
Khronos Native Platform Graphics Interface
(EGL Version 1.5 - August 27, 2014)

Editor: Jon Leech

2

Copyright (c) 2002-2014 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

This document is a derivative work of ”OpenGL R© Graphics with the X Window
System (Version 1.4)”. Silicon Graphics, Inc. owns, and reserves all rights in, the
latter document.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics, Inc.

EGL 1.5 - August 27, 2014

Contents

1 Overview 1

2 EGL Operation 2
2.1 Native Platforms and Rendering APIs 2

2.1.1 EGL Types . 2
2.1.2 Displays . 3

2.2 Rendering Contexts and Drawing Surfaces 4
2.2.1 Using Rendering Contexts 5
2.2.2 Rendering Models . 5
2.2.3 Interaction With Native Rendering 7

2.3 Direct Rendering and Address Spaces 7
2.4 Shared State . 8

2.4.1 OpenGL and OpenGL ES Texture Objects 8
2.4.2 OpenGL and OpenGL ES Buffer Objects 8

2.5 EGLImages . 9
2.6 Multiple Threads . 9
2.7 Power Management . 10
2.8 Extensions . 10

3 EGL Functions and Errors 12
3.1 Errors . 12

3.1.1 Generic Errors Are Not Described Repeatedly 14
3.1.2 Parameter Validation . 14

3.2 Initialization . 15
3.3 EGL Queries . 18
3.4 Configuration Management . 19

3.4.1 Querying Configurations 26
3.4.2 Lifetime of Configurations 31
3.4.3 Querying Configuration Attributes 31

i

CONTENTS ii

3.5 Rendering Surfaces . 31
3.5.1 Creating On-Screen Rendering Surfaces 31
3.5.2 Creating Off-Screen Rendering Surfaces 35
3.5.3 Binding Off-Screen Rendering Surfaces To Client Buffers 37
3.5.4 Creating Native Pixmap Rendering Surfaces 40
3.5.5 Destroying Rendering Surfaces 41
3.5.6 Surface Attributes . 42

3.6 Rendering to Textures . 46
3.6.1 Binding a Surface to a OpenGL ES Texture 46
3.6.2 Releasing a Surface from an OpenGL ES Texture 48
3.6.3 Implementation Caveats 49

3.7 Rendering Contexts . 49
3.7.1 Creating Rendering Contexts 51
3.7.2 Destroying Rendering Contexts 57
3.7.3 Binding Contexts and Drawables 58
3.7.4 Context Queries . 61

3.8 Synchronization Primitives . 64
3.8.1 Sync Objects . 65

3.9 EGLImage Specification and Management 72
3.9.1 Lifetime and Usage of EGLImages 77

3.10 Posting the Color Buffer . 79
3.10.1 Posting to a Window . 79
3.10.2 Copying to a Native Pixmap 80
3.10.3 Posting Semantics . 80
3.10.4 Posting Errors . 81

3.11 Obtaining Function Pointers . 82
3.12 Releasing Thread State . 83

4 Extending EGL 85

5 EGL Versions, Header Files, and Enumerants 86
5.1 Header Files . 86
5.2 Compile-Time Version Detection 87
5.3 Enumerant Values and Header Portability 87

6 Glossary 89

A Version 1.0 92
A.1 Acknowledgements . 92

EGL 1.5 - August 27, 2014

CONTENTS iii

B Version 1.1 93
B.1 Revision 1.1.2 . 93
B.2 Acknowledgements . 93

C Version 1.2 95
C.1 Acknowledgements . 95

D Version 1.3 96
D.1 Acknowledgements . 96

E Version 1.4 98
E.1 Updates to EGL 1.4 . 99
E.2 Acknowledgements . 102

F Version 1.5 104
F.1 Change Log for Released Specifications 105
F.2 Acknowledgements . 107

EGL 1.5 - August 27, 2014

List of Tables

3.1 EGLConfig attributes. 20
3.2 Types of surfaces supported by an EGLConfig 23
3.3 Types of client APIs supported by an EGLConfig 24
3.4 Default values and match criteria for EGLConfig attributes. . . . 29
3.5 Queryable surface attributes and types. 44
3.6 Size of texture components . 47
3.7 Fence sync attributes and initial values. 67
3.8 OpenCL event sync attributes and initial values. 68
3.9 Attributes accepted by eglGetSyncAttrib. 71
3.10 Legal values for eglCreateImage target parameter. 74
3.11 Legal attributes for eglCreateImage attrib list parameter. 75

D.1 Renamed tokens . 97

iv

Chapter 1

Overview

This document describes EGL, an interface between rendering APIs such as
OpenCL, OpenGL, OpenGL ES or OpenVG (referred to collectively as client APIs)
and one or more underlying platforms (typically window systems such as X11). It
refers to concepts discussed in the specifications for these client APIs, and should
be read together with those specifications. EGL uses OpenGL ES conventions for
naming entry points and macros.

EGL provides mechanisms for creating rendering surfaces onto which client
APIs can draw, creating graphics contexts for client APIs, and synchronizing draw-
ing by client APIs as well as platform rendering APIs. EGL does not explicitly
support remote or indirect rendering, unlike the similar GLX API.

1

Chapter 2

EGL Operation

2.1 Native Platforms and Rendering APIs

EGL is intended to be implementable on multiple operating systems (such as An-
droid, Unix, and Windows) and platforms1 (including window systems such as
X11 and Microsoft Windows, and platforms supporting rendering without a dis-
play, such as GBM). Implementations may also choose to allow rendering into
specific types of EGL surfaces via native rendering APIs specific to a platform,
such as Xlib or GDI. Native rendering is described in more detail in section 2.2.3.

To the extent possible, EGL itself is independent of definitions and concepts
specific to any platform or rendering API. However, there are a few places where
native concepts must be mapped into EGL-specific concepts, including the def-
inition of the display on which graphics are drawn, and the definition of native
windows and pixmaps which can also support client API rendering.

This specification does not define the set of platforms that may be supported by
the EGL implementation, nor does it specify behavior specific to any platform. The
set of supported platforms and their behavior is defined by extensions. To detect
if a particular platform is supported, clients should query the EGL_EXTENSIONS

string of EGL_NO_DISPLAY using eglQueryString (see section 3.3).

2.1.1 EGL Types

EGLBoolean is an integral type representing a boolean value, and should only
take on the values EGL_TRUE (1) and EGL_FALSE (0). If boolean parameters

1 Platforms were previously referred to as “native window systems”, but EGL 1.5 now supports
both rendering without a display, and multiple runtime platforms.

2

2.1. NATIVE PLATFORMS AND RENDERING APIS 3

passed to EGL take on other values, behavior is undefined, although typically any
non-zero value will be interpreted as EGL_TRUE.

EGLint is an integral type, normally the same size as a native platform int.
Legal attribute values whose type is boolean, bitmask, enumerant, or integer can
be passed in EGLint attribute lists, but handle and pointer values may not be
representable in such attribute lists2.

EGLAttrib is an integral type defined to be equivalent to the ISO C
intptr_t type. It is used in the commands eglCreateImage, eglCre-
ateSync, eglCreatePlatformWindowSurface, eglCreatePlatformPixmapSur-
face, eglGetPlatformDisplay, and eglGetSyncAttrib, and will be used for all
similar commands in the future which take attribute lists or return attribute values,
since such commands might at some point need to represent handle and pointer
values in attribute lists as well as other integral types3.

EGLContext is an opaque type representing a client API context. The defi-
nition of contexts depends on the client API, but usually represents the state vector
of an abstract machine describing the client API and allows executing client API
commmands with respect to that state vector.

EGLImage is an opaque type representing handles to EGLImage objects (see
section 2.5).

EGLSurface is an opaque type representing a drawing surface which client
APIs can render content into.

EGLSync is an opaque type representing handles to sync objects (see sec-
tion 3.8.1).

EGLTime is a 64-bit unsigned integer type representing a timeout interval in
nanoseconds for eglClientWaitSync (see section 3.8.1.3).

2.1.2 Displays

Most EGL calls include an EGLDisplay parameter. This represents the abstract
display on which graphics are drawn. In most environments a display corresponds

2 This is a functionality regression relative to earlier versions of EGL, first adopted in the Novem-
ber, 2013 EGL 1.4 update. It was adopted because EGL implementations on some 64-bit platforms
chose their EGLint type to be a 32-bit integer type, and changing the definition would break their
ABIs in a way considered to be too disruptive to their application base. The EGL_KHR_cl_-
event2 and EGL_KHR_lock_surface3 extensions replace similar earlier extensions al-
lowing pointers in attribute lists, and work around this regression by providing new interfaces using
attribute types which are guaranteed to be sufficiently large. New commands in EGL 1.5 taking
attribute lists and returning attribute values use the EGLAttrib type (see below).

3 New interfaces using the new EGLAttrib type are not defined for older functionality such as
creating pbuffers, since there is no current or expected requirement for pointer/handle-sized attributes
in those interfaces.

EGL 1.5 - August 27, 2014

2.2. RENDERING CONTEXTS AND DRAWING SURFACES 4

to a single physical screen. The initialization routines described in section 3.2
include a method for querying a default display, and platform-specific EGL exten-
sions may be defined to obtain other displays.

All EGL objects are associated with an EGLDisplay, and exist in a names-
pace defined by that display. Objects are always specified by the combination of an
EGLDisplay parameter with a parameter representing the handle of the object.

2.2 Rendering Contexts and Drawing Surfaces

The client API specifications are intentionally vague on how a rendering context
(e.g. the state machine defined by a client API) is created. One of the purposes
of EGL is to provide a means to create client API rendering contexts (henceforth
simply referred to as contexts), and associate them with drawing surfaces.

EGL defines several types of drawing surfaces collectively referred to as
EGLSurfaces. These include windows, used for onscreen rendering; pbuffers,
used for offscreen rendering; and pixmaps, used for offscreen rendering into buffers
that may be accessed through native APIs. EGL windows and pixmaps are tied to
platform windows and pixmaps.

EGLSurfaces are created with respect to an EGLConfig. The EGLConfig
describes the depth of the color buffer components and the types, quantities and
sizes of the ancillary buffers (i.e., the depth, multisample, and stencil buffers).

Ancillary buffers are associated with an EGLSurface, not with a context. If
several contexts are all writing to the same surface, they will share those buffers.
Rendering operations to one window never affect the unobscured pixels of another
window, or the corresponding pixels of ancillary buffers of that window.

Contexts for different client APIs all share the color buffer of a surface, but
ancillary buffers are not necessarily meaningful for every client API. In particular,
depth, multisample, and stencil buffers are currently used only by OpenGL and
OpenGL ES.

A context can be used with any EGLSurface that it is compatible with (sub-
ject to the restrictions discussed in the section on address space). A surface and
context are compatible if:

• They support the same type of color buffer (RGB or luminance).

• They have color buffers and ancillary buffers of the same depth.

Depth is measured per-component. For example, color buffers in RGB565
and RGBA4444 formats have the same aggregate depth of 16 bits/pixel, but
are not compatible because their per-component depths are different.

EGL 1.5 - August 27, 2014

2.2. RENDERING CONTEXTS AND DRAWING SURFACES 5

Ancillary buffers not meaningful to a client API do not affect compatibility;
for example, a surface with both color and stencil buffers will be compat-
ible with an OpenVG context so long as the color buffers associated with
the contexts are of the same depth. The stencil buffer is irrelevant because
OpenVG does not use it.

• The surface was created with respect to an EGLConfig supporting client
API rendering of the same type as the API type of the context (in environ-
ments supporting multiple client APIs).

• They were created with respect to the same EGLDisplay (in environments
supporting multiple displays).

As long as the compatibility constraint and the address space requirement are
satisfied, clients can render into the same EGLSurface using different contexts.
It is also possible to use a single context to render into multiple EGLSurfaces.

2.2.1 Using Rendering Contexts

OpenGL and OpenGL ES define both client state and server state. Thus an OpenGL
or OpenGL ES context consists of two parts: one to hold the client state and one to
hold the server state. OpenVG does not separate client and server state.

The OpenGL, OpenGL ES, and OpenVG client APIs rely on an implicit context
used by all entry points, rather than passing an explicit context parameter. The
implicit context for each API is set with EGL calls (see section 3.7.3). The implicit
contexts used by these APIs are called current contexts.

Each thread can have at most one current rendering context for each supported
client API; for example, there may be both a current OpenGL ES context and
a current OpenVG context in an implementation supporting both of these APIs.
In addition, a context can be current to only one thread at a time. The client is
responsible for creating contexts and surfaces. Because OpenGL and OpenGL ES
contexts share many entry points, additional restrictions on current contexts exists
for these client APIs when both are supported (see section 3.7).

2.2.2 Rendering Models

EGL, OpenGL, and OpenGL ES support two rendering models: back buffered and
single buffered.

Back buffered rendering is used by window and pbuffer surfaces. Memory for
the color buffer used during rendering is allocated and owned by EGL. When the

EGL 1.5 - August 27, 2014

2.2. RENDERING CONTEXTS AND DRAWING SURFACES 6

client is finished drawing a frame, the back buffer may be copied to a visible win-
dow using eglSwapBuffers. Pbuffer surfaces have a back buffer but no associated
window, so the back buffer need not be copied.

Single buffered rendering is used by pixmap surfaces. Memory for the color
buffer is specified at surface creation time in the form of a native pixmap, and
client APIs are required to use that memory during rendering. When the client
is finished drawing a frame, the native pixmap contains the final image. Pixmap
surfaces typically do not support multisampling, since the native pixmap used as
the color buffer is unlikely to provide space to store multisample information.

Some client APIs, such as OpenGL and OpenVG, also support single buffered
rendering to window surfaces. This behavior can be selected when creating the
window surface, as defined in section 3.5.1. When mixing use of client APIs
which do not support single buffered rendering into windows, like OpenGL ES,
with client APIs which do support it, back color buffers and visible window con-
tents must be kept consistent when binding window surfaces to contexts for each
API type (see section 3.7.3).

Both back and single buffered surfaces may also be copied to a specified native
pixmap using eglCopyBuffers.

2.2.2.1 Native Surface Coordinate Systems

The coordinate system for native windows and pixmaps in most platforms is in-
verted relative to the OpenGL, OpenGL ES, and OpenVG client API coordinate
systems. In such systems, native windows and pixmaps have (0, 0) in the upper
left of the pixmap, while the client APIs have (0, 0) in the lower left. To accomo-
date this, client API rendering to window and pixmap surfaces must invert their
own y coordinate when accessing the color buffer in the underlying native win-
dow or pixmap, so that the resulting images appear as intended by the application
when the final image is displayed by eglSwapBuffers or copied from a pixmap to
a visible window using native rendering APIs.

2.2.2.2 Window Resizing

EGL window surfaces need to be resized when their corresponding native window
is resized. Implementations typically use hooks into the OS and platform to per-
form this resizing on demand, transparently to the client. Some implementations
may instead define an EGL extension giving explicit control of surface resizing.

Implementations which cannot resize EGL window surfaces on demand must
instead respond to native window size changes in eglSwapBuffers (see sec-
tion 3.10.3).

EGL 1.5 - August 27, 2014

2.3. DIRECT RENDERING AND ADDRESS SPACES 7

2.2.3 Interaction With Native Rendering

Native rendering will always be supported by pixmap surfaces (to the extent that
native rendering APIs can draw to native pixmaps). Pixmap surfaces are typically
used when mixing native and client API rendering is desirable, since there is no
need to move data between the back buffer visible to the client APIs and the native
pixmap visible to native rendering APIs. However, pixmap surfaces may, for the
same reason, have restricted capabilities and performance relative to window and
pbuffer surfaces.

Native rendering will not be supported by pbuffer surfaces, since the color
buffers of pbuffers are allocated internally by EGL and are not accessible through
any other means.

Native rendering may be supported by window surfaces, but only if the plat-
form has a compatible rendering model allowing it to share the back color buffer,
or if single buffered rendering to the window surface is being done.

When both native rendering APIs and client APIs are drawing into the same
underlying surface, no guarantees are placed on the relative order of completion
of operations in the different rendering streams other than those provided by the
synchronization primitives discussed in section 3.8.

Some state is shared between client APIs and the underlying platform and ren-
dering APIs, including color buffer values in window and pixmap surfaces.

2.3 Direct Rendering and Address Spaces

EGL is assumed to support only direct rendering, unlike similar APIs such as GLX.
EGL objects and related context state cannot be used outside of the address space
in which they are created. In a single-threaded environment, each process has its
own address space. In a multi-threaded environment, all threads may share the
same virtual address space; however, this capability is not required, and imple-
mentations may choose to restrict their address space to be per-thread even in an
environment supporting multiple application threads.

Context state, including both the client and server state of OpenGL and
OpenGL ES contexts, exists in the client’s address space; this state cannot be
shared by a client in another process.

Support of indirect rendering (in those environments where this concept makes
sense) may have the effect of relaxing these limits on sharing. However, such
support is beyond the scope of this document.

EGL 1.5 - August 27, 2014

2.4. SHARED STATE 8

2.4 Shared State

Most context state is small. However, some types of state are potentially large
and/or expensive to copy, in which case it may be desirable for multiple contexts to
share such state rather than replicating it in each context. Such state may only be
shared between different contexts of the same API type (e.g. two OpenGL contexts,
two OpenGL ES contexts, or two OpenVG contexts, but not a mixture).

EGL provides for sharing certain types of context state among contexts existing
in a single address space. The types of client API objects that are shareable are
defined by the corresponding client API specifications.

2.4.1 OpenGL and OpenGL ES Texture Objects

Texture state can be encapsulated in a named texture object. A texture object
is created by binding an unused name to one of the supported texture targets
(GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_CUBE_MAP) of OpenGL
or OpenGL ES context. When a texture object is bound, operations on the target to
which it is bound affect the bound texture object, and queries of the target to which
it is bound return state from the bound texture object.

OpenGL and OpenGL ES makes no attempt to synchronize access to texture
objects. If a texture object is bound to more than one context, then it is up to the
programmer to ensure that the contents of the object are not being changed via one
context while another context is using the texture object for rendering. The results
of changing a texture object while another context is using it are undefined.

All modifications to shared context state as a result of executing glBindTexture
are atomic. Also, a texture object will not be deleted while it is still bound to any
context.

2.4.2 OpenGL and OpenGL ES Buffer Objects

If a OpenGL or OpenGL ES buffer object is bound to more than one context,
then it is up to the programmer to ensure that the contents of the object are not
being changed via one context while another context is using the buffer object for
rendering. The results of changing a buffer object while another context is using it
are undefined.

All modifications to shared context state as a result of executing glBindBuffer
are atomic. Also, a buffer object will not be deleted while it is still bound to any
context.

EGL 1.5 - August 27, 2014

2.5. EGLIMAGES 9

2.5 EGLImages

As described in section 2.4, EGL allows contexts of the same client API type to
share significant amounts of state (such as OpenGL and OpenGL ES texture ob-
jects, or OpenVG paths); however, in some cases it may be desirable to share state
between client APIs. An example is using a previously-rendered OpenVG image
as an OpenGL ES texture object.

In order to facilitate these more complicated use-cases, EGL is capable of cre-
ating EGL resources that can be shared between contexts of different client APIs
(called EGLImages) from client API resources such as texel arrays in OpenGL ES
texture objects or OpenVG VGImages. Collectively, the resources that are used to
create EGLImages are referred to as EGLImage sources.

The EGL client APIs each provide mechanisms for creating appropriate re-
source types (such as complete texture arrays or OpenVG VGImages) from
EGLImages through API-specific mechanisms. Collectively, resources which are
created from EGLImages within client APIs are referred to as EGLImage targets.
Each EGLImage may have multiple associated EGLImage targets. Collectively,
the EGLImage source and EGLImage targets associated with an EGLImage object
are referred to as EGLImage siblings.

Commands to create, manage, and destroy EGLImages are described in sec-
tion 3.9.

2.6 Multiple Threads

EGL and its client APIs must be threadsafe. Interrupt routines may not share a
context with their main thread.

EGL guarantees sequentiality within a command stream for each of its client
APIs, but not between these APIs and native APIs which may also be rendering
into the same surface. It is possible, for example, that a native drawing command
issued by a single threaded client after an OpenGL ES command might be executed
before that OpenGL ES command.

Client API commands are not guaranteed to be atomic. Some such commands
might otherwise impair interactive use of the platform by the user. For instance,
rendering a large texture mapped polygon on a system with no graphics hardware,
or drawing a large OpenGL ES vertex array, could prevent a user from popping up
a menu soon enough to be usable.

Synchronization is in the hands of the client. It can be maintained at moderate
cost with the judicious use of commands such as glFinish, vgFinish, eglWait-
Client, and eglWaitNative, as well as (if they exist) synchronization commands

EGL 1.5 - August 27, 2014

2.7. POWER MANAGEMENT 10

present in native rendering APIs. Client API and native rendering can be done
in parallel so long as the client does not preclude it with explicit synchronization
calls.

Some performance degradation may be experienced if needless switching be-
tween client APIs and native rendering is done.

2.7 Power Management

Power management events can occur asynchronously while an application is
running. When the system returns from the power management event the
EGLContext will be invalidated, and all subsequent client API calls will have
no effect (as if no context is bound).

Errors

Following a power management event, calls to eglSwapBuffers, eglCopy-
Buffers, or eglMakeCurrent will indicate failure by returning EGL_FALSE.
The error EGL_CONTEXT_LOST will be returned if a power management event
has occurred.

On detection of this error, the application must destroy all contexts (by calling
eglDestroyContext for each context). To continue rendering the application must
recreate any contexts it requires, and subsequently restore any client API state and
objects it wishes to use.

Any EGLSurfaces that the application has created need not be destroyed
following a power management event, but their contents will be invalid.

Note that not all implementations can be made to generate power management
events, and developers should continue to refer to platform-specific documentation
in this area. We expected continued work in platform-specific extensions to enable
more control over power management issues, including event detection, scope and
nature of resource loss, behavior of EGL and client API calls under resource loss,
and recommended techniques for recovering from events. Future versions of EGL
may incorporate additional functionality in this area.

2.8 Extensions

EGL implementations may expose additional functionality beyond that described
by this specification. Additional functionality may include new functions, new enu-
merant values, and extended behavior for existing functions. Implementations ad-

EGL 1.5 - August 27, 2014

2.8. EXTENSIONS 11

vertise such extensions to EGL by exposing extension strings, which are queryable
with eglQueryString.

Each EGL extension belongs to exactly one of the following types:

Display Extension A display extension adds functionality to an individual
EGLDisplay. Different instances of EGLDisplay may support differ-
ent sets of display extensions.

Client Extension A client extension adds functionality that is independent of any
display. In other words, it adds functionality to the EGL client library itself.
In a given process, there exists exactly one set, possibly empty, of supported
client extensions. When the client extension string is first queried, that set
becomes immutable.

EGL 1.5 - August 27, 2014

Chapter 3

EGL Functions and Errors

3.1 Errors

Where possible, when an EGL function fails it has no side effects.
EGL functions usually return an indicator of success or failure; either an

EGLBoolean EGL_TRUE or EGL_FALSE value, or in the form of an out-of-band
return value indicating failure, such as returning EGL_NO_CONTEXT instead of a
requested context handle. Additional information about the success or failure of
the most recent EGL function called in a specific thread1, in the form of an error
code, can be obtained by calling

EGLint eglGetError(void);

The error codes that may be returned from eglGetError, and their meanings,
are:

EGL_SUCCESS

Function succeeded.

EGL_NOT_INITIALIZED

EGL is not initialized, or could not be initialized, for the specified display.
Any command may generate this error.

EGL_BAD_ACCESS

EGL cannot access a requested resource (for example, a context is bound in
1 Note that calling eglGetError twice without any other intervening EGL calls will always return

EGL_SUCCESS on the second call, since eglGetError is itself an EGL function, and the second
call is reporting the success or failure of the first call. In other words, error checking must always be
performed immediately after an EGL function fails.

12

3.1. ERRORS 13

another thread). Any command accessing a named resource may generate
this error.

EGL_BAD_ALLOC

EGL failed to allocate resources for the requested operation. Any command
allocating resources may generate this error.

EGL_BAD_ATTRIBUTE

An unrecognized attribute or attribute value was passed in an attribute list.
Any command taking an attribute parameter or attribute list may generate
this error.

EGL_BAD_CONTEXT

An EGLContext argument does not name a valid EGLContext. Any
command taking an EGLContext parameter may generate this error.

EGL_BAD_CONFIG

An EGLConfig argument does not name a valid EGLConfig. Any com-
mand taking an EGLConfig parameter may generate this error.

EGL_BAD_CURRENT_SURFACE

The current surface of the calling thread is a window, pbuffer, or pixmap that
is no longer valid.

EGL_BAD_DISPLAY

An EGLDisplay argument does not name a valid EGLDisplay. Any
command taking an EGLDisplay parameter may generate this error.

EGL_BAD_SURFACE

An EGLSurface argument does not name a valid surface (window,
pbuffer, or pixmap) configured for rendering. Any command taking an
EGLSurface parameter may generate this error.

EGL_BAD_MATCH

Arguments are inconsistent; for example, an otherwise valid context requires
buffers (e.g. depth or stencil) not allocated by an otherwise valid surface.

EGL_BAD_PARAMETER

One or more argument values are invalid. Any command taking parameters
may generate this error.

EGL_BAD_NATIVE_PIXMAP

An EGLNativePixmapType argument does not refer to a valid native

EGL 1.5 - August 27, 2014

3.1. ERRORS 14

pixmap. Any command taking an EGLNativePixmapType parameter
may generate this error.

EGL_BAD_NATIVE_WINDOW

An EGLNativeWindowType argument does not refer to a valid native
window. Any command taking an EGLNativeWindowType parameter
may generate this error.

EGL_CONTEXT_LOST

A power management event has occurred. The application must destroy all
contexts and reinitialise client API state and objects to continue rendering,
as described in section 2.7. Any command may generate this error.

When an EGL function could potentially generate several different errors (for
example, when passed both a bad attribute name, and a bad attribute value for a
legal attribute name), the implementation may choose to generate any one of the
applicable errors.

When there is no status to return (in other words, when eglGetError is called
as the first EGL call in a thread, or immediately after calling eglReleaseThread),
EGL_SUCCESS will be returned.

3.1.1 Generic Errors Are Not Described Repeatedly

Some specific error codes that may be generated by a failed EGL function, and
their meanings, are described together with each function. However, not all pos-
sible errors are described with each function. Errors whose meanings are identi-
cal across many functions (such as returning EGL_BAD_DISPLAY or EGL_NOT_-
INITIALIZED for an unsuitable EGLDisplay argument) may not be described
repeatedly. Some of the error codes above describe a class of commands which
may generate them. Such errors are not necessarily described repeatedly together
with each such command in the class.

3.1.2 Parameter Validation

EGL normally checks the validity of objects passed into it, but detecting in-
valid native objects (pixmaps, windows, and displays) may not always be possi-
ble. Specifying such invalid handles may result in undefined behavior, although
implementations should generate EGL_BAD_NATIVE_PIXMAP and EGL_BAD_-

NATIVE_WINDOW errors if possible.

EGL 1.5 - August 27, 2014

3.2. INITIALIZATION 15

3.2 Initialization

A display can be obtained by calling

EGLDisplay eglGetPlatformDisplay(EGLenum platform,
void *native_display, const EGLAttrib

*attrib_list);

The resulting EGLDisplay belongs to the native platform specified by plat-
form. This specification defines no valid values for platform. Any specification
that does define a valid value for platform will also define requirements for the
native display parameter. For example, an extension specification that defines sup-
port for the X11 platform may require that native display be a pointer to an X11
Display, and an extension specification that defines support for the Microsoft
Windows platform may require that native display be a pointer to a Windows De-
vice Context.

All attribute names in attrib list are immediately followed by the correspond-
ing desired value. The list is terminated with EGL_NONE. The attrib list is con-
sidered empty if either attrib list is NULL or if its first element is EGL_NONE. This
specification defines no valid attribute names for attrib list.

Multiple calls made to eglGetPlatformDisplay with the same parameters will
return the same EGLDisplay handle.

If platform is valid but no display matching native display is available, then
EGL_NO_DISPLAY is returned; no error condition is raised in this case.

