Journal of Statistical Software

August 2016, Volume 72, Code Snippet 2. doi: 10.18637/jss.v072.c02

Mixture Experiments in R Using mixexp

John Lawson Cameron Willden
Brigham Young University W. L. Gore and Associates

Abstract

This article discusses the design and analysis of mixture experiments with R and
illustrates the use of the recent package mixexp. This package provides functions for
creating mixture designs composed of extreme vertices and edge and face centroids in
constrained mixture regions where components are subject to upper, lower and linear
constraints. These designs cannot be created by other R packages. mixexp also provides
functions for graphical display of models fit to data from mixture experiments that cannot
be created with other R packages.

Keywords: contour plot, effect plot, simplex lattice design, simplex centroid design, extreme
vertices design, constrained mixture experiments, D-optimality.

1. Introduction

A mixture experiment occurs when the response variable, y, is a function of the relative
proportions of components (x;, i = 1,...q) in a mixture, rather than a function of the total
amount of each component. Since the proportions of components in a mixture must add
to one, i.e., Z?Zl x; = 1.0, the experimental region for mixture experiments is constrained,
and traditional factorial or response surface designs are not appropriate. A comprehensive
reference on the designs and methods of data analysis useful for mixture experiments is
the book by Cornell (2002). Mixture experiments are widely used today in formulation
experiments, blending experiments, and marketing choice experiments where the goal is to
determine the most preferred attribute composition of a product at a given price (Ragavarao,
Wiley, and Chitturi 2011).

Popular commercial statistical software such as SAS ADX (SAS Institute Inc. 2010a), Minitab
(Minitab Inc. 2010), JMP (SAS Institute Inc. 2010b), Design-Ease (Stat-Ease, Inc. 2010),
Statgraphics (StatPoint Technologies 2010), and Modde (Umetrics an MKS Company 2014)
all have extensive facilities for the design and analysis of mixture experiments. Piepel (1997)

http://dx.doi.org/10.18637/jss.v072.c02

2 mixexp: Mixture Experiments in R

gives an extensive review of commercial software with mixture experiment capabilities.

The 1m funcion in base R (R Core Team 2016) can be used to fit models to mixture experi-
ments. There are functions in R packages AlgDesign (Wheeler 2014) and qualityTools (Roth
2016) that allow the user to create Simplex Lattice Designs and Simplex Centroid Designs
for unconstrained mixture experiments. The package mixexp (Lawson 2016) adds the ability
to create designs comprised of extreme vertices of constrained experimental regions, possibly
augmented with edge and face centroids, and other interior points in the simplex.

The R package qualityTools allows a user to visualize the relationship between the response
and mixture components by making ternary contour plots and 3D wireframe plots of Scheffé
mixture model in three components over the unconstrained simplex region. The package
mixexp expands these capabilities by allowing the user to: 1) make contour plots of a greater
variety of equations, 2) create contour plots within constrained regions bounded by pseudo
components, 3) make contour plots of models fit to more than three components by holding
one or more component(s) constant and, 4) create response trace plots along the Cox (1971)
or Piepel (1982) directions through constrained regions in higher dimensional spaces.

The purpose of this article is to show how to design and analyze mixture experiments in
R, and to simultaneously illustrate the basic features of the package mixexp. Details of the
arguments and options for all the functions in mixexp can be found in Lawson (2016).

2. Models for the analysis of mixture experiments

Due to the fact that mixture components must sum to 1, the linear model that is normally
written as y = By + >t Biz; + € is redundant for data from mixture designs. Scheffé (1958)
wrote the linear model for mixtures as:

q
y= Z/Bz':fi +e. (1)

i=1

The coefficients in Equation 1 have physical meaning. f; is the expected response at the
vertex where x; = 1.0. Scheffé (1958) wrote the quadratic model for mixture experiments as:

q q
= Z Bixi + Z Z ﬁijl‘m}j + €. (2)
=1

i=1 j=i+1
In Equation 2 the 3;; coefficients indicate the amount of quadratic curvature along the edge
of the simplex region consisting of binary mixtures of x; and z;. Due to the bounded exper-
imental region for mixture experiments, the quadratic model for mixture experiments may
not be flexible enough to represent the results of some experiments.

The full cubic model represented in Equation 3 and the special-cubic model in Equation 4
are popular alternatives to the quadratic model.

y_Zlez"_Z Z Bzyxﬂc]'f'z Z 67,]-731-773 — Iy +Z Z Z ﬁzgk$ TjTtE. (3)

i=1 j=i+1 i=1 j=i+1 i=1 j=i4+1 k=j+1

qg—2 g-1 q

Y= Zﬁzxz + Z Z /szxzxj + Z Z Z IBijxlx]xk + e (4)

=1 j=i+1 i=1 j=i4+1 k=j+1

Journal of Statistical Software — Code Snippets 3

For experiments involving ¢ mixture components and p process variables, so called mixture-
process variable experiments, a model can be created by crossing a mixture component model,
like Equation 2, with a standard linear or response surface model in the process variables.
For example, crossing a Scheffé quadratic model in ¢ mixture components (z;, i = 1,...q)
with a linear plus linear by linear interactions model in p process variables (z;, j = 1...p)
results in Equation 5.

q
Z'lel"’—z Z Bmxm] a0+2alzl+z Z Vi 21 %m) _ZIBI(O)%

=1 j=i+1 =1 m=Il+1 =1
-1 gq ©) q p g p—1 p
IR IO wz+Z)P IR 35 Db i AREH
i=1j=i+1 i=11=1 i=1j=i+11=1 i=1 =1 m=I+1

