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A Geometric Approach to Variance
Analysis in System Identification

Håkan Hjalmarsson, Member, IEEE, and Jonas Mårtensson

Abstract—This paper addresses the problem of quantifying the
model error (“variance-error”) in estimates of dynamic systems.
It is shown that, under very general conditions, the asymptotic (in
data length) covariance of an estimated system property (repre-
sented by a smooth function of estimated system parameters) can
be interpreted in terms of an orthogonal projection of a certain
function, associated with the property of interest, onto a subspace
determined by the model structure and experimental conditions.
The presented geometric approach simplifies structural analysis of
the model variance and this is illustrated by analyzing the influence
of inputs and sensors on the model accuracy.

Index Terms—Asymptotic covariance, model accuracy, sto-
chastic systems, system identification.

I. INTRODUCTION

Q UANTIFICATION of the model error is a core issue in
system identification and much research effort has been
devoted to this issue; the following list of contributions

is by no means complete: [1]–[21]. In the stochastic setting [22]
that we will consider in this contribution, unknown system pa-
rameters are estimated using a data
set consisting of measured inputs and outputs resulting in the pa-
rameter estimate . We assume that a true parameter
value exists, denoted by , and we assume that the (normal-
ized) model error becomes normally distributed
as the sample size of the data set grows to infinity

As (1)

The asymptotic covariance matrix of the limit distri-
bution is a measure of the model accuracy. This is reinforced by
that, under mild conditions [22]

The asymptotic covariance matrix was early used for optimal
experiment design [23]–[26] and Ljung’s [27] model-order

Manuscript received March 25, 2009; revised December 11, 2009, June 01,
2010, and August 04, 2010; accepted August 04, 2010. Date of publication
September 13, 2010; date of current version May 11, 2011. This work was sup-
ported in part by the Swedish Research Council under Contract 621-2007-6271
and Contract 621-2009-4017. Recommended by T. Zhou.

H. Hjalmarsson and J. Mårtensson are with the ACCESS Linnaeus Center,
KTH School of Electrical Engineering, KTH—Royal Institute of Tech-
nology, S-100 44 Stockholm, Sweden (e-mail: hakan.hjalmarsson@ee.kth.se;
jonas.martensson@ee.kth.se).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2010.2076213

asymptotic variance expression led to experiment designs for
high-order models [28]–[31]. Optimal experiment design prob-
lems have received a renewed interest in recent years [32]–[37].

A. The Importance of Asymptotic Covariance Theory

As a motivating example we would like to mention Zhu, [38],
[39], who has developed an experiment design procedure, en-
tirely based on the asymptotic covariance theory, that has signif-
icantly reduced the time and cost related to modeling in several
industrial plants. We quote [39]:

Model identification plays a crucial role in MPC tech-
nology and it is also the most time consuming and difficult
task in MPC projects and maintenance.
Considerable benefits are obtained using the new identifi-
cation technology: 1) reduction of identification test time
and model building time by over 70%; 2) higher model
quality for control;

One specific example is given in the case study [40], which
deals with the re-tuning of an MPC controller at the Hovensa re-
finery in Virgin Islands, United States, which is one of the largest
refineries in the world, with a crude oil processing capacity of
495.000 barrels per day. The MPC application at hand had 34
inputs and 90 outputs, and the last time the model was tuned it
took one month to gather the data and one month to identify the
model. With the new method, the total modeling time was re-
duced to just five days; a reduction of over 90%.

This example more than well justifies the use of the asymp-
totic covariance theory for assessing the model quality, and we
will now return to the study of the asymptotic covariance matrix.

B. The Asymptotic Covariance Matrix

Often the asymptotic covariance matrix can be written as

(2)

where , for some integer depending
on the model structure, and whose elements belong to and
where denotes the integral
(superscript denotes complex conjugate transpose). The rela-
tion (2) will be our standing assumption throughout this paper.

1) Example 1: Consider a system described by the linear
regression

(3)

where , where are elements of a
stationary stochastic process with bounded moments and

, and where is white noise with bounded
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moments, variance and independent of . The least-squares
estimate of has asymptotic covariance matrix

(4)

see [22]. If we take to be a Cholesky factor of ,
(2) holds for this .

When the regressor vector in Example 1 has some struc-
ture, structure can be provided to as well.

2) Example 2: The th order finite impulse response (FIR)
model

(5)

with being white noise with bounded moments and vari-
ance , corresponds to (3) with

where . Here is the
delay operator: . Now, if is stationary with
spectrum , it follows from the multivariable counterpart to
[22, Theorem 2.2] that the spectrum for is given by

and, from the definition of a spectrum as the Fourier transform
of the correlation sequence, it thus follows that:

(6)

where denotes a stable minimum phase spectral factor of
the spectrum (so that ). Thus, for an FIR model
structure with the true system in the model set and with a sta-
tionary input sequence, (2) holds with

(7)

Example 2 can be generalized to prediction error models
where the true system belongs to the model structure [22]. The
regressor is then replaced by the prediction error gradient.