Errors

eglGetPlatformDisplay returns EGL_NO_DISPLAY on failure.
An EGL_BAD_PARAMETER error is generated if platform has an invalid

value.

A display can also be obtained by calling

EGLDisplay eglGetDisplay(EGLNativeDisplayType
display_id);

The behavior of eglGetDisplay is similar to that of eglGetPlatformDisplay,
but is specified in terms of implementation-specific behavior rather than platform-
specific extensions. As for eglGetPlatformDisplay, EGL considers the returned
EGLDisplay as belonging to the same platform as display id. However, the set
of platforms to which display id is permitted to belong, as well as the actual type of

EGL 1.5 - August 27, 2014

3.2. INITIALIZATION 16

display id, are implementation-specific. If display id is EGL_DEFAULT_DISPLAY,
a default display is returned. Multiple calls made to eglGetDisplay with the same
display id will return the same EGLDisplay handle.

If no display matching display id is available, EGL_NO_DISPLAY is returned;
no error condition is raised in this case.

EGL may be initialized on a display by calling

EGLBoolean eglInitialize(EGLDisplay dpy, EGLint

*major, EGLint *minor);

EGL_TRUE is returned on success, and major and minor are updated with the major
and minor version numbers of the EGL implementation (for example, in an EGL
1.2 implementation, the values of *major and *minor would be 1 and 2, respec-
tively). major and minor are not updated if they are specified as NULL.

Initializing an already-initialized display is allowed, but the only effect of such
a call is to return EGL_TRUE and update the EGL version numbers. An initialized
display may be used from other threads in the same address space without being
initialized again in those threads.

Errors

eglInitialize returns EGL_FALSE on failure, and major and minor are not
updated.

An EGL_BAD_DISPLAY error is generated if the dpy argument does not
refer to a valid EGLDisplay.

An EGL_NOT_INITIALIZED error is generated if EGL cannot be initial-
ized for an otherwise valid dpy.

To release resources associated with use of EGL and client APIs on a display,
call

EGLBoolean eglTerminate(EGLDisplay dpy);

Termination marks all EGL-specific resources, such as contexts and surfaces, asso-
ciated with the specified display for deletion. Handles to all such resources are in-
valid as soon as eglTerminate returns, but the dpy handle itself remains valid. Pass-
ing such handles to any other EGL command will generate EGL_BAD_SURFACE or
EGL_BAD_CONTEXT errors. Applications should not try to perform useful work

EGL 1.5 - August 27, 2014

3.2. INITIALIZATION 17

with such resources following eglTerminate; only eglMakeCurrent or eglRe-
leaseThread should be called, to complete deletion of these resources. 2

If contexts or surfaces, created with respect to dpy are current (see sec-
tion 3.7.3) to any thread, then they are not actually destroyed while they remain
current. If other resources created with respect to dpy are in use by any current
context or surface, then they are also not destroyed until the corresponding context
or surface is no longer current.

All such resources will be destroyed as soon as eglReleaseThread is called
from the thread they are bound to, or eglMakeCurrent is called from that thread
with the current rendering API (see section 3.7) set such that the current context
is affected. Use of bound contexts and surfaces (that is, continuing to issue com-
mands to a bound client API context) will not result in interruption or termination
of applications, but rendering results are undefined, and client APIs may generate
errors.

Errors

eglTerminate returns EGL_FALSE on failure.
If the dpy argument does not refer to a valid EGLDisplay, an EGL_-

BAD_DISPLAY error is generated.

Termination of a display that has already been terminated, or has not yet been
initialized, is allowed, but the only effect of such a call is to return EGL_TRUE, since
there are no EGL resources associated with the display to release. A terminated
display may be re-initialized by calling eglInitialize again. When re-initializing
a terminated display, resources which were marked for deletion as a result of the
earlier termination remain so marked, and handles which previously referred to
them remain invalid

At any point a display may either be initialized or uninitialized. All displays
start out uninitialized. A display becomes initialized after eglInitialize is suc-
cessfully called on it. A display becomes uninitialized after eglTerminate is suc-
cessfully called on it. An uninitialized display may be passed to the functions
eglInitialize, eglTerminate, and in some cases eglMakeCurrent. All other EGL
functions which take a display argument will fail and generate an EGL_NOT_-

2 Immediately invalidating handles is a subtle behavior change. Prior to the January 13, 2009
release of the EGL 1.4 Specification, handles remained valid so long as the underlying surface was
current. In the September 18, 2010 release, handle invalidation was explicitly extended to all EGL
resources associated with dpy, not just contexts and surfaces.

EGL 1.5 - August 27, 2014

3.3. EGL QUERIES 18

INITIALIZED error when passed a valid but uninitialized display. 3

3.3 EGL Queries

const char *eglQueryString(EGLDisplay dpy, EGLint
name);

eglQueryString returns a pointer to a static, zero-terminated string describing
some aspect of the EGL implementation running on the specified display. name
may be one of EGL_CLIENT_APIS, EGL_EXTENSIONS, EGL_VENDOR, or EGL_-
VERSION.

The EGL_CLIENT_APIS string describes which client APIs are supported. It
is zero-terminated and contains a space-separated list of API names, which must
include at least one of ‘‘OpenGL’’, ‘‘OpenGL_ES’’ or ‘‘OpenVG’’.

The EGL_EXTENSIONS string describes the set of supported EGL extensions.
The string is zero-terminated and contains a space-separated list of extension
names; extension names themselves do not contain spaces. If there are no ex-
tensions, then the empty string is returned.

If dpy is EGL_NO_DISPLAY, then the EGL_EXTENSIONS string describes the
set of supported client extensions. If dpy is a valid, initialized display, then the
EGL_EXTENSIONS string describes the set of display extensions supported by that
display. The set of supported client extensions is disjoint from the set of extensions
supported by any given display (see section 2.8).

The format and contents of the EGL_VENDOR string is implementation depen-
dent.

The format of the EGL_VERSION string is:

<major version.minor version><space><vendor specific info>

Both the major and minor portions of the version number are numeric. Their values
must match the major and minor values returned by eglInitialize (see section 3.2).
The vendor-specific information is optional; if present, its format and contents are
implementation specific.

If dpy is EGL_NO_DISPLAY, then the EGL_VERSION string describes the sup-
ported client version. If dpy is a valid, initialized display, then the EGL_VERSION
string describes the supported EGL version for dpy. The client version indicates

3 Note that once an EGLDisplay is created, the handle will necessarily remain valid for the
lifetime of the application, although the corresponding display may be repeatedly initialized and
terminated.

EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 19

that all EGL entry points which are needed for the supported client APIs are avail-
able at runtime, while the display version indicates which EGL functionality is
supported for a display.

Errors

On failure, NULL is returned.
An EGL_BAD_DISPLAY error is generated if dpy is not a valid display,

unless dpy is EGL_NO_DISPLAY and name is EGL_EXTENSIONS or EGL_-
VERSION.

An EGL_NOT_INITIALIZED error is generated if dpy is a valid but unini-
tialized display.

An EGL_BAD_PARAMETER error is generated if name is not one of the
values described above.

3.4 Configuration Management

An EGLConfig describes the format, type and size of the color buffers and an-
cillary buffers for an EGLSurface. If the EGLSurface is a window, then the
EGLConfig describing it may have an associated native visual type.

Names of EGLConfig attributes are shown in table 3.1. These names may be
passed to eglChooseConfig to specify required attribute properties.

EGL_CONFIG_ID is a unique integer identifying different EGLConfigs. Con-
figuration IDs must be small positive integers starting at 1 and ID assignment
should be compact; that is, if there are N EGLConfigs defined by the EGL im-
plementation, their configuration IDs should be in the range [1, N]. Small gaps
in the sequence are allowed, but should only occur when removing configurations
defined in previous revisions of an EGL implementation.

Buffer Descriptions and Attributes

The various buffers that may be contained by an EGLSurface, and the
EGLConfig attributes controlling their creation, are described below. Attribute
values include the depth of these buffers, expressed in bits/pixel component. If the
depth of a buffer in an EGLConfig is zero, then an EGLSurface created with
respect to that EGLConfig will not contain the corresponding buffer.

Not all buffers are used or required by all client APIs. To conserve resources,
implementations may delay creation of buffers until they are needed by EGL or a
client API. For example, if an EGLConfig describes an alpha mask buffer with

EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 20

Attribute Type Notes
EGL_BUFFER_SIZE integer total color component bits

in the color buffer
EGL_RED_SIZE integer bits of Red in the color buffer
EGL_GREEN_SIZE integer bits of Green in the color buffer
EGL_BLUE_SIZE integer bits of Blue in the color buffer

EGL_LUMINANCE_SIZE integer bits of Luminance in the color buffer
EGL_ALPHA_SIZE integer bits of Alpha in the color buffer

EGL_ALPHA_MASK_SIZE integer bits of Alpha Mask in the mask buffer
EGL_BIND_TO_TEXTURE_RGB boolean True if bindable to RGB textures.
EGL_BIND_TO_TEXTURE_RGBA boolean True if bindable to RGBA textures.
EGL_COLOR_BUFFER_TYPE enum color buffer type

EGL_CONFIG_CAVEAT enum any caveats for the configuration
EGL_CONFIG_ID integer unique EGLConfig identifier
EGL_CONFORMANT bitmask whether contexts created with this

config are conformant
EGL_DEPTH_SIZE integer bits of Z in the depth buffer

EGL_LEVEL integer frame buffer level
EGL_MAX_PBUFFER_WIDTH integer maximum width of pbuffer
EGL_MAX_PBUFFER_HEIGHT integer maximum height of pbuffer
EGL_MAX_PBUFFER_PIXELS integer maximum size of pbuffer
EGL_MAX_SWAP_INTERVAL integer maximum swap interval
EGL_MIN_SWAP_INTERVAL integer minimum swap interval
EGL_NATIVE_RENDERABLE boolean EGL_TRUE if native rendering

APIs can render to surface
EGL_NATIVE_VISUAL_ID integer handle of corresponding

native visual
EGL_NATIVE_VISUAL_TYPE integer native visual type of the

associated visual
EGL_RENDERABLE_TYPE bitmask which client APIs are supported
EGL_SAMPLE_BUFFERS integer number of multisample buffers

EGL_SAMPLES integer number of samples per pixel
EGL_STENCIL_SIZE integer bits of Stencil in the stencil buffer
EGL_SURFACE_TYPE bitmask which types of EGL surfaces

are supported.
EGL_TRANSPARENT_TYPE enum type of transparency supported

EGL_TRANSPARENT_RED_VALUE integer transparent red value
EGL_TRANSPARENT_GREEN_VALUE integer transparent green value
EGL_TRANSPARENT_BLUE_VALUE integer transparent blue value

Table 3.1: EGLConfig attributes.EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 21

depth greater than zero, that buffer need not be allocated by a surface until an
OpenVG context is bound to that surface.

The Color Buffer

The color buffer contains pixel color values, and is shared by all client APIs
rendering to a surface.

EGL_COLOR_BUFFER_TYPE indicates the color buffer type, and must be either
EGL_RGB_BUFFER for an RGB color buffer, or EGL_LUMINANCE_BUFFER for a
luminance color buffer. For an RGB buffer, EGL_RED_SIZE, EGL_GREEN_SIZE,
EGL_BLUE_SIZE must be non-zero, and EGL_LUMINANCE_SIZE must be zero.
For a luminance buffer, EGL_RED_SIZE, EGL_GREEN_SIZE, EGL_BLUE_SIZE
must be zero, and EGL_LUMINANCE_SIZE must be non-zero. For both RGB and
luminance color buffers, EGL_ALPHA_SIZE may be zero or non-zero (the latter
indicates the existence of a destination alpha buffer).

If OpenGL or OpenGL ES rendering is supported for a luminance color buffer
(as described by the value of the EGL_RENDERABLE_TYPE attribute, described be-
low), it is treated as RGB rendering with the value of GL_RED_BITS equal to
EGL_LUMINANCE_SIZE and the values of GL_GREEN_BITS and GL_BLUE_BITS

equal to zero. The red component of fragments is written to the luminance channel
of the color buffer, the green and blue components are discarded, and the alpha
component is written to the alpha channel of the color buffer (if present).

EGL_BUFFER_SIZE gives the total of the color component bits of the color
buffer4 For an RGB color buffer, the total is the sum of EGL_RED_SIZE, EGL_-
GREEN_SIZE, EGL_BLUE_SIZE, and EGL_ALPHA_SIZE. For a luminance color
buffer, the total is the sum of EGL_LUMINANCE_SIZE and EGL_ALPHA_SIZE.

The Alpha Mask Buffer

The alpha mask buffer is used only by OpenVG. EGL_ALPHA_MASK_SIZE
indicates the depth of this buffer.

The Depth Buffer

The depth buffer is shared by OpenGL and OpenGL ES. It contains fragment
depth (Z) information generated during rasterization. EGL_DEPTH_SIZE indicates
the depth of this buffer in bits.

4 The value of EGL_BUFFER_SIZE does not include any padding bits that may be present
in the pixel format, nor does it account for any alignment or padding constraints of surfaces, so it
cannot be reliably used to compute the memory consumed by a surface. No such query exists in EGL
1.4.

EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 22

The Stencil Buffer

The stencil buffer is shared by OpenGL and OpenGL ES. It contains fragment
stencil information generated during rasterization. EGL_STENCIL_SIZE indicates
the depth of this buffer in bits.

The Multisample Buffer

The multisample buffer may be shared by OpenGL, OpenGL ES and OpenVG,
although such sharing cannot be guaranteed (see comments at the end of sec-
tion 3.7.3.1 for more information about sharing the multisample buffer). It con-
tains multisample information (color values, and possibly stencil and depth values)
generated by multisample rasterization. The format of the multisample buffer is
not specified, and its contents are not directly accessible. Only the existence of the
multisample buffer, together with the number of samples it contains, are exposed
by EGL.

Operations such as posting a surface with eglSwapBuffers (see section 3.10.1,
copying a surface with eglCopyBuffers (see section 3.10.2), reading from the color
buffer using client API commands, and binding a client API context to a surface
(see section 3.7.3), may cause resolution of the multisample buffer to the color
buffer.

Multisample resolution combines and filters per-sample information in the
multisample buffer to create per-pixel colors stored in the color buffer. The de-
tails of this filtering process are normally chosen by the implementation, but under
some circumstances may be controlled on a per-surface basis using eglSurfaceAt-
trib (see section 3.5.6).

EGL_SAMPLE_BUFFERS indicates the number of multisample buffers, which
must be zero or one. EGL_SAMPLES gives the number of samples per pixel; if
EGL_SAMPLE_BUFFERS is zero, then EGL_SAMPLES will also be zero. If EGL_-
SAMPLE_BUFFERS is one, then the number of color, depth, and stencil bits for each
sample in the multisample buffer are as specified by the EGL_*_SIZE attributes.

There are no single-sample depth or stencil buffers for a multisample
EGLConfig; the only depth and stencil buffers are those in the multisample
buffer. If the color samples in the multisample buffer store fewer bits than are
stored in the color buffers, this fact will not be reported accurately. Presumably a
compression scheme is being employed, and is expected to maintain an aggregate
resolution equal to that of the color buffers.

Other EGLConfig Attribute Descriptions

EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 23

EGL Token Name Description
EGL_WINDOW_BIT EGLConfig supports windows
EGL_PIXMAP_BIT EGLConfig supports pixmaps
EGL_PBUFFER_BIT EGLConfig supports pbuffers

EGL_MULTISAMPLE_RESOLVE_BOX_BIT EGLConfig supports box
filtered multisample resolve

EGL_SWAP_BEHAVIOR_PRESERVED_BIT EGLConfig supports setting
swap behavior for color buffers

EGL_VG_COLORSPACE_LINEAR_BIT EGLConfig supports OpenVG
rendering in linear colorspace

EGL_VG_ALPHA_FORMAT_PRE_BIT EGLConfig supports OpenVG
rendering with premultiplied alpha

Table 3.2: Types of surfaces supported by an EGLConfig

EGL_SURFACE_TYPE is a mask indicating capabilities of surfaces that can be
created with the corresponding EGLConfig (the config is said to support these
surface types). The valid bit settings are shown in Table 3.2.

For example, an EGLConfig for which the value of the EGL_SURFACE_TYPE
attribute is

EGL_WINDOW_BIT | EGL_PIXMAP_BIT | EGL_PBUFFER_BIT
can be used to create any type of EGL surface, while an EGLConfig for which this
attribute value is EGL_WINDOW_BIT cannot be used to create a pbuffer or pixmap.
EGL_SURFACE_TYPE is EGL_WINDOW_BIT.

If EGL_MULTISAMPLE_RESOLVE_BOX_BIT is set in EGL_SURFACE_TYPE,
then the EGL_MULTISAMPLE_RESOLVE attribute of a surface can be specified as a
box filter with eglSurfaceAttrib (see section 3.5.6).

If EGL_SWAP_BEHAVIOR_PRESERVED_BIT is set in EGL_SURFACE_TYPE,
then the EGL_SWAP_BEHAVIOR attribute of a surface can be specified to preserve
color buffer contents using eglSurfaceAttrib (see section 3.5.6).

If EGL_VG_COLORSPACE_LINEAR_BIT is set in EGL_SURFACE_TYPE, then
the EGL_VG_COLORSPACE attribute may be set to EGL_VG_COLORSPACE_-

LINEAR when creating a window, pixmap, or pbuffer surface (see section 3.5).
If EGL_VG_ALPHA_FORMAT_PRE_BIT is set in EGL_SURFACE_TYPE, then the

EGL_VG_ALPHA_FORMAT attribute may be set to EGL_VG_ALPHA_FORMAT_PRE

when creating a window, pixmap, or pbuffer surface (see section 3.5).
EGL_RENDERABLE_TYPE is a mask indicating which client APIs can render

into a surface created with respect to an EGLConfig. The valid bit settings are

EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 24

EGL Token Name Client API and Version Supported
EGL_OPENGL_BIT OpenGL

EGL_OPENGL_ES_BIT OpenGL ES 1.x
EGL_OPENGL_ES2_BIT OpenGL ES 2.x
EGL_OPENGL_ES3_BIT OpenGL ES 3.x

EGL_OPENVG_BIT OpenVG 1.x

Table 3.3: Types of client APIs supported by an EGLConfig

shown in Table 3.3.
Creation of a client API context based on an EGLConfig will fail unless the

EGLConfig’s EGL_RENDERABLE_TYPE attribute include the bit corresponding
to that API and version.

EGL_NATIVE_RENDERABLE is an EGLBoolean indicating whether the plat-
form can be used to render into a surface created with the EGLConfig. Con-
straints on native rendering are discussed in more detail in sections 2.2.2 and 2.2.3.

If an EGLConfig supports windows then it may have an associated native vi-
sual. EGL_NATIVE_VISUAL_ID specifies an identifier for this visual, and EGL_-

NATIVE_VISUAL_TYPE specifies its type. If an EGLConfig does not support
windows, or if there is no associated native visual type, then querying EGL_-

NATIVE_VISUAL_ID will return 0 and querying EGL_NATIVE_VISUAL_TYPE

will return EGL_NONE.
The interpretation of the native visual identifier and type is platform-dependent.

For example, if the platform is X11, then the identifier will be the XID of an X
Visual.

The EGL_CONFIG_CAVEAT attribute may be set to one of the following val-
ues: EGL_NONE, EGL_SLOW_CONFIG or EGL_NON_CONFORMANT_CONFIG. If the
attribute is set to EGL_NONE then the configuration has no caveats; if it is set to
EGL_SLOW_CONFIG then rendering to a surface with this configuration may run at
reduced performance (for example, the hardware may not support the color buffer
depths described by the configuration); if it is set to EGL_NON_CONFORMANT_-

CONFIG then rendering to a surface with this configuration will not pass the re-
quired OpenGL ES conformance tests (note that EGL_NON_CONFORMANT_CONFIG
is obsolete, and the same information can be obtained from the EGL_CONFORMANT
attribute on a per-client-API basis, not just for OpenGL ES).

API conformance requires that a set of EGLConfigs supporting certain de-
fined minimum attributes (such as the number, type, and depth of supported
buffers) be supplied by any conformant implementation. Those requirements are

EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 25

documented only in the conformance specifications for client APIs.
EGL_CONFORMANT is a mask indicating if a client API context created with

respect to the corresponding EGLConfigwill pass the required conformance tests
for that API. The valid bit settings are the same as for EGL_RENDERABLE_TYPE, as
defined in table 3.3, but the presence or absence of each client API bit determines
whether the corresponding context will be conformant or non-conformant. 5

EGL_LEVEL is the framebuffer overlay or underlay level in which an
EGLSurface created with respect to an on-screen native window (see sec-
tion 3.5.1) will be placed. Level zero indicates the default layer. The behavior
of windows placed in overlay and underlay levels depends on the underlying plat-
form.

EGL_TRANSPARENT_TYPE indicates whether or not a configuration sup-
ports transparency. If the attribute is set to EGL_NONE then windows created
with the EGLConfig will not have any transparent pixels. If the attribute is
EGL_TRANSPARENT_RGB, then the EGLConfig supports transparency; a trans-
parent pixel will be drawn when the red, green and blue values which are
read from the framebuffer are equal to EGL_TRANSPARENT_RED_VALUE, EGL_-
TRANSPARENT_GREEN_VALUE and EGL_TRANSPARENT_BLUE_VALUE, respec-
tively.

If EGL_TRANSPARENT_TYPE is EGL_NONE, then the values for EGL_-

TRANSPARENT_RED_VALUE, EGL_TRANSPARENT_GREEN_VALUE, and EGL_-

TRANSPARENT_BLUE_VALUE are undefined. Otherwise, they are interpreted as
integer framebuffer values between 0 and the maximum framebuffer value for the
component. For example, EGL_TRANSPARENT_RED_VALUE will range between 0
and 2EGL_RED_SIZE − 1.

EGL_MAX_PBUFFER_WIDTH and EGL_MAX_PBUFFER_HEIGHT indicate the
maximum width and height that can be passed into eglCreatePbufferSurface,
and EGL_MAX_PBUFFER_PIXELS indicates the maximum number of pixels (width
times height) for a pbuffer surface. Note that an implementation may return a value
for EGL_MAX_PBUFFER_PIXELS that is less than the maximum width times the
maximum height. The value for EGL_MAX_PBUFFER_PIXELS is static and as-
sumes that no other pbuffers or native resources are contending for the framebuffer
memory. Thus it may not be possible to allocate a pbuffer of the size given by
EGL_MAX_PBUFFER_PIXELS.

EGL_MAX_SWAP_INTERVAL is the maximum value that can be passed to
eglSwapInterval, and indicates the number of swap intervals that will elapse be-
fore a buffer swap takes place after calling eglSwapBuffers. Larger values will be

5 Most EGLConfigs should be conformant for all supported client APIs. Conformance require-
ments limit the number of non-conformant configs that an implementation can define.

EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 26

silently clamped to this value.
EGL_MIN_SWAP_INTERVAL is the minimum value that can be passed to

eglSwapInterval, and indicates the number of swap intervals that will elapse be-
fore a buffer swap takes place after calling eglSwapBuffers. Smaller values will
be silently clamped to this value.

EGL_BIND_-

TO_TEXTURE_RGB and EGL_BIND_TO_TEXTURE_RGBA are booleans indicating
whether the color buffers of a pbuffer created with the EGLConfig can be bound
to a OpenGL ES RGB or RGBA texture respectively. Currently only pbuffers can
be bound as textures, so these attributes may only be EGL_TRUE if the value of the
EGL_SURFACE_TYPE attribute includes EGL_PBUFFER_BIT. It is possible to bind
a RGBA visual to a RGB texture, in which case the values in the alpha component
of the visual are ignored when the color buffer is used as a RGB texture.

Implementations may choose not to support EGL_BIND_TO_TEXTURE_RGB
for RGBA visuals.

Texture binding to OpenGL textures is not supported.

3.4.1 Querying Configurations

Use

EGLBoolean eglGetConfigs(EGLDisplay dpy,
EGLConfig *configs, EGLint config_size,
EGLint *num_config);

to get the list of all EGLConfigs that are available on the specified display. configs
is a pointer to a buffer containing config size elements. On success, EGL_TRUE is
returned. The number of configurations is returned in num config, and elements
0 through num config − 1 of configs are filled in with the valid EGLConfigs.
No more than config size EGLConfigs will be returned even if more are available
on the specified display. However, if eglGetConfigs is called with configs = NULL,
then no configurations are returned, but the total number of configurations available
will be returned in num config.

Errors

On failure, EGL_FALSE is returned.
An EGL_NOT_INITIALIZED error is generated if EGL is not initialized

on dpy.
An EGL_BAD_PARAMETER error is generated if num config is NULL.

EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 27

Use

EGLBoolean eglChooseConfig(EGLDisplay dpy, const
EGLint *attrib_list, EGLConfig *configs,
EGLint config_size, EGLint *num_config);

to get EGLConfigs that match a list of attributes. The return value and the mean-
ing of configs, config size, and num config are the same as for eglGetConfigs.
However, only configurations matching attrib list, as discussed below, will be re-
turned.

Errors

On failure, EGL_FALSE is returned.
An EGL_BAD_ATTRIBUTE error is generated if attrib list contains an un-

defined EGL attribute or an attribute value that is unrecognized or out of range.

All attribute names in attrib list are immediately followed by the corresponding
desired value. The list is terminated with EGL_NONE. If an attribute is not specified
in attrib list, then the default value (shown in Table 3.4) is used (it is said to be
specified implicitly). If EGL_DONT_CARE is specified as an attribute value, then the
attribute will not be checked. EGL_DONT_CARE may be specified for all attributes
except EGL_LEVEL and EGL_MATCH_NATIVE_PIXMAP. If attrib list is NULL or
empty (first attribute is EGL_NONE), then selection and sorting of EGLConfigs is
done according to the default criteria in Tables 3.4 and 3.1, as described below in
sections 3.4.1.1 and 3.4.1.2.

3.4.1.1 Selection of EGLConfigs

Attributes are matched in an attribute-specific manner, as shown in the ”Selection
Critera” column of table 3.4. The criteria shown in the table have the following
meanings:

AtLeast Only EGLConfigs with an attribute value that meets or exceeds the
specified value are selected.

Exact Only EGLConfigs whose attribute value equals the specified value are
matched.

Mask Only EGLConfigs for which the bits set in the attribute value include all
the bits that are set in the specified value are selected (additional bits might

EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 28

be set in the attribute value)6.

Special As described for the specific attribute.

Some of the attributes must match the specified value exactly; others, such as
EGL_RED_SIZE, must meet or exceed the specified minimum values.

To retrieve an EGLConfig given its unique integer ID, use the EGL_-

CONFIG_ID attribute. When EGL_CONFIG_ID is specified, all other attributes are
ignored, and only the EGLConfig with the given ID is returned.

If EGL_MAX_PBUFFER_WIDTH, EGL_MAX_PBUFFER_HEIGHT, EGL_MAX_-

PBUFFER_PIXELS, or EGL_NATIVE_VISUAL_ID are specified in attrib list, then
they are ignored (however, if present, these attributes must still be followed by an
attribute value in attrib list). If EGL_SURFACE_TYPE is specified in attrib list and
the mask that follows does not have EGL_WINDOW_BIT set, or if there are no native
visual types, then the EGL_NATIVE_VISUAL_TYPE attribute is ignored.

If EGL_TRANSPARENT_TYPE is set to EGL_NONE in attrib list, then the EGL_-
TRANSPARENT_RED_VALUE, EGL_TRANSPARENT_GREEN_VALUE, and EGL_-

TRANSPARENT_BLUE_VALUE attributes are ignored.
If EGL_MATCH_NATIVE_PIXMAP is specified in attrib list, it must be fol-

lowed by an attribute value which is the handle of a valid native pixmap. Only
EGLConfigs which support rendering to that pixmap will match this attribute7.

If no EGLConfig matching the attribute list exists, then the call succeeds, but
num config is set to 0.

3.4.1.2 Sorting of EGLConfigs

If more than one matching EGLConfig is found, then a list of EGLConfigs is
returned. The list is sorted by proceeding in ascending order of the ”Sort Prior-
ity” column of table 3.4. That is, configurations that are not ordered by a lower
numbered rule are sorted by the next higher numbered rule.