-1 ¢ p-1 p

+ Z Z Z Z Bgl)mxiszlzm + €. (5)
i=1 j=i+1 I=1 m=I+1

However, the number of coefficients in Equation 5 increases rapidly with the number of

mixture components and process variables. Kowalski, Cornell, and Vining (2000) proposed a

more parsimonious second order model given in Equation 6. This model assumes there is no

linear effect of the process variables on the nonlinear mixture component blending. Equation

6 is often adequate for mixture-process experiments.

q
i=3 4 S l’ﬂfﬁz zﬂ< m] DS i+ 3ot e (0

i=1 j=i+1 k=11=k+1

3. Creating a mixture design with mixexp

3.1. Standard mixture designs in unconstrained regions

In this section we illustrate the use of mixexp functions for creating standard designs for
mixture experiments. Scheffé (1958) proposed the simplex-lattice designs denoted SLD(q,k)
based on the interpretation of the coefficients for the Scheffé linear, quadratic and cubic
models for mixture experiments. The mixexp function SLD creates these designs. Below is an
example of creating a SLD(4,2) design.

R> library("mixexp")
R> SLD(4, 2)

x1 x2 x3 x4

1 1.0 0.00.00.0
2 0.50.50.00.0
3 0.01.00.00.0
4 0.50.00.50.0
5 0.00.50.50.0
6 0.00.01.00.0

4 mixexp: Mixture Experiments in R

0.2 0.4 0.6 0.8
Fraction x3

Figure 1: Simplex centroid design in three components.

B © o~
oo oo
o o o w
oo oo
o o u o
oo oo
o v oo
~ o oo
o v o o

The ¢ in SLD(g,k) represents the number of mixture components and k represents the number
of levels of each component. A k-level design supports fitting a Scheffé model of order k.

Cornell (2002) described alternate designs called a simplex-centroid designs that can be used
to collect data appropriate for fitting the Scheffé special-cubic model. The mixexp function
SCD creates these designs. Below is an example of creating a simplex-centroid design with
three mixture components and storing it in the data frame des.

R> des <- SCD(3)
R> DesignPoints(des)

When there are only three mixture components, the mixexp function DesignPoints can be
used to display the design graphically in the simplex experimental region. The result of the
call to DesignPoints above is displayed in Figure 1.

3.2. Mixture designs in constrained regions

In many mixture experiments each component in the mixture can only be varied within
specific lower and upper constraints. In this case, the experimental region is an irregular
hyperpolyhedron rather than a simplex, and the Simplex Lattice and Simplex Centroid designs
are not appropriate. In constrained experimental regions, McLean and Anderson (1966)
recommend experimental designs that consist of all the extreme vertices of the constrained
region, possibly augmented by edge and facet centroids.

Piepel (1988) published Fortran code for generating extreme vertices and various dimensional
centroids of linearly constrained regions. The function crvtave in mixexp calls this Fortran
code to create a design containing the extreme vertices and specified centroids. The function
Xvert is a front end for crvtave. It takes as inputs vectors of upper and lower constraints for
each mixture component, and bounds and coefficients for linear constraint equations. Next,

Journal of Statistical Software — Code Snippets

0.2 0.4 0.6 0.8
Fraction x3

Figure 2: Simplex centroid design in three components.

it sets up the matrix defined by Piepel (1988), then calls the crvtave function to create the
design. It returns a data frame with the vertices, requested edge and facet centroids, and
the overall centroid. For example an experimental design consisting of the extreme vertices
augmented by the edge and overall centroids defined by the constraint equations:

0.143 < 21 < 0.572
0.214 < 29 < 0.50
0.214 < x3 < 0.50,

can be produced by the commands below.

R> Xvert(nfac = 3, lc = ¢(0.143, 0.214, 0.214), uc = c(0.572, 0.5, 0.5),
+ ndm = 1, pseudo = FALSE)

x1 x2 x3 dimen
1 0.5720 0.2140 0.2140 0
2 0.1430 0.5000 0.3570 0
3 0.2860 0.5000 0.2140 0
4 0.2860 0.2140 0.5000 0
5 0.1430 0.3570 0.5000 0
6 0.1430 0.4285 0.4285 1
7 0.4290 0.2140 0.3570 1
8 0.2145 0.5000 0.2855 1
9 0.4290 0.3570 0.2140 1
10 0.2145 0.2855 0.5000 1
11 0.2860 0.3570 0.3570 2

When there are only three components in the design, the function Xvert calls DesignPoints
to produce a visual representation of the design as shown in Figure 2.

Smith (2005) discussed a mixture experiment in formulating color photograhic dispersion that
included linear constraints in addition to upper and lower bounds on the components. The

6 mixexp: Mixture Experiments in R

constraint equations on the design region are given below, where x1 = Coupler, o = Solvent
A, x3 = Solvent B, x4 = Stabelizer A, x5 = Stabelizer B.
0.3 <z; <0.70
0.0 <z9<0.35
0.0 <z3<0.35
0.0<z4<0.35
0.0 <z5<0.35
0.15 < a9+ 23 <0.35
0.15 < x4+ 25 <0.35
Snee (1979) recommended that linear constraints be normalized by dividing all constants in
the equation by the largest constant for numerical stability. This was not necessary in this

example, since the largest constant in the linear constraint equations was 1. The code to
create the design and the results are shown below.