The primary interest is often not the model parameters
themselves but some “system theoretic” quantity such as

the frequency response, impulse response coefficients, poles
and zeros, some norm of the system, or the performance of a
closed loop system where the controller is designed using the
identified model. We will let such a quantity be represented by
a differentiable function . Given an estimate

of the true parameter , which we assume belongs to the
set of model parameters, a natural estimate of is .
This estimator is motivated by that if is asymptotically
efficient, i.e., it is consistent and its asymptotic covariance
matrix equals the Cramér-Rao lower bound, then is
also asymptotically efficient. This follows from the invariance
principle, see [41].

It follows from (1) (and some additional mild conditions, see
[22]) that

As

where, using Gauss’ approximation formula and (2), it can be
shown that

where is the derivative . We shall be
slightly more general and allow cases where is singular.
Then the parameter estimate is non-unique but there may be
other properties that are identifiable from the data. In that
case, provided that belongs to the column space of , the
correct variance is given by

(8)

We refer to [42], [43] for details. In the following, we will as-
sume that belongs to the column space of and consider
(8) as a definition of .

From knowledge of the model structure, the true system and
experimental conditions, the asymptotic covariance of
can be computed, at least, numerically from (8). However, it is
not straightforward to obtain structural insights into how quanti-
ties such as model structure, model order and experimental con-
ditions influence the asymptotic covariance matrix from (8). Un-
derstanding the nature of this expression for different problem
settings has been subject of rather intense research. An example
of a well known structural result is that the variance of the
model parameters increases with the model order [44], [45].
Another, more recent, result in the same vein has been to de-
termine when estimating a transfer function in a multiple input
single output system may help improve the quality of estimates
of other transfer functions in the model [46]. Also related to our
work is the very interesting paper [47] where conditions for the
asymptotic covariance matrix to be non-singular are studied.

Most of what is known regarding the structure of (8) pertains
to models of linear time-invariant systems. An exception is
[48] where the asymptotic variance for the linear part of a
Hammerstein model is characterized asymptotically as the
model order tends to infinity and when the linear part has a
fixed denominator.

Recently, there have been several interesting contributions
to non-asymptotic assessment of confidence regions [3],
[49]–[51]. In [52] it is discussed under which conditions the
asymptotic theory is valid.

3) Contributions and Outline: This contribution has its
origin in [53], where exact expressions for the asymptotic
variance of frequency function estimates for LTI models were
derived using the theory of reproducing kernels. It was in this
work that the importance of the subspace generated by the rows
of was recognized. Our work can be seen as an extension of
the work in [53] to general system properties (represented by
the function ) and a more general class of model structures
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using new techniques which deepens the geometric interpreta-
tion of (8) initiated in [53]. Related to our work is [54], where
a geometric interpretation is given to the Cramér-Rao lower
bound for the special case where the estimate of the parameter
vector is based on an observation of a normal distributed
variable with mean and known covariance. An approach
similar to [54] is taken in [55]. A preliminary version of this
paper has appeared as [56].

More precisely, the contributions of this paper are:
i) Section II: A geometric interpretation of the asymptotic

variance (8). The results referred to above are by no
means obvious by studying the initial expression (8), in-
stead many of the results are proved using rather intricate
matrix manipulations. A new geometric interpretation
is presented which facilitates the understanding of how
different quantities such as model structure, model order,
input spectra and the quantity of interest, influence the
asymptotic accuracy.

ii) Section III: General structural results. Here we provide
some general results concerning what happens with (8)
when the structure of changes.

iii) Section IV: Structural results for LTI-systems. In this sec-
tion we apply the results of Section III to some structural
problems in estimation of linear time invariant (LTI) sys-
tems. First we illustrate the method by examining how
system complexity impacts the model accuracy. The par-
ticular example of non-minimum phase zero identifica-
tion is studied and both matrix algebra and the geometric
approach are used so that the reader may compare these
two methods. Secondly, we examine the impact different
inputs have whereby we extend results in [46]. Finally,
we examine the impact different number of sensors have
on the estimation accuracy.

NOTATION

We will consider vector valued complex functions as row vec-
tors and the inner product of two such functions

is defined as where
denotes the complex conjugate transpose of . When and

are matrix-valued functions, we will still use the notation
to denote whenever the dimensions
of and are compatible. The elements of will consist of
the inner products between the functions corresponding to rows
of and rows of . In particular, is the Gramian matrix
of the rows of . The -norm of is given by

. The space consists of all functions
such that and when , the nota-

tion is simplified to . For ,
denotes the th row of . When is partitioned into blocks, with

th block , denotes the function . Sim-
ilarly, denotes . If for some pos-
itive integers and , then denotes the subspace of
generated by the rows of .

For a differentiable function , is
a matrix with as th entry, the partial
derivative is defined analogously.

With being closed subspaces of a Hilbert space, we use
to denote the subspace ,

to denote that is the direct sum of and ,
i.e., that is the orthogonal complement of in . We use

to denote the orthogonal complement of with respect
to the entire Hilbert space. Furthermore, we define to
be the orthogonal complement of in , i.e.,

.
By we mean that is a normal distributed

random vector with mean and covariance matrix . The
Moore-Penrose pseudo-inverse of a matrix is denoted .