Sorting for each rule is either numerically Smaller or Larger as described in the
”Sort Order” column, or a Special sort order as described for each sort rule below:

1. Special: by EGL_CONFIG_CAVEAT where the precedence is EGL_NONE,
EGL_SLOW_CONFIG, EGL_NON_CONFORMANT_CONFIG.

6 Some readers have found this phrasing confusing. Another way to think of it to say that any bits
present in the mask attribute must also be present in the EGLConfig attribute. Thus, setting a mask
attribute value of zero means that all configs will match that value.

7 The special match criteria for EGL_MATCH_NATIVE_PIXMAP was introduced due to the
difficulty of determining an EGLConfig equivalent to a native pixmap using only color component
depths.

EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 29

Attribute Default Selection Sort Sort
Criteria Order Priority

EGL_BUFFER_SIZE 0 AtLeast Smaller 4
EGL_RED_SIZE 0 AtLeast Special 3
EGL_GREEN_SIZE 0 AtLeast Special 3
EGL_BLUE_SIZE 0 AtLeast Special 3

EGL_LUMINANCE_SIZE 0 AtLeast Special 3
EGL_ALPHA_SIZE 0 AtLeast Special 3

EGL_ALPHA_MASK_SIZE 0 AtLeast Smaller 9
EGL_BIND_TO_TEXTURE_RGB EGL_DONT_CARE Exact None
EGL_BIND_TO_TEXTURE_RGBA EGL_DONT_CARE Exact None
EGL_COLOR_BUFFER_TYPE EGL_RGB_BUFFER Exact Special 2

EGL_CONFIG_CAVEAT EGL_DONT_CARE Exact Special 1
EGL_CONFIG_ID EGL_DONT_CARE Special Smaller 11 (last)
EGL_CONFORMANT 0 Mask None
EGL_DEPTH_SIZE 0 AtLeast Smaller 7

EGL_LEVEL 0 Exact None
EGL_MATCH_NATIVE_PIXMAP EGL_NONE Special None
EGL_MAX_SWAP_INTERVAL EGL_DONT_CARE Exact None
EGL_MIN_SWAP_INTERVAL EGL_DONT_CARE Exact None
EGL_NATIVE_RENDERABLE EGL_DONT_CARE Exact None
EGL_NATIVE_VISUAL_TYPE EGL_DONT_CARE Exact Special 10
EGL_RENDERABLE_TYPE EGL_OPENGL_ES_BIT Mask None
EGL_SAMPLE_BUFFERS 0 AtLeast Smaller 5

EGL_SAMPLES 0 AtLeast Smaller 6
EGL_STENCIL_SIZE 0 AtLeast Smaller 8
EGL_SURFACE_TYPE EGL_WINDOW_BIT Mask None

EGL_TRANSPARENT_TYPE EGL_NONE Exact None
EGL_TRANSPARENT_RED_VALUE EGL_DONT_CARE Exact None

EGL_TRANSPARENT_GREEN_VALUE EGL_DONT_CARE Exact None
EGL_TRANSPARENT_BLUE_VALUE EGL_DONT_CARE Exact None

Table 3.4: Default values and match criteria for EGLConfig attributes.

EGL 1.5 - August 27, 2014

3.4. CONFIGURATION MANAGEMENT 30

2. Special: by EGL_COLOR_BUFFER_TYPE where the precedence is EGL_-

RGB_BUFFER, EGL_LUMINANCE_BUFFER.

3. Special: by larger total number of color bits (for an RGB color buffer,
this is the sum of EGL_RED_SIZE, EGL_GREEN_SIZE, EGL_BLUE_SIZE,
and EGL_ALPHA_SIZE; for a luminance color buffer, the sum of EGL_-
LUMINANCE_SIZE and EGL_ALPHA_SIZE)8. If the requested number of bits
in attrib list for a particular color component is 0 or EGL_DONT_CARE, then
the number of bits for that component is not considered.

4. Smaller EGL_BUFFER_SIZE.

5. Smaller EGL_SAMPLE_BUFFERS.

6. Smaller EGL_SAMPLES.

7. Smaller EGL_DEPTH_SIZE.

8. Smaller EGL_STENCIL_SIZE.

9. Smaller EGL_ALPHA_MASK_SIZE.

10. Special: by EGL_NATIVE_VISUAL_TYPE (the actual sort order is
implementation-defined, depending on the meaning of native visual types).

11. Smaller EGL_CONFIG_ID (this is always the last sorting rule, and guarantees
a unique ordering).

EGLConfigs are not sorted with respect to the parameters EGL_-

BIND_TO_TEXTURE_RGB, EGL_BIND_TO_TEXTURE_RGBA, EGL_CONFORMANT,
EGL_LEVEL, EGL_NATIVE_RENDERABLE, EGL_MAX_SWAP_INTERVAL, EGL_-
MIN_SWAP_INTERVAL, EGL_RENDERABLE_TYPE, EGL_SURFACE_TYPE, EGL_-
TRANSPARENT_TYPE, EGL_TRANSPARENT_RED_VALUE, EGL_TRANSPARENT_-
GREEN_VALUE, and EGL_TRANSPARENT_BLUE_VALUE.

8 This rule places configs with deeper color buffers first in the list returned by eglChooseConfig.
Applications may find this counterintuitive if they expect configs with smaller buffer sizes to be
returned first. For example, if an implementation has two configs with RGBA depths of 8888 and
5650, and the application specifies RGBA sizes of 1110, the 8888 config will be returned first. To
avoid this rule altogether, specify 0 or EGL_DONT_CARE for each component size. In this case
this rule will be ignored, and rule 4, which prefers configs with a smaller EGL_BUFFER_SIZE,
will apply.

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 31

3.4.2 Lifetime of Configurations

Configuration handles (EGLConfigs) returned by eglGetConfigs and egl-
ChooseConfig remain valid so long as the EGLDisplay from which the handles
were obtained is not terminated. Implementations supporting a large number of dif-
ferent configurations, where it might be burdensome to instantiate data structures
for each configuration so queried (but never used), may choose to return handles
encoding sufficient information to instantiate the corresponding configurations dy-
namically, when needed to create EGL resources or query configuration attributes.

3.4.3 Querying Configuration Attributes

To get the value of an EGLConfig attribute, use

EGLBoolean eglGetConfigAttrib(EGLDisplay dpy,
EGLConfig config, EGLint attribute, EGLint

*value);

If eglGetConfigAttrib succeeds then it returns EGL_TRUE and the value for the
specified attribute is returned in value.

Errors

On failure eglGetConfigAttrib returns EGL_FALSE.
If attribute is not a valid attribute then EGL_BAD_ATTRIBUTE is gener-

ated.

attribute may be any of the EGL attributes shown in tables 3.1 and 3.4, with
the exception of EGL_MATCH_NATIVE_PIXMAP.

3.5 Rendering Surfaces

3.5.1 Creating On-Screen Rendering Surfaces

To create an on-screen rendering surface, first create a native platform window
whose pixel format corresponds to the format, type, and size of the color buffers
required by config. On some implementations, the pixel format of the native win-

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 32

dow must match that of the EGLConfig9. Other implementations may allow any
native window and config to correspond, even if their formats differ10.

The command

EGLSurface
eglCreatePlatformWindowSurface(EGLDisplay dpy,
EGLConfig config, void *native_window,
const EGLAttrib *attrib_list);

creates an onscreen EGLSurface and returns a handle to it. Any EGL context
created with a compatible EGLConfig can be used to render into this surface.

native window must belong to the same platform as dpy, and EGL considers the
returned EGLSurface as belonging to that same platform. The EGL extension
that defines the platform to which dpy belongs also defines the requirements for the
native window parameter.

attrib list specifies a list of attributes for the window. The list has the same
structure as described for eglChooseConfig. Attributes that can be specified
in attrib list include EGL_GL_COLORSPACE, EGL_RENDER_BUFFER, EGL_VG_-
COLORSPACE, and EGL_VG_ALPHA_FORMAT.

It is possible that some platforms will define additional attributes specific to
those environments, as an EGL extension.

attrib list may be NULL or empty (first attribute is EGL_NONE), in which case
all attributes assumes their default value as described below.

EGL_RENDER_BUFFER specifies which buffer should be used by default for
client API rendering to the window, as described in section 2.2.2. If its value
is EGL_SINGLE_BUFFER, then client APIs should render directly into the visible
window. If its value is EGL_BACK_BUFFER, then all client APIs should render
into the back buffer. The default value of EGL_RENDER_BUFFER is EGL_BACK_-
BUFFER.

Client APIs may not be able to respect the requested rendering buffer. To deter-
mine the actual buffer that a context will render to by default, call eglQueryCon-
text with attribute EGL_RENDER_BUFFER (see section 3.7.4).

9 The exact definition of matching formats is implementation-dependent, but usually means the
color format (which of R, G, B, and A components are present), type (EGL expects unsigned integer
color components), and size (number of bits/component) are the same. For example, X11-based
EGL implementations often require the native window to have an X visual ID whose format matches
config in this fashion.

10 It may still be desirable for the native window and config to have matching formats, even if
the implementation does not require this. Otherwise potentially costly operations such as format
conversion during eglSwapBuffers may be required.

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 33

Some client APIs expose the ability to switch between rendering to the front
or the back buffer. In this case eglQueryContext does not reflect such changes,
and will report the buffer used as a render target when the context was first created,
which may not be the same as the current render target for that buffer.

Some platforms may not allow rendering directly to the front buffer of a win-
dow surface. When such windows are made current to a context, the context will al-
ways have an EGL_RENDER_BUFFER attribute value of EGL_BACK_BUFFER. From
the client API point of view these surfaces have only a back buffer and no front
buffer, similar to pbuffer rendering (see section 2.2.2). Client APIs which gener-
ally have the ability to switch render target from back to front will not be able to
do so when the platform does not allow this; from the point of view of the client
API the front buffer for such windows does not exist.

EGL_GL_COLORSPACE specifies the color space used by OpenGL and OpenGL
ES when rendering to the surface11. If its value is EGL_GL_COLORSPACE_-

SRGB, then a non-linear, perceptually uniform color space is assumed, with a cor-
responding GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING value of GL_-
SRGB. If its value is EGL_GL_COLORSPACE_LINEAR, then a linear color space
is assumed, with a corresponding GL_FRAMEBUFFER_ATTACHMENT_COLOR_-

ENCODING value of GL_LINEAR. The default value of EGL_GL_COLORSPACE is
EGL_GL_COLORSPACE_LINEAR.

Note that the EGL_GL_COLORSPACE attribute is used only by OpenGL and
OpenGL ES contexts supporting sRGB framebuffers. EGL itself does not distin-
guish multiple colorspace models. Refer to the “sRGB Conversion” sections of the
OpenGL 4.4 and OpenGL ES 3.0 specifications for more information.

EGL_VG_COLORSPACE specifies the color space used by OpenVG when
rendering to the surface. If its value is EGL_VG_COLORSPACE_sRGB, then
a non-linear, perceptually uniform color space is assumed, with a corre-
sponding VGImageFormat of form VG_s*. If its value is EGL_VG_-

COLORSPACE_LINEAR, then a linear color space is assumed, with a corresponding
VGImageFormat of form VG_l*. The default value of EGL_VG_COLORSPACE
is EGL_VG_COLORSPACE_sRGB.

EGL_VG_ALPHA_FORMAT specifies how alpha values are interpreted by
OpenVG when rendering to the surface. If its value is EGL_VG_ALPHA_FORMAT_-
NONPRE, then alpha values are not premultipled. If its value is EGL_VG_ALPHA_-

11 Only OpenGL and OpenGL ES contexts which support sRGB rendering must respect requests
for EGL_GL_COLORSPACE_SRGB, and only to sRGB formats supported by the context (nor-
mally just SRGB8) Older versions not supporting sRGB rendering will ignore this surface attribute.
Applications using OpenGL must additionally enable GL_FRAMEBUFFER_SRGB to perform
sRGB rendering, even when an sRGB surface is bound; this enable is not required (or supported)
for OpenGL ES.

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 34

FORMAT_PRE, then alpha values are premultiplied. The default value of EGL_VG_-
ALPHA_FORMAT is EGL_VG_ALPHA_FORMAT_NONPRE.

Note that the EGL_VG_COLORSPACE and EGL_VG_ALPHA_FORMAT attributes
are used only by OpenVG. EGL itself does not distinguish multiple colorspace
models. Refer to section 11.2 of the OpenVG 1.0 specification for more informa-
tion.

Similarly, the EGL_VG_ALPHA_FORMAT attribute does not necessarily control
or affect the platform’s interpretation of alpha values, even when the platform
makes use of alpha to composite surfaces at display time. The platform’s use and
interpretation of alpha values is outside the scope of EGL. However, the preferred
behavior is for platforms to ignore the value of EGL_VG_ALPHA_FORMAT when
compositing window surfaces.

If dpy and native window do not belong to the same platform, then undefined
behavior occurs (see section 3.1.2).

Errors

On failure eglCreatePlatformWindowSurface returns EGL_NO_-

SURFACE.
If the pixel format of native window does not correspond to the format,

type, and size of the color buffers required by config, as discussed above, then
an EGL_BAD_MATCH error is generated.

If config does not support rendering to windows (the EGL_SURFACE_TYPE
attribute does not contain EGL_WINDOW_BIT), an EGL_BAD_MATCH error is
generated.

If config does not support the OpenVG colorspace or alpha format at-
tributes specified in attrib list (as defined for eglCreatePlatformWindow-
Surface), an EGL_BAD_MATCH error is generated.

If config is not a valid EGLConfig, an EGL_BAD_CONFIG error is gener-
ated.

If native window is not a valid native window handle, then an EGL_BAD_-
NATIVE_WINDOW error should be generated.

If there is already an EGLSurface associated with native window (as a
result of a previous eglCreatePlatformWindowSurface call), then an EGL_-
BAD_ALLOC error is generated.

If the implementation cannot allocate resources for the new EGL window,
an EGL_BAD_ALLOC error is generated.

An on-screen rendering surface may also be created by calling

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 35

EGLSurface eglCreateWindowSurface(EGLDisplay dpy,
EGLConfig config, EGLNativeWindowType win,
const EGLint *attrib_list);

The behavior of eglCreateWindowSurface is identical to that of eglCre-
atePlatformWindowSurface except that the set of platforms to which dpy is per-
mitted to belong, as well as the actual type of win, are implementation specific.

3.5.2 Creating Off-Screen Rendering Surfaces

EGL supports off-screen rendering surfaces in pbuffers. Pbuffers differ from win-
dows in the following ways:

1. Pbuffers are typically allocated in offscreen (non-visible) graphics memory
and are intended only for accelerated offscreen rendering. Allocation can fail
if there are insufficient graphics resources (implementations are not required
to virtualize framebuffer memory). Clients should deallocate pbuffers when
they are no longer in use, since graphics memory is often a scarce resource.

2. Pbuffers are EGL resources and have no associated native window or na-
tive window type. It may not be possible to render to pbuffers using native
rendering APIs.

To create a pbuffer, call

EGLSurface eglCreatePbufferSurface(EGLDisplay dpy,
EGLConfig config, const EGLint

*attrib_list);

This creates a single pbuffer surface and returns a handle to it.
attrib list specifies a list of attributes for the pbuffer. The list has the same

structure as described for eglChooseConfig. Attributes that can be specified in
attrib list include EGL_WIDTH, EGL_HEIGHT, EGL_LARGEST_PBUFFER, EGL_-
TEXTURE_FORMAT, EGL_TEXTURE_TARGET, EGL_MIPMAP_TEXTURE, EGL_-

GL_COLORSPACE, EGL_VG_COLORSPACE, and EGL_VG_ALPHA_FORMAT.
It is possible that some platforms will define additional attributes specific to

those environments, as an EGL extension.
attrib list may be NULL or empty (first attribute is EGL_NONE), in which case

all the attributes assume their default values as described below.
EGL_WIDTH and EGL_HEIGHT specify the pixel width and height of the rect-

angular pbuffer. If the value of EGLConfig attribute EGL_TEXTURE_FORMAT is

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 36

not EGL_NO_TEXTURE, then the pbuffer width and height specify the size of the
level zero texture image. The default values for EGL_WIDTH and EGL_HEIGHT are
zero.

EGL_TEXTURE_FORMAT specifies the format of the OpenGL ES texture that
will be created when a pbuffer is bound to a texture map. It can be set to EGL_-

TEXTURE_RGB, EGL_TEXTURE_RGBA, or EGL_NO_TEXTURE. The default value of
EGL_TEXTURE_FORMAT is EGL_NO_TEXTURE.

EGL_TEXTURE_TARGET specifies the target for the OpenGL ES texture that
will be created when the pbuffer is created with a texture format of EGL_-

TEXTURE_RGB or EGL_TEXTURE_RGBA. The target can be set to EGL_NO_-

TEXTURE or EGL_TEXTURE_2D. The default value of EGL_TEXTURE_TARGET is
EGL_NO_TEXTURE.

EGL_MIPMAP_TEXTURE indicates whether storage for OpenGL ES mipmaps
should be allocated. Space for mipmaps will be set aside if the attribute value
is EGL_TRUE and EGL_TEXTURE_FORMAT is not EGL_NO_TEXTURE. The default
value for EGL_MIPMAP_TEXTURE is EGL_FALSE.

Use EGL_LARGEST_PBUFFER to get the largest available pbuffer when the al-
location of the pbuffer would otherwise fail. The width and height of the allo-
cated pbuffer will never exceed the values of EGL_WIDTH and EGL_HEIGHT, re-
spectively. If the pbuffer will be used as a OpenGL ES texture (i.e., the value of
EGL_TEXTURE_TARGET is EGL_TEXTURE_2D, and the value of EGL_TEXTURE_-
FORMAT is EGL_TEXTURE_RGB or EGL_TEXTURE_RGBA), then the aspect ratio
will be preserved and the new width and height will be valid sizes for the tex-
ture target (e.g. if the underlying OpenGL ES implementation does not support
non-power-of-two textures, both the width and height will be a power of 2). Use
eglQuerySurface to retrieve the dimensions of the allocated pbuffer. The default
value of EGL_LARGEST_PBUFFER is EGL_FALSE.

EGL_GL_COLORSPACE, EGL_VG_COLORSPACE and EGL_VG_ALPHA_FORMAT
have the same meaning and default values as when used with eglCreatePlat-
formWindowSurface.

The resulting pbuffer will contain color buffers and ancillary buffers as speci-
fied by config.

The contents of the depth and stencil buffers may not be preserved when ren-
dering an OpenGL ES texture to the pbuffer and switching which image of the
texture is rendered to (e.g., switching from rendering one mipmap level to render-
ing another).

Errors

On failure eglCreatePbufferSurface returns EGL_NO_SURFACE.

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 37

If the pbuffer could not be created due to insufficient resources, then an
EGL_BAD_ALLOC error is generated.

If config is not a valid EGLConfig, an EGL_BAD_CONFIG error is gener-
ated.

If the value specified for either EGL_WIDTH or EGL_HEIGHT is less than
zero, an EGL_BAD_PARAMETER error is generated.

If config does not support pbuffers, an EGL_BAD_MATCH error is generated.
An EGL_BAD_MATCH error is generated if any of the following conditions

are true:
• The EGL_TEXTURE_FORMAT attribute is not EGL_NO_TEXTURE, and
EGL_WIDTH and/or EGL_HEIGHT specify an invalid size (e.g., the tex-
ture size is not a power of two, and the underlying OpenGL ES imple-
mentation does not support non-power-of-two textures).

• The EGL_TEXTURE_FORMAT attribute is EGL_NO_TEXTURE, and
EGL_TEXTURE_TARGET is something other than EGL_NO_TEXTURE;
or, EGL_TEXTURE_FORMAT is something other than EGL_NO_-

TEXTURE, and EGL_TEXTURE_TARGET is EGL_NO_TEXTURE.
Finally, an EGL_BAD_ATTRIBUTE error is generated if any of the EGL_-

TEXTURE_FORMAT, EGL_TEXTURE_TARGET, or EGL_MIPMAP_TEXTURE at-
tributes are specified, but config does not support OpenGL ES rendering (e.g.
the EGL_RENDERABLE_TYPE attribute does not include at least one of EGL_-
OPENGL_ES_BIT, EGL_OPENGL_ES2_BIT, or EGL_OPENGL_ES3_BIT,

3.5.3 Binding Off-Screen Rendering Surfaces To Client Buffers

Pbuffers may also be created by binding renderable buffers created in client APIs to
EGL. Currently, the only client API resources which may be bound in this fashion
are OpenVGVGImage objects.

To bind a client API renderable buffer to a pbuffer, call

EGLSurface eglCreatePbufferFromClient-
Buffer(EGLDisplay dpy, EGLenum buftype,
EGLClientBuffer buffer, EGLConfig config,
const EGLint *attrib_list);

This creates a single pbuffer surface bound to the specified buffer for part or all of
its buffer storage, and returns a handle to it. The width and height of the pbuffer
are determined by the width and height of buffer.

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 38

buftype specifies the type of buffer to be bound. The only allowed value of
buftype is EGL_OPENVG_IMAGE.

buffer is a client API reference to the buffer to be bound. When buftype is
EGL_OPENVG_IMAGE, buffer must be a valid VGImage handle, cast into the type
EGLClientBuffer.

attrib list specifies a list of attributes for the pbuffer. The list has the same
structure as described for eglChooseConfig. Attributes that can be specified in
attrib list include EGL_TEXTURE_FORMAT, EGL_TEXTURE_TARGET, and EGL_-

MIPMAP_TEXTURE. The meaning of these attributes is as described above for
eglCreatePbufferSurface. The EGL_VG_COLORSPACE and EGL_VG_ALPHA_-

FORMAT attributes of the surface are determined by the VGImageFormat of
buffer.

attrib list may be NULL or empty (first attribute is EGL_NONE), in which case
all the attributes assume their default values as described above for eglCreateP-
bufferSurface.

The resulting pbuffer will contain color and ancillary buffers as specified by
config. Buffers which are present in buffer (normally, just the color buffer) will be
bound to EGL. Buffers which are not present in buffer (such as depth and stencil,
if config includes those buffers) will be allocated by EGL in the same fashion as
for a surface created with eglCreatePbufferSurface

Errors

On failure eglCreatePbufferFromClientBuffer returns EGL_NO_-

SURFACE.
In addition to the errors described above for eglCreatePbufferSurface,

eglCreatePbufferFromClientBuffer may fail and generate errors for the fol-
lowing reasons:

If buftype is not a recognized client API resource type (e.g. is not EGL_-
OPENVG_IMAGE), an EGL_BAD_PARAMETER error is generated.

If buffer is not a valid handle or name of a client API resource of the
specified buftype in the currently bound context corresponding to that type, an
EGL_BAD_PARAMETER error is generated.

If the buffers contained in buffer do not correspond to a proper subset of
the buffers described by config, and match the bit depths for those buffers
specified in config, then an EGL_BAD_MATCH error is generated. For ex-
ample, a VGImage with pixel format VG_lRGBA_8888 corresponds to an
EGLConfig with EGL_RED_SIZE, EGL_GREEN_SIZE, EGL_BLUE_SIZE,
and EGL_ALPHA_SIZE values of 8.

If the buffers contained in buffer consist of any EGLImage siblings, an

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 39

EGL_BAD_ACCESS error is generated.
If no context corresponding to the specified buftype is current, an EGL_-

BAD_ACCESS error is generated.
There may be additional constraints on which types of buffers may be

bound to EGL surfaces, as described in client API specifications. If those
constraints are violated, then an EGL_BAD_MATCH error is generateda.

If buffer is already bound to another pbuffer, or is in use by a client API as
discussed below, an EGL_BAD_ACCESS error is generated.

a An example of such an additional constraint is an implementation which cannot support
an OpenVGVGImage being bound to a pbuffer which will be used as a mipmapped OpenGL
ES texture (e.g. whose EGL_MIPMAP_TEXTURE attribute is EGL_TRUE).

3.5.3.1 Lifetime and Usage of Bound Buffers

Binding client API buffers to EGL pbuffers create the possibility of race conditions,
and of buffers being deleted through one API while still in use in another API. To
avoid these problems, a number of constraints apply to bound client API buffers:

• Bound buffers may be used exclusively by either EGL, or the client API that
originally created them.

For example, if a VGImage is bound to a pbuffer, and that pbuffer is bound
to any client API rendering context, then the VGImage may not be used as
the explicit source or destination of any OpenVG operation. Errors resulting
from such use are described in client API specifications.

Similarly, while a VGImage is in use by OpenVG, the pbuffer it is bound
to may not be made current to any client API context, as described in sec-
tion 3.7.3.

• Binding a buffer creates an additional reference to it, and implementations
must respect outstanding references when destroying objects.

For example, if a VGImage is bound to a pbuffer, destroying the image with
vgDestroyImage will not free the underlying buffer, because it is still in
use by EGL. However, following vgDestroyImage the buffer may only be
referred to via the EGL pbuffer handle, since the OpenVG handle to that
buffer no longer exists.

Similarly, destroying the pbuffer with eglDestroySurface will not free
the underlying buffer, because it is still in use by OpenVG. However,
following eglDestroySurface the buffer may only be referred to via the
OpenVGVGImage handle, since the EGL pbuffer handle no longer exists.

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 40

3.5.4 Creating Native Pixmap Rendering Surfaces

EGL also supports rendering surfaces whose color buffers are stored in native
pixmaps. Pixmaps differ from windows in that they are typically allocated in off-
screen (non-visible) graphics or CPU memory. Pixmaps differ from pbuffers in
that they do have an associated native pixmap and native pixmap type, and it may
be possible to render to pixmaps using APIs other than client APIs.

To create a pixmap rendering surface, first create a native platform pixmap,
then select an EGLConfig matching the pixel format of that pixmap (calling egl-
ChooseConfig with an attribute list including EGL_MATCH_NATIVE_PIXMAP re-
turns only EGLConfigs matching the pixmap specified in the attribute list - see
section 3.4.1).

The command

EGLSurface eglCreatePlatformPixmapSurface(EGLDisplay
dpy, EGLConfig config, void *native_pixmap,
const EGLAttrib *attrib_list);

creates an offscreen EGLSurface and returns a handle to it. Any EGL context
created with a compatible EGLConfig can be used to render into this surface.

native pixmap must belong to the same platform as dpy, and EGL considers
the returned EGLSurface as belonging to that same platform. The extension that
defines the platform to which dpy belongs also defines the requirements for the
native pixmap parameter.

attrib list specifies a list of attributes for the pixmap. The list has the same
structure as described for eglChooseConfig. Attributes that can be specified in
attrib list include EGL_GL_COLORSPACE, EGL_VG_COLORSPACE and EGL_VG_-

ALPHA_FORMAT.
It is possible that some platforms will define additional attributes specific to

those environments, as an EGL extension.
attrib list may be NULL or empty (first attribute is EGL_NONE), in which case

all attributes assumes their default value.
EGL_GL_COLORSPACE, EGL_VG_COLORSPACE and EGL_VG_ALPHA_FORMAT

have the same meaning and default values as when used with eglCreatePlat-
formWindowSurface.

The resulting pixmap surface will contain color and ancillary buffers as speci-
fied by config. Buffers which are present in pixmap (normally, just the color buffer)
will be bound to EGL. Buffers which are not present in pixmap (such as depth and
stencil, if config includes those buffers) will be allocated by EGL in the same fash-
ion as for a surface created with eglCreatePbufferSurface.

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 41

If dpy and native pixmap do not belong to the same platform, then undefined
behavior occurs (see section 3.1.2).

Errors

On failure eglCreatePlatformPixmapSurface returns EGL_NO_-

SURFACE.
If the attributes of pixmap do not correspond to config, then an EGL_-

BAD_MATCH error is generated.
If config does not support rendering to pixmaps (the EGL_SURFACE_TYPE

attribute does not contain EGL_PIXMAP_BIT), an EGL_BAD_MATCH error is
generated.

If config does not support the colorspace or alpha format attributes spec-
ified in attrib list (as defined for eglCreatePlatformWindowSurface), an
EGL_BAD_MATCH error is generated.