R> coef <- matrix(c(0, 1, 1, 0, 0, 0, 0, 0, 1, 1), ncol = 5, byrow = TRUE)
R> Xvert(nfac = 5, 1c = ¢(0.3, 0, 0, 0, 0), uc = ¢c(0.7, 0.35, 0.35, 0.35,
+ 0.35), nlc = 2, 1b = ¢(0.15, 0.15), ub = ¢(0.35, 0.35), coef)

x1 x2 x3 x4 x5 dimen
1 0.3 0.350 0.000 0.350 0.000 0
2 0.3 0.350 0.000 0.000 0.350 0
3 0.3 0.000 0.350 0.350 0.000 0
4 0.3 0.000 0.350 0.000 0.350 0
5 0.7 0.150 0.000 0.150 0.000 0
6 0.7 0.000 0.150 0.150 0.000 0
7 0.7 0.150 0.000 0.000 0.150 0
8 0.7 0.000 0.150 0.000 0.150 0
9 0.5 0.150 0.000 0.350 0.000 0
10 0.5 0.000 0.150 0.350 0.000 0
11 0.5 0.150 0.000 0.000 0.350 0
12 0.5 0.000 0.150 0.000 0.350 0
13 0.5 0.350 0.000 0.150 0.000 0
14 0.5 0.350 0.000 0.000 0.150 0
15 0.5 0.000 0.350 0.150 0.000 0
16 0.5 0.000 0.350 0.000 0.150 0
17 0.5 0.125 0.125 0.125 0.125 4

When there are constraints on several mixture components, the number of extreme vertices
may become very large. Snee and Marquardt (1976) discussed an experiment in product
development that involved eight mixture components with the following constraints.
0.10< 21 <045 .10 <25 <£0.60
0.05 <29 <0.50 .05 <uz<0.20
0<23<0.10 0<27<0.05
0<24<010 0<28<0.05

Journal of Statistical Software — Code Snippets

The function Xvert finds 182 vertices for this constrained region. It was only feasible for the
experimenters to complete a maximum of 20 experiments in order to detect which mixture
components had large effects. Snee and Marquardt (1976) created a design by selecting
a D-optimal subset of 16 vertices augmented by 4 overall centroids. A D-optimal set of
sixteen vertices can be found using the optFederov function in the package AlgDesign in
conjunction with the Xvert function. In the code below, a candidate data frame, cand
(consisting of extreme vertices of the constrained region), is created using the Xvert function.
Next, the run numbers are removed, and the reduced data frame is stored in candm. Finally
the optFederov function is used to create the D-optimal subset that is stored in ScreeMix.

R> cand <- Xvert(nfac = 8, x1 = ¢(0.1, 0.45), x2 = ¢(0.05, 0.50),

+ x3 = ¢c(0, 0.10), x4 = ¢c(0, 0.1), x5 = ¢c(0.1, 0.6), x6 = c(0.05, 0.2),
+ x7 = ¢c(0, 0.05), x8 = c(0, 0.05))

R> candm <- cand[, 1:8]

R> library("AlgDesign")

R> ScreeMix <- optFederov(~ -1 + ., candm, nTrials = 16)

3.3. Augmenting designs with interior points

The designs produced by the SLD, SCD or Xvert functions include design points around the
perimeter of the experimental region, possibly augmented by the centroid. Sometimes it
is desirable to have additional interior points for checking the fit of a model. The mixexp
function Fillv can add interior points to a design, created by SLD, SCD or Xvert, by averaging
all possible pairs of design points. Lawson and Erjavec (2001) describe an experiment where
an extreme vertices design was used to study the fixed carbon resulting from a coke briquette
composed of a mixture of 1 = calcinate, xo = tar free solids, and x3 = tar solids, and baked
at a constant temperature. Constraints on the mixture are shown below.

0.80 < 71 < 0.90
0.08 < x5 < 0.15
0.00 < x3 < 0.05

The following code illustrates the use of the Xvert function to create the extreme vertices
design called coke, and the use of the Fillv function to add additional interior points to
the design coke to create the design cokef. Xvert automatically created the graph of the
design points in coke on the left side of Figure 3. The DesignPoints function was used to
display the design cokef graphically on the right side of Figure 3. The option pseudo =
TRUE illustrates how the experimental region can be expanded by plotting within the pseudo
component space. Xvert automatically plots within pseudo component space without the
option pseudo = FALSE.

R> coke <- Xvert(nfac = 3, uc = ¢(0.9, 0.15, 0.05), 1c = c(0.80, 0.08, 0),
+ pseudo = FALSE)

R> coke <- signif(coke, 3)

R> cokef <- Fillv(nfac = 3, coke)

R> DesignPoints(cokef, xllower = 0.8, xlupper = 0.9, x2lower = 0.08,

+ x2upper = 0.15, x3lower = 0, x3upper = 0.05, pseudo = TRUE)

8 mixexp: Mixture Experiments in R

0.2 0.4 0.6 0.8 0.024 0.048 0.072 0.096
Fraction x3 Fraction x3

Figure 3: Comparison an extreme vertices design to an augmented extreme vertices design
on unrestricted and psuedo-component space.

N

AN

Figure 4: Design for fitting fully crossed mixture-process model.

3.4. Designs for mixture experiments with process variables

To create a design for fitting the fully crossed mixture-process model (Equation 5), a SLD(q,2)
design can be crossed with a 2P design in the process variables. With three mixture compo-
nents and two process variables, this design can be visualized in two ways in Figure 4.

This design can be created by merging (with the R merge function) a mixture design created
with the SLD function with a factorial design created with the the R expand.grid function
as shown in the code below Figure 4.

R> sl1d <- SLD(3, 2)

R> id <- rep(c(1, 2, 3, 4), each = 6)

R> sldm <- rbind(sld, sld, sld, sld)

R> sldm <- cbind(sldm, id)

R> facdes <- expand.grid(zl = c(-1, 1), z2 = c(-1, 1))
R> id <- 1:4

R> facdes <- cbind(facdes, id)

R> mixproc <- merge(sldm, facdes, by = "id", all = TRUE)

A subset of this design that would be D-optimal for fitting the reduced mixture-process vari-

Journal of Statistical Software — Code Snippets

able model, like Equation 6, can be created using the optFederov function in the AlgDesign
package, as shown below.