II. GENERAL RESULTS

The purpose of this paper is to provide a geometric interpreta-
tion of (8). After recalling some standard results in Section II-A,
we will in Section II-B show how an isometric isomorphism,
between the stochastic model error and a deterministic
object related to , leads to the paper’s main technical result,
Theorem II.5. This result will serve as foundation for the se-
quel. In Sections II-C–II-E follow some results that can be used
as building blocks when analyzing (8).

Technically, the results concern orthogonal projections in the
Hilbert space and several results are well known; the main
contribution of this section is the linking of these results to the
asymptotic covariance expression (8).

A. Technical Preliminaries

Lemma II.1: Let for some finite positive integers
and . Then the number of linearly independent rows of ,

or, equivalently, the dimension of , the subspace of gen-
erated by the rows of , is given by the rank of .

Proof: Straightforward.
Next, we have the following standard result from Hilbert

space theory.
Lemma II.2: Let and let be a closed subspace of

with orthonormal basis , . Then

is said to be the orthogonal projection of on and is the unique
solution to

Proof: See, e.g., Lemma 6.2.1, Theorem 6.4.2 and The-
orem 6.4.4 in [57].

Remark: Notice that with and as in Lemma II.2
but with for some positive integer

so we write also in this case .
Lemma II.3: Let and . Then the or-

thogonal projection of the rows of on (the subspace of
spanned by the rows of ) is given by

(9)
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Furthermore

(10)

Finally, it holds that

(11)

where , for some , is any orthonormal basis for
.

Proof: This is a standard result and we only point out that
by taking the inner product of the right-hand side of (9) with it-
self, (10) readily follows. Furthermore, the equality in (11) fol-
lows using Lemma II.2 when evaluating the left hand side.

Lemma II.4: With and as in Lemma II.3, the rows of
span a subspace of with dimension equal to the

rank of

(12)

In particular, if and only if .
Proof: By writing where has

full (column) rank and with being orthonormal, i.e.,
, the result follows straightforwardly from Lemma II.1 and

Lemma II.3.

B. Basic Result

Estimation is closely linked to (orthogonal) projection,
cf. optimal filtering and parameter estimation. Consider
for example the least-squares problem in Example 1. With

and , the problem
becomes that of finding the best predictor of

, which effectively means that the predictor should be the
orthogonal projection of onto the subspace spanned by the
rows of . The least-squares estimate is given by

(13)

where , and if we introduce the inner
product in the linear vector space of real valued
row vectors of dimension , we have from (13) that 1

(14)

which is exactly the right-hand side of (9) so that
, i.e., the optimal predictor is indeed the orthogonal

projection of onto the linear subspace spanned by the rows
of . One may wonder whether the parameter estimate it-
self can be related to some projection in a meaningful way. As
it turns out, this can be done for the estimation error .
For simplicity of argument we will assume that is determin-
istic and that . Under these assumptions and those
made on the noise in Example 1, the elements of

1Notice that for� � and� � , ����� � �� is a matrix
consisting of the inner products between the rows of � and the rows of � .

are random variables with zero mean and finite second order
moments so we can consider them as elements of the Hilbert
space with inner product2 . Notice that

(15)

i.e., the covariance matrix consists of all inner products between
the elements of . Furthermore, from (13) it follows that
this covariance matrix can be expressed as

(16)

We will now argue that we can identify, through an isometric
isomorphism, with an element, which itself is a pro-
jection, in another Hilbert space which consists of deterministic
elements. To this end notice first that the projection (14) gives

This calculation suggests that if we instead of projecting ,
project the rows of some with the property that

, we will obtain a matrix3 whose
rows are the projection of the rows of onto and for which
it holds that

(17)

Combining (15)–(17) we have shown that

(18)

which means that the elements of (as seen as elements
of the Hilbert space consisting of zero mean random variables
with finite variance and inner product ) can
be related to the rows of (which are seen as elements of
the Hilbert space of vectors with inner product

) through an isometric isomorphism. This means that the
second order statistical properties of can be deduced
from . In particular (15) and (18) give

Furthermore, if we are interested in the variance of a linear com-
bination of the parameter estimates, we obtain

for any for which .
This leads us to our main technical result which generalizes

the idea above to asymptotic covariance matrices.
Theorem II.5: Suppose that is differen-

tiable and let the asymptotic covariance matrix be

2The definition includes a transpose of the first argument so that when � and
� are random row vectors with elements of this Hilbert space, then ��� �� �
� � � � � is a matrix with the inner products between all elements of � and �.

3Notice that the notation is such that the same formula � ��� �
��� ������� � as before gives as result a matrix whose rows are the rows
of � projected on � .
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defined by (8) where . Suppose that is
such that

(19)

then

(20)

where is the subspace of spanned by the rows of .
In particular, when is scalar

(21)

Proof: Follows directly from (8) and Lemma II.3.
The relations (19)–(21) provide a geometric interpretation of

the asymptotic covariance matrix. Expression (21) shows that
the asymptotic variance of is given by the squared norm
of the projection of onto the subspace spanned by the rows of

in (8). Notice that typically depends on the model struc-
ture, operating conditions (such as input and noise excitations
and feedback configuration) but is independent of the quan-
tity of interest . The link between and is given by
through (19). The geometric interpretation together with these
two observations can provide useful insights, especially when
comparing asymptotic covariances for two different scenarios.
For example when is changed, the function which is pro-
jected will change, whereas the subspace onto which the pro-
jection takes place will remain the same. Furthermore there are
several situations when structural changes in the identification
problem result in a change of the subspace whereas the func-
tion to be projected can be kept the same, see Section II-D
for further discussion. Qualitative information such as which
structure has higher asymptotic covariance can then sometimes
be obtained by studying the corresponding subspaces without
ever computing the function to be projected. The remaining
sections of the paper explore this possibility. For example, in
Section IV-A we encounter a case where a whole range of model
structures can be compared. However, before embarking on this
track we provide some basic results that will be useful in the
sequel.

