
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 6, July-August 2007

Cite this column as follows: Richard Wiener: “Converting a C#/.NET Desktop Application to an
ASP.NET 2005 Web Application, vol. 7, no. 6, July - August 2007, pp 35-39
http://www.jot.fm/issues/issue_2007_07/column4

EDUCATOR’S CORNER

Converting a C#/.NET Desktop Application
to an ASP.NET 2005 Web Application

Richard Wiener, Editor-in-Chief, JOT, Chair, Department of Computer Science,
University of Colorado at Colorado Springs

1 INTRODUCTION

In the May/June, 2007 issue of JOT I presented a paper entitled, “A New Software
Development Project Using an Old Game” (Vol 6, No 4). As indicated in that paper, “As
many of us who teach more advanced programming courses know, finding software
development projects that are engaging to students and that provide sufficient richness to
allow for interesting designs and implementations while being solvable within the time-
constraints of a semester is challenging. Some games provide a basis for satisfying these
requirements since they do not require prior domain expertise. The rules can be specified
precisely in contrast to many real-world problems where only fuzzy and changing
specifications are the norm.”

As is evident if you read the details of the game specification given in the paper cited
above, only one human player competes against three computer players. That makes for a
useful desktop game but does not allow for the dynamics of two or more human players
in direct competition. This fact provides motivation for converting the game from a
desktop GUI application to a web-based application. That would enable up to four human
players to compete and computer players (residing on the server) filling in the gap if
fewer than four human players cannot be found.

The principal challenge in designing the web-based game is how to inform the
human players residing on separate client machines what the state of the game is as
human or computer players complete their moves. Common web programming protocol
does not easily support direct computer-to-computer communication but only
communication from one client computer to the server and directly back to the client
computer.

The solution to this problem is quite simple in principle. A timer on each client
computer must periodically solicit game state from the server. If this is done using

A NEW SOFTWARE DEVELOPMENT PROJECT USING AN OLD GAME

36 JOURNAL OF OBJECT TECHNOLOGY VOL.6, NO. 6

traditional web programming facilities, each client will experience a page load (page
refresh) each instant the timer obtains state information from the server and then updates
the GUI on the client. Such page refreshs would promote an intolerable blinking of
information.

The solution that was used involves the use of some of the facilities of the Ajax
Extensions now available in ASP.NET 2005. The Ajax UpdatePanel allows GUI controls
embedded in an UpdatePanel to be updated without the entire GUI incurring a page
refresh.

2 THE DESIGN FORM

A screenshot of the ASP.NET GUI that uses such UpdatePanel components is shown
below.

Figure 1 – Screenshot of Design Form

A screenshot of the actual web-based game is shown in Figure 2.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 37

Figure 2 – Screenshot of Web-Based Game

The layout of the game had to be modified compared to the look of the desktop version
(see the May/June 2007 paper for the screenshot of the desktop application) in order to
allow the image button controls to be placed in a collection of UpdatePanel Ajax
components.

An Ajax Timer control was set to 1.5 seconds.

3 SOME ASP.NET PROGRAMMING DETAILS

The timer event handler invokes the local Status method every 1.5 seconds. Some of the
details of the Status method, which shows the communication between the client and the
server, are presented below.

 public partial class _Default : System.Web.UI.Page {

 // Fields
 private GameModel model;
 private ImageButton[] buttons;
 private Label[] labels;

 // Many other details skipped here

A NEW SOFTWARE DEVELOPMENT PROJECT USING AN OLD GAME

38 JOURNAL OF OBJECT TECHNOLOGY VOL.6, NO. 6

protected void Status() {

if (!gameOver) {
 model = (GameModel)Application["Model"];

if (model != null && Session["PlayerNumber"] != null) {
 for (int i = 1; i <= 64; i++) {
 labels[i].Text = "";
 }
 if (model != null) {
 int[] positions = model.Positions;
 for (int i = 1; i <= 4; i++) {
 if (positions[i] > 0) {
 labels[positions[i]].Text = "" + i;
 }
 }
 if (model.GameOver) {
 InfoLbl.Text = "Game over. Winner is " +
 model.Winner;
 model.Positions[model.Winner] = 64;
 }
 int playerNumber = (int)Session["PlayerNumber"];

if (playerNumber == model.Turn &&
 model.NoPlaceToMoveFor(playerNumber)) {

 model.IncrementTurn();
 InfoLbl.Text = "Skipped turn …”;
 if (model.Turn >= model.FirstComputerPlayer &&
 !model.GameOver) {
 playerNumber = model.Turn;

 model.MakeComputerMove(playerNumber);
 model.IncrementTurn();
 if (model.Turn >= model.FirstComputerPlayer
 && !model.GameOver) {
 playerNumber = model.Turn;
 model.MakeComputerMove(playerNumber);
 model.IncrementTurn();
 }
 // Remaining details not shown

The Application variable is used to obtain the current game model object each time the
status is updated for each client.

VOL. 6, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 39

4 CONCLUSIONS

Working in conjunction with the GameModel object are the same dozen or so model
support classes that were developed in conjunction with the desktop application. The core
business logic architecture was therefore preserved. The approximate time to complete
the migration from desktop application to web-application was two days compared to the
roughly two months of effort expended in designing and implementing the original
desktop application. The UpdatePanel and Timer components worked as advertised.
When a human player clicks one of the 64 image control buttons, there is no page refresh
as would typically occur when pushing a button in a web form. Allowing for the possible
1.5 second time-lag after a human player executes a move, all the other players are
updated in a timely manner. Since players are allowed only to move in sequence (when
the “YOUR TURN” label is made visible), there is seemless communication among the
human players as the game evolves.

The ASP.NET 2005 web application framework provided useful support and
leverage in making the transition from a desktop to web-based application smooth and
efficient.

About the author
Richard Wiener is Chair of Computer Science at the University of
Colorado at Colorado Springs. He is also the Editor-in-Chief of JOT
and former Editor-in-Chief of the Journal of Object Oriented
Programming. In addition to University work, Dr. Wiener has authored
or co-authored 22 books and works actively as a consultant and
software contractor whenever the possibility arises. His latest book,
published by Thomson, Course Technology in April 2006, is entitled

Modern Software Development Using C#/.NET.