R> library("AlgDesign")

R> mixprocR <- optFederov(~ x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:21 +
+ x1:z2 + x2:z1 + x2:2z2 + x3:z1 + x3:z2 + z1:z2 - 1, mixproc,

+ nTrials = 15, criterion = "D", maxIteration = 100, nRepeats = 10)

4. Fitting mixture experiment models with R

Scheffé mixture models like Equations 1-4 and more complicated models like Equation 5 can
be fit to the data from mixture experiments using the 1m function. For example the code
below illustrates fitting the special-cubic model (Equation 4) to the data from silicon wafer
etching experiment described by Myers and Montgomery (2002).

R> library("mixexp")

R> data("etch")

R> emod <- Im(erate ~ -1 + x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:x2:x3,
+ data = etch)

R> summary (emod)

The design for this experiment was a partially replicated Simplex-Centroid Design augmented
by interior axial points, the code above illustrates how the special-cubic model can be fit to
this data using the R function 1m.

When fitting models that do not include an intercept, Cornell (2002) points out that the R?
statistic from a standard least-squares model fit will be inflated, due to the fact that the total
sum of squares is not corrected for the mean. This gives the impression that the model fits
better than it actually does. By including the intercept and leaving out one of the linear terms
(i.e., x1), the 1m function will produce the correct R?, but the intercept reported in the model
summary will actually be the coefficient for the term left out (i.e., 36 = A{V) where I is the
model including the intercept without x1, and NI is the no-intercept model that includes x1.
The coefficients for the remaining linear terms in the model that includes an intercept (I),
are actually the differences of the the coefficients for those terms minus the coefficient for the
term left out (i.e., BZI = BAZN r_ B{V 7). The estimated variances of the coefficients of linear
terms in the model including an intercept (/) will likewise be functions of the variances and
covariances of the estimated coefficients in the no-intercept model (N). As an alternative to
using 1m to fit involving mixture components, the mixexp function MixModel fits the models
1-6 (shown in Section 2) and prints the correct coefficients, standard errors, and R?. An
example is shown below with the data from Myers and Montgomery (2002)’s silicon wafer
etching experiment.

R> MixModel (frame = etch, "erate", mixcomps = c("x1", "x2", "x3"), model = 4)
The output is shown below which matches the results in Myers and Montgomery (2002).

coefficients Std.err t.value Prob
x1 550.199515 23.22446 23.69051468 6.067419e-08

10 mixexp: Mixture Experiments in R

Mixture components Process variables factorial + center

1 2 x3 (-1,1) (1,1) (-1,-1) (1,-1) (0,0)
0.0241 0.6018 0.3741 3010 3480 2780 4100 3840
0.0275 0.9725 0.0000 8510 5670 7060 5210 6320
0.0275 0.0000 0.9725 1600 2580 1660 2440 2210
0.0000 0.6667 0.3333 4560 4350 3990 4130 5210
0.0000 0.3333 0.6667 1930 3080 1810 3340 2600
0.0549 0.6300 0.3151 1900 4740 2160 4330 2780
0.0549 0.3151 0.6300 1780 3750 2000 3350 3140

=N, BTSENJURE CR g

Table 1: Viscosity response measurements (Pa-s) for mixture-process variable experiment
with mayonnaise.

x2 344.723325 23.22446 14.84311192 1.509476e-06
x3 268.294753 23.22446 11.55224716 8.203511e-06
x2:x1 689.537037 146.51489 4.70625916 2.192427e-03
x3:x1 -9.034392 146.51489 -0.06166193 9.5255657e-01
x2:x3 58.108466 146.51489 0.39660451 7.034720e-01
x2:x3:x1 9243.333333 940.85336 9.82441444 2.404146e-05

Residual standard error: 33.43177 on 7 degrees of freedom
Corrected Multiple R-squared: 0.9836603

To illustrate the analysis of a mixture experiment with process variables, consider the problem
discussed by Sahni, Piepel, and Naes (2009). They studied a process to produce low-fat
mayonnaise. The product was a mixture of three components x; = stabilizer, x5 = starch 1,
and xg = starch 2. The response they were interested in was the viscosity of the final product
that was influenced not only by the ingredients, but also by two process variables: z; =heat
exchanger temperature and z9 = the flow rate through the system. The goal was to achieve
a viscosity of 3657 at the lowest cost. The constraints on the mixture components are shown
below:

0.0 <z <0.0549
0.0 <z <0.9725
0.0 <z3 <0.9725

The data from the crossed extreme-vertices design in the mixture components and a 22 fac-
torial design (augmented by a center point) in the process variables is shown in Table 1.
This data set is stored in the data frame MPV which is part of the daewr package (Lawson
2015b) that contains the data frames and functions from the book Design and Analysis of
Experiments with R (Lawson 2015a). Equation 5 can be fit to this data using the commands
below the table.

R> library("daewr")

R> data("MPV")

R> modmp <- Im(y ~ -1 + x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3 + x1:21 +
+ x2:z1 + x3:z1 + x1:22 + x2:22 + x3:22 + x1:x2:z1 + x1:x3:2z1 +

Journal of Statistical Software — Code Snippets

+ x2:x3:z1 + x1:x2:2z2 + x1:x3:22 + x2:x3:22 + x1:21:2z2 + x2:21:z2 +
+ x3:2z1:2z2 + x1:x2:2z1:22 + x1:x3:2z1:22 + x2:x3:z1:z2, data = MPV)
> summary (modmp)

Alternatively this model can be fit with the MixModel function as shown below.