C. Bounds

It may be cumbersome to compute the projection in (20).
Lower and upper bounds can then be computed using the fol-
lowing lemma.

Lemma II.6: Let and be two closed subspaces of
such that and let .

It holds that

(22)

Proof: By definition it follows that
and since we have . Thus,

and by taking the inner product of each
side of the equation with itself, the result (22) follows.

Upper bounds for (20) are obtained by taking and
such that the projection is easy to compute, for ex-

ample is one possibility. Lower bounds can be ob-
tained by taking and by choosing suitably.

The next lemma is useful for characterizing when
and are the spans of the rows of different -functions.

Lemma II.7: Let , and for
some positive integers , and . Then

(23)

and

(24)

where .
Proof: is the set of -functions in

that are orthogonal to . This must thus be a subset of
. But and

and (23) follows.
Since

(25)

Now we make the orthogonal decomposition of into
where the first term belongs to

and where the second term is orthogonal to . By
combining these observations with (25) the result (24) follows.

D. Existence of Suitable Functions

The applicability of Theorem II.5 for rewriting the asymptotic
covariance matrix as (20) hinges on the existence of an -func-
tion such that (19) holds. The next lemma shows that there is
a whole family of such functions.

Lemma II.8: Let and let be such that
its columns are in the column space of .

Then all solutions to the equation are
given by , where is any -function
orthogonal to .

Proof: Straightforward.
The possibility to include an arbitrary term (as long as it

is orthogonal to ) in opens up the possibility of using the
same for different model structures. When this is possible, it
will only be the subspaces onto which the projections take place
that differ. This can facilitate comparisons significantly. For ex-
ample, when two model structures are nested in the sense that
one subspace is a subset of the other, then Lemma II.6 immedi-
ately gives that the asymptotic covariance for the structure cor-
responding to the larger subspace will be no less than the other
one. We refer to Section III-B for more details on this. Another
advantage of this degree of freedom in the choice of is that it
may be used so that an upper bound (obtained using Lemma II.6)
becomes tractable to compute. We will not pursue this idea here
(due to space limitations), instead we refer to [58], [59] where
this idea is used to obtain model structure independent upper
bounds when the underlying system is linear time invariant.

E. Explicit Expression for the Projection

In some cases it is easy to compute the projection
explicitly.
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Lemma II.9: Let , and be as in Theorem II.5 and
suppose that for some and .
Let , , be an orthonormal basis for . Then
(20) can be expressed as

Proof: Let . Then there exists a full
(column) rank such that . Inserting this
in and some straightforward algebra gives the
result.

III. STRUCTURAL RESULTS

In this section we will consider structural properties of the
asymptotic covariance (8). We will derive expressions for how
(8) changes when (and ) changes.

A. Introduction

We will use some simple examples to illustrate how structural
changes affect the estimation accuracy. The purpose is to illu-
minate the basic principles rather than the final expressions for
the asymptotic variances (which in these simple examples can
be derived in simpler ways).

Consider again the simple FIR model (5) in Example 2, where
we for simplicity assume the noise variance . One ex-
ample of a structural property of the asymptotic covariance is
how the variance of a particular parameter (or set of parameters)
changes when the system order changes. Let us first assume that
the true system order is , i.e.,

Following (7) and taking

(26)

we have from (4) and (6) that the asymptotic covariance of the
estimate of is given by where

. If now the system instead is of order ,
changes to

(27)

with associated asymptotic covariance

Since we see that the
variance of the -estimate increases when two parameters have
to be estimated (unless in which the variances become
equal). Using Schur-complements, this well known fact can be
generalized to higher dimensions, see, e.g., Example 9.1 in [60].

Now, if we take a look at what happens structurally when the
number of estimated parameters changes we see that the only
change is that rows are added to (compare (26) to (27)). We
conclude that when rows are added to there is an information
decrease regarding the original parameters.

Now we will examine how the information can be increased.
One obvious method is to increase the excitation. Suppose that
a second input (independent of ) can be used to excite the
system, leading to the model

The asymptotic variance is now determined by

(28)

resulting in

(29)

where . Thus, we have shown the obvious fact
that the second input will increase the information in the data
and thus improve the estimate.

Another way to increase the information contents is to use
more sensors. Suppose that we can use also measurements from

(30)

where is also zero mean white noise with unit variance (and
uncorrelated with ) and where is a measured input, e.g.,

. Now the asymptotic variance of the least-squares esti-
mate is again determined by (28) (with exchanged for ),
so that the variance is given by (29). From the last two simple ex-
amples we conclude that there is an information increase when
columns are added to .

