblioPrint("\nDYNAMIC PERSISTENCE BENCHMARK\n")
[23] for policy in application.policies:
[24] print("\n------- "+policy+" Policy -------")
[25] biblioPrint("\n------- "+policy+" Policy -------\n")
[26] for storage in application.storages:
[27] print("\n"+storage+" Storage:")
[28] biblioPrint("\n"+storage+" Storage:\n")
[29] makePersistent()
[30] setPolicy(policy)
[31] setStorage(storage)
[32] appInstance.getClass().getMethod('run',()).invoke(
 biblioInterpreter,appInstance,())
[33] appInstance.getClass().getMethod('clear',()).invoke(
 biblioInterpreter,appInstance,())
[34] #>

The previous code is a sole reify statement. Thus, it is executed at the interpreter level to
directly access to the Biblio application. This is performed using the nitrO facade object
(line 4), trying to get the object that represents the bibliography application. If the
application is running, its interpreter (line 7), persistence manager (line 8), console (line
9) and symbol table (line 10) are also obtained.

To dynamically change persistence storages and update policies, the setStorage
(line 11) and setPolicy (line 15) functions are defined. They tell the persistence
manager which storage and policy must be set, showing a message in both the
bibliography (biblioPrint function) and benchmark (print function) applications.
Lines 19 and 20 take from the symbol table the app reference of the Biblio main method
and its class: BiblioApp.

From line 23 to 33, we can see the nested loops previously mentioned. During each
loop, one storage and policy are selected and the two run and clear methods of the app
instance are called (lines 32 and 33). We have employed dictionary, DBM, hashing and
B+Tree storages. The update policies used were each object’s state modification, at 10
object modifications, each second and every 30 seconds.

Benchmark Execution

Windows of each running application are shown in Figure 9. We can see the nitrO shell at
the bottom of the picture: the main window where we can tell nitrO which applications
must be executed. The application on the left is the bibliography program showing

A SAMPLE BIBLIOGRAPHY APPLICATION

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 139

insertion and modification times measured. Finally, the window on the right is the
benchmark program that modifies the bibliography persistence settings.

Note that the first information shown by the bibliography application is insertion and
modification in memory. The reason is that the benchmark had not been launched and
Biblio was not persistent in the beginning. The following measurements are all persistent,
caused by running the benchmark.

Fig. 9: Running applications in the nitrO system.

We have measured five different storages (including memory) with four policies. The
number of insertions and modifications on each configuration was 5,000. All tests were
carried out on a lightly loaded 1.0 GHz iPIII system with 256 Mbytes of RAM running
WindowsXP. The metric employed was execution time. Figure 10 shows different
measurements graphically.

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

0

10

20

30

40

50

60

State Modification 10 State Modifications Second 30 Seconds

0

5

10

15

20

25

30

35

RAM Dictionary DBM Hash B+Tree RAM Dictionary DBM Hash B+Tree

Insertions Modifications

S
e
co

n
d

s
e
m

p
lo

y
e
d

 i
n

 M
o
d

if
ic

a
ti

o
n

s

S
e
co

n
d

s
e
m

p
lo

y
e
d

 i
n

 I
n

se
rt

io
n

s

Fig. 10: Running the benchmark with 5,000 bibliography items.

As an example of how the persistence system can be used to obtain persistence parameter
tuning, a first analysis of the results obtained executing the previous benchmark shows
that:

• The trade-off between safety and performance is confirmed: the higher update
frequency, the worse performance (state modification is the most safe policy, but
the slowest one).

• B+Tree storage is the fastest when we use timed policies, but employing the state
modification ones, hash and DBM are better.

• Using state modification policies, insertions with B+Tree are the slowest.
However, under the same conditions, its modifications are much faster than the
dictionary ones.

• With a small number of bibliography items (up to 100), the best storage,
independently of the policy employed, is the dictionary. However, when there
exists a huge number of objects, its performance is disastrous.

Depending on variables such as system load, persistence level, number of connected
users, or even application’s structure, any (part of an) application could dynamically
select the most suitable persistence configuration, in a programmatic way. Therefore, our
persistence system is capable of adapting to contexts only known at runtime, offering the
optimum parameter tuning.