R> MixModel (MPV, "y", mixcomps = c("x1", "x2", "x3"), model = 5,
+ procvars = c("z1", "z2"))

5. Graphical display of fitted models for mixture experiments

5.1. Contour plots

The function contourPlot3 in the R package qualityTools can be used to make ternary
contour plots in the unconstrained mixture-simplex design space. However, if there are con-
straints on the mixture components, it might not show much detail in the constrained region.
The function ModelPlot in the package mixexp can show the constraints in the simplex and
optionally zero-in to the pseudo-component space bounded by the lower constraints on each
component. This makes it easier to see details of the response surface in the restricted region.
For example the R code below creates two contour plots of a quadratic model fit to the data
of Cornell (2002)’s Table 4.1. In this code, the design is created by the Xvert function in
mixexp, and the R function 1m is used to fit the quadratic mixture model 2. The object 1m
object quadm is the first argument to the ModelPlot function.

R> orig <- Xvert(nfac = 3, 1lc = ¢(0.35, 0.2, 0.15), uc = c(1, 1, 1),

+ ndm = 1, plot = FALSE)

R> y <- c(15.3, 20.0, 28.6, 12.5, 32.7, 42.4)

R> orig <- cbind(orig[1:6, 1, y)

R> quadm <- Im(y ~ -1 + x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3, data = orig)

R> title <- c("Actual Component Space", "Pseudo Component Space")

R> option <- c(FALSE, TRUE)

R> for (i in 1:2) {

ModelPlot (model = quadm,
dimensions = list(x1 = "x1", x2 = "x2", x3 = "x3"),
main = title[i], lims = ¢(0.35, 1, 0.20, 1, 0.15, 1),
constraints = TRUE, contour = TRUE, cuts = 6, fill = TRUE,
axislabs = c("x1", "x2", "x3"), cormerlabs = c("x1", "x2", "x3"),
pseudo = option[i])

+ + + + + + +

}

The dimensions argument to ModelPlot gives the names (in quotes) of the mixture com-
ponents in the 1m object that will be plotted on the vertical, left and right axis of the
simplex. The lims argument gives the lower and upper constraints on the vertical, left
and right axis of the simplex, constraints = TRUE specifies the constraints will be plotted
on the graph, contours = TRUE indicates contour lines are to be plotted, cuts = 6 indicates
6 contour lines, and £i11 = TRUE indicates regions between the contours should be colored.

12 mixexp: Mixture Experiments in R

Actual Component Space Pseudo Component Space

0.2 0.4 0.6 0.8
x3

Figure 5: Comparison of contour plots on unrestricted and pseudo-component space.

When pseudo = FALSE, as in the first time through the loop, the contour plot is made over
the entire simplex as shown in left of Figure 5. When pseudo = TRUE, as in the second time
through the loop, the contour plot is made over the pseudo-component space as shown in right
of Figure 5. As can be seen, there is much more detail in the restricted space on the right.

The ModelPlot function in mixexp can also make mixture-contour plots of equations involving
more than three components by holding some components fixed at values chosen by the user.
For example, consider Cornell (2002)’s application of blending four chemical pesticides for
control of mites. The design was a simplex-centroid design that is created by the SCD function
in the code below. The special-cubic model (Equation 4) was fit using the MixModel function.
In the first time through the loop, the ModelPlot function is called with the argument slice
= 1list(x4 = 0.0) that holds z4 =Dibrom constant at 0.0. This produced the contour plot
on the left side of Figure 6. In the second time through the loop, ModelPlot function is called
with the argument slice = 1list(x4 = 0.4) that fixes x4 =Dibrom at 0.4 and produces the
plot in the right side of Figure 6.

R> mite <- SCD(4)

R> yavg <- c(1.8, 25.4, 28.6, 38.5, 4.9, 3.1, 28.7, 3.4, 37.4, 10.7, 22.0,
+ 2.6, 2.4, 11.1,0.8)

R> mitemdM <- MixModel (frame = cbind(mite, yavg), response = "yavg",

+ mixcomps = c("x1", "x2", "x3", "x4"), model = 4)

R> for (x4 in c(0.0,0.4)) {

+ ModelPlot (model = mitemdM,

+ dimensions = list(x1 = "x1", x2 = "x2", x3 = "x3"),

+ slice = list(mix.vars = c(x4 = x4)),

+ main = paste("Dibrom = ", toString(x4, width = 4)),

+ constraints = FALSE, contour = TRUE, at = c(5, 10, 15, 20),
+ fill = FALSE, axislabs = c("Vendex", "Omite", "Kelthane'),
+ cornerlabs = c("X1", "X2", "X3"), pseudo = FALSE)

+

Journal of Statistical Software — Code Snippets

Dibrom = 0 Dibrom = 0.4

0.12 0.24 0.36 0.48
Kelthane Kelthane

Figure 6: Slice at 4 = 0.0 and x4 = 0.4.

The ModelPlot function can also be used to make contour plots of models fit to mixture-
process variable experiments by holding the process variables constant. For example, the code
below illustrates fitting a mixture-process variable model resulting from crossing a Scheffé
special cubic model with a full factorial model in three two-level process variables. The data
comes from Cornell (2002)’s famous fish patty experiment, where z; is the fraction of Mullet,
x2 is the fraction of Sheepshead, and x3 is the fraction of Croker in the fish patty mixture.
The process variables z1, zo, and z3 are the coded values of the process variables: cooking
temperature, cooking time, and frying time, respectively.