When both rows and columns are added there will be a joint
effect of information decrease and increase and one objective
of this section is to provide tools for analyzing this situation.
Another objective will be to derive general conditions for when
the asymptotic variance remains constant to structural changes.
This is instrumental when understanding the limitations that
need to be considered when complex systems are identified as
well as how such systems should be identified. This is also im-
portant in order to understand when adding new actuators and
sensors to a system is beneficial from a system identification
point of view.

B. A Comparison Theorem

The following theorem is a technical result for comparison
of asymptotic covariances for two different structures. We will
illustrate its use in ensuing subsections. In Section IV, these re-
sults will be used for structural analysis when identifying linear
systems.

Theorem III.1: Let , and
for some positive integers , , , and . Define

(31)
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and

(32)

Suppose .
Then

(33)

and

(34)

Furthermore,

(35)

Proof: The result (33) is an almost immediate consequence
of Lemma II.6. We have

, but since we get

(36)

which gives (34) upon observing that (this
follows from Lemma II.7). Taking the inner product of (36) with
itself gives (33) due to that . Finally, (35) follows from
Lemma II.1 and Lemma II.4.

Theorem III.1 explores the possibility of using the same func-
tion to be projected for two different structures that was dis-
cussed below Theorem II.5 and in Section II-D. Suppose that we
are to estimate some quantity of a system and that we are given
two identification settings (including the experimental condi-
tions, model structure, etc) which correspond to ,

, 2, respectively, in the asymptotic covariance expression
(8). When one can find such that , ,
2 are the derivatives of , the quantity of interest, corresponding
to , , 2 then, since , Theorem III.1 shows that the
asymptotic covariance for is no larger than that for .

In the proof of Theorem III.1 it was noticed that
. Thus, (33) and (34) show that how much differs from
is important for how big the difference in asymptotic

covariance will be. For example, when then
and regardless of . Furthermore, (35) gives

that the rank of is upper bounded by .
One way to explicitly compute the right-hand side of (33) is

to express as using Lemma
II.3 and then to use (10) in the same lemma.

C. Structure Extension

In Section III-A we saw that an information decrease occurs
when rows are added to and an information increase occurs
when columns are added. For given ,
we are therefore interested in comparing the asymptotic covari-
ance when and when

(37)

In order to work in (row) spaces of the same dimension, we
extend the single blocks of with zeros into

(38)

Notice that so whether we use or
is immaterial when we are computing asymptotic covari-

ances. We will thus compare

(39)

where we will comment on the function in
Section III-D. By choosing either and or

and in Theorem III.1 we obtain results for
when there will be an information decrease or an information in-
crease, respectively, when is augmented from to . By
using the structure that is an extension of we can pro-
vide more detailed expressions for the projections that appear in
Theorem III.1. This we do next.

1) Information Decrease: We start with the case where
and . Since in Theorem III.1 is positive (semi-

)definite, this corresponds to the case where augmenting from
to will result in a net decrease of information.

Theorem III.2: This is an application of Theorem III.1 for
and according to (37)–(38). Let

and let for some inte-
gers , , , and . Suppose that

. Define
and let be as in (32).

Then
(40)

and

(41)

where .
Furthermore,

(42)

and, finally, defined in (31) satisfies

(43)

Proof: First (40) and (42) follow from the orthogonal de-
composition

. Furthermore, it follows from the decomposition above that
, which, combined with Lemma

II.4, gives (43). Finally, (41) follows from

where the last equality is due to Lemma II.3.
One case of particular interest is when and ,

i.e., when only rows are added to when is formed. We
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will return to this setup in Section IV-A; here we only notice
that (41) simplifies to

so that (35) and (43) give the condition
for the difference in (31) to

have zero rank.
2) Information Increase: Taking and

in Theorem III.1 corresponds to the case where there is an in-
formation increase when the structure is extended. From The-
orem III.1 it follows that in this case it is the properties of the
space that will be important. To this end, for any

function let denote the projection of on , e.g.,

.

Theorem III.3: This is an application of Theorem III.1 for
and according to (37)–(38). Let
and let for some in-

tegers , , , and . Suppose
that and let be defined by (32). Suppose in
addition that . Then

(44)

Furthermore

(45)

and

(46)

where .
Furthermore,

(47)

and, finally defined in (31) satisfies

(48)

Proof: From the condition it follows
that and from the orthogonality

between and we get which

gives (44). The result (45) follows from (34) if we make the
decomposition and use the orthogonality
between and . From the same decomposition and the fact
that we have

(49)

Now we observe that so that
. Furthermore, both and

since they are orthogonal to both and . Inserting
this in (49) gives (46) and then (48) follows from a standard rank
inequality .

Finally, (47) follows from the following decompositions:

which gives that .
The expressions (44)–(48) can be used in Theorem III.1 to

quantify the decrease in the asymptotic variance when is ex-
tended from to . When , a simple inter-
pretation of the rank result (47) in Theorem III.3 can be given.
Then in (47) and (48) we get

However, so

and we arrive at the interpretation that

equals the degrees of freedom offered by adding

to reduced by the degrees of freedom that
have to be used for the new rows that have been added. In
particular, . Furthermore, since

and (recall that and are
the number of rows of and , respectively), it follows that

when .
We summarize this.