If config is not a valid EGLConfig, an EGL_BAD_CONFIG error is gener-
ated.

If pixmap is not a valid native pixmap handle, then an EGL_BAD_-

NATIVE_PIXMAP error should be generated.
If there is already an EGLSurface associated with pixmap (as a result of

a previous eglCreatePlatformPixmapSurface call), then a EGL_BAD_ALLOC
error is generated.

Finally, if the implementation cannot allocate resources for the new EGL
pixmap, an EGL_BAD_ALLOC error is generated.

An offscreen rendering surface may also be created by calling

EGLSurface eglCreatePixmapSurface(EGLDisplay dpy,
EGLConfig config, EGLNativePixmapType
pixmap, const EGLint *attrib_list);

The behavior of eglCreatePixmapSurface is identical to that of eglCre-
atePlatformPixmapSurface except that the set of platforms to which dpy is per-
mitted to belong, as well as the actual type of pixmap, are implementation specific.

3.5.5 Destroying Rendering Surfaces

An EGLSurface of any type (window, pbuffer, or pixmap) is destroyed by calling

EGLBoolean eglDestroySurface(EGLDisplay dpy,
EGLSurface surface);

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 42

All resources associated with surface which were allocated by EGL are marked
for deletion as soon as possible. Following eglDestroySurface, the surface and
the handle referring to it are treated in the same fashion as a surface destroyed by
eglTerminate (see section 3.2).

Resources associated with surface but not allocated by EGL, such as native
windows, native pixmaps, or client API buffers, are not affected when the surface
is destroyed. Only storage actually allocated by EGL is marked for deletion.

Furthermore, resources associated with a pbuffer surface are not released until
all color buffers of that pbuffer bound to a OpenGL ES texture object have been
released.

Errors

eglDestroySurface returns EGL_FALSE on failure.
An EGL_BAD_SURFACE error is generated if surface is not a valid render-

ing surface.

3.5.6 Surface Attributes

To set an attribute for an EGLSurface, call

EGLBoolean eglSurfaceAttrib(EGLDisplay dpy,
EGLSurface surface, EGLint attribute,
EGLint value);

The specified attribute of surface is set to value. Attributes that can be speci-
fied are EGL_MIPMAP_LEVEL, EGL_MULTISAMPLE_RESOLVE, and EGL_SWAP_-

BEHAVIOR.
If attribute is EGL_MIPMAP_LEVEL, then value indicates which level of the

OpenGL ES mipmap texture should be rendered. If the value of this attribute is
outside the range of supported mipmap levels, the closest valid mipmap level is
selected for rendering. The initial value of this attribute is 0.

If the value of pbuffer attribute EGL_TEXTURE_FORMAT is EGL_NO_TEXTURE,
if the value of attribute EGL_TEXTURE_TARGET is EGL_NO_TEXTURE, or if surface
is not a pbuffer, then attribute EGL_MIPMAP_LEVEL may be set, but has no effect.

If attribute is EGL_MULTISAMPLE_RESOLVE, then value specifies the filter to
use when resolving the multisample buffer. A value of EGL_MULTISAMPLE_-
RESOLVE_DEFAULT chooses the default implementation-defined filtering method,
while EGL_MULTISAMPLE_RESOLVE_BOX chooses a one-pixel wide box filter
placing equal weighting on all multisample values.

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 43

If value is EGL_MULTISAMPLE_RESOLVE_BOX, and the EGL_SURFACE_TYPE
attribute of the EGLConfig used to create surface does not contain EGL_-

MULTISAMPLE_RESOLVE_BOX_BIT, a EGL_BAD_MATCH error is generated.
The initial value of EGL_MULTISAMPLE_RESOLVE is EGL_MULTISAMPLE_-

RESOLVE_DEFAULT.
If attribute is EGL_SWAP_BEHAVIOR, then value specifies the effect on the

color buffer of posting a surface with eglSwapBuffers (see section 3.10). A value
of EGL_BUFFER_PRESERVED indicates that color buffer contents are unaffected,
while EGL_BUFFER_DESTROYED indicates that color buffer contents may be de-
stroyed or changed by the operation.

If value is EGL_BUFFER_PRESERVED, and the EGL_SURFACE_TYPE at-
tribute of the EGLConfig used to create surface does not contain EGL_SWAP_-

BEHAVIOR_PRESERVED_BIT, a EGL_BAD_MATCH error is generated.
The initial value of EGL_SWAP_BEHAVIOR is chosen by the implementation.

Errors

eglSurfaceAttrib returns EGL_FALSE on failure.
If OpenGL ES rendering is not supported by surface, then trying to set

EGL_MIPMAP_LEVEL will cause an EGL_BAD_PARAMETER error.
Other errors for specific attribute values are described above.

To query an attribute associated with an EGLSurface call:

EGLBoolean eglQuerySurface(EGLDisplay dpy,
EGLSurface surface, EGLint attribute,
EGLint *value);

eglQuerySurface returns in value the value of attribute for surface. attribute must
be set to one of the attributes in table 3.5.

Querying EGL_CONFIG_ID returns the ID of the EGLConfig with respect to
which the surface was created.

Querying EGL_LARGEST_PBUFFER for a pbuffer surface returns the same at-
tribute value specified when the surface was created with eglCreatePbufferSur-
face. For a window or pixmap surface, the contents of value are not modified.

Querying EGL_WIDTH and EGL_HEIGHT returns respectively the width and
height, in pixels, of the surface. For a window or pixmap surface, these values are
initially equal to the width and height of the native window or pixmap with respect
to which the surface was created. If a native window is resized, the corresponding
window surface will eventually be resized by the implementation to match (as dis-
cussed in section 3.10.1). If there is a discrepancy because EGL has not yet resized

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 44

Attribute Type Description
EGL_GL_COLORSPACE enum Color space for OpenGL and OpenGL ES

EGL_VG_ALPHA_FORMAT enum Alpha format for OpenVG
EGL_VG_COLORSPACE enum Color space for OpenVG
EGL_CONFIG_ID integer ID of EGLConfig

surface was created with
EGL_HEIGHT integer Height of surface

EGL_HORIZONTAL_RESOLUTION integer Horizontal dot pitch
EGL_LARGEST_PBUFFER boolean If true, create largest pbuffer possible
EGL_MIPMAP_TEXTURE boolean True if texture has mipmaps
EGL_MIPMAP_LEVEL integer Mipmap level to render to

EGL_MULTISAMPLE_RESOLVE enum Multisample resolve behavior
EGL_PIXEL_ASPECT_RATIO integer Display aspect ratio

EGL_RENDER_BUFFER enum Render buffer
EGL_SWAP_BEHAVIOR enum Buffer swap behavior
EGL_TEXTURE_FORMAT enum Format of texture: RGB,

RGBA, or no texture
EGL_TEXTURE_TARGET enum Type of texture: 2D or no texture

EGL_VERTICAL_RESOLUTION integer Vertical dot pitch
EGL_WIDTH integer Width of surface

Table 3.5: Queryable surface attributes and types.

EGL 1.5 - August 27, 2014

3.5. RENDERING SURFACES 45

the window surface, the size returned by eglQuerySurface will always be that of
the EGL surface, not the corresponding native window.

For a pbuffer, they will be the actual allocated size of the pbuffer (which may
be less than the requested size if EGL_LARGEST_PBUFFER is EGL_TRUE).

Querying EGL_HORIZONTAL_RESOLUTION

and EGL_VERTICAL_RESOLUTION returns respectively the horizontal and vertical
dot pitch of the display on which a window surface is visible. The values returned
are equal to the actual dot pitch, in pixels/meter, multiplied by the constant value
EGL_DISPLAY_SCALING (10000)12.

Querying EGL_PIXEL_ASPECT_RATIO returns the aspect ratio of an individ-
ual pixel (the ratio of a pixel’s width to its height), multiplied by EGL_DISPLAY_-
SCALING. For almost all displays, the returned value will be EGL_DISPLAY_-

SCALING, indicating an aspect ratio of one (square pixels).
For an offscreen (pbuffer or pixmap) surface, or a surface whose pixel dot pitch

or aspect ratio are unknown, querying EGL_HORIZONTAL_RESOLUTION, EGL_-
VERTICAL_RESOLUTION, and EGL_PIXEL_ASPECT_RATIO will return the con-
stant value EGL_UNKNOWN (-1).

Querying EGL_RENDER_BUFFER returns the buffer which client API rendering
is requested to use. For a window surface, this is the same attribute value specified
when the surface was created. For a pbuffer surface, it is always EGL_BACK_-

BUFFER. For a pixmap surface, it is always EGL_SINGLE_BUFFER. To determine
the actual buffer being rendered to by a context, call eglQueryContext (see sec-
tion 3.7.4).

Querying EGL_MULTISAMPLE_RESOLVE returns the filtering method used
when performing multisammple buffer resolution. The filter may be either EGL_-
MULTISAMPLE_RESOLVE_DEFAULT or EGL_MULTISAMPLE_RESOLVE_BOX, as
described above for eglSurfaceAttrib.

Querying EGL_SWAP_BEHAVIOR describes the effect on the color buffer when
posting a surface with eglSwapBuffers (see section 3.10). Swap behavior may
be either EGL_BUFFER_PRESERVED or EGL_BUFFER_DESTROYED, as described
above for eglSurfaceAttrib.

Querying EGL_TEXTURE_FORMAT, EGL_TEXTURE_TARGET, EGL_MIPMAP_-
TEXTURE, or EGL_MIPMAP_LEVEL for a non-pbuffer surface is not an error, but
value is not modified.

12 EGL_DISPLAY_SCALING is used where EGL needs to return floating-point attribute val-
ues, which would normally be smaller than 1, as integers while still retaining sufficient precision to
be meaningful.

EGL 1.5 - August 27, 2014

3.6. RENDERING TO TEXTURES 46

Errors

eglQuerySurface returns EGL_FALSE on failure and value is not updated.
If attribute is not a valid EGL surface attribute, then an EGL_BAD_-

ATTRIBUTE error is generated.
If surface is not a valid EGLSurface, then an EGL_BAD_SURFACE error

is generated.

3.6 Rendering to Textures

This section describes how to render to an OpenGL ES texture using a pbuffer
surface configured for this operation.

Errors

If a pbuffer surface does not support OpenGL ES rendering, or if OpenGL
ES is not implemented on a platform, then calling eglBindTexImage or eglRe-
leaseTexImage will always generate EGL_BAD_SURFACE errors.

3.6.1 Binding a Surface to a OpenGL ES Texture

The command

EGLBoolean eglBindTexImage(EGLDisplay dpy,
EGLSurface surface, EGLint buffer);

defines a two-dimensional texture image. The texture image consists of the image
data in buffer for the specified surface, and need not be copied. Currently the only
value accepted for buffer is EGL_BACK_BUFFER, which indicates the buffer into
which OpenGL ES rendering is taking place (this is true even when using a single-
buffered surface, such as a pixmap). In future versions of EGL, additional buffer
values may be allowed to bind textures to other buffers in an EGLSurface.

The texture target, the texture format and the size of the texture components are
derived from attributes of the specified surface, which must be a pbuffer support-
ing one of the EGL_BIND_TO_TEXTURE_RGB or EGL_BIND_TO_TEXTURE_RGBA
attributes.

Note that any existing images associated with the different mipmap levels of
the texture object are freed (it is as if glTexImage was called with an image of zero
width).

EGL 1.5 - August 27, 2014

3.6. RENDERING TO TEXTURES 47

Texture Component Size
R EGL_RED_SIZE

G EGL_GREEN_SIZE

B EGL_BLUE_SIZE

A EGL_ALPHA_SIZE

Table 3.6: Size of texture components

The pbuffer attribute EGL_TEXTURE_FORMAT determines the base internal for-
mat of the texture. The component sizes are also determined by pbuffer attributes
as shown in table 3.6:

The texture target is derived from the EGL_TEXTURE_TARGET attribute of sur-
face. If the attribute value is EGL_TEXTURE_2D, then buffer defines a texture for
the two-dimensional texture object which is bound to the current context (hereafter
referred to as the current texture object).

If dpy and surface are the display and surface for the calling thread’s cur-
rent context, eglBindTexImage performs an implicit glFlush. For other surfaces,
eglBindTexImage waits for all effects from previously issued client API com-
mands drawing to the surface to complete before defining the texture image, as
though glFinish were called on the last context to which that surface were bound.

After eglBindTexImage is called, the specified surface is no longer available
for reading or writing. Any read operation, such as glReadPixels or eglCopy-
Buffers, which reads values from any of the surface’s color buffers or ancillary
buffers will produce indeterminate results. In addition, draw operations that are
done to the surface before its color buffer is released from the texture produce in-
determinate results. Specifically, if the surface is current to a context and thread
then rendering commands will be processed and the context state will be updated,
but the surface may or may not be written. eglSwapBuffers has no effect if it is
called on a bound surface.

Client APIs other than OpenGL ES may be used to render into a surface later
bound as a texture. The effects of binding a surface as an OpenGL ES texture when
the surface is current to a client API context other than OpenGL ES are generally
similar those described above, but there may be additional restrictions. Applica-
tions using mixed-mode render-to-texture in this fashion should unbind surfaces
from all client API contexts before binding those surfaces as OpenGL ES textures.

Note that the color buffer is bound to a texture object. If the texture object is
shared between contexts, then the color buffer is also shared. If a texture object is
deleted before eglReleaseTexImage is called, then the color buffer is released and

EGL 1.5 - August 27, 2014

3.6. RENDERING TO TEXTURES 48

the surface is made available for reading and writing.
Texture mipmap levels are automatically generated when all of the following

conditions are met while calling eglBindTexImage:

• The EGL_MIPMAP_TEXTURE attribute of the pbuffer being bound is EGL_-
TRUE.

• The OpenGL ES texture parameter GL_GENERATE_MIPMAP is GL_TRUE for
the currently bound texture.

• The value of the EGL_MIPMAP_LEVEL attribute of the pbuffer being bound
is equal to the value of the texture parameter GL_TEXTURE_BASE_LEVEL.

In this case, additional mipmap levels are generated as described in section 3.8
of the OpenGL ES 1.1 Specification.

It is not an error to call glTexImage2D or glCopyTexImage2D to replace an
image of a texture object that has a color buffer bound to it. However, these calls
will cause the color buffer to be released back to the surface and new memory will
be allocated for the texture. Note that the color buffer is released even if the image
that is being defined is a mipmap level that was not defined by the color buffer.

Errors

eglBindTexImage returns EGL_FALSE on failure.
If eglBindTexImage is called and the surface attribute EGL_TEXTURE_-

FORMAT is set to EGL_NO_TEXTURE, then an EGL_BAD_MATCH error is re-
turned.

If buffer is already bound to a texture then an EGL_BAD_ACCESS error is
returned.

If buffer is not a valid buffer, then an EGL_BAD_PARAMETER error is gen-
erated.

If surface is not a valid EGLSurface, or is not a pbuffer surface support-
ing texture binding, then an EGL_BAD_SURFACE error is generated.

eglBindTexImage is ignored if there is no current rendering context.

3.6.2 Releasing a Surface from an OpenGL ES Texture

To release a color buffer that is being used as a texture, call

EGLBoolean eglReleaseTexImage(EGLDisplay dpy,
EGLSurface surface, EGLint buffer);

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 49

The specified color buffer is released back to the surface. The surface is made
available for reading and writing when it no longer has any color buffers bound as
textures.

The contents of the color buffer are undefined when it is first released. In par-
ticular, there is no guarantee that the texture image is still present. However, the
contents of other color buffers are unaffected by this call. Also, the contents of the
depth and stencil buffers are not affected by eglBindTexImage and eglRelease-
TexImage.

If the specified color buffer is no longer bound to a texture (e.g., because the
texture object was deleted) then eglReleaseTexImage has no effect. No error is
generated.

After a color buffer is released from a texture (either explicitly by calling
eglReleaseTexImage or implicitly by calling a routine such as glTexImage2D),
all texture images that were defined by the color buffer become NULL (it is as if
glTexImage was called with an image of zero width).

Errors

If eglReleaseTexImage is called and the value of surface attribute EGL_-
TEXTURE_FORMAT is EGL_NO_TEXTURE, then an EGL_BAD_MATCH error is
returned.

If buffer is not a valid buffer (currently only EGL_BACK_BUFFER may be
specified), then an EGL_BAD_PARAMETER error is generated.

If surface is not a valid EGLSurface, or is not a bound pbuffer surface,
then an EGL_BAD_SURFACE error is returned.

3.6.3 Implementation Caveats

Developers should note that conformant OpenGL ES implementations are not re-
quired to support render to texture; that is, there may be no EGLConfigs sup-
porting the EGL_BIND_TO_TEXTURE_RGB or EGL_BIND_TO_TEXTURE_RGBA at-
tributes. Render to texture is functionally subsumed by the newer framebuffer ob-
ject extension to OpenGL ES, and may eventually be deprecated. Render to texture
is not supported for OpenGL contexts.

3.7 Rendering Contexts

EGL provides functions to create and destroy rendering contexts for each supported
client API; to query information about rendering contexts; and to bind rendering

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 50

contexts to surfaces, making them current.
At most one context for each supported client API may be current to a particular

thread at a given time, and at most one context may be bound to a particular surface
at a given time13. The minimum number of current contexts that must be supported
by an EGL implementation is one for each supported client API14.

Only one OpenGL or OpenGL ES context may be current to a particular thread,
even if the implementation supports OpenGL and one or more versions of OpenGL
ES in the same runtime15. This restriction is enforced by eglMakeCurrent as
described in section 3.7.3.

Some of the functions described in this section make use of the current render-
ing API, which is set on a per-thread basis16 by calling

EGLBoolean eglBindAPI(EGLenum api);

api must specify one of the supported client APIs, either EGL_OPENGL_API,
EGL_OPENGL_ES_API, or EGL_OPENVG_API.

Applications using multiple client APIs are responsible for ensuring the
current rendering API is correct before calling the functions eglCreateCon-
text, eglGetCurrentContext, eglGetCurrentDisplay, eglGetCurrentSurface,
eglCopyBuffers, eglSwapBuffers, eglSwapInterval, eglMakeCurrent (when its
ctx parameter is EGL_NO_CONTEXT), eglWaitClient, or eglWaitNative.

EGL_OPENGL_API and EGL_OPENGL_ES_API are interchangeable for all pur-
poses except eglCreateContext17.

13 Note that this implies that implementations must allow (for example) both an OpenGL ES
and an OpenVG context to be current to the same thread, so long as they are drawing to different
surfaces.

14 This constraint allows valid implementations which are restricted to supporting only one active
rendering thread in a thread group. Such implementations may generate errors in eglMakeCurrent.

15 This restriction is necessary because many entry points are shared by OpenGL and both versions
of OpenGL ES. Determining which library version to call into is based on properties of the current
OpenGL or OpenGL ES context.

16 Note that the current rendering API is set on a per-thread basis, but not on a per-EGLDisplay
basis. This is because current contexts are bound in the same manner.

17 This is a behavior change introduced in the February, 2013 EGL 1.4 specification update. Prior
to this change, operations such as (for example) calling eglGetCurrentContext when an OpenGL
ES context is current but the current rendering API is EGL_OPENGL_API would return EGL_-
NO_CONTEXT instead of the OpenGL ES context.

The change is subtle, unlikely to affect any existing applications, and intended as a convenience
to the programmer. It is based on the restriction described above (that only one OpenGL or OpenGL
ES context may be current to a particular thread). It is still necessary to distinguish between the two
current rendering APIs when creating a context on an implementation which supports both OpenGL
and OpenGL ES.

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 51

Errors

eglBindAPI returns EGL_FALSE on failure.
If api is not one of the values specified above, or if the client API specified

by api is not supported by the implementation, an EGL_BAD_PARAMETER error
is generated.

To obtain the value of the current rendering API, call

EGLenum eglQueryAPI(void);

The value returned will be one of the valid api parameters to eglBindAPI, or
EGL_NONE.

The initial value of the current rendering API is EGL_OPENGL_ES_API, unless
OpenGL ES is not supported by an implementation, in which case the initial value
is EGL_NONE.

3.7.1 Creating Rendering Contexts

To create a rendering context for the current rendering API, call

EGLContext eglCreateContext(EGLDisplay dpy,
EGLConfig config, EGLContext share_context,
const EGLint *attrib_list);

If eglCreateContext succeeds, it initializes the context to the initial state de-
fined for the current rendering API, and returns a handle to it. The context can be
used to render to any compatible EGLSurface.

Although contexts are specific to a single client API, all contexts created in
EGL exist in a single namespace. This allows many EGL calls which manage
contexts to avoid use of the current rendering API.

If share context is not EGL_NO_CONTEXT, then all shareable data, as defined
by the client API (note that for OpenGL and OpenGL ES, shareable data excludes
texture objects named 0) will be shared by share context, all other contexts share -
context already shares with, and the newly created context. An arbitrary number
of EGLContexts can share data in this fashion. The OpenGL and OpenGL ES
server context state for all sharing contexts must exist in a single address space.

attrib list specifies a list of attributes for the context. The list has the same
structure as described for eglChooseConfig. If an attribute is not specified in at-
trib list, then the default value specified below is used instead. Most attributes are
only meaningful for specific client APIs, and will generate an error when specified
for other types of contexts.

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 52

3.7.1.1 OpenGL and OpenGL ES Context Versions

The values for attributes EGL_CONTEXT_MAJOR_VERSION and EGL_CONTEXT_-

MINOR_VERSION specify the requested client API version. They are only mean-
ingful for OpenGL and OpenGL ES contexts, and specifying them for other types
of contexts will generate an error.

When the current rendering API is EGL_OPENGL_ES_API or EGL_OPENGL_-
API, the values of EGL_CONTEXT_MAJOR_VERSION18 (the major version) and
EGL_CONTEXT_MINOR_VERSION (the minor version) request creation of an
OpenGL ES or OpenGL context, respectively, supporting the specified version
major.minor of that client API. The context returned must be the specified ver-
sion, or a later version which is backwards compatible with that version. Even if a
later version is returned, the specified version must correspond to a defined version
of the client API. Defined versions and backwards compatibility are determined as
follows:

For an OpenGL ES context:

• Defined versions are 1.0, 1.1, 2.0, 3.0, and any later versions of OpenGL ES
released by Khronos.

• If version 1.0 is requested, the context returned may implement either
OpenGL ES 1.0 or OpenGL ES 1.1.

• If version 1.1 is requested, the context returned must implement OpenGL ES
1.1.

• If version 2.0, version 3.0, or a later version (when later versions are defined
by Khronos) is requested, the context returned must implement the requested
OpenGL ES version, or any later version which is backwards compatible
with the requested version.

For an OpenGL context:

• Defined versions are 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0, 2.1, 3.0, 3.1, 3.2, 4.0,
4.1, 4.2, 4.3, 4.4, and any later versions of OpenGL released by Khronos.

• If a version less than or equal to OpenGL 3.0 is requested, the context re-
turned may implement any of the following versions:

– Any version no less than that requested and no greater than 3.0.
18 The EGL 1.4 token EGL_CONTEXT_CLIENT_VERSION is an alias for EGL_-

CONTEXT_MAJOR_VERSION, and the tokens may be used interchangeably.

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 53

– Version 3.1, if the GL_ARB_compatibility extension is also imple-
mented.

– The compatibility profile of version 3.2 or greater.

• If OpenGL 3.1 is requested, the context returned may implement any of the
following versions:

– Version 3.1. The GL_ARB_compatibility extension may or may not
be implemented, as determined by the implementation.

– The core profile of version 3.2 or greater.

• If OpenGL 3.2 or greater is requested, the context returned may implement
any of the following versions:

– The requested profile (see attribute EGL_CONTEXT_OPENGL_-

PROFILE_MASK below) of the requested version.

– The requested profile of any later version, so long as no features have
been removed from that later version and profile.

Typically, the implementation will return the most recent version of OpenGL it
supports which is backwards compatible with the requested version.

Querying the GL_VERSION string with glGetString in either OpenGL or
OpenGL ES (or the GL_MAJOR_VERSION and GL_MINOR_VERSION values with
glGetIntegerv, in an OpenGL 3.0 or later context) will return the actual version
supported by a context.

The default values for EGL_CONTEXT_MAJOR_VERSION and EGL_-

CONTEXT_MINOR_VERSION are 1 and 0 respectively.

3.7.1.2 OpenGL Context Profiles

The value for attribute EGL_CONTEXT_OPENGL_PROFILE_MASK specifies a pro-
file of the OpenGL API. This attribute is only meaningful for OpenGL contexts,
and specifying it for other types of contexts, including OpenGL ES contexts, is an
error.

When the current rendering API is EGL_OPENGL_API, the value of EGL_-
CONTEXT_OPENGL_PROFILE_MASK requests an OpenGL context supporting the
corresponding profile. If the EGL_CONTEXT_OPENGL_CORE_PROFILE_BIT bit is
set in the attribute value, then a context implementing the core profile of OpenGL
is returned. If the EGL_CONTEXT_OPENGL_COMPATIBILITY_PROFILE_BIT bit
is set, then a context implementing the compatibility profile is returned. If the

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 54

requested OpenGL version is less than 3.2, EGL_CONTEXT_OPENGL_PROFILE_-
MASK is ignored and the functionality of the context is determined solely by the
requested version.

Querying the value of GL_CONTEXT_PROFILE_MASK with glGetIntegerv will
return the profile mask used to create the context. This query is only supported in
an OpenGL 3.2 or later context.

The default value for EGL_CONTEXT_OPENGL_PROFILE_MASK is EGL_-

CONTEXT_OPENGL_CORE_PROFILE_BIT. All OpenGL 3.2 and later implemen-
tations are required to implement the core profile, but implementation of the com-
patibility profile is optional.

If the core profile is requested, then the context returned cannot implement
functionality defined only by the compatibility profile.

3.7.1.3 OpenGL and OpenGL ES Debug Contexts

If the EGL_CONTEXT_OPENGL_DEBUG attribute is set to EGL_TRUE, a debug con-
text will be created. Debug contexts are intended for use during application devel-
opment, to provide additional runtime checking, validation, and logging function-
ality while possibly incurring performance penalties. OpenGL and OpenGL ES
implementations supporting the GL_KHR_debug extension, or equivalent core API
functionality, are required to enable it when creating a debug context. Additional
debug context functionality, if any, is determined by the implementation.

This attribute is supported only for OpenGL and OpenGL ES contexts. If the
implementaton does not support any additional debug functionality, context cre-
ation will not fail, but the resulting context will be identical to a non-debug context.

The default value for EGL_CONTEXT_OPENGL_DEBUG is EGL_FALSE.

3.7.1.4 OpenGL Forward Compatible Contexts

If the EGL_CONTEXT_OPENGL_FORWARD_COMPATIBLE attribute is set to EGL_-

TRUE, a forward-compatible context will be created. Forward-compatible contexts
are defined only for OpenGL versions 3.0 and later. They must not support func-
tionality marked as deprecated by that version of the API, while a non-forward-
compatible context must support all functionality in that version, deprecated or
not.

This attribute is supported only for OpenGL contexts. If a forward-compatible
context is requested for OpenGL versions less than 3.0, or the implementation
does not support forward-compatible contexts for later versions, context creation
will fail.

The default value for EGL_CONTEXT_FORWARD_COMPATIBLE is EGL_FALSE.

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 55

3.7.1.5 OpenGL and OpenGL ES Robust Buffer Access

If the EGL_CONTEXT_OPENGL_ROBUST_ACCESS attribute is set to EGL_TRUE, a
context supporting robust buffer access will be created. OpenGL contexts must
support the GL_ARB_robustness extension, or equivalent core API functional-
ity. OpenGL ES contexts must support the GL_EXT_robustness extension, or
equivalent core API functionality.

This attribute is supported only for OpenGL and OpenGL ES contexts. If the
implementation does not support robust buffer access, context creation will fail.

The default value of EGL_CONTEXT_OPENGL_ROBUST_ACCESS is EGL_-

FALSE.