R> library("mixexp")
R> data("fishp")
R> fish.mdM <- MixModel (frame = fishp, response = "y",

+ mixcomps = c("x1", "x2", "x3"), model = 5,

+ procvars = c("z1", "z2", "z3"))

R> Title <- c("Cook Temp=High, Cook Time = High, Fry Time=Low",
+ "Cook Temp=Low, Cook Time=Low, Fry Time=High")

R> pv <- matrix(c(1, -1, 1, -1, -1, 1), ncol = 3)
R> for (i in 1:2) {

"Fraction sheepshead", "Fraction croaker"),
cornerlabs = c("mullet", "sheepH", "croaker"), pseudo = FALSE)

+ ModelPlot(fish.mdM,

+ dimensions = list(xl = "x1", x2 = "x2", x3 = "x3"),

+ slice = list(process.vars = c(zl = pv[i, 1],

+ z2 = pv[i, 2], z3 = pv[i, 31)),

+ main = Title[i], constraints = FALSE, contour = TRUE,

+ cuts = 10, fill = FALSE, axislabs = c("Fraction mullet",
+

+

+

}

The resulting contour plots at two combinations of cooking temperature, cooking time, and
frying time are shown in Figure 7.

13

14 mixexp: Mixture Experiments in R

Cook Temp=High, Cook Time = High, Fry Time=Low Cook Temp=Low, Cook Time=Low, Fry Time=High

mullet mullet

1eepH croake

croake 1eepH
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Fraction croaker Fraction croaker

Figure 7: Contour plots of the texture of Cornell’s fish patties.

5.2. Effect plots

When there are more than three components in a mixture, another way of representing the
fitted surface is by plotting the predicted response g(x) along each component axis on the
same graph (Cornell 2002). Cox (1971) defined the component axis for component z; as a line
that passes through the design centroid to the vertex where x; = 1.0. Piepel (1982) defined
the component axes as lines passing through the design centroid to the pseudo-component
vertices. The ModelEff function in mixexp plots the predicted response traces along either
the Cox or Piepel directions. After the model mitemdM is fit with the MixModel function, as
shown in the code example below Figure 5, the plot can be produced with the following call
of ModelEff.

R> ModelEff (nfac = 4, mod = 4, dir = 2, ufunc = mitemdM,
+ dimensions = list("x1", "x2", "x3", "x4"))

The argument nfac specifies the number of components in the model and the argument mod
= 4 gpecifies that a special cubic model will be supplied, which is given in the 1m object
specified by ufunc=mitemdM. The argument dimensions gives the names (in quotes) of the
mixture components in the 1m object mitemdM. Finally, the dir argument specifies whether
the plot should be made on the Piepel = 1 direction or Cox = 2 direction. The 1m object can
be created by the MixModel function, or by the R function 1m, as long as the terms in the
model are specified in the same order they would be specified by MixModel. The resulting
plot is shown in Figure 8.

In this plot it can be seen that decreasing the proportions of either xo = Omite or z3 =
Kelthane in the mixture causes the average percentage of mites remaining (relative to the
number before spraying) to decrease from more than 20 percent to near 0 percent. This plot
also shows that the optimal proportion of x4 = Dibrom for reducing the average percentage
of mites is near its value at the centroid of the design, and that changing the proportion of
21 = Vendex in the mixture has the smallest effect on mite control.

Snee and Marquardt (1976) showed that response trace plots for the linear model are useful
in screening experiments with constrained regions and many mixture components. It is inap-
propriate to judge the importance of the terms in the Scheffé linear model (Equation 1) by

Journal of Statistical Software — Code Snippets

Effect Plot (Cox direction)

g
x4
Q -
x3

X2

xa

Predicted Response
20
|

-0.2 0.0 0.2 0.4 0.6

Deviation form centroid

Figure 8: Predicted response trace plot.

the statistical significance of their coefficients since the physical interpretation of these coef-
ficients is the predicted responses at the pure component mixtures (which may be out of the
constrained experimental region). However, when the response trace along a component axis
is a flat horizontal line, it indicates that changing the proportion of that component has little
effect on the response. The data for the 16-run screening experiment in eight components
discussed in Section 3.2, and described by Snee and Marquardt (1976), is included in the data
frame SneeMq in the mixexp package. The code below produces the plot shown in Figure 9.

R> library("mixexp")

R> data("SneeMq")

R> SneeM <- Im(y ~ -1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8, data = SneeMq)
R> ModelEff (nfac = 8, mod = 1, dir = 1, ufunc = Sneel,

+ dimensions = list("x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8"),

+ lc = ¢(0.1, 0.05, 0, 0, 0.1, 0.05, 0, 0),

+ uc = c(0.45, 0.5, 0.1, 0.1, 0.6, 0.2, 0.05, 0.05))

The arguments lc and uc are included in the function call because the design region is
constrained and dir = 1 calls for a plot along the Piepel component axes.

The plot shows the response trace for zg to be essentially flat, and Snee and Marquardt (1976)
concluded the amount of this component in the mixture had little effect on the response. The
plot also shows that the response traces for x5 and xg nearly overlap. In addition, the traces
for z1 and z4 and the traces for x5, x7 and xg nearly overlap. With these graphical clues, Snee
and Marquardt (1976) found that within that the standard errors of the fitted coefficients
Bo = B3, B1 ~ B4, and B5 ~ B7 =~ [s. This means that the effect of changing the proportions
of xo or x3; or x1 or x4; or x5, 7 or xg is essentially the same. Based on this observation,
Snee and Marquardt (1976) concluded the model could be reduced to three dimensions by
defining 2} = (z2 + 23)/(1 — x¢), b = (x1 + x4) /(1 — x6), and 25 = (v5 + 27 + 23) /(1 — x6).