Lemma III.4: Let the notation and assumptions in Theorem
III.3 be in force as well as the condition .

Then
i)

ii) when
.

Notice that i) in Lemma III.4 is a simple condition for when
there will be no information increase no matter what is.

D. How to Use the Results to Compare Asymptotic Covariance
Matrices

The intended use of the results above is to compare covari-
ances given by . Of course, a crucial
aspect for the usefulness of Theorem III.1 is how easy it is to
establish the existence of a so that is satisfied for
pre-specified and . Following the discussion
around the expression (8) in the Introduction, we require that
and belong to the column spaces of and ,
respectively, which also ensures the existence of functions
and such that and . Lemma II.8
gives the general solutions

(50)

When applying Theorem III.1 it is required that
and also that and that limits the possible



HJALMARSSON AND MÅRTENSSON: A GEOMETRIC APPROACH TO VARIANCE ANALYSIS IN SYSTEM IDENTIFICATION 991

combinations of and . The latter condition is equivalent
to

which implies

(51)

and hence while can be chosen freely, is directly deter-
mined by . The existence of a solution to (50) for

follows from (51) since we then have

and the general solution to the joint problem
is given by

(52)

That cannot be found so that is satisfied for
arbitrary and may seem as a severe limitation. However,
it is quite natural since for given and

does not hold for arbitrary and .
One special case which sometimes is studied is when

for some , in which case it is required that
. Condition (51) is then auto-

matically fulfilled

An example of this is in Theorem III.2 in the case when

, , and i.e., when

. Thus, when only rows are added to , Theorem
III.1 and Theorem III.2 can be used to compare the covariances
when is an extension of .

Another example of how the relations between and are
restricted is in Theorem III.3 where we have the condition (44)

which implies .

IV. STRUCTURAL RESULTS FOR LTI SYSTEMS

We will now use the results in the preceding sections to an-
alyze some structural issues that arise when identifying LTI
systems.

A. Influence of Model Complexity

For simplicity we will assume that the true system is of FIR
type, i.e., the system is described by (5), with noise variance

, and that it is operated in open loop. We recall that

the asymptotic covariance matrix of the parameter estimates is
given by (2) with given by (7).

Consider the problem of estimating a real-valued non-min-
imum phase (NMP) zero located at . We are interested
in understanding how the asymptotic variance of the corre-
sponding zero estimate, obtained from an FIR model, depends
on the model complexity, as represented by the order which
here is assumed to be larger than or equal to the system order

, (meaning that the true system always is in the model set).
It is well known that the asymptotic variances of individual
parameter estimates do not decrease when the model order is
increased, compare with the discussion in Section III-A. The
same actually holds for the variance of a zero estimate, but
this fact is not immediately evident, (at least not to us), since
a zero depends on all parameters in a rather complicated way.
The usual way to show this is by matrix algebra using Schur
complements, a routine that will be explained in Section IV-A-I.

We will also ask the question whether there may be exper-
imental conditions such that the asymptotic variance becomes
independent of the model order . This issue is of independent
interest since the system order is typically not known before-
hand. We will analyze these two questions using both matrix
algebra and the geometric approach presented in this paper.

It is straightforward to show that the asymptotic variance of
the estimate of a zero at is given by (8) with
(recall that is defined in Example 2) where the constant ,
which will be of no concern for us, depends on the true system
but not on the model order , see [61], [62] for details. The
asymptotic variance of the estimate of is thus given by

(53)

where is a stable minimum-phase spectral factor of the input.
Introducing , the asymp-
totic variances for model orders and are given by

(54)

and

(55)

respectively, with obvious definitions of the matrices , and
.
1) Analysis Using Matrix Algebra: Using a standard expres-

sion for the inverse of a block matrix (63), we can write

(56)

where is a Schur complement. However,
the block matrix in the last term of (56) can be factorized. This



992 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 5, MAY 2011

gives the following expression for the variance when the model
order is

(57)

Since the first term in (57) corresponds to the asymptotic vari-
ance when the model order is and the second term is non-nega-
tive definite, we have shown that the variance is non-decreasing
with the model order.

We now turn to the question of whether the variance can be
independent of the model order . For this to hold, the second
term in (57) has to be identically zero, and this has to hold re-
gardless of . This implies the condition

(58)

which can be expressed as

(59)

where and are Toeplitz matrices

...
. . .

...
...

. . .
...

where . Thus, if the second order properties of
the input are such that (59) is satisfied for any then the
asymptotic variance is independent of the model order .

We now outline how one can determine if there exist
such that (59) is satisfied. First we determine all

possible such that

(60)

Note that (60) defines constraints on the pa-
rameters in . The set of allowable parameters of :s can then
be parametrized by an dimensional sub-
space of . Using this parametrization and solving the
linear system of equations

(61)

for all in this subspace with respect to will
produce all possible (if any) solutions to (59). For
a fixed , the relation (61) defines constraints on the

parameters of the matrices and .
Compounding factors when solving this problem are that only

those solutions which correspond to bona fide autocorrelation
sequences are allowed and, furthermore, that we are looking for
solutions which are valid regardless of the particular value of

. All in all, this gives rise to a rather complex problem and
even though the solution can be obtained we will not make the
complete derivation. Instead we will analyze the problem using
the geometric tools that have been presented.