3.7.1.6 OpenGL and OpenGL ES Reset Notification Strategy

The attribute EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_STRATEGY spec-
ifies reset notification behavior for a context supporting robust buffer access. The
attribute value may be either EGL_NO_RESET_NOTIFICATION or EGL_LOSE_-
CONTEXT_ON_RESET, which respectively result in reset notification behavior of
GL_NO_RESET_NOTIFICATION_ARB and GL_LOSE_CONTEXT_ON_RESET_ARB,
as described by the OpenGLGL_ARB_robustness extension, or by equivalent
functionality19.

This attribute is supported only for OpenGL and OpenGL ES contexts. If the
EGL_CONTEXT_OPENGL_ROBUST_ACCESS attribute is not set to EGL_TRUE, con-
text creation will not fail, but the resulting context may not support robust buffer
access, and therefore may not support the requested reset notification strategy

The default value for EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_-

STRATEGY is EGL_NO_RESET_NOTIFICATION.

Errors

On failure eglCreateContext returns EGL_NO_CONTEXT.
An EGL_BAD_MATCH error is generated if the current rendering api is

EGL_NONE (this situation can only arise in an implementation which does not
support OpenGL ES 1.x, and prior to the first call to eglBindAPI).

An EGL_BAD_ATTRIBUTE error is generated if an attribute is specified
that is not supported for the client API type determined by the current render-
ing API.

An EGL_BAD_ATTRIBUTE error is generated if an attribute name or at-

19 An example of equivalent functionality for OpenGL ES is the vendor GL_EXT_-
robustness extension.

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 56

tribute value in attrib list is not recognized (including undefined or unsup-
ported bits in bitmask attributes),

An EGL_BAD_CONTEXT error is generated if share context is neither
EGL_NO_CONTEXT nor a valid context of the same client API type as the newly
created context.

An EGL_BAD_CONFIG error is generated if config is not a valid
EGLConfig.

An EGL_BAD_MATCH error is generated if config does not support the
requested client API. This includes requesting creation of an OpenGL ES
1.x, 2.0, or 3.0 context when the EGL_RENDERABLE_TYPE attribute of config
does not contain EGL_OPENGL_ES_BIT, EGL_OPENGL_ES2_BIT, or EGL_-
OPENGL_ES3_BIT respectively.

An EGL_BAD_MATCH error is generated if an OpenGL or OpenGL ES con-
text is requested and any of:
• the server context state for share context exists in an address space that

cannot be shared with the newly created context

• share context was created on a different display than the one referenced
by config

• the reset notification behavior of share context and the newly created
context are different

• the contexts are otherwise incompatible (for example, one context being
associated with a hardware device driver and the other with a software
renderer).

An EGL_BAD_MATCH error is generated if an OpenGL or OpenGL ES con-
text is requested and the specified version number is not a defined version of
that client API.

An EGL_BAD_MATCH error is generated if an forward-compatible OpenGL
context is requested and the requested OpenGL version is less than 3.0, or the
implementation does not support a forward-compatible context of exactly the
requested version. Because the purpose of forward-compatible contexts is to
allow application development on a specific OpenGL version with the knowl-
edge that the app will run on a future version, in this case context creation
cannot result in a later, backwards-compatible version.

An EGL_BAD_MATCH error is generated if an OpenGL or OpenGL ES con-
text is requested with robust buffer access, and the implementation does not
support the corresponding OpenGL or OpenGL ES extension.

An EGL_BAD_MATCH error is generated if an OpenGL or OpenGL ES con-
text is requested with robust buffer access and with a specified reset notifica-

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 57

tion behavior, and the implementation does not support that behavior.
An EGL_BAD_MATCH error is generated if an OpenGL context is requested,

the requested version is 3.2 or greater, and any of:

• the context profile mask has no bits set

• the mask has any bits set other than EGL_CONTEXT_OPENGL_CORE_-

PROFILE_BIT and EGL_CONTEXT_OPENGL_COMPATIBILITY_-

PROFILE_BIT

• the mask has more than one of these bits set

• the implementation does not support the requested profile.

An EGL_BAD_MATCH error is generated if config does not support a context
compatible with the requested API version and context attributes for reasons
not enumerated above. It is difficult to enumerate all possible combinations
of unsupported context version attributes, since this sometimes depends on
properties of the implementation; this error allows such implementations to
indicate they cannot satisfy a request.

If the server does not have enough resources to allocate the new context,
then an EGL_BAD_ALLOC error is generated.

3.7.2 Destroying Rendering Contexts

A rendering context is destroyed by calling

EGLBoolean eglDestroyContext(EGLDisplay dpy,
EGLContext ctx);

All resources associated with ctx are marked for deletion as soon as possible. When
multiple contexts share objects (see eglCreateContext), such shared objects are
not deleted until after all contexts on the share list are destroyed, unless the objects
are first explicitly deleted by the application. Following eglDestroyContext, the
context and the handle referring to it are treated in the same fashion as a context
destroyed by eglTerminate (see section 3.2).

Errors

eglDestroyContext returns EGL_FALSE on failure.
An EGL_BAD_CONTEXT error is generated if ctx is not a valid context.

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 58

3.7.3 Binding Contexts and Drawables

To make a context current, call

EGLBoolean eglMakeCurrent(EGLDisplay dpy,
EGLSurface draw, EGLSurface read,
EGLContext ctx);

eglMakeCurrent binds ctx to the current rendering thread and to the draw and
read surfaces.

For an OpenGL or OpenGL ES context, draw is used for all operations except
for any pixel data read back or copied, which is taken from the frame buffer values
of read. Note that the same EGLSurface may be specified for both draw and
read.

For an OpenVG context, the same EGLSurface must be specified for both
draw and read.

If the calling thread already has a current context of the same client API type as
ctx, then that context is flushed and marked as no longer current. ctx is then made
the current context for the calling thread. For purposes of eglMakeCurrent, the
client API type of all OpenGL ES and OpenGL contexts is considered the same. In
other words, if any OpenGL ES context is currently bound and ctx is an OpenGL
context, or if any OpenGL context is currently bound and ctx is an OpenGL ES
context, the currently bound context will be made no longer current and ctx will be
made current.

OpenGL and OpenGL ES buffer mappings created by e.g. glMapBuffer are
not affected by eglMakeCurrent; they persist whether the context owning the
buffer is current or not.

Errors

eglMakeCurrent returns EGL_FALSE on failure.
If draw or read are not compatible with ctx, then an EGL_BAD_MATCH

error is generated.
If ctx is current to some other thread, or if either draw or read are bound

to contexts in another thread, an EGL_BAD_ACCESS error is generated.
If binding ctx would exceed the number of current contexts of that client

API type supported by the implementation, an EGL_BAD_ACCESS error is gen-
erated.

If either draw or read are pbuffers created with eglCreatePbufferFrom-
ClientBuffer, and the underlying bound client API buffers are in use by the
client API that created them, an EGL_BAD_ACCESS error is generated.

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 59

If ctx is not a valid context and is not EGL_NO_CONTEXT, an EGL_BAD_-

CONTEXT error is generated.
If either draw or read are not valid EGL surfaces and are not EGL_NO_-

SURFACE, an EGL_BAD_SURFACE error is generated.
If ctx is EGL_NO_CONTEXT and either draw or read are not EGL_NO_-

SURFACE, an EGL_BAD_MATCH error is generated.
If either of draw or read is a valid surface and the other is EGL_NO_-

SURFACE, an EGL_BAD_MATCH error is generated.
If ctx does not support being bound without read and draw surfaces, and

both draw and read are EGL_NO_SURFACE, an EGL_BAD_MATCH error is gen-
erated.

If a native window underlying either draw or read is no longer valid, an
EGL_BAD_NATIVE_WINDOW error is generated.

If draw and read cannot fit into graphics memory simultaneously, an
EGL_BAD_MATCH error is generated.

If the previous context of the calling thread has unflushed commands, and
the previous surface is no longer valid, an EGL_BAD_CURRENT_SURFACE er-
ror is generated.

If the ancillary buffers for draw and read cannot be allocated, an EGL_-

BAD_ALLOC error is generated.
If a power management event has occurred, an EGL_CONTEXT_LOST error

is generated.
As with other commands taking EGLDisplay parameters, if dpy is not a

valid EGLDisplay handle, an EGL_BAD_DISPLAY error is generateda.
Other errors may arise when the context state is inconsistent with the sur-

face state, as described in the following paragraphs.
a Some implementations have chosen to allow EGL_NO_DISPLAY as a valid dpy pa-

rameter for eglMakeCurrent. This behavior is not portable to all EGL implementations, and
should be considered as an undocumented vendor extension.

If draw is destroyed after eglMakeCurrent is called, then subsequent render-
ing commands will be processed and the context state will be updated, but the sur-
face contents become undefined. If read is destroyed after eglMakeCurrent then
pixel values read from the framebuffer (e.g., as result of calling glReadPixels) are
undefined. If a native window or pixmap underlying the draw or read surfaces is
destroyed, rendering and readback are handled as above.

To release the current context without assigning a new one, set ctx to EGL_-

NO_CONTEXT and set draw and read to EGL_NO_SURFACE. The currently bound
context for the client API specified by the current rendering API is flushed and
marked as no longer current, and there will be no current context for that client API

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 60

after eglMakeCurrent returns. This is the only case in which eglMakeCurrent
respects the current rendering API. In all other cases, the client API affected is
determined by ctx. This is the only case where an uninitialized display may be
passed to eglMakeCurrent.

If any of the following are true:

• ctx is not EGL_NO_CONTEXT

• read is not EGL_NO_SURFACE

• draw is not EGL_NO_SURFACE

then an EGL_NOT_INITIALIZED error is generated if dpy is a valid but uninitial-
ized display.

If ctx is EGL_NO_CONTEXT, then draw and read must be EGL_NO_SURFACE.
If ctx is not EGL_NO_CONTEXT, then both draw and read must not be EGL_-

NO_SURFACE unless ctx is a context which supports being bound without read and
draw surfaces. In this case the context is made current without a default frame-
buffer. The meaning of this is defined by the client API of the supporting context
(see chapter 4 of the OpenGL 3.0 Specification, and the GL_OES_surfaceless_-
context OpenGL ES extension.).

The first time a OpenGL or OpenGL ES context is made current the viewport
and scissor dimensions are set to the size of the draw surface (as though glView-
port(0,0,w,h) and glScissor(0,0,w,h) were called, where w and h are the width and
height of the surface, respectively). However, the viewport and scissor dimensions
are not modified when ctx is subsequently made current. The client is responsible
for resetting the viewport and scissor in this case.

The first time ctx is made current, if it is without a default framebuffer (e.g.
both draw and read are EGL_NO_SURFACE), then the viewport and scissor regions
are set as though glViewport(0,0,0,0) and glScissor(0,0,0,0) were called.

Implementations may delay allocation of auxiliary buffers for a surface until
they are required by a context (which may result in the EGL_BAD_ALLOC error
described above). Once allocated, however, auxiliary buffers and their contents
persist until a surface is deleted.

3.7.3.1 Multisample Buffers and Multiple Rendering Streams

When rendering to a surface containing multisample buffers (created with respect
to an EGLConfig whose EGL_SAMPLE_BUFFERS attribute has a value of one),
switching rendering between client APIs may force resolution of the multisam-
ple buffer into the color buffer. This can occur for many reasons, such as client

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 61

APIs which do not share the same interpretation of the multisample information
(for example, using different sample locations or weightings); client APIs which
do not support multisample rendering; or applications which enable multisample
rendering in one client API and disable it in another.

Repeated resolution of the multisample buffer may result in lower quality im-
ages. For this reason, applications mixing rendering by multiple client APIs onto
the same surface should minimize switching between client APIs. Ideally, each
client API rendering to a surface should be made current only once for each frame
being rendered.

3.7.3.2 Order of Rendering Operations Between Contexts

EGL makes no guarantees on the rendering order between contexts, even within
the same thread. For example, rendering operations performed by a thread while
one context is current do not necessarily complete before rendering operations per-
formed later in the same thread but with a different context current. It is the respon-
sibility of the application to employ the correct synchronization when the drawing
result of one context needs to be complete before another context accesses that
result. Otherwise the result is undefined.

To achieve synchronization, an application can use client API-specific com-
mands such as glFinish to wait for rendering operations to complete in one context
before making the next current. Alternatively, synchronization objects can be used
to order rendering operations between contexts, if supported by the underlying im-
plementation. Synchronization objects are defined by the EGL_KHR_fence_sync
and EGL_KHR_wait_sync EGL extensions, or alternatively, they may be available
as a feature of the underlying client API. Use of synchronization objects may allow
asynchronous execution of the rendering operations, achieving better performance
than synchronous wait functions like glFinish.

3.7.4 Context Queries

Several queries exist to return information about contexts.
To get the current context for the current rendering API, call

EGLContext eglGetCurrentContext(void);

If there is no current context for the current rendering API, or if the current ren-
dering API is EGL_NONE, then EGL_NO_CONTEXT is returned (this is not an error).
If the current context has been marked for deletion as a result of calling eglTermi-
nate or eglDestroyContext, the handle returned by eglGetCurrentContext is not

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 62

valid, and cannot be passed successfully to any other EGL function, as discussed
in section 3.2.

To get the surfaces used for rendering by a current context, call

EGLSurface eglGetCurrentSurface(EGLint readdraw);

readdraw is either EGL_READ or EGL_DRAW, to return respectively the read or draw
surfaces bound to the current context in the calling thread, for the current rendering
API.

If there is no current context for the current rendering API, then EGL_NO_-

SURFACE is returned (this is not an error).

Errors

eglGetCurrentContext returns EGL_NO_SURFACE on failure (but may
also return it if no context is bound, as described above)

If readdraw is neither EGL_READ nor EGL_DRAW, an EGL_BAD_-

PARAMETER error is generated.

If a current surface has been marked for deletion as a result of calling eglTermi-
nate or eglDestroySurface, the handle returned by eglGetCurrentSurface is not
valid, and cannot be passed successfully to any other EGL function, as discussed
in section 3.2.

To get the display associated with a current context, call

EGLDisplay eglGetCurrentDisplay(void);

The display for the current context in the calling thread, for the current rendering
API, is returned. If there is no current context for the current rendering API, EGL_-
NO_DISPLAY is returned (this is not an error).

Note that EGL_NO_DISPLAY is used solely to represent an error condition, and
is not a valid EGLDisplay handle.

Errors

Passing EGL_NO_DISPLAY to any command taking an EGLDisplay
parameter will generate either an EGL_BAD_DISPLAY error if the EGL im-
plementation validates EGLDisplay handles, or undefined behavior as de-
scribed at the end of section 3.1. The only exception to this rule is that egl-
QueryString will accept an EGLDisplay parameter of EGL_NO_DISPLAY

EGL 1.5 - August 27, 2014

3.7. RENDERING CONTEXTS 63

when querying the client extension string (see section 3.3).

To obtain the value of context attributes, use

EGLBoolean eglQueryContext(EGLDisplay dpy,
EGLContext ctx, EGLint attribute, EGLint

*value);

eglQueryContext returns in value the value of attribute for ctx. attribute must
be set to EGL_CONFIG_ID, EGL_CONTEXT_CLIENT_TYPE, EGL_CONTEXT_-

CLIENT_VERSION, or EGL_RENDER_BUFFER.
Querying EGL_CONFIG_ID returns the ID of the EGLConfig with respect to

which the context was created.
Querying EGL_CONTEXT_CLIENT_TYPE returns the type of client API this

context supports (the value of the api parameter to eglBindAPI).
Querying EGL_CONTEXT_CLIENT_VERSION returns the version of the client

API this context actually supports (which may differ from the version specified at
context creation time). The resulting value is only meaningful for an OpenGL ES
context.

Querying EGL_RENDER_BUFFER returns the buffer which client API rendering
via this context will use. The value returned depends on properties of both the
context, and the draw surface to which the context is bound:

• If the context is bound to a pixmap surface, then EGL_SINGLE_BUFFER will
be returned.

• If the context is bound to a pbuffer surface, then EGL_BACK_BUFFER will be
returned.

• If the context is bound to a window surface, then either EGL_BACK_BUFFER
or EGL_SINGLE_BUFFER may be returned. The value returned depends on
both the buffer requested by the setting of the EGL_RENDER_BUFFER prop-
erty of the surface (which may be queried by calling eglQuerySurface - see
section 3.5.6), and on the client API (not all client APIs support single-buffer
rendering to window surfaces). Some client APIs allow control of whether
rendering goes to the front or back buffer. This client API-specific choice is
not reflected in the returned value, which only describes the buffer that will
be rendered to by default if not overridden by the client API.

• If the context is not bound to a surface, then EGL_NONE will be returned.

EGL 1.5 - August 27, 2014

3.8. SYNCHRONIZATION PRIMITIVES 64

Errors

eglQueryContext returns EGL_FALSE on failure and value is not updated.
If attribute is not a valid EGL context attribute, then an EGL_BAD_-

ATTRIBUTE error is generated.
If ctx is invalid, an EGL_BAD_CONTEXT error is generated.

3.8 Synchronization Primitives

To prevent native rendering API functions from executing until any outstanding
client API rendering affecting the same surface is complete, call

EGLBoolean eglWaitClient(void);

All rendering calls for the currently bound context, for the current rendering API,
made prior to eglWaitClient, are guaranteed to be executed before native rendering
calls made after eglWaitClient which affect the read or draw surfaces associated
with that context.

The same result can be achieved using client API-specific calls such as glFinish
or vgFinish.

Clients rendering to single buffered surfaces (e.g. pixmap surfaces) should call
eglWaitClient before accessing the native pixmap from the client.

eglWaitClient returns EGL_TRUE on success. If there is no current context for
the current rendering API, the function has no effect but still returns EGL_TRUE.

Errors

eglWaitClient returns EGL_FALSE on failure.
If a surface associated with the calling thread’s current context is no longer

valid, an EGL_BAD_CURRENT_SURFACE error is generated.

For backwards compatibility, the function

EGLBoolean eglWaitGL(void);

is equivalent to

EGLenum api = eglQueryAPI();
eglBindAPI(EGL_OPENGL_ES_API);
eglWaitClient();

EGL 1.5 - August 27, 2014

3.8. SYNCHRONIZATION PRIMITIVES 65

eglBindAPI(api);

To prevent a client API command sequence from executing until any outstand-
ing native rendering affecting the same surface is complete, call

EGLBoolean eglWaitNative(EGLint engine);

Native rendering calls made with the specified marking engine, and which affect
the read or draw surfaces associated with the calling thread’s current context, for
the current rendering API, are guaranteed to be executed before client API render-
ing calls made after eglWaitNative. The same result may be (but is not necessarily)
achievable using native synchronization calls.

engine denotes a particular marking engine (another drawing API, such as GDI
or Xlib) to be waited on. Valid values of engine are defined by EGL extensions
specific to implementations, but implementations will always recognize the sym-
bolic constant EGL_CORE_NATIVE_ENGINE, which denotes the most commonly
used marking engine other then a client API.

eglWaitNative returns EGL_TRUE on success. If there is no current context,
the function has no effect but still returns EGL_TRUE. If a surface does not support
native rendering (e.g. pbuffer and in most cases window surfaces), the function has
no effect but still returns EGL_TRUE.

Errors

eglWaitNative returns EGL_FALSE on failure.
If the surface associated with the calling thread’s current context is no

longer valid, an EGL_BAD_CURRENT_SURFACE error is generated.
If engine does not denote a recognized marking engine, an EGL_BAD_-

PARAMETER error is generated.

3.8.1 Sync Objects

In addition to the aforementioned synchronization functions, which provide an ef-
ficient means of serializing client and native API operations within a thread, sync
objects are provided to enable synchronization of client API operations between
threads and/or between API contexts. Sync objects may be tested or waited upon
by application threads.

Sync objects have a status with two possible states: signaled and unsignaled.
Initially, sync objects are unsignaled. EGL may be asked to wait for a sync object
to become signaled, or a sync object’s status may be queried.

EGL 1.5 - August 27, 2014

3.8. SYNCHRONIZATION PRIMITIVES 66

Depending on the type of a sync object, its status may be changed either by an
external event, or by explicitly signaling and unsignaling the sync.

Sync objects are associated with an EGLDisplay when they are created, and
have attributes defining additional aspects of the sync object. All sync objects
include attributes for their type and their status. Additional attributes are discussed
below for different types of sync objects.

Fence sync objects are created in association with a fence command in a client
API. When the client API executes the fence command, an event is generated which
signals the corresponding fence sync object. Fence sync objects may not be explic-
itly signaled, and may only change their status once, from the initial unsignaled
status to signaled. Fence sync objects may be used to wait for partial completion
of a client API command stream, as a more flexible form of glFinish or vgFinish.

A OpenCL event sync object reflects the status of a corresponding OpenCL
event object to which the sync object is linked. This provides another method of
coordinating sharing of images between EGL and OpenCL (see Chapter 9 of the
OpenCL 1.0 Specification and the cl_khr_egl_image extension). Waiting on
such a sync object is equivalent to waiting for completion of the linked OpenCL
event object.

The command

EGLSync eglCreateSync(EGLDisplay dpy, EGLenum
type, const EGLAttrib *attrib_list);

creates a sync object of the specified type associated with the specified display dpy,
and returns a handle to the new object. attrib list is an attribute-value list specifying
other attributes of the sync object, terminated by an attribute entry EGL_NONE.
Attributes not specified in the list will be assigned their default values.

Once the condition of the sync object is satisfied, the sync is signaled, causing
any eglClientWaitSync or eglWaitSync commands (see below) blocking on sync
to unblock.

3.8.1.1 Creating Fence Sync Objects

If type is EGL_SYNC_FENCE, a fence sync object is created. In this case attrib list
must be NULL or empty (containing only EGL_NONE). Attributes of the fence sync
object are set as shown in table 3.7.

When a fence sync object is created, eglCreateSync also inserts a fence com-
mand into the command stream of the bound client API’s current context (i.e.,
the context returned by eglGetCurrentContext), and associates it with the newly
created sync object.

EGL 1.5 - August 27, 2014

3.8. SYNCHRONIZATION PRIMITIVES 67

Attribute Name Initial Attribute Value(s)
EGL_SYNC_TYPE EGL_SYNC_FENCE

EGL_SYNC_STATUS EGL_UNSIGNALED

EGL_SYNC_CONDITION EGL_SYNC_PRIOR_COMMANDS_COMPLETE

Table 3.7: Fence sync attributes and initial values.

The only condition supported for fence sync objects is EGL_SYNC_PRIOR_-
COMMANDS_COMPLETE, which is satisfied by completion of the fence command
corresponding to the sync object, and all preceding commands in the associated
client API context’s command stream. The sync object will not be signaled until
all effects from these commands on the client API’s internal and framebuffer state
are fully realized. No other state is affected by execution of the fence command.

Creation of fence sync objects requires support from the bound client API, and
will not succeed unless the client API satisfies one of the following properties. Note
that eglWaitSync (see section 3.8.1.3) also requires satisfying these conditions.

• client API is OpenGL, and either the OpenGL version is 3.2 or greater, or
the GL_ARB_sync extension is supported.

• client API is OpenGL ES, and either the OpenGL ES version is 3.0 or greater,
or the GL_OES_EGL_sync extension is supported.

• client API is OpenVG, and the VG_KHR_EGL_sync extension is supported.

3.8.1.2 Creating OpenCL Event Sync Objects

If type is EGL_SYNC_CL_EVENT, an OpenCL event sync object is created. In this
case attrib list must contain the attribute EGL_CL_EVENT_HANDLE, set to a valid
OpenCL event handle returned by a call to clEnqueueReleaseGLObjects or clEn-
queueReleaseEGLObjects; other types of OpenCL event handles are not sup-
ported. Note that EGL_CL_EVENT_HANDLE is not a queriable property of a sync
object. Attributes of the OpenCL event sync object are set as shown in table 3.8.

The status of such a sync object depends on event. When the status of event is
CL_QUEUED, CL_SUBMITTED, or CL_RUNNING, the status of the linked sync object
will be EGL_UNSIGNALED. When the status of event changes to CL_COMPLETE, the
status of the linked sync object will become EGL_SIGNALED.

The only condition supported for OpenCL event sync objects is EGL_SYNC_-
CL_EVENT_COMPLETE, which is satisfied when the status of the OpenCL event
associated with the sync object changes to CL_COMPLETE.

EGL 1.5 - August 27, 2014

3.8. SYNCHRONIZATION PRIMITIVES 68

Attribute Name Initial Attribute Value(s)
EGL_SYNC_TYPE EGL_SYNC_CL_EVENT

EGL_SYNC_STATUS Depends on status of event
EGL_SYNC_CONDITION EGL_SYNC_CL_EVENT_COMPLETE

Table 3.8: OpenCL event sync attributes and initial values.

Creating a linked sync object places a reference on the linked OpenCL event
object. When the sync object is deleted, the reference will be removed from the
event object.

However, implementations are not required to validate the OpenCL event, and
passing an invalid event handle in attrib list may result in undefined behavior up
to and including program termination.

Errors

eglCreateSync returns EGL_NO_SYNC on failure.
If dpy is not the name of a valid, initialized EGLDisplay, an EGL_BAD_-

DISPLAY error is generated.
If attrib list contains an attribute name not defined for the type of sync

object being created, an EGL_BAD_ATTRIBUTE error is generated.
If type is not a supported type of sync object, an EGL_BAD_PARAMETER

error is generated.
If type is EGL_SYNC_FENCE and no context is current for the bound API

(i.e., eglGetCurrentContext returns EGL_NO_CONTEXT), an EGL_BAD_-

MATCH error is generated.
If type is EGL_SYNC_FENCE and dpy does not match the EGLDisplay

of the currently bound context for the currently bound client API (the
EGLDisplay returned by eglGetCurrentDisplay), an EGL_BAD_MATCH er-
ror is generated.

If type is EGL_SYNC_FENCE and the current context for the currently
bound client API does not support fence commands, an EGL_BAD_MATCH er-
ror is generated.

If type is EGL_SYNC_CL_EVENT and EGL_CL_EVENT_HANDLE is not
specified in attrib list, or its attribute value is not a valid OpenCL event handle
as described above, then an EGL_BAD_ATTRIBUTE error is generated.

EGL 1.5 - August 27, 2014

3.8. SYNCHRONIZATION PRIMITIVES 69

3.8.1.3 Waiting For Sync Objects

The command

EGLint eglClientWaitSync(EGLDisplay dpy, EGLSync
sync, EGLint flags, EGLTime timeout);

blocks the calling thread until the specified sync object sync is signaled, or until
timeout nanoseconds have passed.

More than one eglClientWaitSync may be outstanding on the same sync at
any given time. When there are multiple threads blocked on the same sync and the
sync object is signaled, all such threads are released, but the order in which they
are released is not defined.

If the value of timeout is zero, then eglClientWaitSync simply tests the current
status of sync. If the value of timeout is the special value EGL_FOREVER, then
eglClientWaitSync does not time out. For all other values, timeout is adjusted
to the closest value allowed by the implementation-dependent timeout accuracy,
which may be substantially longer than one nanosecond.

eglClientWaitSync returns one of three status values describing the reason for
returning. A return value of EGL_TIMEOUT_EXPIRED indicates that the specified
timeout period expired before sync was signaled, or if timeout is zero, indicates that
sync is not signaled. A return value of EGL_CONDITION_SATISFIED indicates
that sync was signaled before the timeout expired, which includes the case when
sync was already signaled when eglClientWaitSync was called. If an error occurs
then an error is generated and EGL_FALSE is returned.

If the sync object being blocked upon will not be signaled in finite time (for
example, by an associated fence command issued previously, but not yet flushed
to the graphics pipeline), then eglClientWaitSync may wait forever. To help pre-
vent this behavior20, if the EGL_SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
and sync is unsignaled when eglClientWaitSync is called, then the equivalent of
Flush() will be performed for the current API context (i.e., the context returned by
eglGetCurrentContext) before blocking on sync. If no context is current for the
bound API, the EGL_SYNC_FLUSH_COMMANDS_BIT bit is ignored.

Errors

eglClientWaitSync returns EGL_FALSE on failure.

20 The simple Flush behavior defined by EGL_SYNC_FLUSH_COMMANDS_BIT will not
help when waiting for a fence command issued in a different context’s command stream. Applica-
tions which block on a fence sync object must take additional steps to ensure that the context from
which the associated fence command was issued has flushed that command to the graphics pipeline.