15

16 mixexp: Mixture Experiments in R

Effect Plot (Piepel direction)

x5
o _|
[e]
(0]
[%2]
c
2
g 8
@
©
9
(8]
2
Qo o |
o <
Ty
o _|
N
I I I I I
-0.1 0.0 0.1 0.2 0.3

Deviation form centroid

Figure 9: Predicted response trace plot for Snee and Marquardt’s screening experiment with
8 components.

For models 1, 2, and 4 in Section 2, there is a simpler function EffPlot that creates response
traces along the Cox or Piepel component axes when there is a data frame containing the
design with the mixture components x1 - xnfac as the first nfac columns and a response y
as the last column. This is the format of SneeMq. Therefore, the plot in Figure 9 can be
produced with the following code.

R> data("SneeMq")
R> Effplot(des = SneeMg, mod = 1, dir = 1)

There is no need to include the lower and upper constraints or a user function as arguments
to EffPlot since this function finds the constraints in the data frame and fits the model
internally.

When there are process variables in a mixture experiment, ModelEff can be used to make
response traces along the Cox or Piepel component axes, with the process variables held
constant. For example, the code on the next page illustrates making plots at the low and
high values of the coded process variable z = (RPM —65)/20 in the experiment (reported by
Gallant, Prickett, Cesarec, and Bruck (2008)) to determine the effects of mixture components
and a process variable on the burning rate of composite rocket propellants.

R> library("mixexp")

R> data("Burn")

R> testBNM <- MixModel (Burn, "y", mixcomps = c("Course", "Fine", "Binder"),
+ model = 6, procvars = "z")

R> z <- ¢(1,-1)

R> for (i in 1:2) {

Journal of Statistical Software — Code Snippets

Effect Plot z=1 (Piepel direction) Effect Plot z=-1 (Piepel direction)
8 x2 0] 1
= o x2
9 g B /
2 3 | 2 o
g S .,
3 3 ©
X x o
T 0 o kel
L o L o
: = -
L o p x3
(s [a N}
=} o
o
0w |x2 3 Ix2
: T T T T T T O T T T T T T
©_0.15 -0.05 0.00 0.05 0.10 0.15 -0.15 -0.05 0.00 0.05 0.10 0.5
Deviation from centroid Deviation from centroid

Figure 10: Predicted response traces for composite rocket propellant burning experiment.

ModelEff (nfac = 3, mod = 6, nproc = 1, dir = 1, ufunc = testBNM,
dimensions = 1ist(NULL), pvslice = z[i], 1lc = c(0.403, 0.166, 0.130),
uc = ¢(0.704, 0.412, 0.210))

+ + + +

6. Discussion and future directions

Design and analysis of mixture experiments in R is enhanced by functions in the mixexp pack-
age. This package provides functions for creating mixture designs in unconstrained regions.
It also uses Piepel (1988)’s Fortran code to create designs in linearly constrained regions.
In conjunction with the Fillv function, which creates interior points, and the AlgDesign
package an even wider variety of mixture designs such as screening designs, mixture-process
variables designs, and blocked mixture experiments can be created. Model fitting for mixture
experiments can be accomplished with the R 1m function. mixexp also provides functions for
ternary contour plots and response trace plots of models fit to mixture experiments. This
enhances the graphical capabilities for mixture experiments available in R.

When process variables are included in mixture experiments, it is often convenient to run the
experiments in a split-plot arrangement. For example, if it is time consuming to make the
mixtures, it might be convenient to make a large batch of the first mixture of components in
the design, and then subject parts of this large batch to different combination of levels of the
process variables while the next mixture batch is being made.

When a mixture-process experiment is performed in this way, a split-plot arrangement results
and a mixed model should be fit to the data. This can be done using the lmer function in the
lme4 package (Bates, Méchler, Bolker, and Walker 2015). Goos and Donev (2007) proposed
efficient designs for mixture-process experiments in split-plot arrangements. While there is
no ability to create their designs in R, Goos and Donev (2007) have provided Fortran code to
create these designs. Future plans are to use this Fortran code by calling it with a function in
mixexp similar to the way that Piepel (1988)’s code is called for creating designs in constrained
regions.

17

18 mixexp: Mixture Experiments in R

References

Bates D, Méachler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using
Imed.” Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.101.

Cornell JA (2002). Ezperiments with Mixtures-Designs, Models, and the Analysis of Mizture
Data. 3rd edition. John Wiley & Sons, New York. doi:10.1002/9781118204221.

Cox DR (1971). “A Note on Polynomial Response Functions for Mixtures.” Biometrika, 58,
155-159. doi:10.1093/biomet/58.1.155.

Gallant FM, Prickett SE, Cesarec M, Bruck HA (2008). “Ingredient and Processing Effects
on the Burning Rates of Composite Rocket Propellants Utilizing a Reduced-Run Mixture-
Process Experiment Design.” Chemometrics and intelligent laboratory systems, 90, 49-63.
doi:10.1016/j.chemolab.2007.08.007.

Goos P, Donev AN (2007). “Tailor-Made Split-Plot Designs for Mixture and Process Vari-
ables.” Journal of Quality Technology, 39, 326-339.

Kowalski SM, Cornell JA, Vining GG (2000). “A New Model and Class of Designs for Mixture
Experiments with Process Variables.” Communications in Statistics — Theory and Methods,
29, 2255-2280. doi:10.1080/03610920008832606.

Lawson J (2015a). Design and Analysis of Experiments with R. CRC Press, Boca Raton.

Lawson J (2015b). daewr: Design and Analysis of Experiments with R. R package version
1.1-6, URL https://CRAN.R-project.org/package=daewr.

Lawson J (2016). mixexp: Design and Analysis of Mizture Ezperiments. R package version
1.2.5, URL https://CRAN.R-project.org/package=mixexp.