2) Geometric Analysis: Lemma II.8 gives that there exists
such that

(62)

But with and , then (33) in Theorem
III.1 gives that the asymptotic variance for the zero estimate
is non-decreasing with model order and that the difference be-
tween (55) and (54) is given by

(63)

Notice that we did not have to compute explicitly in order to
arrive at this result and that the result holds for all and ,

.
We now turn to the question of whether the variance can be

independent of the model order . We notice that if can be
taken to belong to then the projection of on will
be zero. For example we can examine if (the
first element of , which clearly belongs to ) is possible.

The conditions (62) that has to satisfy can be expressed as

Notice that these are constraints on the first coefficients in the
series expansion of the input spectrum. For example, the input
spectrum

(64)

satisfies (62). In fact, this spectrum satisfies (62) regardless of
the order .

Thus, using the geometric approach, we have with little ef-
fort shown that the asymptotic variance of an estimate of a NMP
zero does not depend on the model complexity if the input spec-
trum has a single pole at the zero itself (and at its mirror image
in the unit circle). The intuition is that this input spectrum pro-
vides an infinite signal to noise ratio at the zero in question,
since , which makes the estimate independent of
the system complexity. Compare this with the well known fact
that a sinusoid with frequency results in the asymptotic vari-
ance of the frequency function estimate at being independent
of the system complexity, see, e.g., [8]. The analysis presented
here can be generalized and we refer the reader to [64]–[66] for
details. The result is illustrated with a simulation example.

3) Example 3: In this example the identification of the zero
of the system is considered. The

model is where , 2, 3,
10. White noise with variance 0.01 is added to the output and the
input is a unit variance white noise sequence, filtered by

. The pole of the filter is varied between
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Fig. 1. Normalized sample variance from the numerical simulations of
Example 3.

and 0.9 in steps of 0.1 and the value corresponding to (64)
is . Sequences of length of the two white
inputs are drawn from a Gaussian distribution and the output
is simulated for the different pole locations . For each data set
the four models with different are estimated. The simulation is
repeated 25.000 times with different noise realizations. In Fig. 1
the sample variance of the estimated zero, normalized by , is
plotted against the pole location of the input filter. The gain

of the input filter is adjusted so that the asymptotic variance
of the zero, see (53), is equal for all when . When
increases to 10, the normalized sample variance increases with
as much as 80% (for ), but when the increase
is only 20%. The asymptotic theory says that there should be no
increase at all for . This is not true when the sample size
is small (as in this example), but note that the minimum variance
is achieved for . This example shows that the asymptotic
results also are useful when the sample size is small.

B. Influence of Inputs

Next we will consider the problem of when adding inputs may
increase the information. The following result shows that there
are some limitations.

Theorem IV.1: Let

where . Suppose that
and . Let . Then

(65)

and the rank of the left-hand side is given by

(66)
Proof: See Appendix.

We illustrate the use of Theorem IV.1 with an example.

1) Example 4: Consider the linear regression model

(67)

where is stationary. The question now is if the use of a second
input , which we assume also to be stationary and uncorrelated
with , will reduce the asymptotic variance of the estimate of .

Denoting by and , the stable minimum phase spectral
factors of the spectra of and , we have that the asymptotic
covariance matrix of the estimate of is given by
(2) with

when only is used, and by

when also is used. Identifying and
, Theorem IV.1 gives that the asymptotic

variance of the estimate of will decrease when is used only
if

(68)
For example, if is white noise, there will be no improvement.

For the readers’ benefit we provide the expression for here.
The comparison that is made is between and

for a such that
. From (52) we get where

is orthogonal to . If we let
we can express as

In [46] it is analyzed, for linear time-invariant MISO sys-
tems, when a particular input improves the accuracy of a cer-
tain parameter estimate. The rank result above gives more pre-
cise information regarding the possible improvements than can
be obtained as compared with Theorem 4 in [46]. In particular,
the example above illustrates that not only the connectedness of
the transfer functions (see [46] for a definition) are important
for when an added input will improve the estimate of a param-
eter not directly connected to it, also the input properties are
important.

C. Influence of Sensors

We will now turn to a problem that in a sense is dual to the
problem studied in Section IV-B. Consider a system that can
be modelled by an output error model

(69)

where and where is white noise with
. The issue is now whether the accuracy of the es-

timated parameters can be improved by adding a second
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sensor to the system. The new sensor will give measurements
according to

(70)

where is white noise and independent of with
, and where represents unknown sensor dynamics

that also have to be estimated. The sensor dynamics is modeled
by

(71)

where . As the signal contains information
about it may seem obvious that a second sensor would im-
prove the accuracy but let us analyze the problem using the tools
we have developed in this paper.