7 SYSTEM BENEFITS

The most important feature of the persistence system is the higher degree of flexibility
provided by reflection. Some advantages derived from this property are mentioned below.

SYSTEM BENEFITS

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 141

• SoC benefits. Applications programming is simpler now, as programmers do not
have to explicitly deal with persistence. Once the application has been developed,
or even at runtime, the user will just need (if desired) to identify which objects
should persist and its persistence features. The abstraction level is consequently
raised and software development complexity decreases. This also implies better
legibility and maintainability of applications.
Another advantage on separating the functional code from its persistence aspect is
that programs do not suffer from changes on persistence issues; its functional
code remains the same.

• Dynamic selection of persistence. The persistence system offers the ability to set
and unset persistent any runtime object. This feature can be assigned and erased at
runtime. Moreover, the storage employed, the persistence level and the indexing
mechanism, are features that may be selected and modified at runtime. All of
them can be customized in a programmatically way.

• Reutilization. Using reflection, the system has been codified analyzing objects’
structure at runtime. This way, the persistence framework makes objects persist
and retrieves them later from the database, whatever its structure might be. This
feature makes the persistent system highly reusable, independently of the
functionality –and even the language– of the application stored.

• Transparency. The workings of the nitrO persistence system are transparent to the
user. She only has to specify the type of persistence desired (or leave the default
settings) following the SoC principle.

• Language neutrality. The system offers adaptable persistence independently of the
language used. We separate the interpreter from the language specification and
the persistence framework has been designed without any dependency of a
specific language.

• Parameter tuning. Finding the optimum performance level of a computer system
with limited resources is a complex task. This is applicable to the field of
databases, trying to manage higher data volume in the shortest time possible. For
example, nested index has the best retrieval performance, however multiindex has
the best update performance [Bertino 1989].
Reflection makes simple for an application to programmatically modify these
variables and generate statistics in order to make a decision. The system is a very
suitable platform for the benchmarking of different persistence features (for
instance selecting the best indexing mechanisms depending on objects’ structure).

Runtime Performance

The main disadvantage of dynamic application adaptation is runtime performance
[Böllert 1999]. The process of adapting an application at runtime, as well as the use of
reflection, induces a certain overhead at the execution of an application [Popovici 2001].
Adaptability and performance are usually two opposite concepts in computer science. In
our first implementation we have tried to obtain maximum adaptability at runtime,
following a complete SoC point of view.

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

The basic performance limitation of our reflective platform is caused by the
interpretation of every programming language. Nowadays, many interpreted languages
are commercially employed –e.g. Java [Gosling 1996], Python [Rossum 2001] or C#
[Archer 2001]– due to optimization techniques such as just-in-time (JIT) compilation or
adaptable native-code generation [Hölzle 1994]. In the following versions of the nitrO
platform, these code generation techniques will be used to optimize the generic-
interpreter implementation. As we always translate any language into Python code, a way
of speeding up application execution is using the interface of a Python JIT-compiler
implementation –such as the exploratory implementation of Python for .NET [Hammond
2001] that uses the .NET common-language-runtime (CLR) JIT compiler.

8 CONCLUSIONS

The Separation of Concerns principle aims at providing systematic means for effective
modularization of crosscutting concerns, providing many benefits to software developers.
The specific Aspect-Oriented Programming technique offers explicit language support for
modularizing application concerns that crosscut the application functional code.

Although, persistence is often described as a classical candidate for aspectization, the
existing aspect tools do not seem to be really suitable for developing persistence aspects.
In addition, current aspect tools do not offer really dynamic weaving mechanisms, and all
of them are dependent of a fixed programming language.

We have identified computational reflection as an appropriate technique to overcome
the limitations mentioned. Our nitrO system is a reflective platform that offers non-
restrictive computational reflection at runtime. Any application, written in any language,
may use Python code to access its (or another one’s) meta-level, achieving the
modification of its structure or semantics.

A persistence framework has been codified in Python at the system’s meta-level,
offering dynamic persistence features transparently to the user. Taking Java as a sample
language, programmers can develop transient applications without any reference to
persistence, following the SoC principle. Then, employing any language, the user, the
own application, or even another program, could set, unset, and modify, different
persistence settings at runtime.