EGL 1.5 - August 27, 2014

3.8. SYNCHRONIZATION PRIMITIVES 70

If sync is not a valid sync object for dpy, an EGL_BAD_PARAMETER error
is generated.

If dpy does not match the EGLDisplay passed to eglCreateSync when
sync was created, the behaviour is undefined.

The command

EGLBoolean eglWaitSync(EGLDisplay dpy, EGLSync
sync, EGLint flags);

is similar to eglClientWaitSync, but instead of blocking and not returning to the
application until sync is signaled, eglWaitSync returns immediately. On success,
EGL_TRUE is returned, and the server for the client API context21 will block until
sync is signaled22.

sync has the same meaning as for eglClientWaitSync.
flags must be 0.
eglWaitSync requires support from the bound client API, and will not suc-

ceed unless the same client API properties described for creation of fence syncs in
section 3.8.1.1 are satisfied.

Errors

eglWaitSync returns EGL_FALSE on failure, and does not cause the server
for the client API context to block.

If the current context for the currently bound client API does not support
server waits, an EGL_BAD_MATCH error is generated.

If no context is current for the currently bound client API (i.e., eglGetCur-
rentContext returns EGL_NO_CONTEXT), an EGL_BAD_MATCH error is gener-
ated.

If dpy does not match the EGLDisplay passed to eglCreateSync when
sync was created, the behavior is undefined.

If sync is not a valid sync object for dpy, an EGL_BAD_PARAMETER error
is generated.

If flags is not 0, an EGL_BAD_PARAMETER error is generated.

21 The server may choose to wait either in the CPU executing server-side code, or in the GPU
hardware if it supports this operation.

22 eglWaitSync allows applications to continue to queue commands from the application in antic-
ipation of the sync being signaled, potentially increasing parallelism between application, client API
server code, and the GPU. The server only blocks execution of commands for the specific context on
which eglWaitSync was issued; other contexts implemented by the same server are not affected.

EGL 1.5 - August 27, 2014

3.8. SYNCHRONIZATION PRIMITIVES 71

Attribute Description Supported Sync Objects
EGL_SYNC_TYPE Type of the sync object All
EGL_SYNC_STATUS Status of the sync object All
EGL_SYNC_CONDITION Signaling condition EGL_SYNC_FENCE or EGL_-

SYNC_CL_EVENT

Table 3.9: Attributes accepted by eglGetSyncAttrib.

3.8.1.3.1 Multiple Waiters It is possible for the application thread calling a
client API to be blocked on a sync object in a eglClientWaitSync command, the
server for that client API context to be blocked as the result of a previous eglWait-
Sync command, and for additional eglWaitSync commands to be queued in the
server, all for a single sync object. When the sync object is signaled in this situa-
tion, the client will be unblocked, the server will be unblocked, and all such queued
eglWaitSync commands will continue immediately when they are reached.

Sync objects may be waited on or signaled from multiple contexts of different
client API types in multiple threads simultaneously, although some client APIs
may not support eglWaitSync. This support is determined by client API-specific
extensions.

The command

3.8.1.4 Querying Sync Object Attributs

EGLBoolean eglGetSyncAttrib(EGLDisplay dpy,
EGLSync sync, EGLint attribute, EGLAttrib

*value);

is used to query attributes of the sync object sync. Legal values for attribute depend
on the type of sync object, as shown in table 3.9. Assuming no errors are generated,
EGL_TRUE is returned and the value of the queried attribute is returned in *value.

Errors

On failure, eglGetSyncAttrib returns EGL_FALSE and *value is not mod-
ified.

If sync is not a valid sync object for dpy, an EGL_BAD_PARAMETER error
is generated.

If attribute is not one of the attributes in table 3.9, an EGL_BAD_-

ATTRIBUTE error is generated.

EGL 1.5 - August 27, 2014

3.9. EGLIMAGE SPECIFICATION AND MANAGEMENT 72

If attribute is not supported for the type of sync object passed in sync, an
EGL_BAD_MATCH error is generated.

If dpy does not match the display passed to eglCreateSync when sync was
created, behaviour is undefined.

The command

EGLBoolean eglDestroySync(EGLDisplay dpy, EGLSync
sync);

is used to destroy an existing sync object.
If any eglClientWaitSync or eglWaitSync commands are blocking on sync

when eglDestroySync is called, sync is flagged for deletion and will be deleted
when the associated fence command or OpenCL event object has completed, and
sync is no longer blocking any such egl*WaitSync command. Otherwise, the sync
object is destroyed immediately.

If no errors are generated, EGL_TRUE is returned, and sync will no longer be
the handle of a valid sync object.

Errors

On failure, eglDestroySync returns EGL_FALSE.
If sync is not a valid sync object for dpy, EGL_FALSE is returned and an

EGL_BAD_PARAMETER error is generated.
If dpy does not match the display passed to eglCreateSync when sync was

created, the behaviour is undefined.

3.9 EGLImage Specification and Management

The command

EGLImage eglCreateImage(EGLDisplay dpy,
EGLContext ctx, EGLenum target,
EGLClientBuffer buffer, const EGLAttrib

*attrib_list);

is used to create an EGLImage from an existing image resource buffer. dpy spec-
ifies the EGL display used for this operation. ctx specifies the EGL client API
context used for this operation, or EGL_NO_CONTEXT if a client API context is not
required. target specifies the type of resource being used as the EGLImage source

EGL 1.5 - August 27, 2014

3.9. EGLIMAGE SPECIFICATION AND MANAGEMENT 73

(examples include two-dimensional textures in OpenGL ES contexts and VGIm-
age objects in OpenVG contexts). buffer is the name (or handle) of a resource to be
used as the EGLImage source, cast into the type EGLClientBuffer. attrib list
is a list of attribute-value pairs which is used to select sub-sections of buffer for
use as the EGLImage source, such as mipmap levels for OpenGL ES texture map
resources, as well as behavioral options, such as whether to preserve pixel data dur-
ing creation. If attrib list is non-NULL, the last attribute specified in the list must
be EGL_NONE.

The resource specified by dpy, ctx, target, buffer, and attrib list must not itself
be an EGLImage sibling, or bound to a pbuffer EGLSurface resource (eglBind-
TexImage, eglCreatePbufferFromClientBuffer).

Values accepted for target are shown in table 3.10.
Attribute names accepted in attrib list are shown in table 3.11, together with

the target for which each attribute name is valid, and the default value used for
each attribute if it is not included in attrib list.

eglCreateImage returns an EGLImage object corresponding to the image data
specified by dpy, ctx, target, buffer and attrib list which may be referenced by
client API operations.

If target is EGL_GL_TEXTURE_2D, EGL_GL_TEXTURE_3D, EGL_GL_-

RENDERBUFFER, EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_X, EGL_-

GL_TEXTURE_CUBE_MAP_NEGATIVE_X, EGL_GL_TEXTURE_CUBE_MAP_-

POSITIVE_Y, EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, EGL_GL_-

TEXTURE_CUBE_MAP_POSITIVE_Z, or EGL_GL_TEXTURE_CUBE_MAP_-

NEGATIVE_Z, dpy must be a valid EGLDisplay, and ctx must be a valid
OpenGL or OpenGL ES API context on that display.

If target is EGL_GL_TEXTURE_2D, buffer must be the name of a nonzero, GL_-
TEXTURE_2D target texture object, cast into the type EGLClientBuffer.

If target is one of the EGL_GL_TEXTURE_CUBE_MAP_* enumerants, buffer
must be the name of a nonzero, GL_TEXTURE_CUBE_MAP (or equivalent in GL
extensions) target texture object, cast into the type EGLClientBuffer.

If target is EGL_GL_TEXTURE_3D, buffer must be the name of a nonzero, GL_-
TEXTURE_3D (or equivalent in GL extensions) target texture object, cast into the
type EGLClientBuffer.

attrib list should specify the mipmap level (EGL_GL_TEXTURE_LEVEL) and,
where applicable, z-offset (EGL_GL_TEXTURE_ZOFFSET) which will be used as
the EGLImage source; If not specified, the default values listed in table 3.11 will
be used instead. Additional values specified in are ignored.

There must exist some levels x and y such that the mipmap level requested
lies between x and y (inclusive), the texture would be mipmap complete were x
substituted for the base level and y substituted for the max level, and all levels less

EGL 1.5 - August 27, 2014

3.9. EGLIMAGE SPECIFICATION AND MANAGEMENT 74

target Notes
EGL_GL_TEXTURE_2D Used for GL 2D texture

images
EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_X Used for the +X face of

GL cubemap texture im-
ages

EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_X Used for the -X face of
GL cubemap texture im-
ages

EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Y Used for the +Y face of
GL cubemap texture im-
ages

EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Y Used for the -Y face of
GL cubemap texture im-
ages

EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Z Used for the +Z face of
GL cubemap texture im-
ages

EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Z Used for the -Z face of
GL cubemap texture im-
ages

EGL_GL_TEXTURE_3D Used for GL 3D texture
images

EGL_GL_RENDERBUFFER Used for GL render-
buffer images

Table 3.10: Legal values for eglCreateImage target parameter.

EGL 1.5 - August 27, 2014

3.9. EGLIMAGE SPECIFICATION AND MANAGEMENT 75

Attribute Description Valid targets Default Value
EGL_NONE Marks the end of the

attribute-value list
All N/A

EGL_GL_TEXTURE_-

LEVEL

Specifies the mipmap
level used as the
EGLImage source. Must
be part of the complete
texture object buffer

EGL_GL_TEXTURE_2D,
EGL_GL_TEXTURE_-

CUBE_MAP_*, EGL_-

GL_TEXTURE_3D

0

EGL_GL_TEXTURE_-

ZOFFSET

Specifies the depth offset
of the image to use as the
EGLImage source. Must
be part of the complete
texture object buffer

EGL_GL_TEXTURE_3D 0

EGL_IMAGE_-

PRESERVED

Whether to preserve
pixel data

All EGL_FALSE

Table 3.11: Legal attributes for eglCreateImage attrib list parameter.

than x or greater than y are unspecified. For cubemaps a single pair x and y must
apply to all faces. For three-dimensional textures, the specified z-offset must be
smaller than the depth of the specified mipmap level.

If target is EGL_GL_RENDERBUFFER, buffer must be the name of a complete,
nonzero, non-multisampled GL_RENDERBUFFER (or equivalent in extensions) tar-
get object, cast into the type EGLClientBuffer. Values specified in attrib list
are ignored.

If the value of attribute EGL_IMAGE_PRESERVED is EGL_FALSE (the default),
then all pixel data values associated with buffer will be undefined after eglCre-
ateImage returns.

If the value of attribute EGL_IMAGE_PRESERVED is EGL_TRUE, then all pixel
data values associated with buffer are preserved.

Errors

eglCreateImage returns EGL_NO_IMAGE on failure. The contents of
buffer will be unaffected.

If dpy is not the handle of a valid EGLDisplay object, the error EGL_-
BAD_DISPLAY is generated.

If ctx is neither the handle of a valid EGLContext object on dpy nor

EGL 1.5 - August 27, 2014

3.9. EGLIMAGE SPECIFICATION AND MANAGEMENT 76

EGL_NO_CONTEXT, the error EGL_BAD_CONTEXT is generated.
If target is not one of the values in table 3.10, the error EGL_BAD_-

PARAMETER is generated.
If target is EGL_GL_TEXTURE_2D, EGL_GL_TEXTURE_CUBE_MAP_*,

EGL_GL_RENDERBUFFER or EGL_GL_TEXTURE_3D, and dpy is not a valid
EGLDisplay, the error EGL_BAD_DISPLAY is generated.

If target is EGL_GL_TEXTURE_2D, EGL_GL_TEXTURE_CUBE_MAP_*,
EGL_GL_RENDERBUFFER or EGL_GL_TEXTURE_3D, and ctx is not a valid
EGLContext, the error EGL_BAD_CONTEXT is generated.

If target is EGL_GL_TEXTURE_2D, EGL_GL_TEXTURE_CUBE_MAP_*,
EGL_GL_RENDERBUFFER or EGL_GL_TEXTURE_3D, and ctx is not a valid GL
context, or does not match the dpy, the error EGL_BAD_MATCH is generated.

If target is EGL_GL_TEXTURE_2D, EGL_GL_TEXTURE_CUBE_MAP_* or
EGL_GL_TEXTURE_3D and buffer is not the name of a texture object of type
target, the error EGL_BAD_PARAMETER is generated.

If target is EGL_GL_RENDERBUFFER and buffer is not the name of a ren-
derbuffer object, or if buffer is the name of a multisampled renderbuffer object,
the error EGL_BAD_PARAMETER is generated.

If EGL_GL_TEXTURE_LEVEL is nonzero, target is EGL_GL_TEXTURE_2D,
EGL_GL_TEXTURE_CUBE_MAP_* or EGL_GL_TEXTURE_3D, and buffer is not
the name of a complete GL texture object, the error EGL_BAD_PARAMETER is
generated.

If EGL_GL_TEXTURE_LEVEL is 0, target is EGL_GL_TEXTURE_2D,
EGL_GL_TEXTURE_CUBE_MAP_* or EGL_GL_TEXTURE_3D, buffer is the
name of an incomplete GL texture object, and any mipmap levels other than
mipmap level 0 are specified, the error EGL_BAD_PARAMETER is generated.

If EGL_GL_TEXTURE_LEVEL is 0, target is EGL_GL_TEXTURE_2D or
EGL_GL_TEXTURE_3D, buffer is not the name of a complete GL texture ob-
ject, and mipmap level 0 is not specified, the error EGL_BAD_PARAMETER is
generated.

If EGL_GL_TEXTURE_LEVEL is 0, target is EGL_GL_TEXTURE_CUBE_-
MAP_*, buffer is not the name of a complete GL texture object, and one
or more faces do not have mipmap level 0 specified, the error EGL_BAD_-
PARAMETER is generated.

If target is EGL_GL_TEXTURE_2D, EGL_GL_TEXTURE_CUBE_MAP_*,
EGL_GL_RENDERBUFFER or EGL_GL_TEXTURE_3D and buffer refers to the
default GL texture object (0) for the corresponding GL target, the error EGL_-
BAD_PARAMETER is generated.

If target is EGL_GL_TEXTURE_2D, EGL_GL_TEXTURE_CUBE_MAP_*, or
EGL_GL_TEXTURE_3D, and the value specified in attrib list for EGL_GL_-

EGL 1.5 - August 27, 2014

3.9. EGLIMAGE SPECIFICATION AND MANAGEMENT 77

TEXTURE_LEVEL is not a valid mipmap level for the specified GL texture
object buffer, the error EGL_BAD_MATCH is generated.

If target is EGL_GL_TEXTURE_3D, and the value specified in attrib list
for EGL_GL_TEXTURE_ZOFFSET exceeds the depth of the specified mipmap
level-of-detail in buffer, the error EGL_BAD_PARAMETER is generated.

If an attribute specified in attrib list is not one of the attributes shown in
table 3.11, the error EGL_BAD_PARAMETER is generated.

If an attribute specified in attrib list is not a valid attribute for target, as
shown in table 3.11, the error EGL_BAD_MATCH is generated.

If the resource specified by dpy, ctx, target, buffer and attrib list has an
off-screen buffer bound to it (e.g., by a previous call to eglBindTexImage),
the error EGL_BAD_ACCESS is generated.

If the resource specified by dpy, ctx, target, buffer and attrib list is bound
to an off-screen buffer (e.g., by a previous call to eglCreatePbufferFrom-
ClientBuffer), the error EGL_BAD_ACCESS is generated.

If the resource specified by dpy, ctx, target, buffer and attrib list is itself
an EGLImage sibling, the error EGL_BAD_ACCESS is generated.

If insufficient memory is available to complete the specified operation, the
error EGL_BAD_ALLOC is generated.

If the value specified in attrib list for EGL_IMAGE_PRESERVED is EGL_-
TRUE, and an EGLImage handle cannot be created from the specified resource
such that the pixel data values in buffer are preserved, the error EGL_BAD_-
ACCESS is generated.

Note that the success or failure of eglCreateImage should not affect the ability
to use buffer in its original API context (or context share group) (although the pixel
data values will be undefined if the command succeeds and the value of EGL_-
IMAGE_PRESERVED is not EGL_TRUE).

3.9.1 Lifetime and Usage of EGLImages

Once an EGLImage is created from an EGLImage source, the memory associated
with the EGLImage source will remain allocated (and all EGLImage siblings in all
client API contexts will be useable) as long as either of the following conditions is
true:

• Any EGLImage siblings exist in any client API context

• The EGLImage object exists inside EGL

The semantics for specifying, deleting and using EGLImage siblings are client
API-specific, and are described in the appropriate API specifications.

EGL 1.5 - August 27, 2014

3.9. EGLIMAGE SPECIFICATION AND MANAGEMENT 78

If an application specifies an EGLImage sibling as the destination for rendering
and/or pixel download operations (e.g., as an OpenGL or OpenGL ES framebuffer
object, glTexSubImage2D, etc.), the modified image results will be observed by all
EGLImage siblings in all client API contexts. If multiple client API contexts access
EGLImage sibling resources simultaneously, with one or more context modifying
the image data, rendering results in all contexts accessing EGLImage siblings are
undefined.

Respecification and/or deletion of any EGLImage sibling (i.e., both EGLImage
source and EGLImage target resources) inside a client API context (by issuing a
subsequent call to commands such as glTexImage* or glDeleteTextures, with the
EGLImage sibling resource as the target of the operation) affects only that client
API context and other contexts within its share group. For an OpenGL or OpenGL
ES context, respecification always results in orphaning of the EGLImage, and may
also include allocation of additional memory for the respecified resource and/or
copying of the EGLImage pixel data23.

Operations inside EGL or any client API context which may affect the lifetime
of an EGLImage (or the memory allocated for the EGLImage), such as respecifying
and/or deleting an EGLImage sibling inside a client API context, must be atomic.

Applications may create client API resources from an EGLImage using client
API extensions outside the scope of this document (such as GL_OES_EGL_image,
which creates OpenGL ES texture and renderbuffer objects). If the EGLImage
used to create the client resource was created with the EGL_IMAGE_PRESERVED

attribute set to EGL_TRUE, then the pixel data values associated with the image will
be preserved after creating the client resource; otherwise, the pixel data values will
be undefined. If the EGLImage was created with the EGL_IMAGE_PRESERVED

attribute set to EGL_TRUE, and EGL is unable to create the client resource without
modifying the pixel values, then creation will fail and the pixel data values will be
preserved.

The command

EGLBoolean eglDestroyImage(EGLDisplay dpy,
EGLImage image);

is used to destroy the specified EGLImage object image. Once destroyed, image
may not be used to create any additional EGLImage target resources within any
client API contexts, although existing EGLImage siblings may continue to be used.
EGL_TRUE is returned on success.

23 Behavior of other types of client APIs generally follows the OpenGL and OpenGL ES behavior
described here, although this is not mandated yet.

EGL 1.5 - August 27, 2014

3.10. POSTING THE COLOR BUFFER 79

Errors

On failure, eglDestroyImage returns EGL_FALSE
If dpy is not the handle of a valid EGLDisplay object, the error EGL_-

BAD_DISPLAY is generated.
If image is not a valid EGLImage object created with respect to dpy, the

error EGL_BAD_PARAMETER is generated.

3.10 Posting the Color Buffer

After completing rendering, the contents of the color buffer can be made visible in
a native window, or copied to a native pixmap.

3.10.1 Posting to a Window

To post the color buffer to a window, call

EGLBoolean eglSwapBuffers(EGLDisplay dpy,
EGLSurface surface);

If surface is a back-buffered window surface, then the color buffer is copied
to the native window associated with that surface. If surface is a single-buffered
window, pixmap, or pbuffer surface, eglSwapBuffers has no effect.

The contents of ancillary buffers are always undefined after calling eglSwap-
Buffers. The contents of the color buffer are undefined if the value of the EGL_-
SWAP_BEHAVIOR attribute of surface is not EGL_BUFFER_PRESERVED. The value
of EGL_SWAP_BEHAVIOR can be set for some surfaces using eglSurfaceAttrib, as
described in section 3.5.6. EGL_SWAP_BEHAVIOR applies only to the color buffer.
EGL 1.5 has no way to specify or query whether or not ancillary buffers are pre-
served, and applications should not rely on this behavior.

3.10.1.1 Native Window Resizing

If the native window corresponding to surface has been resized prior to the swap,
surface must be resized to match. surface will normally be resized by the EGL
implementation at the time the native window is resized. If the implementation
cannot do this transparently to the client, then eglSwapBuffers must detect the
change and resize surface prior to copying its pixels to the native window.

If surface shrinks as a result of resizing, some rendered pixels are lost. If
surface grows, the newly allocated buffer contents are undefined. The resizing

EGL 1.5 - August 27, 2014

3.10. POSTING THE COLOR BUFFER 80

behavior described here only maintains consistency of EGL surfaces and native
windows; clients are still responsible for detecting window size changes (using
platform-specific means) and changing their viewport and scissor regions accord-
ingly.

3.10.2 Copying to a Native Pixmap

To copy the color buffer to a native pixmap, call

EGLBoolean eglCopyBuffers(EGLDisplay dpy,
EGLSurface surface, EGLNativePixmapType
target);

The color buffer is copied to the specified target, which must be a valid native
pixmap handle.

The mapping of pixels in the color buffer to pixels in the pixmap is platform-
dependent, since the native platform pixel coordinate system may differ from that
of client APIs.

The color buffer of surface is left unchanged after calling eglCopyBuffers.

3.10.3 Posting Semantics

surface must be bound to the draw surface of the calling thread’s current context,
for the current rendering API. This restriction may be lifted in future EGL revi-
sions.

eglSwapBuffers and eglCopyBuffers perform an implicit flush operation on
the context (glFlush for an OpenGL or OpenGL ES context, vgFlush for an
OpenVG context). Subsequent client API commands can be issued immediately,
but will not be executed until posting is completed.

The destination of a posting operation (a visible window, for eglSwapBuffers,
or a native pixmap, for eglCopyBuffers) should have the same number of compo-
nents and component sizes as the color buffer it’s being copied from.

In the specific case of a luminance color buffer being posted to an RGB destina-
tion, the luminance component value will normally be replicated in each of the red,
green, and blue components of the destination. Some implementations may use al-
ternate color-space conversion algorithms to map luminance to red, green, and blue
values, so long as the perceptual result is unchanged. Such alternate conversions
should be documented by the implementation.

In other cases where this compatibility constraint is not met by the surface
and posting destination, implementations may choose to relax the constraint by
converting data to the destination format. If they do so, they should define an EGL

EGL 1.5 - August 27, 2014

3.10. POSTING THE COLOR BUFFER 81

extension specifying which destination formats are supported, and specifying the
conversion arithmetic used.

The function

EGLBoolean eglSwapInterval(EGLDisplay dpy, EGLint
interval);

specifies the minimum number of video frame periods per buffer swap for the draw
surface of the current context, for the current rendering API. The interval takes
effect when eglSwapBuffers is first called subsequent to the eglSwapInterval call.
The swap interval has no effect on eglCopyBuffers.

The parameter interval specifies the minimum number of video frames that are
displayed before a buffer swap will occur. The interval specified by the function
applies to the draw surface bound to the context that is current on the calling thread.

If interval is set to a value of 0, buffer swaps are not synchronized to a video
frame, and the swap happens as soon as all rendering commands outstanding for
the current context are complete. interval is silently clamped to minimum and
maximum implementation dependent values before being stored; these values are
defined by EGLConfig attributes EGL_MIN_SWAP_INTERVAL and EGL_MAX_-

SWAP_INTERVAL respectively.
The default swap interval is 1.

3.10.4 Posting Errors

Errors

eglSwapBuffers and eglCopyBuffers return EGL_FALSE on failure.
If surface is not a valid EGL surface, an EGL_BAD_SURFACE error is gen-

erated.
If surface is not bound to the draw surface of the calling thread’s current

context, an EGL_BAD_SURFACE error is generated.
If target is not a valid native pixmap handle, an EGL_BAD_NATIVE_-

PIXMAP error should be generated.
If the format of target is not compatible with the color buffer, or if the size

of target is not the same as the size of the color buffer, and there is no defined
conversion between the source and target formats, an EGL_BAD_MATCH error
is generated.

If called after a power management event has occurred, a EGL_-

CONTEXT_LOST error is generated.
If eglSwapBuffers is called and the native window associated with surface

is no longer valid, an EGL_BAD_NATIVE_WINDOW error is generated.

EGL 1.5 - August 27, 2014

3.11. OBTAINING FUNCTION POINTERS 82

If eglCopyBuffers is called and the implementation does not support na-
tive pixmaps, an EGL_BAD_NATIVE_PIXMAP error is generated.

Errors

eglSwapInterval returns EGL_FALSE on failure.
If there is no current context on the calling thread, a EGL_BAD_CONTEXT

error is generated.
If there is no surface bound to the current context, a EGL_BAD_SURFACE

error is generated.

3.11 Obtaining Function Pointers

The client API and EGL functions which are available to a client may vary at
runtime, depending on factors such as the rendering path being used (hardware
or software), resources available to the implementation, or updated device drivers.
Therefore, the address of client API and EGL functions may be queried at runtime.
The function

void (*eglGetProcAddress(const char

*procname))(void);

returns the address of the function named by procName. procName must be a
NULL-terminated string. The pointer returned should be cast to a function pointer
matching the function’s definition in the corresponding API or extension specifica-
tion. A return value of NULL indicates that the specified function does not exist for
the implementation.

A non-NULL return value for eglGetProcAddress does not guarantee that a
function is actually supported at runtime. The client must also make a corre-
sponding query, such as glGetString(GL_EXTENSIONS) for OpenGL and OpenGL
ES extensions; vgGetString(VG_EXTENSIONS) for OpenVG extensions; or egl-
QueryString(dpy, EGL_EXTENSIONS) for EGL extensions; or query the EGL or
client API version for non-extension functions, to determine if a function is sup-
ported by EGL or a specific client API context24.

24 If a function is not supported by EGL or a specific client API context, the preferred behavior of
calling through the function pointer is to generate an error, such as GL_INVALID_OPERATION
for OpenGL and OpenGL ES contexts. However, undefined behavior up to and including program
termination is possible.

EGL 1.5 - August 27, 2014

3.12. RELEASING THREAD STATE 83

Client API function pointers returned by eglGetProcAddress are independent
of the display and the currently bound client API context, and may be used by any
client API context which supports the function.

eglGetProcAddress may be queried for all EGL and client API functions sup-
ported by the implementation (whether those functions are extensions or not, and
whether they are supported by the current client API context or not).

For functions that are queryable with eglGetProcAddress, implementations
may choose to also export those functions statically from the object libraries im-
plementing those functions. However, portable clients cannot rely on this behavior.

3.12 Releasing Thread State

EGL maintains a small amount of per-thread state, including the error sta-
tus returned by eglGetError, the currently bound rendering API defined by
eglBindAPI, and the current contexts for each supported client API. The overhead
of maintaining this state may be objectionable in applications which create and de-
stroy many threads, but only call EGL or client APIs in a few of those threads at
any given time.

To return EGL to its state at thread initialization, call

EGLBoolean eglReleaseThread(void);

EGL_TRUE is returned on success, and the following actions are taken:

• For each client API supported by EGL, if there is a currently bound con-
text, that context is released. This is equivalent to calling eglMakeCurrent
with ctx set to EGL_NO_CONTEXT and both draw and read set to EGL_NO_-

SURFACE (see section 3.7.3).

• The current rendering API is reset to its value at thread initialization (see
section 3.7).

• Any additional implementation-dependent per-thread state maintained by
EGL is marked for deletion as soon as possible.

eglReleaseThread may be called in any thread at any time, and may be called
more than once in a single thread. The initialization status of EGL (see section 3.2)
is not affected by releasing the thread; only per-thread state is affected.

Resources explicitly allocated by calls to EGL, such as contexts, surfaces, and
configuration lists, are not affected by eglReleaseThread. Such resources belong
not to the thread, but to the EGL implementation as a whole.

EGL 1.5 - August 27, 2014

3.12. RELEASING THREAD STATE 84

Applications may call other EGL routines from a thread following eglRe-
leaseThread, but any such call may reallocate the EGL state previously released.
In particular, calling eglGetError immediately following a successful call to
eglReleaseThread should not be done. Such a call will return EGL_SUCCESS -
but will also result in reallocating per-thread state.