We first study the case where only is used. Then the output
error model (69) will have asymptotic parameter covariance
given by (2) with

(72)

where is the spectral factor of the input.
When a second sensor is added and is estimated together

with , the maximum likelihood criterion is given by

(73)
and it follows, see [67], that the asymptotic parameter covari-
ance is given by (2) with

(74)

It is easy to verify that the condition (51) holds for
, with as in

(72) and with as in (74). This ensures that there
exists a such that and

. The expression for is given by (52)

Now taking and in Theorem III.1 (as
in Section III-C-II) and then referring to i) in Lemma III.4 now
gives the following result.

Theorem IV.2: Consider the system

where is white noise with .
Let the system be modelled by the output error model (69)

which we assume to be globally identifiable. Assume also that
the input signal is persistently exciting of order at least equal to
the number of estimated parameters.

Adding the sensor (70), where is white noise with
with variance and independent of and

where is unknown but can be modelled by (71), and esti-
mating all unknown parameter using maximum likelihood es-
timation does not improve the asymptotic covariance for the
estimate of as compared to only using measurements of
if the elements of are spanned by the elements of

.
Remark IV.3: With some additional effort, the result of The-

orem IV.2 can be extended to the singular case when .
The condition in Theorem IV.2 holds, for example, when

has the same parametrization as and is propor-
tional to . The perhaps surprising result from Theorem IV.2
is thus that in this situation the extra sensor does not provide any
new information about . Perhaps even more surprising is that
this holds regardless of the noise variance for the second sensor,
i.e., even very high quality measurements from the extra sensor
are useless (as measured by the asymptotic covariance matrix)
for estimating if also is used.

When the condition in Theorem IV.2 does not hold, there may
still be estimates of certain properties of that does not im-
prove when a second sensor is added. Drawing on the results
above, variance analysis for cascade systems is presented in
[68].

V. CONCLUSIONS

We have in Theorem II.5 presented a geometric interpretation
of the asymptotic covariance expression

While all quantitative results concerning this expression, e.g.,
those presented in this paper, can equally well be obtained using
matrix algebra such as Schur complements and the matrix inver-
sion lemma, we believe that the geometrical interpretation can
be useful for unveiling structural relationships. In Section IV-A
this was illustrated by showing that a specific choice of input
spectrum makes the asymptotic variance of a NMP zero esti-
mate independent of the system complexity. For comparison
purposes, we also presented a derivation based entirely on ma-
trix algebra. It is up to the reader to decide which approach suits
him/her. Furthermore, in Section IV-B we re-visited the problem
of determining when new inputs can decrease the asymptotic
covariance. Again using geometric arguments, we were able
to show that the problem is more intricate than previously be-
lieved in [46]. We have also analyzed the dual problem of when
adding sensors may help decrease the asymptotic covariance
matrix (Section IV-C) and it was shown that there are situations
in which high quality measurements may be useless. We believe
that this problem and its generalizations will turn out to be im-
portant in distributed sensor networks. Our insights have already
paved the way for results concerning cascade systems [68].

We point to two properties that we believe are of key impor-
tance in the geometric approach to variance analysis:

i) For qualitative structural analysis, it is often not necessary
to compute such that , it is sufficient to
know that such a exists. Notice that the only occasion in
entire Section IV when we needed was in Section IV-A
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and then only when we wanted to explicitly determine the
input spectrum.

ii) The freedom in the choice of represented by in
Lemma II.8. For some problems, where asymptotic co-
variance matrices for two (or more) identification setups
(or structures) are to be compared, this allows the same

(which still may not have to be computed explicitly) to
be used. Hence, it will only be the subspaces on which

is projected that differ. This will simplify the analysis.
All results in Section III are based on this. For example,
(62) shows that the same can be used for analyzing the
variance of a NMP zero up to some finite, but arbitrary
high, system order.
Another use of the freedom represented by is that it
can be used together with Lemma II.6 to obtain tractable
explicit upper bounds. We have not explored this possi-
bility in this contribution but refer to [58], [59] where
model structure independent upper bounds are derived for
a number of different estimated system properties when
the underlying system is linear time invariant.

Our work has its origin in [53], where the importance of the
subspace spanned by the prediction error gradient was recog-
nized. Perhaps the most important contribution is the analysis
technique as such. Hopefully the methodology will be of use
in future research. It has already been used in [58] for deriving
variance expressions for estimates obtained from single input
single output causal finite dimensional LTI systems. We see as
interesting applications to LTI multi-input and multi-output sys-
tems and non-linear systems, for which at present the available
results on the structural properties of the asymptotic covariance
matrix are limited. Experiment design is another area where the
approach has potential, e.g., the result in Section IV-A has been
generalized in [64]–[66].

APPENDIX

PROOF OF THEOREM IV.1

It is easily verified that
for any and Theorem III.3 shows that there exists
a such that where

. Theorem III.1 gives (65) is
positive and that the rank of the left-hand side of (65) is
given by the rank of which in turn by (46)
in Theorem III.3 equals the rank of where

.

Introduce ,

and and the notation .

Next, observe that since
with these two terms being orthogonal and where,

by assumption, . Decomposing
and observing that gives that

where we have used the same decomposition of as above.
Now, since and by assump-
tion, we obtain

Since and by assumption,
the rank of this expression equals the rank of
but since by assumption the rank of this
quantity equals the rank of which
according to Lemmas II.1 and II.4 equals the right-most expres-
sion in (66).
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