Our current implementation offers dynamic selection of storages, indexing
mechanisms and update policies. This choice can be performed programmatically,
depending on runtime emerging requirements. Therefore, the persistence system might be
programmed to configure itself according to dynamic contexts. It can be also used as a
parameter tuning or database research platform.

The Python platform, its persistence system, and the sample code presented in this
paper can be downloaded from:
http://www.di.uniovi.es/reflection/lab/prototypes.html#persistence

http://www.di.uniovi.es/reflection/lab/prototypes.html#persistence

CONCLUSIONS

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 143

REFERENCES

[Archer01] T. Archer: Inside C#, Microsoft Press, 2001.

[Atkinson96] M. Atkinson, L. Daynès, M. Jordan, T. Printezis and S. Spence: “An
Orthogonally Persistent Java”, SIGMOD Record, vol 25 n. 4,
December1996.

[Bergmans94] L. Bergmans: Composing Concurrent Objects: Applying Composition
Filters for the Development and Reuse of Concurrent Object-Oriented
Programs, Ph. D. Dissertation. University of Twente, The Netherlands,
June 1994.

[Bertino89] E. Bertino and W. Kim: “Indexing Techniques for Queries on Nested
Objects”, IEEE Transactions on Knowledge and Data Engineering, Vol.1
nº2, June 1989.

[Bertino95] E. Bertino and P. Foscoli: “Index Organizations for Object-Oriented
Database Systems”, IEEE Transactions on Knowledge and Data
Engineering, Vol.7, April 1995.

[Böllert99] K. Böllert: “On Weaving Aspects”. European Conference on Object-
Oriented Programming (ECOOP), Workshop on Aspect Oriented
Programming, June 1999.

[Gamma94] E. Gamma, R. Helm, R. Johnson and J. Vlisside: Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Gosling96] J. Gosling, B. Joy, and G. Steele: The Java Language Specification,
Addison-Wesley, 1996.

[Hammond01] M. Hammond: Python for .NET: Lessons learned, Active State
Corporation, 2001.

[Hölzle] U. Hölzle and D. Ungar: “A Third-Generation SELF Implementation:
Reconciling Responsiveness with Performance”, Proceedings of the
Object-Oriented Programming Languages, Systems and Applications
(OOPSLA), October 1994.

[Hürsch95] W.L. Hürsch and C.V. Lopes: Separation of Concerns, Technical Report
UN-CCS-95-03, Northeastern University, 1995.

[Kiczales91] G. Kiczales, J. des Rivieres, D.G. Bobrow: The Art of Meta-Object
Protocol, MIT Press 1991.

[Kiczales97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M.
Loingtier and J. Irwin: “Aspect Oriented Programming”, European
Conference on Object-Oriented Programming (ECOOP), Springer-Verlag
LNCS 1241, June 1997.

REFLECTION AS THE BASIS FOR DEVELOPING A DYNAMIC SOC PERSISTENCE SYSTEM

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 8

[Kiczales01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W.G.
Griswold: “Getting Started with AspectJ”, Communications of the ACM,
October 2001

[Kielze02] J. Kielze and R. Guerraoui: “AOP: Does it Make Sense? The Case of
Concurrency and Failures”, European Conference on Object-Oriented
Programming (ECOOP), Springer-Verlag LNCS 2374, June 2002.

[Lam02] John Lam: “CLAW, Cross-Language Load-Time Aspect Weaving on
Microsoft's Common Language Runtime”, AOSD 2002, Enschede, The
Netherlands, April 2002.

[Ley03] Ley, M: DBLP: Digital Bibliography and Library Project. http://dblp.uni-
trier.de/.

[Maes87] P. Maes: Computational Reflection, Technical Report 87_2, Artificial
Intelligence Laboratory, Vrieje Universiteit Brussel, 1987.

[Mens97] K. Mens, C. Lopes, B. Tekinerdogan, and G. Kiczales: “Aspect Oriented
Programming Workshop Report”, ECOOP Workshop Reader, Springer-
Verlag LNCS 1357, June 1997.