Errors

eglReleaseThread returns EGL_FALSE on failure.
There are no defined conditions under which failure will occur. Even

if EGL is not initialized on any EGLDisplay, eglReleaseThread should
succeed. However, platform-dependent failures may be signaled through the
value returned from eglGetError. Unless the platform-dependent behavior is
known, a failed call to eglReleaseThread should be assumed to leave the cur-
rent rendering API, and the currently bound contexts for each supported client
API, in an unknown state.

EGL 1.5 - August 27, 2014

Chapter 4

Extending EGL

EGL implementors may extend EGL by adding new commands or additional enu-
merated values for existing EGL commands.

New names for EGL functions and enumerated types must clearly indicate
whether some particular feature is in the core EGL or is vendor specific. To make
a vendor-specific name, append a company identifier (in upper case) and any addi-
tional vendor-specific tags (e.g. machine names). For instance, SGI might add new
commands and manifest constants of the form eglNewCommandSGI and EGL_-

NEW_DEFINITION_SGI. If two or more vendors agree in good faith to implement
the same extension, and to make the specification of that extension publicly avail-
able, the procedures and tokens that are defined by the extension can be suffixed
by EXT. Extensions approved by supra-vendor organizations use similar identifiers,
such as KHR for extensions approved by the Khronos Group).

It is critically important for interoperability that enumerants and entry point
names be unique across vendors. The Khronos API Registrar maintains a registry
of enumerants, and all shipping enumerant values must be determined by request-
ing blocks of enumerants from the registry. See

http://www.opengl.org/registry/

for more information on defining extensions.

85

http://www.opengl.org/registry/

Chapter 5

EGL Versions, Header Files, and
Enumerants

Each version of EGL supports specified client API versions, and all prior versions
of those APIs up to that version. For OpenGL ES 1.x, such support includes both
Common and Common-Lite profiles. EGL implementations may also support later
versions of client APIs or additional client APIs, but such support will usually
depend on vendor extensions.

• EGL 1.0 supports OpenGL ES 1.0.

• EGL 1.1 adds support for OpenGL ES 1.1.

• EGL 1.2 adds support for OpenGL ES 2.0 and OpenVG 1.0.

• EGL 1.4 adds support for all versions of OpenGL.

• EGL 1.5 adds support for OpenGL ES 3.0, and for sharing events with
OpenCL via sync objects.

Whether a particular client API is actually available at runtime may depend
on additional factors. In most cases, EGL and each client API are provided in
separate libraries, and applications must link to the EGL library and to each of the
client APIs used by the application. However, details of this procedure vary, and
developers must refer to platform-specific documentation.

5.1 Header Files

The EGL specification defines an ISO C language binding. This binding may
also be used from C++ code. In these environments, the EGL header file

86

5.2. COMPILE-TIME VERSION DETECTION 87

<EGL/egl.h> provides prototypes for all the EGL entry points, and C prepro-
cessor symbols for all the EGL tokens. C and C++ source code should #include
<EGL/egl.h> before using any EGL entry points or symbols1

Languages other than C and C++ will define the EGL interfaces using other
methods, not described in this specification.

The Khronos Implementers Guidelines describe recommended practice, out-
line platform-specific issues, and provide other recommendations to people writing
EGL implementations. For more details refer to the developer area at:

http://www.khronos.org/

5.2 Compile-Time Version Detection

To allow code to be written portably against future EGL versions, the compile-time
environment must make it possible to determine which EGL version interfaces
are available. The details of such detection are language-specific and should be
specified in the language binding documents for each language. For C and C++
code, the <EGL/egl.h> header defines C preprocessor symbols corresponding
to all versions of EGL supported by the implementation:

#define EGL_VERSION_1_0 1
#define EGL_VERSION_1_1 1
#define EGL_VERSION_1_2 1
#define EGL_VERSION_1_3 1
#define EGL_VERSION_1_4 1
#define EGL_VERSION_1_5 1

Future versions of EGL will define additional preprocessor symbols corre-
sponding to the major and minor numbers of those versions.

5.3 Enumerant Values and Header Portability

Enumerant values for EGL tokens are required to be common across all implemen-
tations. A reference version of the egl.h header file, including defined values for
all EGL enumerants, accompanies this specification and can be downloaded from

http://www.khronos.org/
1 For backwards compatibility, implementations supporting OpenGL ES 1.x must also support

the EGL header on the path <GLES/egl.h>.

EGL 1.5 - August 27, 2014

http://www.khronos.org/
http://www.khronos.org/

5.3. ENUMERANT VALUES AND HEADER PORTABILITY 88

All platform-specific types, values, and macros used in egl.h are partitioned
into a platform header, eglplatform.h, which is automatically included by
egl.h. A copy of eglplatform.h providing definitions suitable for many
platforms is included along with egl.h. Implementers should need to modify
only eglplatform.h, never egl.h2.

2 Please submit any additions to eglplatform.h made to support new platforms for inclusion
in the reference copy.

EGL 1.5 - August 27, 2014

Chapter 6

Glossary

Address Space the set of objects or memory locations accessible through a single
name space. In other words, it is a data region that one or more threads may
share through pointers.

Client an application, which communicates with the underlying EGL implemen-
tation and underlying platform by some path. The application program is
referred to as a client of the platform server. To the server, the client is the
communication path itself. A program with multiple connections is viewed
as multiple clients to the server. The resource lifetimes are controlled by the
connection lifetimes, not the application program lifetimes.

Client API one of the rendering APIs supported by EGL. At present client APIs
include OpenGL, OpenGL ES and OpenVG, but other clients are expected
to be added in future versions of EGL. Context creation / management, ren-
dering semantics, and interaction between client APIs are all well-defined
by EGL. There is (considerably more limited) support for rendering to EGL
surfaces by non-client (native) rendering APIs, and the semantics of such
support are more implementation-dependent.

Compatible an OpenGL or OpenGL ES rendering context is compatible with
(may be used to render into) a surface if they meet the constraints specified
in section 2.2.

Connection a bidirectional byte stream that carries the X (and EGL) protocol be-
tween the client and the server. A client typically has only one connection to
a server.

(Rendering) Context an OpenGL or OpenGL ES rendering context. This is a
virtual machine. All OpenGL or OpenGL ES rendering is done with respect

89

90

to a context. The state maintained by one rendering context is not affected
by another except in case of state that may be explicitly shared at context
creation time, such as textures.

Current Context an implicit context used by OpenGL, OpenGL ES and OpenVG,
rather than passing a context parameter to each API entry point. The cur-
rent OpenGL, OpenGL ES and OpenVG contexts are set as defined in sec-
tion 3.7.3.

EGLContext a handle to a rendering context. OpenGL and OpenGL ES rendering
contexts consist of client side state and server side state. Other client APIs
do not distinguish between the two types of state.

EGLImage An opaque handle to a shared resource created by EGL client APIs,
presumably a 2D array of image data

EGLImage Source An object or sub-object originally created in a client API
(such as a mipmap level of a texture object in OpenGL or OpenGL ES, or
a VGImage in OpenVG) which is used as the buffer parameter in a call to
eglCreateImage.

EGLImage Target An object created in a client API (such as a texture object in
OpenGL ES or a VGImage in OpenVG) from a previously-created EGLIm-
age

EGLImage Sibling The set of all EGLImage targets (in all client API contexts)
which are created from the same EGLImage object, and the EGLImage
source resouce which was used to create that EGLImage.

Orphaning The process of respecifying and/or deleting an EGLImage sibling re-
source (inside a client API context) which does not result in deallocation of
the memory associated with the EGLImage or affect rendering results using
other EGLImage siblings.

Referencing The process of creating an EGLImage target resource (inside a client
API context) from an EGLImage.

Respecification When the size, format, or other attributes of an EGLImage sibling
are changed via client API calls such as gl*TexImage*. Respecification
usually will result in orphaning the sibling. Note that changing the pixel
values of the sibling (e.g. by rendering to it or by calling gl*TexSubImage*)
does not constitute respecification.

EGL 1.5 - August 27, 2014

91

(Drawing) Surface an onscreen or offscreen buffer where pixel values resulting
from rendering through OpenGL ES or other APIs are written.

Thread one of a group of execution units all sharing the same address space. Typ-
ically, each thread will have its own program counter and stack pointer, but
the text and data spaces are visible to each of the threads. A thread that is
the only member of its group is equivalent to a process.

EGL 1.5 - August 27, 2014

Appendix A

Version 1.0

EGL version 1.0, approved on July 23, 2003, is the original version of EGL. EGL
was loosely based on GLX 1.3, generalized to be implementable on many differ-
ent operating systems and window systems and simplified to reflect the needs of
embedded devices running OpenGL ES.

A.1 Acknowledgements

EGL 1.0 is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following
is a partial list of contributors, including the company that they represented at the
time of their contribution:

Aaftab Munshi, ATI
Andy Methley, Panasonic
Carl Korobkin, 3d4W
Chris Hall, Seaweed Systems
Claude Knaus, Silicon Graphics
David Blythe, 3d4W
Ed Plowman, ARM
Graham Connor, Imagination Technologies
Harri Holopainen, Hybrid Graphics
Jacob Ström, Ericsson
Jani Vaarala, Nokia

Jon Leech, Silicon Graphics
Justin Couch, Yumetech
Kari Pulli, Nokia
Lane Roberts, Symbian
Mark Callow, HI
Mark Tarlton, Motorola
Mike Olivarez, Motorola
Neil Trevett, 3Dlabs
Phil Huxley, Tao Group
Tom Olson, Texas Instruments
Ville Miettinen, Hybrid Graphics

92

Appendix B

Version 1.1

EGL version 1.1, approved on August 5, 2004, is the second release of EGL. It
adds power management and swap control functionality based on vendor exten-
sions from Imagination Technologies, and optional render-to-texture functionality
based on the WGL_ARB_render_texture extension defined by the OpenGL
ARB for desktop OpenGL.

B.1 Revision 1.1.2

EGL version 1.1.2 (revision 2 of EGL 1.1), approved on November 10, 2004, clar-
ified that vertex buffer objects are shared among contexts in the same fashion as
texture objects.

B.2 Acknowledgements

EGL 1.1 is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following
is a partial list of contributors, including the company that they represented at the
time of their contribution:

Aaftab Munshi, ATI
Andy Methley, Panasonic
Axel Mamode, Sony
Barthold Lichtenbelt, 3Dlabs
Benji Bowman, Imagination Technologies
Borgar Ljosland, Falanx
Brian Murray, Motorola
Bryce Johnstone, Texas Instruments

Carlos Sarria, Imagination Technologies
Chris Tremblay, Motorola
Claude Knaus, Esmertec
Clay Montgomery, Nokia
Dan Petersen, Sun
Dan Rice, Sun
David Blythe, HI
David Yoder, Motorola

93

B.2. ACKNOWLEDGEMENTS 94

Doug Twilleager, Sun
Ed Plowman, ARM
Graham Connor, Imagination Technologies
Greg Stoner, Motorola
Hannu Napari, Hybrid
Harri Holopainen, Hybrid
Jacob Ström, Ericsson
Jani Vaarala, Nokia
Jerry Evans, Sun
John Metcalfe, Imagination Technologies
Jon Leech, Silicon Graphics
Kari Pulli, Nokia
Lane Roberts, Symbian
Madhukar Budagavi, Texas Instruments
Mathias Agopian, PalmSource
Mark Callow, HI

Mark Tarlton, Motorola
Mike Olivarez, Motorola
Neil Trevett, 3Dlabs
Nick Triantos, Nvidia
Petri Kero, Hybrid
Petri Nordlund, Bitboys
Phil Huxley, Tao Group
Remi Arnaud, Sony
Robert Simpson, Bitboys
Tero Sarkkinen, Futuremark
Timo Suoranta, Futuremark
Thomas Tannert, Silicon Graphics
Tomi Aarnio, Nokia
Tom McReynolds, Nvidia
Tom Olson, Texas Instruments
Ville Miettinen, Hybrid Graphics

EGL 1.5 - August 27, 2014

Appendix C

Version 1.2

EGL version 1.2, approved on July 8, 2005, is the third release of EGL. It adds
support for the OpenVG 2D client API, in addition to support for OpenGL ES, and
generalizes EGL concepts to enable supporting other client APIs in the future.

C.1 Acknowledgements

EGL 1.2 is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following
is a partial list of contributors, including the company that they represented at the
time of their contribution:

Aaftab Munshi, ATI
Anu Ramanathan, TI
Daniel Rice, Sun Microsystems
Espen Aamodt, Falanx
Jani Vaarala, Nokia
Jon Leech, SGI
Jussi Räsänen, Hybrid Graphics
Koichi Mori, Nokia
Mark Callow, HI Corporation
Members of the Khronos OpenGL ES Work-

ing Group
Members of the Khronos OpenVG Working

Group
Michael.Nonweiler, ARM
Neil Trevett, 3Dlabs / NVIDIA
Petri Kero, Hybrid Graphics
Robert Simpson, Bitboys
Simon Fenney, PowerVR
Tom Olson, TI

95

Appendix D

Version 1.3

EGL version 1.3 was voted out of the OpenKODE Working Group on December
4, 2006, and formally approval by the Khronos Board of Promoters on February 8,
2007. EGL 1.3 is the fourth release of EGL. It adds support for separate OpenGL
ES 1.x and 2.x contexts with the EGL_CONTEXT_CLIENT_VERSION attribute to
eglCreateContext and the EGL_OPENGL_ES2_BIT in the EGL_RENDERABLE_-

TYPE attribute, and adds the EGL_MATCH_NATIVE_PIXMAP pseudo-attribute to
eglChooseConfig, to allow selecting configs matching specific native pixmaps.
The EGL_CONFORMANT attribute was added to indicate if client API contexts will
pass the required conformance tests, and the EGL_SURFACE_TYPE attribute was
extended with the EGL_VG_COLORSPACE_LINEAR_BIT and EGL_VG_ALPHA_-

FORMAT_PRE_BIT bitfields to define whether or not linear colorspace and premul-
tiplied alpha format are supported by the OpenVG implementation. For naming
consistency, some tokens from EGL 1.2 have been renamed as shown in table D.1.
The old names are also retained for backwards compatibility. The specification
adds a number of clarifications (but not behavior changes) regarding config sort-
ing, surface resource ownership, multiple client API context versions, and SDK
issues.

Finally, the eglplatform.h header is defined to accompany the reference
egl.h header provided by Khronos.

D.1 Acknowledgements

EGL 1.3 is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following is
a list of contributors, including the company that they represented at the time of
their contribution:

96

D.1. ACKNOWLEDGEMENTS 97

EGL 1.2 Token Name EGL 1.3 Token Name
EGL_COLORSPACE EGL_VG_COLORSPACE

EGL_COLORSPACE_LINEAR EGL_VG_COLORSPACE_LINEAR

EGL_COLORSPACE_sRGB EGL_VG_COLORSPACE_sRGB

EGL_ALPHA_FORMAT EGL_VG_ALPHA_FORMAT

EGL_ALPHA_FORMAT_PRE EGL_VG_ALPHA_FORMAT_PRE

EGL_ALPHA_FORMAT_NONPRE EGL_VG_ALPHA_FORMAT_NONPRE

NativeDisplayType EGLNativeDisplayType
NativePixmapType EGLNativePixmapType
NativeWindowType EGLNativeWindowType

Table D.1: Renamed tokens

Aaftab Munshi, ATI
Daniel Rice, Sun Microsystems
Espen Aamodt, Falanx
Gary King, NVIDIA
Jani Vaarala, Nokia
Jasin Bushnaief, Hybrid Graphics
Jay Abbott, TAO
Jon Kennedy, 3Dlabs
Jon Leech
Jussi Räsänen, Hybrid Graphics
Kalle Raita, Hybrid Graphics
Kari Pulli, Nokia
Koichi Mori, Nokia
Leonardo Estevez, TI
Mark Callow, HI Corporation
Members of the Khronos OpenGL ES Work-

ing Group
Members of the Khronos OpenKODE Work-

ing Group
Members of the Khronos OpenVG Working

Group
Neil Trevett, NVIDIA
Petri Kero, Hybrid Graphics
Remi Arnaud, Sony Computer Entertainment
Robert J. Simpson, Bitboys
Robert Palmer, Symbian
Sampo Lappalainen, Hybrid Graphics
Simon Fenney, Imagination Technologies
Sven Gothel, ATI
Teemu Rantalaiho, Hybrid Graphics
Tom Olson, TI

EGL 1.5 - August 27, 2014

Appendix E

Version 1.4

EGL version 1.4 was voted out of the Khronos Technical Working Group on March
25, 2008, and formally approved by the Khronos Board of Promoters on May 29,
2008.

EGL 1.4 is the fifth release of EGL. It introduces the following new features:

• Allow multisampled configurations for OpenVG, by relaxing OpenGL ES-
specific language and documenting that multisample buffer resolution may
be performed when switching which client API is rendering to a surface.

• Allow control of multisample resolution behavior (use of a box filter) using
the EGL_MULTISAMPLE_RESOLVE EGLSurface attribute.

• Allow control of swap behavior (preserving back buffer contents) using the
EGL_SWAP_BEHAVIOR bit in the EGL_SURFACE_TYPE EGLSurface at-
tribute.

• Enable support for OpenGL (in addition to, or instead of OpenGL ES) as a
client API.

• Relax definition of EGLNativeDisplayType to allow a variety of map-
pings to X and Microsoft Windows data structures.

• Document the meaning of the EGL_LEVEL EGLConfig attribute.

• Document that eglMakeCurrent can raise an EGL_BAD_ACCESS error when
binding more contexts in the current thread group than are supported by the
implementation.

• Add a specific example of how eglCreatePbufferFromClientBuffer can
fail due to implementation constraints.

98

E.1. UPDATES TO EGL 1.4 99

• Fix prototypes of functions with empty argument lists.

E.1 Updates to EGL 1.4

After the initial version of EGL 1.4 was released, minor changes and corrections
were made in later revisions as described below.

Changes in the revision approved on January 20, 2009:

• Change object destruction behavior such that object handles become in-
valid immediately after an object is deleted, although the underlying ob-
ject may remain valid if it’s current to a context. This affects eglTerminate
(section 3.2), eglDestroySurface (section 3.5.5), eglDestroyContext (sec-
tion 3.7.2), and eglGetCurrentContext and eglGetCurrentSurface (sec-
tion 3.7.4).

• Clarify initialization and termination behavior of EGLDisplays, and be-
havior of EGL functions when passed an uninitialized display, in sections 3.2
and 3.7.3.

Changes in the revision approved on April 15, 2009:

• Specified in section 2.1.2 that all objects exist in the namespace of an
EGLDisplay (bug 4303).

• Clarified meaning of EGL_PIXEL_ASPECT_RATIO and the purpose of
EGL_DISPLAY_SCALING in section 3.5.6 (bug 3594).

Changes in the revision approved on June 23, 2009:

• Expanded description of “generic” errors applying to multiple commands in
section 3.1 (bug 4993).

• Noted in sections 3.7.4 and 3.7.3 that EGL_NO_DISPLAY is not a valid
EGLDisplay, and passing it as a display parameter should generate errors
(bug 4993).

• Added clarification of meaning of config masks in section 3.4.1 (bug 5276).

Changes in the revision approved on September 25, 2009:

EGL 1.5 - August 27, 2014

E.1. UPDATES TO EGL 1.4 100

• Updated language in section 3.5.1 to make clear that the window system (as
well as EGL and client APIs other than OpenVG) is not necessarily affected
by the value of the EGL_VG_ALPHA_FORMAT attribute, and that preferred
window system behavior is to ignore EGL_VG_ALPHA_FORMAT (bug 5526).

• Clarified error conditions for eglCreatePbufferFromClientBuffer in sec-
tion 3.5.3 (bug 5473).

Changes in the revision approved on March 3, 2010:

• Change descriptions of EGL_SWAP_BEHAVIOR_PRESERVED_BIT in ta-
ble 3.2 and EGL_SWAP_BEHAVIOR in section 3.4 to specify that they apply
only to the color buffer. Relax language in section 3.10.1 to allow ancillary
buffer contents to be undefined after swap, regardless of the value of EGL_-
SWAP_BEHAVIOR; clarify how EGL_SWAP_BEHAVIOR controls color buffer
preservation; and add a footnote describing this subtle behavior change rela-
tive to older versions of EGL 1.4 (bug 5970).

Changes in the revision approved on April 7, 2010:

• Update table 3.1 and the description of EGL_BUFFER_SIZE in section 3.4 to
clarify that this attribute is simply the sum of the RGBA or LA component
sizes, and does not include any padding or alignment bits that may be present
in the underlying pixel format (bug 6143).

Changes in the revision approved on May 21, 2010:

• Note that EGL_MATCH_NATIVE_PIXMAP is not a valid attribute to eglGet-
ConfigAttrib in section 3.4.3 (bug 6285).

Changes in the revision approved on July 21, 2010:

• Clarify lifetime of shared objects when contexts on the share list are de-
stroyed in section 3.7.2 (Bug 6582).

Changes in the revision approved on October 6, 2010:

• Fix typo in section 2.4 (public Bug 340).

• Refine eglTerminate language in section 3.2 to specify that handles to all
types of EGL resources owned by the terminated display are invalidated,
although the display handle itself remains valid (Bug 6776).

EGL 1.5 - August 27, 2014

E.1. UPDATES TO EGL 1.4 101

• Fix error condition for eglCreateWindowSurface in section 3.5.1 to be gen-
erated if there is already an EGLSurface associated with the native window,
rather than an EGLConfig (Bug 6667).

• Expand footnote describing counterintuitive behavior of EGLConfig sort
rule 3 in section 3.4.1 (public Bug 327).

• Add Tero Pihlajakoski to the Acknowledgements.

Changes in the revision approved on April 20, 2011:

• Note that EGL_DONT_CARE is not a valid attribute value for EGL_MATCH_-
NATIVE_PIXMAP in section 3.4.1 (Bug 7456).

• Correct sort order of EGL_COLOR_BUFFER_TYPE in table 3.4 (Bug 7431).

Changes in the revision approved on February 13, 2013:

• Clarify support for OpenGL as well as OpenGL ES in sections 1, 2.2, 2.2,
2.2.2, 2.3, 2.4, 2.6, and 5 (Bug 9864).

• Added new section 2.2.2.1, clarifying that the y coordinate used when ren-
dering to native window or pixmap surfaces is inverted relative to the client
API coordinate system, so that images appear as expected. N.b. this is not a
behavior change (Bug 9701).

• Note in section 3.1 that since eglGetError always returns error information
about the most recently called EGL function, calling eglGetError twice in
a row will return EGL_SUCCESS on the second call.

• Add language to the description of eglBindAPI in section 3.7 making EGL_-
OPENGL_API and EGL_OPENGL_ES_API equivalent for all purposes other
than eglCreateContext, and added eglCopyBuffers and eglSwapBuffers to
the list of commands affected by the current rendering API (Bug 9118).

• Minor language fixes to description of eglGetProcAddress in section 3.11
(Bug 9865).

• Clarify support for OpenGL as well as OpenGL ES in chapter 6 (Bug 9864).

Changes in the revision approved on December 4, 2013:

• Modified the definition of EGLint in section 2.1.1 so that it may not be
large enough to hold a native pointer, and described why the regression is
being adopted (Bug 11027).

EGL 1.5 - August 27, 2014

E.2. ACKNOWLEDGEMENTS 102

• Updated section 2.2.2.1 to not mandate that all window systems invert the
coordinate system relative to client APIs (Bug 9701).

• Change selection type of EGL_CONFIG_ID from Exact to Special in table 3.4
(Bug 10567).

• Added new section 3.7.3.2 specifying that EGL does not provide ordering
guarantees across eglMakeCurrent (Bug 10664).

• Change description of eglQueryContext query in section 3.7.4 so EGL_-

CONTEXT_CLIENT_VERSION returns the version of the context actually cre-
ated, not the version requested (Bug 10906).

• Clarify that querying EGL_RENDER_BUFFER returns values depending on
the draw surface in section 3.7.4; that eglWaitClient and eglWaitNative
guarantee synchronization to both read and draw surfaces in section 3.8; and
that eglSwapInterval affects, and eglSwapBuffers and eglCopyBuffers are
restricted to the currently bound draw surface in sections 3.10.3 and 3.10.4
(Bug 10200).

• Add a footnote to the description of eglGetProcAddress in section 3.11
clarifying that calling through an extension function pointer to an extension
not implemented by a client API results in undefined behavior (Bug 10147).

E.2 Acknowledgements

EGL 1.4 is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following is
a list of contributors, including the company that they represented at the time of
their contribution:

Acorn Pooley, NVIDIA
Andrzej Mamona, AMD
Barthold Lichtenbelt, NVIDIA
Benj Lipchak, AMD
Benji Bowman, Imagination Technologies
Bill Licea-Kane, AMD
Dongkyun Jeong, Samsung
Ed Plowman, ARM
Gabriele Svelto, ST Microelectronics
Gary King, NVIDIA
Georg Kolling, Imagination Technologies
Graham Connor, Imagination Technologies

Ian Romanick, Intel
Jim Van Welzen, NVIDIA
Jon Leech
Kari Pulli, Nokia
Leonardo Estevez, TI
Mark Callow, HI Corporation
Marko Lukat, Antix Labs
Matti Paavola, Nokia
Maurice Ribble, AMD
Members of the Khronos OpenGL ES,

OpenKODE, OpenMAX, OpenVG, and
OpenWF Working Groups

EGL 1.5 - August 27, 2014

E.2. ACKNOWLEDGEMENTS 103

Michael Giovinco, Seaweed Systems
Neil Trevett, NVIDIA
Pasi Keranen, Nokia
Pierre Boudier, AMD
Richard Sahlin, Ericsson
Robert Palmer, Symbian
Robert Simpson, AMD
Roger Nixon, Broadcom

Sami Kyostila, Nokia
Steven Fischer, Motorola
Tero Pihlajakoski, Symbio
Tim Renouf, Antix Labs
Tom Olson, TI
Yeshwant Muthusamy, Nokia
Zhifang Long, Marvell

EGL 1.5 - August 27, 2014

Appendix F

Version 1.5

EGL version 1.5 was voted out of the Khronos Technical Working Group on Jan-
uary 31, 2014, and formally approved by the Khronos Board of Promoters on
March 14, 2014.

EGL 1.5 is the sixth release of EGL. It introduces the following new features
(the EGL extension(s) each feature is based on are also shown parenthetically):

• Platform support:

– Distinguishing client and display extensions, and defining a method to
query, without initializing a display, the set of supported client exten-
sions (EGL_EXT_client_extensions).

– Providing a mechanism for support of multiple platforms (such as win-
dow systems or offscreen rendering frameworks) in a single EGL im-
plementation at runtime (EGL_EXT_platform_base).

• Client API interoperability:

– Sync objects representing events whose completion can be tested or
waited on. Such events include fences placed in client API command
streams (EGL_KHR_fence_sync) and events triggered by OpenCL
event objects (EGL_KHR_cl_event2), and the ability to wait for sync
objects in the server for a client API context, allowing application code
to continue to execute in parallel (EGL_KHR_wait_sync).

• Image sharing:

– Definition of image objects suitable for sharing 2D arrays of image data
between client APIs (EGL_KHR_image_base)

104

F.1. CHANGE LOG FOR RELEASED SPECIFICATIONS 105

– Methods to create image objects from OpenGL and OpenGL
ES API resources including two- and three-dimensional tex-
tures, cube maps and render buffers (EGL_KHR_gl_texture_-
2D_image, EGL_KHR_gl_texture_3D_image, EGL_KHR_gl_-

texture_cubemap_image, and EGL_KHR_gl_renderbuffer_-

image).

• General API cleanup:

– A new context creation command with attributes specifying the re-
quested OpenGL and OpenGL ES version, context properties, pro-
file, and the ability to be made current without providing a default
framebuffer (EGL_KHR_create_context), as well as robust buffer
access behavior and graphics reset notification behavior (EGL_EXT_-
create_context_robustness).