Lawson J, Erjavec J (2001). Modern Statistics for Engineering and Quality Improvement.
Duxbury, Pacific Grove.

McLean RA, Anderson VL (1966). “Extreme Vertices Designs of Mixture Experiments.”
Technometrics, 8, 447-454. doi:10.1080/00401706.1966.10490377.

Minitab Inc (2010). “Minitab Software for Quality Improvement.” URL http://www.minitab.
com/.

Myers RH, Montgomery DC (2002). Response Surface Methodology: Process and Product
Optimization Using Designed Fxperiments. 2nd edition. John Wiley & Sons, New York.

Piepel GF (1982). “Measuring Component Effects in Constrained Mixture Experiments.”
Technometrics, 24, 29-39. doi:10.1080/00401706.1982.10487706.

Piepel GF (1988). “Programs for Generating Extreme Vertices and Centroids of Linearly
Constrained Experimental Regions.” Journal of Quality Technology, 20, 125-139.

Piepel GF (1997). “Survey of Software with Mixture Experiment Capability.” Journal of
Quality Technology, 29, 76-85.

http://dx.doi.org/10.18637/jss.v067.i01
http://dx.doi.org/10.1002/9781118204221
http://dx.doi.org/10.1093/biomet/58.1.155
http://dx.doi.org/10.1016/j.chemolab.2007.08.007
http://dx.doi.org/10.1080/03610920008832606
https://CRAN.R-project.org/package=daewr
https://CRAN.R-project.org/package=mixexp
http://dx.doi.org/10.1080/00401706.1966.10490377
http://www.minitab.com/
http://www.minitab.com/
http://dx.doi.org/10.1080/00401706.1982.10487706

Journal of Statistical Software — Code Snippets

Ragavarao D, Wiley JB, Chitturi P (2011). Choice-Based Conjoint Analysis Models and
Designs. CRC Press, Boca Raton. doi:10.1201/9781420099973.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Roth T (2016). qualityTools: Statistical Methods for Quality Science. R package version 1.55,
URL https://CRAN.R-project.org/package=qualityTools.

Sahni NS, Piepel GF, Naes T (2009). “Product and Process limprovement Using Mixture-
Process Variable Methods and Robust Optimization Techniques.” Journal of Quality Tech-
nology, 41, 181-197.

SAS Institute Inc (2010a). “Getting Started with the SAS 9.2 ADX Interface for Design
of Experiments.” URL http://support.sas.com/documentation/cdl/en/adxgs/60376/
PDF/default/adxgs.pdf.

SAS Institute Inc (2010b). “JMP Statistical Discovery Software.” URL http://www.jmp.
com/.

Scheffé H (1958). “Experiments with Mixtures.” Journal of the Royal Statistical Society B,
20, 344-360.

Smith WF (2005). Ezxperimental Design for Formulation. ASA-STAM, Alexandria.

Snee RD (1979). “Experimental Designs for Mixture Systems with Multicomponent Con-
straints.” Communication in Statistics — Theory and Methods, A8, 303-326. doi:
10.1080/03610927908827762.

Snee RD, Marquardt DW (1976). “Screening Concepts and Designs for Experimets with
Mixtures.” Technometrics, 18, 19-29. doi:10.2307/1267912.

Stat-Ease, Inc (2010). “Design-Expert V8 Software for Design of Experiments (DOE).” URL
http://wuw.statease.com/.

StatPoint Technologies (2010). “Statgraphics Centurion: Data Analysis and Statistical Soft-
ware.” URL http://www.statgraphics.com/.

Umetrics an MKS Company (2014). “MODDE Design of Experiments.” URL http://www.
umetrics.com/products/modde.

Wheeler RE (2014). AlgDesign: Algorithmic Experimental Design. R package version 1.1-7.3,
URL https://CRAN.R-project.org/package=AlgDesign.

Affiliation:

John Lawson

Department of Statistics

Brigham Young University

Provo, UT, United States of America
E-mail: lawson@byu.edu

http://dx.doi.org/10.1201/9781420099973
https://www.R-project.org/
https://CRAN.R-project.org/package=qualityTools
http://support.sas.com/documentation/cdl/en/adxgs/60376/PDF/default/adxgs.pdf
http://support.sas.com/documentation/cdl/en/adxgs/60376/PDF/default/adxgs.pdf
http://www.jmp.com/
http://www.jmp.com/
http://dx.doi.org/10.1080/03610927908827762
http://dx.doi.org/10.1080/03610927908827762
http://dx.doi.org/10.2307/1267912
http://www.statease.com/
http://www.statgraphics.com/
http://www.umetrics.com/products/modde
http://www.umetrics.com/products/modde
https://CRAN.R-project.org/package=AlgDesign
mailto:lawson@byu.edu

20 mixexp: Mixture Experiments in R

Cameron Willden

W. L. Gore and Associates

Newark, DE, United States of America

E-mail: ccwillden@gmail.com

URL: http://www.ci.tuwien.ac.at/~zeileis/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
August 2016, Volume 72, Code Snippet 2 Submitted: 2012-09-24

doi:10.18637/jss.v072.c02 Accepted: 2015-08-14

mailto:ccwillden@gmail.com
http://www.ci.tuwien.ac.at/~zeileis/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v072.c02

	Introduction
	Models for the analysis of mixture experiments
	Creating a mixture design with mixexp
	Standard mixture designs in unconstrained regions
	Mixture designs in constrained regions
	Augmenting designs with interior points
	Designs for mixture experiments with process variables

	Fitting mixture experiment models with R
	Graphical display of fitted models for mixture experiments
	Contour plots
	Effect plots

	Discussion and future directions