[Ortin02] F. Ortin and J.M. Cueva: “Implementing a Real Computational-
Environment Jump in order to Develop a Runtime-Adaptable Reflective
Platform”. ACM SIGPLAN Notices, Volume 37, Issue 8, August 2002.

[Ortin03] F. Ortin and J.M. Cueva: “Non-Restrictive Computational Reflection”,
Elsevier Computer Standards and Interfaces, Volume 25, Issue 3, June
2003.

[Parnas72] D. Parnas: “On the Criteria to be Used in Decomposing Systems into
Modules”, Comunications of the ACM, Vol. 15, No. 12. 1972.

[Pawlack01] R. Pawlack, L. Seinturier, L. Duchien and G. Florin: “Jac: A flexible and
efficient framework for aop in java”, Reflection'01, September 2001.

[Pinto01] M. Pinto, M. Amor, L. Fuentes and J.M. Troya: “Run-Time Coordination
of Components: Design Patterns vs. Component & Aspect based
Platforms”, European Conference on Object-Oriented Programming
(ECOOP), Workshop on Advanced Separation of Concerns, June 2001.

[Popovici01] A. Popovici, Th. Gross and G. Alonso: Dynamic Homogenous AOP with
PROSE, Technical Report, Department of Computer Science, ETH Zürich,
Switzerland, 2001.

[Rashid00] A. Rashid: “On to Aspect Persistence”, GCSE Symposium, Springer-
Verlag LNCS 2177, October 2000.

[Rashid03] A. Rashid, R. Chitchyan: “Persistence as an Aspect”, International
Conference on Aspect-Oriented Software Development, March 2003.

http://dblp.uni-trier.de

CONCLUSIONS

VOL. 3, NO. 8 JOURNAL OF OBJECT TECHNOLOGY 145

[Rossum01] G. Rossum: Python Reference Manual. Fred L. Drake Jr. Editor, Relesase
2.1, 2001.

[Schult02] W. Schult and A. Polze: “Aspect-Oriented Programming with C# and
.NET”, IEEE International Symposium on Object-oriented Real-time
distributed Computing, May 2002.

[Smith82] B.C. Smith: Reflection and Semantics in a Procedural Language, MIT-
LCS-TR-272, MIT, Cambridge, 1982.

[Suzuki99] J. Suzuki and Y. Yamamoto: “Extending UML for Modelling Reflective
Software Components”, The Unified Modeling Language - Beyond the
Standard, Second International Conference, Springer-Verlag LNCS 1723,
October 1999.

[Tarr99] P. Tarr, H. Ossher, W. Harrison and S. Sutton: “N Degrees of separation:
Multi-Dimensional Separation of Concerns”, International Conference on
Software Engineering, May 1999.

About the authors

Benjamin Lopez is an Associate Professor of the Computer Science
Department at the University of Oviedo (Spain). He is a Computer
Scientist Engineer from the Malaga Computer Science Faculty. His
research interests include Computer Graphics, Object-Oriented
Persistence Systems, Computational Reflection, Multimedia, Human
Computer Interaction and Object-Oriented Technologies. He can be

reached at benja@lsi.uniovi.es.

Francisco Ortin is a Temporary Full University Lecturer at the
Computer Science Department of the University of Oviedo, Spain. He
received in 2002 his PhD in Computer Science with the Thesis entitled
“A Flexible Programming Computational System developed over a
Non-Restrictive Reflective Abstract Machine”. His main research
interests are Computational Reflection, Object-Oriented Virtual

Machines, and Dynamic-Weaving Aspect Oriented Software Development. His website
is http://www.di.uniovi.es/~ortin.

Javier Noval received in 2000 a Computer Science degree from the
Technical School of Computer Science and, in 2003, a MS in Computer
Engineering; both at Oviedo University. Currently, he is a PhD Student
of the Computer Science Department. His research interests are the
Design and Implementation of Programming Languages and Processors,
Computational Reflection and Open Source Software Communities. He

can be reached at javinoval@terra.es.

mailto:benja@lsi.uniovi.es
http://www.di.uniovi.es/~ortin
mailto:javinoval@terra.es