– Defining eglGetProcAddress to support querying of all EGL
and client API functions, not just extensions (EGL_KHR_get_-
all_proc_addresses and EGL_KHR_client_get_all_proc_-

addresses).

– Enabling creation of EGLSurfaces which will be rendered to in
sRGB by OpenGL and OpenGL ES contexts supporting that capability
(EGL_KHR_gl_colorspace).

– Extending eglMakeCurrent to make a context current without either
a read of draw surface (EGL_KHR_surfaceless_context).

F.1 Change Log for Released Specifications

Changes in the revision approved on August 27, 2014:

• Remove language in section 3.9 stating that inapplicable attributes to eglCre-
ateImage are ignored, since this is inconsistent with the explicit error de-
fined for this case (Bug 12585).

Changes in the revision approved on May 21, 2014:

• Allow querying the EGL client version string by passing EGL_NO_DISPLAY
to eglQueryString in section 3.3 (Bug 12204), and define the meaning of
the client version (Bug 12204).

• Change error code for invalid type arguments to eglCreateSync to EGL_-

BAD_PARAMETER in section 3.8.1 (Bug 11963).

EGL 1.5 - August 27, 2014

F.1. CHANGE LOG FOR RELEASED SPECIFICATIONS 106

• Document in section 3.9.1 that respecification of an EGLImage sibling in
an OpenGL or OpenGL ES context results in orphaning of the EGLImage
(Bug 11851).

Changes in the initial release of March 12, 2014, relative to the EGL 1.4 Specifi-
cation:

• Add new features as described in section F.

• Minor typos and fixes - add OpenCL to section 1, add missing EGL types
to section 2.1.1 and display-destruction discussion in section 3.2, retitle sec-
tion 3.3 more generically, clarify applicability of EGL_LEVEL in section 3.4,
fix parameter name for native window in section 3.5.1, clarify allowed types
of OpenCL events in section 3.8.1.2, typos in sections 3.9 and 3.11 (Bug
11577).

• Add footnote to description of EGLAttrib in section 2.1.1 explaining
why not all EGL features using attribute lists have been updated to support
EGLAttrib interface variants (Bug 11850).

• Added eglSwapInterval to the list of commands affected by the current ren-
dering API set with eglBindAPI in section 3.7 (Bug 11384).

• Modify description of context reset notification strategy in section 3.7.1.6 to
describe as relevant, but not require EXT extensions (Bug 9313).

• Change eglCreateContext error in section 3.7.1.6 when config does not sup-
port the requested client API from EGL_BAD_CONFIG to EGL_BAD_MATCH,
and clarify that the final EGL_BAD_MATCH error is intended as the error to be
generated if context creation failed for reasons not enumerated previously in
the Errors section (Bug 11562).

• Remove redundant error for eglCreateContext in section 3.7.1.6, and re-
move error when specifying an OpenGL profile mask for a context version
that doesn’t support profiles (Bug 11562).

• Clarify that the GL viewport/scissor context state initialization described in
section 3.7.3 only applies when a context is made current for the first time
and it is without a default framebuffer.

• Clarify completeness requirements on GL textures passed to eglCreateIm-
age in section 3.9 (Bug 11081).

EGL 1.5 - August 27, 2014

F.2. ACKNOWLEDGEMENTS 107

F.2 Acknowledgements

EGL 1.5 is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following is a
list of contributors, including the company that they represented at the time of their
contribution: Some major contributions made by individuals are listed together
with their name.

Acorn Pooley, NVIDIA (EGL_KHR_-
surfaceless_context)

Adrian Bucur, Samsung
Alex Walters, Imagination Technologies
Alon Or-bach, Samsung (Khronos EGL Work-

ing Group Chair)
Anders Pedersen, ARM
Barthold Lichtenbelt, NVIDIA
Benji Bowman, Imagination Technologies
Benoit Jacob, Mozilla
Brian Ellis, Qualcomm
Brian Murray, Freescale
Brian Paul, VMware
Bruce Merry, ARM
Chad Versace, Intel (EGL_EXT_-

client_extensions, EGL_-
EXT_platform_base)

Chris Knox, NVIDIA
Chris Wynn, NVIDIA
Christopher James Halse Rogers, Canonical
Daniel Koch, NVIDIA
David Garcia, Qualcomm
Endre Sund, ARM
Gary King, NVIDIA (EGL_KHR_-

image_base, EGL_KHR_gl_-
*_image)

Georg Kolling, Imagination Technologies
Graeme Leese, Broadcom
Graham Sellers, AMD
Greg Roth, NVIDIA (EGL_EXT_-

create_context_robustness)
Greg Stoner, AMD
Gregory Prisament, NVIDIA
Hans-Martin Will
Hwanyong Lee, Kyungpook National Univer-

sity
Ian Romanick, Intel
Insu Yu, Samsung
Jakob Bornecrantz, VMware

James Jones, NVIDIA (EGL_KHR_-
client_get_all_proc_-
addresses, EGL_KHR_get_-
all_proc_addresses)

Jamie Gennis, Google
Jan-Harald Fredriksen, ARM
Jeff Bolz, NVIDIA
Jeff Juliano, NVIDIA
Jeff Vigil, Qualcomm
Jeffrey McGee, TI
Jens Owen, LunarG
Jeremy Hewitson, Nokia
Jesse Barker, Linaro
Jesse Hall, Google
Jim Van Welzen, NVIDIA
Joel Pilon, QNX
Jon Leech (EGL 1.5 Specification Editor,

EGL_KHR_cl_event2, EGL_-
KHR_create_context, EGL_-
KHR_fence_sync, EGL_KHR_-
gl_colorspace, EGL_KHR_-
wait_sync)

Jonathan Grant, Renesas
JungWoo Kim, Samsung
Kalle Raita, drawElements
Kari Pulli, NVIDIA
Kenneth Russell, Google
Kristian Kristensen, Intel
Lars Remes, Ardites
Magnus Wendt, ST Ericsson
Marcus Lorentzon, ST Ericsson
Mark Callow, Artspark
Marko Lukat, Antix Labs
Matteo Salardi, Imagination Technologies
Matthew Porth, Samsung
Matti Paavola, Nokia
Maurice Ribble, Qualcomm
Members of the Khronos OpenGL ARB and

OpenGL ES Working Groups

EGL 1.5 - August 27, 2014

F.2. ACKNOWLEDGEMENTS 108

Mikael Beckius, Sony Ericsson
Mikael Sevenier, Aptina
Mike Weiblen, Transgaming
Neil Trevett, NVIDIA (Khronos EGL Work-

ing Group Chair)
Nicholas Haemel, NVIDIA
Pasi Keranen, Nokia
Pierre Boudier, AMD
Piotr Tomaszewski, ST Ericsson
Prabindh Sundareson, TI
Rathinasamy Rajesh, Nokia
Raymond Smith, ARM
Remi Arnaud
Rob Barris, NVIDIA
Robert Bragg, Intel
Robert Palmer, Nokia
Roger Nixon, Broadcom
Rufus Hamade, Imagination Technologies

Sami Kyöstilä, Nokia
Shereef Shehata, TI
Steven Fischer, Motorola
Steven Holte, NVIDIA
Szabolcs Tolnai, Imagination Technologies
Tero Pihlajakoski, Symbio
Tewari Anshuman
Thierry Vuillaume, ST Ericsson
Tim Renouf, Antix
Timo Suoranta, Broadcom
Tom Cooksey, ARM
Tom Longo, AMD
Tom Olson, ARM
Vlad Mann, Nokia
Vladimir Vukicevic, Mozilla
Wes Bang, Nokia
Yanjun Zhang, Vivante
Yeshwant Muthusamy, Samsung

EGL 1.5 - August 27, 2014

Index

CL COMPLETE, 67
cl khr egl image, 66
CL QUEUED, 67
CL RUNNING, 67
CL SUBMITTED, 67

Display, 15

EGL ALPHA FORMAT, 97
EGL ALPHA FORMAT NONPRE, 97
EGL ALPHA FORMAT PRE, 97
EGL ALPHA MASK SIZE, 20, 21, 29,

30
EGL ALPHA SIZE, 20, 21, 29, 30, 38,

47
EGL BACK BUFFER, 32, 33, 45, 46,

49, 63
EGL BAD ACCESS, 12, 39, 48, 58, 77,

98
EGL BAD ALLOC, 13, 34, 37, 41, 57,

59, 60, 77
EGL BAD ATTRIBUTE, 13, 27, 31,

37, 46, 55, 64, 68, 71
EGL BAD CONFIG, 13, 34, 37, 41, 56,

106
EGL BAD CONTEXT, 13, 16, 56, 57,

59, 64, 76, 82
EGL BAD CURRENT SURFACE, 13,

59, 64, 65
EGL BAD DISPLAY, 13, 14, 16, 17,

19, 59, 62, 68, 75, 76, 79
EGL BAD MATCH, 13, 34, 37–39, 41,

43, 48, 49, 55–59, 68, 70, 72,
76, 77, 81, 106

EGL BAD NATIVE PIXMAP, 13, 14,
41, 81, 82

EGL BAD NATIVE WINDOW, 14,
34, 59, 81

EGL BAD PARAMETER, 13, 15, 19,
26, 37, 38, 43, 48, 49, 51, 62,
65, 68, 70–72, 76, 77, 79, 105

EGL BAD SURFACE, 13, 16, 42, 46,
48, 49, 59, 81, 82

EGL BIND TO TEXTURE RGB, 20,
26, 29, 30, 46, 49

EGL BIND TO TEX-
TURE RGBA, 20, 26, 29, 30,
46, 49

EGL BLUE SIZE, 20, 21, 29, 30, 38,
47

EGL BUFFER DESTROYED, 43, 45
EGL BUFFER PRESERVED, 43, 45,

79
EGL BUFFER SIZE, 20, 21, 29, 30,

100
EGL CL EVENT HANDLE, 67, 68
EGL CLIENT APIS, 18
EGL COLOR BUFFER TYPE, 20, 21,

29, 30, 101
EGL COLORSPACE, 97
EGL COLORSPACE LINEAR, 97
EGL COLORSPACE sRGB, 97
EGL CONDITION SATISFIED, 69
EGL CONFIG CAVEAT, 20, 24, 28, 29

109

INDEX 110

EGL CONFIG ID, 19, 20, 28–30, 43,
44, 63, 102

EGL CONFORMANT, 20, 24, 25, 29,
30, 96

EGL CONTEXT CLIENT TYPE, 63
EGL CONTEXT CLIENT VERSION,

52, 63, 96, 102
EGL CONTEXT FORWARD COM-

PATIBLE, 54
EGL CONTEXT LOST, 10, 14, 59, 81
EGL CONTEXT MAJOR VERSION,

52, 53
EGL CONTEXT MINOR VERSION,

52, 53
EGL CONTEXT OPENGL COMPAT-

IBILITY PROFILE BIT, 53,
57

EGL CONTEXT OPENGL -
CORE PROFILE BIT, 53, 54,
57

EGL CONTEXT OPENGL DEBUG,
54

EGL CONTEXT OPENGL FOR-
WARD COMPATIBLE, 54

EGL CONTEXT OPENGL PRO-
FILE MASK, 53, 54

EGL CONTEXT OPENGL RESET -
NOTIFICATION STRAT-
EGY, 55

EGL CONTEXT OPENGL RO-
BUST ACCESS, 55

EGL CORE NATIVE ENGINE, 65
EGL DEFAULT DISPLAY, 16
EGL DEPTH SIZE, 20, 21, 29, 30
EGL DISPLAY SCALING, 45, 99
EGL DONT CARE, 27, 29, 30, 101
EGL DRAW, 62
EGL EXT client extensions, 104, 107
EGL EXT create context robustness,

105, 107

EGL EXT platform base, 104, 107
EGL EXTENSIONS, 2, 18, 19, 82
EGL FALSE, 2, 10, 12, 16, 17, 26, 27,

31, 36, 42, 43, 46, 48, 51, 54,
55, 57, 58, 64, 65, 69–72, 75,
79, 81, 82, 84

EGL FOREVER, 69
EGL GL COLORSPACE, 32, 33, 35,

36, 40, 44
EGL GL COLORSPACE LINEAR, 33
EGL GL COLORSPACE SRGB, 33
EGL GL RENDERBUFFER, 73–76
EGL GL TEXTURE 2D, 73–76
EGL GL TEXTURE 3D, 73–77
EGL GL TEXTURE CUBE MAP -

NEGATIVE X, 73, 74
EGL GL TEXTURE CUBE MAP -

NEGATIVE Y, 73, 74
EGL GL TEXTURE CUBE MAP -

NEGATIVE Z, 73, 74
EGL GL TEXTURE CUBE MAP -

POSITIVE X, 73, 74
EGL GL TEXTURE CUBE MAP -

POSITIVE Y, 73, 74
EGL GL TEXTURE CUBE MAP -

POSITIVE Z, 73, 74
EGL GL TEXTURE LEVEL, 73, 75–

77
EGL GL TEXTURE ZOFFSET, 73,

75, 77
EGL GREEN SIZE, 20, 21, 29, 30, 38,

47
EGL HEIGHT, 35–37, 43, 44
EGL HORIZONTAL RESOLUTION,

44, 45
EGL IMAGE PRESERVED, 75, 77, 78
EGL KHR cl event2, 3, 104, 107
EGL KHR client get all proc ad-

dresses, 105, 107
EGL KHR create context, 105, 107

EGL 1.5 - August 27, 2014

INDEX 111

EGL KHR fence sync, 61, 104, 107
EGL KHR get all proc addresses, 105,

107
EGL KHR gl * image, 107
EGL KHR gl colorspace, 105, 107
EGL KHR gl renderbuffer image, 105
EGL KHR gl texture 2D image, 105
EGL KHR gl texture 3D image, 105
EGL KHR gl texture cubemap image,

105
EGL KHR image base, 104, 107
EGL KHR lock surface3, 3
EGL KHR surfaceless context, 105,

107
EGL KHR wait sync, 61, 104, 107
EGL LARGEST PBUFFER, 35, 36,

43–45
EGL LEVEL, 20, 25, 27, 29, 30, 98,

106
EGL LOSE CONTEXT ON RESET,

55
EGL LUMINANCE BUFFER, 21, 30
EGL LUMINANCE SIZE, 20, 21, 29,

30
EGL MATCH NATIVE PIXMAP, 27–

29, 31, 40, 96, 100, 101
EGL MAX PBUFFER HEIGHT, 20,

25, 28
EGL MAX PBUFFER PIXELS, 20,

25, 28
EGL MAX PBUFFER WIDTH, 20,

25, 28
EGL MAX SWAP INTERVAL, 20, 25,

29, 30, 81
EGL MIN SWAP INTERVAL, 20, 26,

29, 30, 81
EGL MIPMAP LEVEL, 42–45, 48
EGL MIPMAP TEXTURE, 35–39, 44,

45, 48
EGL MULTISAMPLE RESOLVE, 23,

42–45, 98
EGL MULTISAM-

PLE RESOLVE BOX, 42, 43,
45

EGL MULTISAMPLE RESOLVE -
BOX BIT, 23, 43

EGL MULTISAMPLE -
RESOLVE DEFAULT, 42, 43,
45

EGL NATIVE RENDERABLE, 20,
24, 29, 30

EGL NATIVE VISUAL ID, 20, 24, 28
EGL NATIVE VISUAL TYPE, 20, 24,

28–30
EGL NO CONTEXT, 12, 50, 51, 55,

56, 59–61, 68, 70, 72, 76, 83
EGL NO DISPLAY, 2, 15, 16, 18, 19,

59, 62, 99, 105
EGL NO IMAGE, 75
EGL NO RESET NOTIFICATION, 55
EGL NO SURFACE, 34, 36, 38, 41,

59, 60, 62, 83
EGL NO SYNC, 68
EGL NO TEXTURE, 36, 37, 42, 48, 49
EGL NON CONFORMANT CON-

FIG, 24, 28
EGL NONE, 15, 24, 25, 27–29, 32, 35,

38, 40, 51, 55, 61, 63, 66, 73,
75

EGL NOT INITIALIZED, 12, 14, 16,
18, 19, 26, 60

EGL OPENGL API, 50, 52, 53, 101
EGL OPENGL BIT, 24
EGL OPENGL ES2 BIT, 24, 37, 56, 96
EGL OPENGL ES3 BIT, 24, 37, 56
EGL OPENGL ES API, 50–52, 64,

101
EGL OPENGL ES BIT, 24, 29, 37, 56
EGL OPENVG API, 50
EGL OPENVG BIT, 24

EGL 1.5 - August 27, 2014

INDEX 112

EGL OPENVG IMAGE, 38
EGL PBUFFER BIT, 23, 26
EGL PIXEL ASPECT RATIO, 44, 45,

99
EGL PIXMAP BIT, 23, 41
EGL READ, 62
EGL RED SIZE, 20, 21, 25, 28–30, 38,

47
EGL RENDER BUFFER, 32, 33, 44,

45, 63, 102
EGL RENDERABLE TYPE, 20, 21,

23–25, 29, 30, 37, 56, 96
EGL RGB BUFFER, 21, 29, 30
EGL SAMPLE BUFFERS, 20, 22, 29,

30, 60
EGL SAMPLES, 20, 22, 29, 30
EGL SIGNALED, 67
EGL SINGLE BUFFER, 32, 45, 63
EGL SLOW CONFIG, 24, 28
EGL STENCIL SIZE, 20, 22, 29, 30
EGL SUCCESS, 12, 14, 84, 101
EGL SURFACE TYPE, 20, 23, 26, 28–

30, 34, 41, 43, 96, 98
EGL SWAP BEHAVIOR, 23, 42–45,

79, 98, 100
EGL SWAP BEHAVIOR PRE-

SERVED BIT, 23, 43, 100
EGL SYNC CL EVENT, 67, 68, 71
EGL SYNC -

CL EVENT COMPLETE, 67,
68

EGL SYNC CONDITION, 67, 68, 71
EGL SYNC FENCE, 66–68, 71
EGL SYNC FLUSH COMMANDS -

BIT, 69
EGL SYNC PRIOR COMMANDS -

COMPLETE, 67
EGL SYNC STATUS, 67, 68, 71
EGL SYNC TYPE, 67, 68, 71
EGL TEXTURE 2D, 36, 47

EGL TEXTURE FORMAT, 35–38, 42,
44, 45, 47–49

EGL TEXTURE RGB, 36
EGL TEXTURE RGBA, 36
EGL TEXTURE TARGET, 35–38, 42,

44, 45, 47
EGL TIMEOUT EXPIRED, 69
EGL TRANSPARENT BLUE -

VALUE, 20, 25, 28–30
EGL TRANSPARENT GREEN -

VALUE, 20, 25, 28–30
EGL TRANSPARENT RED VALUE,

20, 25, 28–30
EGL TRANSPARENT RGB, 25
EGL TRANSPARENT TYPE, 20, 25,

28–30
EGL TRUE, 2, 3, 12, 16, 17, 20, 26, 31,

36, 39, 45, 48, 54, 55, 64, 65,
70–72, 75, 77, 78, 83

EGL UNKNOWN, 45
EGL UNSIGNALED, 67
EGL VENDOR, 18
EGL VERSION, 18, 19
EGL VERTICAL RESOLUTION, 44,

45
EGL VG ALPHA FORMAT, 23, 32–

36, 38, 40, 44, 97, 100
EGL VG ALPHA FORMAT NON-

PRE, 33, 34, 97
EGL VG ALPHA FORMAT PRE, 23,

34, 97
EGL VG AL-

PHA FORMAT PRE BIT, 23,
96

EGL VG COLORSPACE, 23, 32–36,
38, 40, 44, 97

EGL VG COLORSPACE LINEAR,
23, 33, 97

EGL VG COLORSPACE LINEAR -
BIT, 23, 96

EGL 1.5 - August 27, 2014

INDEX 113

EGL VG COLORSPACE sRGB, 33,
97

EGL WIDTH, 35–37, 43, 44
EGL WINDOW BIT, 23, 28, 29, 34
EGLAttrib, 3, 106
eglBindAPI, 50, 51, 55, 63–65, 83, 101,

106
eglBindTexImage, 46–49, 73, 77
EGLBoolean, 2, 12, 24
eglChooseConfig, 19, 27, 30–32, 35, 38,

40, 51, 96
EGLClientBuffer, 38, 73, 75
eglClientWaitSync, 3, 66, 69–72
EGLConfig, 4, 5, 13, 19, 20, 22–32, 34,

35, 37, 38, 40, 41, 43, 44, 49,
56, 60, 63, 81, 98, 101

EGLContext, 3, 10, 13, 51, 75, 76
eglCopyBuffers, 6, 10, 22, 47, 50, 80–

82, 101, 102
eglCreateContext, 50, 51, 55, 57, 96,

101, 106
eglCreateImage, 3, 72–75, 77, 90, 105,

106
eglCreatePbufferFromClientBuffer, 37,

38, 58, 73, 77, 98, 100
eglCreatePbufferSurface, 25, 35, 36, 38,

40, 43
eglCreatePixmapSurface, 41
eglCreatePlatformPixmapSurface, 3,

40, 41
eglCreatePlatformWindowSurface, 3,

32, 34–36, 40, 41
eglCreateSync, 3, 66, 68, 70, 72, 105
eglCreateWindowSurface, 35, 101
eglDestroyContext, 10, 57, 61, 99
eglDestroyImage, 78, 79
eglDestroySurface, 39, 41, 42, 62, 99
eglDestroySync, 72
EGLDisplay, 3–5, 11, 13–18, 31, 50, 59,

62, 66, 68, 70, 73, 75, 76, 79,

84, 99
eglGetConfigAttrib, 31, 100
eglGetConfigs, 26, 27, 31
eglGetCurrentContext, 50, 61, 62, 66,

68–70, 99
eglGetCurrentDisplay, 50, 62, 68
eglGetCurrentSurface, 50, 62, 99
eglGetDisplay, 15, 16
eglGetError, 12, 14, 83, 84, 101
eglGetPlatformDisplay, 3, 15
eglGetProcAddress, 82, 83, 101, 102,

105
eglGetSyncAttrib, 3, 71
EGLImage, 3, 73, 77–79, 106
eglInitialize, 16–18
EGLint, 3, 101
eglMakeCurrent, 10, 17, 50, 58–60, 83,

98, 102, 105
EGLNativeDisplayType, 98
EGLNativePixmapType, 13, 14
EGLNativeWindowType, 14
eglQueryAPI, 51, 64
eglQueryContext, 32, 33, 45, 63, 64,

102
eglQueryString, 2, 11, 18, 62, 82, 105
eglQuerySurface, 36, 43, 45, 46, 63
eglReleaseTexImage, 46–49
eglReleaseThread, 14, 17, 83, 84
EGLSurface, 3–5, 10, 13, 19, 25, 32, 34,

40–43, 46, 48, 49, 51, 58, 73,
98, 101, 105

eglSurfaceAttrib, 22, 23, 42, 43, 45, 79
eglSwapBuffers, 6, 10, 22, 25, 26, 32,

43, 45, 47, 50, 79–81, 101, 102
eglSwapInterval, 25, 26, 50, 81, 82, 102,

106
EGLSync, 3
eglTerminate, 16, 17, 42, 57, 61, 62, 99,

100
EGLTime, 3

EGL 1.5 - August 27, 2014

INDEX 114

eglWaitClient, 9, 50, 64, 102
eglWaitGL, 64
eglWaitNative, 9, 50, 65, 102
eglWaitSync, 66, 67, 70–72
EXT, 106

GL ARB compatibility, 53
GL ARB robustness, 55
GL ARB sync, 67
GL BLUE BITS, 21
GL CONTEXT PROFILE MASK, 54
GL EXT robustness, 55
GL EXTENSIONS, 82
GL FRAMEBUFFER ATTACH-

MENT COLOR ENCOD-
ING, 33

GL FRAMEBUFFER SRGB, 33
GL GENERATE MIPMAP, 48
GL GREEN BITS, 21
GL INVALID OPERATION, 82
GL KHR debug, 54
GL LINEAR, 33
GL LOSE CONTEXT ON RESET -

ARB, 55
GL MAJOR VERSION, 53
GL MINOR VERSION, 53
GL NO RESET NOTIFICATION -

ARB, 55
GL OES EGL image, 78
GL OES EGL sync, 67
GL OES surfaceless context, 60
GL RED BITS, 21
GL RENDERBUFFER, 75
GL SRGB, 33
GL TEXTURE 2D, 8, 73
GL TEXTURE 3D, 8, 73
GL TEXTURE BASE LEVEL, 48
GL TEXTURE CUBE MAP, 8, 73
GL TRUE, 48
GL VERSION, 53

glBindBuffer, 8
glBindTexture, 8
glCopyTexImage2D, 48
glDeleteTextures, 78
glFinish, 9, 47, 61, 64
glFlush, 47, 80
glGetIntegerv, 53
glGetString, 53, 82
glMapBuffer, 58
glReadPixels, 47, 59
glScissor, 60
glTexImage, 46, 49
glTexImage2D, 48, 49
glViewport, 60

int, 3
intptr t, 3

VG EXTENSIONS, 82
VG KHR EGL sync, 67
VG lRGBA 8888, 38
vgDestroyImage, 39
vgFinish, 9, 64
vgFlush, 80
vgGetString, 82
VGImage, 37–39, 90
VGImageFormat, 33, 38

EGL 1.5 - August 27, 2014

	1 Overview
	2 EGL Operation
	2.1 Native Platforms and Rendering APIs
	2.1.1 EGL Types
	2.1.2 Displays

	2.2 Rendering Contexts and Drawing Surfaces
	2.2.1 Using Rendering Contexts
	2.2.2 Rendering Models
	2.2.3 Interaction With Native Rendering

	2.3 Direct Rendering and Address Spaces
	2.4 Shared State
	2.4.1 OpenGL and OpenGL ES Texture Objects
	2.4.2 OpenGL and OpenGL ES Buffer Objects

	2.5 EGLImages
	2.6 Multiple Threads
	2.7 Power Management
	2.8 Extensions

	3 EGL Functions and Errors
	3.1 Errors
	3.1.1 Generic Errors Are Not Described Repeatedly
	3.1.2 Parameter Validation

	3.2 Initialization
	3.3 EGL Queries
	3.4 Configuration Management
	3.4.1 Querying Configurations
	3.4.2 Lifetime of Configurations
	3.4.3 Querying Configuration Attributes

	3.5 Rendering Surfaces
	3.5.1 Creating On-Screen Rendering Surfaces
	3.5.2 Creating Off-Screen Rendering Surfaces
	3.5.3 Binding Off-Screen Rendering Surfaces To Client Buffers
	3.5.4 Creating Native Pixmap Rendering Surfaces
	3.5.5 Destroying Rendering Surfaces
	3.5.6 Surface Attributes

	3.6 Rendering to Textures
	3.6.1 Binding a Surface to a OpenGL ES Texture
	3.6.2 Releasing a Surface from an OpenGL ES Texture
	3.6.3 Implementation Caveats

	3.7 Rendering Contexts
	3.7.1 Creating Rendering Contexts
	3.7.2 Destroying Rendering Contexts
	3.7.3 Binding Contexts and Drawables
	3.7.4 Context Queries

	3.8 Synchronization Primitives
	3.8.1 Sync Objects

	3.9 EGLImage Specification and Management
	3.9.1 Lifetime and Usage of EGLImages

	3.10 Posting the Color Buffer
	3.10.1 Posting to a Window
	3.10.2 Copying to a Native Pixmap
	3.10.3 Posting Semantics
	3.10.4 Posting Errors

	3.11 Obtaining Function Pointers
	3.12 Releasing Thread State

	4 Extending EGL
	5 EGL Versions, Header Files, and Enumerants
	5.1 Header Files
	5.2 Compile-Time Version Detection
	5.3 Enumerant Values and Header Portability

	6 Glossary
	A Version 1.0
	A.1 Acknowledgements

	B Version 1.1
	B.1 Revision 1.1.2
	B.2 Acknowledgements

	C Version 1.2
	C.1 Acknowledgements

	D Version 1.3
	D.1 Acknowledgements

	E Version 1.4
	E.1 Updates to EGL 1.4
	E.2 Acknowledgements

	F Version 1.5
	F.1 Change Log for Released Specifications
	F.2 Acknowledgements

